
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 134, Number 2, Pages 411–418
S 0002-9939(05)07982-7
Article electronically published on August 25, 2005

FIXED POINT THEOREMS IN ORDERED L-SPACES

ADRIAN PETRUŞEL AND IOAN A. RUS

(Communicated by Joseph A. Ball)

Abstract. The purpose of this paper is to present some fixed point results in
ordered L-spaces. Our results generalize and extend a recent result of Ran and
Reurings (2004). Some applications to matrix equations are also considered.

1. Introduction

Recently, in a paper of Ran-Reurings (see [9]), the following result was proved:

Theorem 1.1 (Ran-Reurings [9]). Let X be a partially ordered set such that every
pair x, y ∈ X has a lower and an upper bound. Let d be a metric on X such
that the metric space (X, d) is complete. Let f : X → X be a continuous and
monotone (i.e., either order-preserving or order-reversing) operator. Suppose that
the following two assertions hold:

1) there exists a ∈]0, 1[ such that d(f(x), f(y)) ≤ a · d(x, y), for each x, y ∈ X
with x ≥ y,

2) there exists x0 ∈ X such that x0 ≤ f(x0) or x0 ≥ f(x0).
Then f has a unique fixed point x∗ ∈ X, i.e., f(x∗) = x∗, and for each x ∈ X the

sequence (fn(x))n∈N of successive approximations of f starting from x converges to
x∗ ∈ X.

Usually, when a set is endowed with a metric and an order structure, an addi-
tional assumption is added, namely the compatibility between the above structures,
i.e.,

(xn)n∈N → x, (yn)n∈N → y and xn ≤ yn, for each n ∈ N ⇒ x ≤ y.

Following the proof of Ran and Reurings result, we may remark that the conclusion
follows from the relations

d(fn(x1), fn(x)) ≤ an · d(x1, x) and d(fn(x), fn(x2)) ≤ an · d(x, x2), x1 ≤ x ≤ x2,

by letting n → +∞.
Dropping the hypothesis that each pair of points has an upper and a lower bound,

we immediately obtain the following result.

Theorem 1.2. Let X be a partially ordered set and let d be a metric on X such
that the metric space (X, d) is complete and the metric and the ordered structure
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are compatible. Let f : X → X be a continuous and monotone (i.e., either order-
preserving or order-reversing) operator. Suppose that the following two assertions
hold:

1) there exists a ∈]0, 1[ such that d(f(x), f(y)) ≤ a · d(x, y), for each x, y ∈ X
with x ≥ y,

2) there exists x0 ∈ X such that x0 ≤ f(x0) or x0 ≥ f(x0).
Then f has at least a fixed point x∗ ∈ X and for each x ∈ X with x ≥ x0 (or

x ≤ x0) the sequence (fn(x))n∈N of successive approximations of f starting from x
converges to x∗ ∈ X.

The purpose of this paper is to generalize and extend Theorem 1.1 and Theorem
1.2 for the case of an ordered L-space.

2. Notations and basic notions

Let f : X → X be an operator. Then f0 := 1X , f1 := f, . . . , fn+1 = f ◦fn, n ∈
N, denote the iterate operators of f . By I(f) we will denote the set of all nonempty
invariant subsets of f , i.e., I(f) := {Y ⊂ X|f(Y ) ⊆ Y }.

Also, by Ff := {x ∈ X| x = f(x)} we will denote the fixed point set of the op-
erator f , while Af (x∗) := {x ∈ X|fn(x) → x∗, as n → +∞} denotes the attractor
basin of f with respect to x∗ ∈ X.

Let X be a nonempty set. Denote s(X) := {(xn)n∈N |xn ∈ X, n ∈ N}.
Let c(X) ⊂ s(X) be a subset of s(X) and let Lim : c(X) → X be an operator.

By definition, the triple (X, c(X), Lim) is called an L-space (Fréchet [3]) if the
following conditions are satisfied:

(i) If xn = x, ∀ n ∈ N , then (xn)n∈N ∈ c(X) and Lim(xn)n∈N = x.
(ii) If (xn)n∈N ∈ c(X) and Lim(xn)n∈N = x, then for all subsequences, (xni

)i∈N

of (xn)n∈N we have that (xni
)i∈N ∈ c(X) and Lim(xni

)i∈N = x.
By definition an element of c(X) is a convergent sequence, x := Lim(xn)n∈N is

the limit of this sequence and we also write xn → x as n → +∞.
In what follows we denote an L-space by (X,→).
In this setting, an operator f : X → X is called orbitally continuous if x ∈ X

and fn(i)(x) → a ∈ X, as i → +∞ imply fn(i)+1(x) → f(a), as i → +∞.
Let (X,≤) be an partially ordered set. Denote X≤ := {(x, y) ∈ X × X|x ≤

y or y ≤ x}. Also, if x, y ∈ X, with x ≤ y, then by [x, y]≤ we will denote the
ordered segment joining x and y, i.e., [x, y]≤ := {z ∈ X|x ≤ z ≤ y}. In the same
setting, consider f : X → X. Then, (LF )f := {x ∈ X|x ≤ f(x)} is the lower
fixed point set of f , while (UF )f := {x ∈ X|x ≥ f(x)} is the upper fixed point
set of f . Also, if f : X → X and g : Y → Y , then the cartezian product of f and
g is denoted by f × g, and it is defined in the following way: f × g : X × Y →
X × Y, (f × g)(x, y) := (f(x), g(y)).

Definition 2.1. Let X be a nonempty set. Then, by definition, (X,→,≤) is an
ordered L-space if and only if:

(i) (X,→) is an L-space,
(ii) (X,≤) is a partially ordered set,
(iii) (xn)n∈N → x, (yn)n∈N → y and xn ≤ yn, for each n ∈ N ⇒ x ≤ y.
Throughout this paper we suppose that (X,→,≤) is an ordered L-space satisfy-

ing the following additional assertion:
(iv) (xn)n∈N → x, (zn)n∈N → x and xn ≤ yn ≤ zn, for each n ∈ N ⇒ yn → x.
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For more considerations on convergence structures see P. P. Zabreiko [13] and
De Pascale, Marino and Pietromala [2].

3. Picard and weakly Picard operators

First recall the following important concept.

Definition 3.1 (I.A. Rus [11]). Let (X,→) be an L-space. An operator f : X → X
is, by definition, a Picard operator (briefly PO) if:

(i) Ff = {x∗},
(ii) (fn(x))n∈N → x∗ as n → ∞, for all x ∈ X.
In terms of the Picard operators, some classical results in metrical fixed point

theory have the following form ([6], [10]).

Example 3.2 (Contraction principle). Let (X, d) be a complete metric space and
let f : X → X be an a-contraction, i.e., a ∈]0, 1[ and d(f(x), f(y)) ≤ a · d(x, y), for
each x, y ∈ X. Then f is a PO.

Example 3.3 (Nemytzki and Edelstein). Let (X, d) be a compact metric space
and let f : X → X satisfy d(f(x), f(y)) < d(x, y), for all x, y ∈ X with x �= y.
Then f is a PO.

Example 3.4 (Perov). Let (X, d) be a complete generalized metric space
(d(x, y) ∈ R

m
+ ) and A ∈ Mmm(R+), such that, An → 0 as n → ∞. If f : X → X is

an A-contraction, i.e., d(f(x), f(y)) ≤ Ad(x, y), for all x, y ∈ X, then f is a PO.

Example 3.5 (Sehgal and Bharucha-Reid, [5]). Let (X, F, min) be a complete
probabilistic metric space. Let f : X → X be a continuous operator for which
there exists a ∈ [0, 1[ such that Ff(x),f(y)(aλ) ≥ Fx,y(λ), for each x, y ∈ X and each
λ > 0. Then f is a PO.

Another important concept is:

Definition 3.6. Let (X,→) be an L-space. By definition, f : X → X is called a
weakly Picard operator (briefly WPO) if the sequence (fn(x))n∈N converges for all
x ∈ X and the limit (which may depend on x) is a fixed point of f .

Example 3.7. Let (X, d) be a complete metric space and let f : X → X be
an orbitally continuous operator such that there is a ∈]0, 1[ with the property
d(f(x), f2(x)) ≤ a · d(x, f(x)), for each x ∈ X. Then f is a WPO.

Example 3.8. Let (X, d) be a complete metric space, let f : X → X be an
orbitally continuous operator and let ϕ : X → R+. We suppose that f satisfies
the Caristi condition with respect to ϕ, i.e., d(x, f(x)) ≤ ϕ(x) − ϕ(f(x)), for each
x ∈ X. Then f is a WPO.

In I. A. Rus [11] the basic theory of Picard and weakly Picard operators is
presented. For the multivalued case, see Petruşel [8]. For both settings, see also
[12].
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4. Fixed point results

Our starting result is the following abstract lemma.

Lemma 4.1. Let (X,→) be an L-space and let U be a symmetric subset of X ×X
such that ∆(X) (the diagonal of X × X) is included in U . Let f : X → X be an
operator. Suppose that:

(i) for each x, y ∈ X there exists z ∈ X such that (x, z) ∈ U and (y, z) ∈ U ,
(ii) there exist x0, x

∗ ∈ X such that x0 ∈ Af (x∗),
(iii) (x, y) ∈ U and x ∈ Af (x∗) implies y ∈ Af (x∗).
Then Af (x∗) = X. Moreover, if in addition the operator f is orbitally continu-

ous, then Ff = {x∗}.
Proof. Let x ∈ X be arbitrary. If (x0, x) ∈ U , then the conclusion follows from
(ii) and (iii). Suppose (x0, x) /∈ U . Then from (i) there exists z ∈ X such that
(x0, z) ∈ U and (x, z) ∈ U . From (ii) and (iii) we obtain that x ∈ Af (x∗). The
second part of the theorem follows from the orbital continuity of f . �

Some consequences of the above abstract result follow by particular choices of
U .

Theorem 4.2. Let (X,→,≤) be an ordered L-space and let f : X → X be an
operator. We suppose that:

(i) For each x, y ∈ X there exist m(x, y), M(x, y) ∈ X such that x, y ∈ [m(x, y),
M(x, y)]≤.

(ii) f : (X,→) → (X,→) is orbitally continuous.
(iii) There exist x0, x

∗ ∈ X such that (fn(x0))n∈N → x∗, as n → +∞.
(iv) If (x, y) ∈ X≤ and (fn(x))n∈N → x∗, as n → +∞, then (fn(y))n∈N → x∗,

as n → +∞.
Then f is a PO.

Proof. A. A direct proof. From (ii) and (iii) we have that x∗ ∈ Ff . Let x ∈ X
be arbitrary. If (x, x0) ∈ X≤, then the conclusion follows from (iii) and (iv).
If (x, x0) /∈ X≤, then by (i) we have that x, x0 ∈ [m(x, x0), M(x, x0)]≤. Since
x0 ∈ [m(x, x0), M(x, x0)]≤ and taking into account of (iv), it follows that

(fn(m(x, x0)))n∈N → x∗ and (fn(M(x, x0)))n∈N → x∗, as n → +∞.

From the fact that m(x, x0) ≤ x ≤ M(x, x0) and (iv) we obtain (fn(x))n∈N → x∗,
as n → +∞. Hence, f is a PO with respect to →.

B. A proof based on Lemma 4.1. Take U := X≤ and apply Lemma 4.1. �
From Theorem 4.2. we have the following result.

Theorem 4.3. Let (X, d,≤) be an ordered metric space and let f : X → X be an
operator. We suppose that:

(a) for each x, y ∈ X there exist m(x, y), M(x, y) ∈ X such that x, y ∈ [m(x, y),
M(x, y)]≤.

(b) X≤ ∈ I(f × f).
(c) f : (X, d) → (X, d) is orbitally continuous.
(d) The metric d is complete.
(e) There exists x0 ∈ X such that (x0, f(x0)) ∈ X≤.
(f) There exists α ∈]0, 1[ such that d(f(x), f(y)) ≤ α ·d(x, y), for each x, y ∈ X≤.
Then f : (X, d) → (X, d) is a PO.
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Proof. Let x0 ∈ X such that (x0, f(x0)) ∈ X≤. From (b), (d) and (f) it follows that
there exists x∗ ∈ X such that, with respect to the metric d, we have (fn(x0))n∈N →
x∗, as n → +∞. From (c) we get that x∗ ∈ Ff .

If (x, x0) ∈ X≤, then, from (c), (f) and (a) we have that (fn(x))n∈N → x∗ (with
respect to d), as n → +∞.

If (x, x0) /∈ X≤, then, from (f), (c) and (b), we get the same conclusion.
Our result follows now from Theorem 4.2., namely the case when the L-structure

of the space is that induced by the metric d. �

Remark 4.4. The conclusion of Theorem 4.3 holds if instead the hypothesis (b) we
put:

(b′) f : (X,≤) → (X,≤) is monotone increasing
or
(b′′) f : (X,≤) → (X,≤) is monotone decreasing.
Of course, it is easy to remark that assertion (b) in Theorem 4.3 is more gen-

eral. For example, if we consider the ordered L-space (R2,→,≤), then f : R
2 →

R
2, f(x, y) := (ϕ(x, y).ϕ(x, y)) satisfies (ii), for all ϕ : R

2 → R.

Remark 4.5. Condition (e) from the above theorem is equivalent to:
(e′) (LF )f ∪ (UF )f �= ∅.

Remark 4.6. Theorem 1.1 (see Ran and Reurings [9]) is a particular case of Theorem
4.2 and Theorem 4.3.

Similarly we can establish the following results.

Theorem 4.7. Let (X, d,≤) be an ordered generalized metric space (in the sense
that d(x, y) ∈ R

n
+) and let f : X → X be an operator. We suppose that:

(a) For each x, y ∈ X there exist m(x, y), M(x, y) ∈ X such that x, y ∈ [m(x, y),
M(x, y)]≤.

(b) X≤ ∈ I(f × f).
(c) f : (X, d) → (X, d) is orbitally continuous.
(d) The metric d is complete.
(e) There exists x0 ∈ X such that (x0, f(x0)) ∈ X≤.
(f) There exists a matrix A ∈ Mmm(R+) with An → 0 as n → ∞, such that

d(f(x), f(y)) ≤ A · d(x, y), for each x, y ∈ X≤.
Then f : (X, d) → (X, d) is a PO.

Theorem 4.8. Let (X, F, min,≤) be an ordered probabilistic complete metric space
and let f : X → X be an operator. We suppose that:

(a) For each x, y ∈ X there exist m(x, y), M(x, y) ∈ X such that x, y ∈ [m(x, y),
M(x, y)]≤.

(b) X≤ ∈ I(f × f).
(c) f : (X, F, min) → (X, F, min) is orbitally continuous.
(d) (LF )f ∪ (UF )f �= ∅.
(e) There exists a ∈ [0, 1[ such that Ff(x),f(y)(aλ) ≥ Fx,y(λ), for each x, y ∈ X≤

and each λ > 0.
Then f : (X, d) → (X, d) is a PO.

Proof. From (d) there exists x0 ∈ (LF )f ∪ (UF )f . Then from (b) and (e) we get
that (fn(x0))n∈N → x∗, as n → +∞, for some x∗ ∈ X. From (c) we get that
x∗ ∈ Ff .
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Further on, if (x, x0) ∈ X≤, then, from (b) and (e) we have that (fn(x))n∈N →
x∗, as n → +∞.

If (x, x0) /∈ X≤, then, from (a), (b) and (e) and we get the same conclusion.
Our result now follows from Theorem 4.2. namely the particular case when the

L-structure of the space is that induced by the probabilistic metric one. �

Remark 4.9. Theorem 4.7 is an extension of Perov’s fixed point theorem, while
Theorem 4.8 generalizes Sehgal and Bharucha-Reid’s fixed point principle. It is
worth noting that other fixed point results can be established by replacing the
contraction condition on f with a generalized contraction assertion (see [6], [1],
[10], etc.).

Also, it is not difficult to see that more general fixed point results in probabilistic
metric spaces can be proved in this manner. For example, we also have the following
generalization of Theorem 4.8 (see Hadžić and Pap [5] for the notions involved).

Theorem 4.10. Let (X, F, T,≤) be an ordered complete Menger space, let T be a
t-norm of H-type and let f : X → X be an operator. We suppose that:

(a) For each x, y ∈ X there exist m(x, y), M(x, y) ∈ X such that x, y ∈ [m(x, y),
M(x, y)]≤.

(b) X≤ ∈ I(f × f).
(c) f : (X, F, T ) → (X, F, T ) is orbitally continuous.
(d) (LF )f ∪ (UF )f �= ∅.
(e) There exists a ∈ [0, 1[ such that Ff(x),f(y)(aλ) ≥ Fx,y(λ), for each x, y ∈ X≤

and each λ > 0.
Then f : (X, d) → (X, d) is a PO.

5. Applications

Consider first the equation

(5.1) X = Q +
m∑

j=1

A∗
j · g(X) · Aj ,

where Q is a positive definite matrix, Aj are arbitrary n × n matrices and the
map g : P(n) → P(n). Denote by H(n) the set of all Hermitian matrices and by
P(n) ⊂ H(n) the set of all n×n positive definite matrices. X ∈ P(n) will be briefly
denoted X > 0. See [9] for more details.

The next theorem is an extension of Theorem 4.1 and Theorem 4.2 in Ran-
Reurings [9], not only with respect to the continuity, but mainly with respect to
the monotonicity condition on g.

Theorem 5.1. Let Q ∈ P(n) and let g : P(n) → P(n) be orbitally continuous.
Suppose that:

(a) there exists M > 0 such that:
(i)

∑m
j=1 A∗

jAj < M · In,
(ii) ‖tr(g(Y ) − g(X))‖ ≤ M−1 · ‖tr(Y − X)‖, for each X ≤ Y .

(b) H(n)≤ ∈ I(g × g).
Then equation (5.1) has a unique solution X∗ in P(n) and if f(X) := Q +∑m
j=1 A∗

j · g(X) ·Aj, then for each X0 ∈ P(n) we have fn(X0) → X∗, as n → +∞.

Proof. It is easy to observe that f(Q) ≥ Q. Next, as in [9] we obtain that there
exists a ∈]0, 1[ such that ‖f(Y ) − f(X)‖1 ≤ a · ‖Y − X‖1 for each X ≤ Y . Since
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H(n)≤ ∈ I(g × g) we immediately have H(n)≤ ∈ I(f × f). The conclusion follows
from Theorem 4.3. �

Next consider the equation

(5.2) X = Q −
m∑

j=1

A∗
j · g(X) · Aj .

Then we have:

Theorem 5.2. Let Q ∈ P(n) such that Q >
m∑

j=1

A∗
j · g(X) ·Aj, for each X ∈ H(n)

and let g : P(n) → P(n) be orbitally continuous. Suppose that:
(a) there exists M > 0 such that:

(i)
∑m

j=1 A∗
jAj < M · In,

(ii) ‖tr(g(Y ) − g(X))‖ ≤ M−1 · ‖tr(Y − X)‖, for each X ≤ Y .
(b) H(n)≤ ∈ I(g × g).
Then equation (5.2) has a unique solution X∗ in P(n) and if f(X) := Q −∑m
j=1 A∗

j · g(X) ·Aj, then for each X0 ∈ P(n) we have fn(X0) → X∗, as n → +∞.

Proof. From the hypothesis it follows that f(X) > 0 for each X ∈ H(n). Also
f(Q) ≤ Q. Moreover, f satisfies the assertions ‖f(Y ) − f(X)‖1 ≤ a · ‖Y − X‖1

for each X ≤ Y and H(n) ∈ I(f × f). The conclusion follows again by Theorem
4.3. �

Our final application is for a system of nonlinear equations in (Rm,→,≤).

Theorem 5.3. Consider the ordered L-space (Rm,→,≤) and f : R
m → R

m. Sup-
pose that:

(i) R
m
≤ ∈ I(f × f),

(ii) f is orbitally continuous,
(iii) there exists x0 ∈ R

m such that (x0, f(x0)) ∈ R
m
≤ ,

(iv) there exists a matrix A ∈ Mmm(R+), such that:
(a) An → 0, as n → ∞,
(b) ⎛

⎝
‖f1(x) − f1(y)‖
· · ·
‖fm(x) − fm(y)‖

⎞
⎠ ≤ A ·

⎛
⎝

‖x1 − y1‖
· · ·
‖xm − ym‖

⎞
⎠ ,

for each x, y ∈ R
m, with x ≤ y.

Then the equation x = f(x) has a unique solution x∗ ∈ R
m and fn(x0) → x∗ as

n → +∞, for all x0 ∈ R
m.
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