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3 Faculty of Applied Mathematics, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland
4Department of Mathematics, Pedagogical University, Podchorążych 2, 30-084 Kraków, Poland
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e �xed point method has been applied for the �rst time, in proving the stability results for functional equations, by Baker (1991);
he used a variant of Banach’s �xed point theorem to obtain the stability of a functional equation in a single variable. However, most
authors follow the approaches involving a theorem of Diaz and Margolis. 
e main aim of this survey is to present applications of
di�erent �xed point theorems to the theory of stability of functional equations, motivated by a problem raised by Ulam in 1940.

1. Introduction

Speaking of the stability of a functional equation we follow
a question raised in 1940 by Ulam, concerning approximate
homomorphisms of groups (see [1]). 
e �rst partial answer
(in the case of Cauchy’s functional equation in Banach spaces)
to Ulam’s question was given by Hyers (see [2]). Aer his
result a great number of papers (see for instance monographs
[3–5], survey articles [6–14], and the references given there)
on the subject have been published, generalizing Ulam’s
problem and Hyers’s theorem in various directions and to
other (not necessarily functional) equations.


e method used by Hyers in [2] (quite oen called the
direct method) has been successfully applied for study of the
stability of large variety of equations, but unfortunately, as it
was shown in [15], it does not work in numerous signi�cant
cases. Apart from it, there are also several other e�cient
approaches to the Hyers-Ulam stability, using di�erent tools,
for example, the method of invariant means (introduced in
[16]), the method based on sandwich theorems (see [17]), and
the method using the concept of shadowing (see [18]).

It this paper we discuss the �xed point method, which is
the second most popular technique of proving the stability
of functional equations. It was used for the �rst time by
Baker (see [19]) who applied a variant of Banach’s �xed point

theorem to obtain the Hyers-Ulam stability of a functional
equation in a single variable. At present, numerous authors
follow Radu’s approach (see [20]) and make use of a theorem
of Diaz and Margolis. Our aim is to show connections
between di�erent �xed point theorems and the theory of
stability, inspired by the problem of Ulam (see [5, 7, 9]).


e paper contains both classical andmore recent results.
In Section 2 we present applications of some classical �xed
point theorems. Section 3 shows a somewhat di�erent (but
still �xed point) approach, when the results on the stability
are simple consequences of the proved (new) �xed point
theorems. In Section 4 we deal with the stability of the �xed
point equation and its generalization. Section 5 contains �nal
remarks.

In the paper N denotes the set of positive integers and we
put N0 := N ∪ {0}, R+ := [0,∞).
2. Applications of Known

Fixed Point Theorems

2.1. (Some Variants of) Banach’s eorem. 
e �xed point
method was used for the investigation of the Hyers-Ulam
stability of functional equations for the �rst time by Baker
in [19], where actually he applied the following variant of
Banach’s �xed point theorem.
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�eorem 1 ([19],
eorem 1). Assume that (�, �) is a complete
metric space and � : � → � is a contraction (i.e., there is a� ∈ [0, 1) such that �(�(
), �(�)) ≤ ��(
, �) for all 
, � ∈ �).
en � has a unique �xed point  ∈ �. Moreover,

� (�, ) ≤ � (�, � (�))1 − � , � ∈ �. (1)

He obtained in this way the subsequent result concerning
the stability of a quite general functional equation in a single
variable.

�eorem 2 ([19], 
eorem 2). Let � be a nonempty set, (�, �)
be a complete metric space, � : � → �, � : � × � → �,� ∈ [0, 1) and

� (� (�, �) , � (�, V)) ≤ �� (�, V) , � ∈ �, �, V ∈ �. (2)

If � : � → �, � > 0 and
� (� (�) , � (�, � (� (�)))) ≤ �, � ∈ �, (3)

then there is a unique function � : � → � such that

� (�) = � (�, � (� (�))) , � ∈ �, (4)

� (� (�) , � (�)) ≤ �1 − � , � ∈ �. (5)


eorem 2 with

� (�, 
) := � (�) + � (�) 
, � ∈ �, 
 ∈ � (6)

gives the following.

Corollary 3 ([19], 
eorem 3). Let � be a nonempty set, � a
real (or complex) Banach space, � : � → �, � : � → �,� : � → R (or C), � ∈ [0, 1) and����� (�)���� ≤ �, � ∈ �. (7)

If � : � → �, � > 0 and����� (�) − (� (�) + � (�) � (� (�)))���� ≤ �, � ∈ �, (8)

then there exists a unique function � : � → � such that

� (�) = � (�) + � (�) � (� (�)) , � ∈ �, (9)

����� (�) − � (�)���� ≤ �1 − � , � ∈ �. (10)


e following stability result for amore general functional
equation has been deduced in [21] from
eorem 1.

�eorem 4 ([21], 
eorem 2.2). Let � be a nonempty set,(�, �) be a complete metric space, � : � → �,� : �×� → �,�, � ∈ R+ and

� (� ( , �) , � (�, V)) ≤ �� ( , �) + �� (�, V) ,  , �, �, V ∈ �.
(11)

Assume also that � : � → �, Φ : � → R+ are such that

� (� (�) , � (� (�) , � (� (�)))) ≤ Φ (�) , � ∈ �, (12)

and there exists an " ∈ [0, 1) with
�Φ (� (�)) + �Φ (�) ≤ "Φ (�) , � ∈ �. (13)

en there is a unique function � : � → � such that

� (�) = � (� (�) , � (� (�))) , � ∈ �
� (� (�) , � (�)) ≤ Φ (�)1 − " , � ∈ �. (14)

In some recent papers the authors applied the weighted
space method to prove the generalized Hyers-Ulam stability
properties of several nonlinear functional equations. We
recall that the weighted spacemethod uses the classical math-
ematical results in spaces endowed with weighted distances.
In those papers, the classical mathematical result is just the
Banach �xed point theorem. 
is new method is used to
prove a stability result for (4), described in the following
theorem.

�eorem 5 ([22], 
eorem 2.1). Let � be a nonempty set,(�, �) a complete metric space, and the functions � : � → �,� : � × � → �, � : � → (0,∞) satisfy
� (� (�)) � (� (�, � (� (�))) , � (�, V (� (�))))

≤ �� (�) � (� (� (�)) , V (� (�))) , (15)

for any � ∈ �, �, V ∈ �� and � ∈ [0, 1).
If � : � → � satis�es the inequality

� (� (�) , � (�, � (� (�)))) ≤ � (�) , � ∈ �, (16)

then there exists a solution � : � → � of (4) such that

� (� (�) , � (�)) ≤ � (�)1 − � , � ∈ �. (17)


e results in
eorems 2, 4, and 5 have been extended in
[23], where a result on the generalized Hyers-Ulam stability
of the nonlinear equation

� (
) = � (
, � (
) , � (# (
))) (18)

has been obtained, also by the weighted space method. Here,� is a nonempty set, (�, �) is a complete metric space, � :� × � × � → � and # : � → � are given mappings (the
unknown function in (18) is � : � → �).

�eorem 6 ([23], 
eorem 2). Suppose that " ∈ [0, 1) and�, � : � → R+ satisfy

� (
) � (
) + � (
) � (# (
)) ≤ "� (
) , 
 ∈ �, (19)

for some given function � : � → (0,∞). Suppose also that� : � × � × � → � ful�ls the inequality

� (� (
, � (
) , � (# (
))) , � (
, V (
) , V (# (
))))
≤ � (
) � (� (
) , V (
)) + � (
) � (� (# (
)) , V (# (
))) ,

(20)

for all 
 ∈ � and for all �, V : � → �.
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If � : � → � is a mapping with the property

� (� (
) , � (
, � (
) , � (# (
)))) ≤ � (
) , 
 ∈ �, (21)

then there exists a unique �0 : � → � such that

�0 (
) = � (
, �0 (
) , �0 (# (
))) , 
 ∈ �,
� (� (
) , �0 (
)) ≤ � (
)1 − " , 
 ∈ �. (22)

For the proof it is enough to show that the set

Y := {� : � → � : sup
�∈�

� (� (
) , � (
))� (
) < ∞} (23)

is a complete metric space with the weighted metric

� (�, V) = sup
�∈�

� (� (
) , V (
))� (
) ; (24)

moreover, it can be proved that the nonlinear operator � :
Y → Y given by

(��) (
) := � (
, � (
) , � (# (
))) , (25)

is a strictly contractive self-mapping ofY, with the Lipschitz
constant " < 1.

On the other hand, if

� (
, � (
) , � (# (
))) := � (
) ⋅ � (# (
)) + ℎ (
) , (26)

then (18) becomes

� (
) = � (
) ⋅ � (# (
)) + ℎ (
) , (27)

where �, #, ℎ are given mappings and � is the unknown
function. 
e above equation is called a linear functional
equation and was intensively investigated by a lot of authors
(e.g., Kuczma et al. in [24] obtained some results concerning
monotonic, regular, and convex solutions of (27)). 
e fol-
lowing theorem contains a generalized Hyers-Ulam stability
result for the above linear functional equation, obtained as a
particular case of 
eorem 6.

Let us consider a nonempty set �, a real (or complex)
Banach space �, endowed with the norm ‖ ⋅ ‖ and the given
functions # : � → �, � : � → R (or C) and ℎ : � → �.

�eorem 7 ([23], 
eorem 5). Let " ∈ [0, 1) and �, � : � →
R+ satisfy

� (
) � (
) + � (
) � (# (
)) ≤ "� (
) , 
 ∈ �, (28)

for some �xed mapping � : � → (0,∞). Let � : � ×� ×� →� ful�l

(����� (
)���� − � (
)) ����� (# (
)) − V (# (
))����
≤ � (
) ‖� (
) − V (
)‖ , (29)

for all 
 ∈ � and for all �, V : � → �. If � : � → � has the
property����� (
) − � (
) � (# (
)) − ℎ (
)���� ≤ � (
) , 
 ∈ �, (30)

then there exists a unique mapping �0 : � → �, de�ned by

�0 (
) = ℎ (
)
+ lim�→∞(� (#� (
)) �−1∏

�=0
� (#� (
))

+�−2∑
	=0

ℎ (#	+1 (
)) 	∏
�=0

� (#� (
))) ,
(31)

for 
 ∈ �, such that
�0 (
) = � (
) �0 (# (
)) + ℎ (
) , 
 ∈ �,

����� (
) − �0 (
)���� ≤ � (
)1 − " , 
 ∈ �. (32)


e following outcome proved by the weighted space
method concerns a generalized Hyers-Ulam stability for a
general class of the Volterra nonlinear integral equations, in
Banach spaces.

Let us consider a Banach space � over the (real or
complex) �eld K, an interval 6 = [7, 8] (7 < 8) and the
continuous given functions " : 6 × 6 → R+ and � : 6 →(0,∞). We write

C (6, �) := {� : 6 → � : � is continuous} (33)

and denote by ‖ ⋅ ‖ the norm in �.

e result on stability of the nonlinear Volterra integral

equation

� (
) = ℎ (
) + �∫�



A (
, �, � (�)) ��, 
 ∈ 6 (34)

(� : 6 → � is an unknown function, ℎ : 6 → � and A :6 × 6 × � → � are continuous given mappings and � ∈ K is
a �xed nonzero scalar), reads as follows.

�eorem 8 ([23], 
eorem 8). Suppose that there exists a
positive constant � such that

∫�



" (
, �) � (�) �� ≤ �� (
) , 
 ∈ 6. (35)

Suppose also thatA : 6 × 6×� → � is a continuous function,
which satis�es

‖A (
, �, � (�)) − A (
, �, V (�))‖
≤ " (
, �) ‖� (�) − V (�)‖ , 
, � ∈ 6, �, V ∈ C (6, �) .

(36)

If � : 6 → � is continuous and has the property��������� (
) − ℎ (
) − �∫�



A (
, �, � (�)) ���������� ≤ � (
) , 
 ∈ 6
(37)
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and if

|�| < 1� , (38)

then there exists a unique �0 ∈ C(6, �) such that
�0 (
) = ℎ (
) + �∫�



A (
, �, �0 (�)) ��, 
 ∈ 6,

����� (
) − �0 (
)���� ≤ � (
)1 − |�| � , 
 ∈ 6. (39)

Note that, if we replace in
eorem 8 the functionsA and" by �A and |�|", respectively, and write � := |�|�, then the
theorem takes the subsequent equivalent, and a bit simpler,
form.

�eorem 9. Suppose that there is a positive constant � < 1
such that

∫�



" (
, �) � (�) �� ≤ �� (
) , 
 ∈ 6. (40)

Suppose also thatA : 6 × 6×� → � is a continuous function,
which satis�es

‖A (
, �, � (�)) − A (
, �, V (�))‖
≤ " (
, �) ‖� (�) − V (�)‖ , 
, � ∈ 6, �, V ∈ C (6, �) . (41)

If � : 6 → � is continuous and has the property��������� (
) − ℎ (
) − ∫�



A (
, �, � (�)) ���������� ≤ � (
) , 
 ∈ 6, (42)

then there exists a unique �0 ∈ C(6, �) such that
�0 (
) = ℎ (
) + ∫�



A (
, �, �0 (�)) ��, 
 ∈ 6,

����� (
) − �0 (
)���� ≤ � (
)1 − � , 
 ∈ 6. (43)

Next, following [25], we recall some notations.
Let � be a nonempty set, (�, �) a complete metric space,� : � → � and � : � → R+. 
en (Δ�,�, ��,�) is a complete

metric space and � ∈ Δ�,�, where Δ�,� denotes the set of all� : � → � such that there is a real constant C ≥ 0 with
� (� (
) , � (
)) ≤ C� (
) , 
 ∈ �, (44)

��,� (�, V) := inf {C ≥ 0 : � (� (
) , V (
))
≤ C� (
) , 
 ∈ �} , �, V ∈ Δ�,�. (45)

Let E : � → �, F : � → �, � : � → � and G : �2 →
R+. Put

(��,��) (
) := F (� (E (
))) , 
 ∈ �,
��,� := inf {C ≥ 0 : G (E (
) , E (
)) ≤ CG (
, 
) , 
 ∈ �} ,

��,� := inf {C ≥ 0 : � (E (
)) ≤ C� (
) , 
 ∈ �} ,
H� := inf {C ≥ 0 : � (F (
) , F (�)) ≤ C� (
, �) , 
, � ∈ �} .

(46)

In [25], the authors used the contraction principle to get
the following �xed point result.

�eorem 10 ([25], Proposition 1.1). Let � be a nonempty set,(�, �) be a complete metric space, � : � → �, � : � → R+,E : � → � and F : � → �. If ��,�� ∈ Δ�,�, ��,� < ∞,H� < ∞ and ��,�H� < 1, then ��,�(Δ�,�) ⊂ Δ�,� and ��,� has a
unique �xed point �∞ in Δ�,�. Moreover,

lim�→∞� ((���,��) (
) , �∞ (
)) = 0, 
 ∈ �,
� (� (
) , �∞ (
)) = ��,� (��,��, �)

1 − ��,�H� � (
) , 
 ∈ �. (47)

Next, applying 
eorem 10, they have proved the follow-
ing theorem.

�eorem 11 ([25], 
eorem 2.1). Let � be a nonempty set, � :� → R+, G : �2 → R+, ∘ : �2 → � and Ê : 
 L→ 
 ∘ 
 an
automorphism of (�, ∘). Assume also that (�, �) is a complete

metric space, ⬦ : �2 → � is continuous and F̂ : � L→ � ⬦ � is
an endomorphism of (�, ⬦). If��̂−1 ,� < ∞,��̂−1 ,� < ∞, H�̂ < ∞,H�̂max{��̂−1 ,�, ��̂−1 ,�} < 1 and mappings �, � : � → � satisfy

� (� (
 ∘ �) , � (
) ⬦ � (�)) ≤ G (
, �) , 
, � ∈ �, (48)

� (� (
) , � (
)) ≤ � (
) , 
 ∈ �, (49)

then there exists a unique mapping �∞ : � → � such that

�∞ (
 ∘ �) = �∞ (
) ⬦ �∞ (�) , 
, � ∈ �, (50)

� (� (
) , �∞ (
)) ≤ ��̂−1,�G (
, 
) + ��̂−1 ,�H�̂� (
)1 − H�̂max {��̂−1,�, ��̂−1 ,�} , 
 ∈ �,
� (� (
) , �∞ (
)) ≤ ��̂−1 ,�G (
, 
) + � (
)1 − H�̂max {��̂−1 ,�, ��̂−1 ,�} , 
 ∈ �.

(51)


eorem 11 with � = � and � ≡ 0 gives the following
corollary, which corresponds to the results in [26–31].

Corollary 12 ([25], Corollary 2.1). Let � be a nonempty set,G : �2 → R+, ∘ : �2 → � and Ê : 
 L→ 
 ∘ 
 be an
automorphism of (�, ∘). Assume also that (�, �) is a complete

metric space, ⬦ : �2 → � is continuous and F̂ : � L→ � ⬦ � is
an endomorphism of (�, ⬦). If��̂−1 ,� < ∞, H�̂ < ∞, H�̂��̂−1,� < 1
and a mapping � : � → � satis�es

� (� (
 ∘ �) , � (
) ⬦ � (�)) ≤ G (
, �) , 
, � ∈ �, (52)

then there exists a uniquemapping�∞ : � → � ful�lling (50)
and

� (� (
) , �∞ (
)) ≤ ��̂−1,�G (
, 
)1 − H�̂��̂−1 ,� , 
 ∈ �. (53)

Another consequence of 
eorem 11 is the following.
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�eorem 13 ([25], 
eorem 3.1). Let � be a nonempty set,�, G : � → R+ and E : � → � be a bijection. Assume
also that (�, �) is a complete metric space and F : � →� is continuous. If ��−1 ,� < ∞, ��−1 ,� < ∞, H� < ∞,H�max{��−1 ,�, ��−1 ,�} < 1 and mappings �, � : � → � satisfy
(49) and

� (� (E (
)) , F (� (
))) ≤ G (
) , 
 ∈ �, (54)

then there exists a unique mapping �∞ : � → � such that

�∞ (E (
)) = F (�∞ (
)) , 
 ∈ �, (55)

� (� (
) , �∞ (
)) ≤ ��−1 ,�G (
) + ��−1 ,�H�� (
)1 − H�max {��−1 ,�, ��−1 ,�} , 
 ∈ �,
� (� (
) , �∞ (
)) ≤ ��−1 ,�G (
) + � (
)1 − H�max {��−1 ,�, ��−1 ,�} , 
 ∈ �.

(56)


eorem 13 with � = � and � ≡ 0 implies the following.

Corollary 14 ([25], Corollary 3.1). Let � be a nonempty set,G : � → R+ and E : � → � a bijection. Assume also that(�, �) is a complete metric space and F : � → � is continuous.
If ��−1 ,� < ∞, H� < ∞, H���−1 ,� < 1 and amapping� : � → �
satis�es the inequality

� (� (E (
)) , F (� (
))) ≤ G (
) , 
 ∈ �, (57)

then there exists a uniquemapping�∞ : � → � ful�lling (55)
and

� (� (
) , �∞ (
)) ≤ ��−1 ,�G (
)1 − H���−1 ,� , 
 ∈ �. (58)

�eorem 15 ([25],
eorem 2.2). Let� be a nonempty set, � :� → R+, G : �2 → R+, ∘ : �2 → � and Ê : 
 L→ 
 ∘ 
 an
endomorphism of (�, ∘). Assume also that (�, �) is a complete

metric space, ⬦ : �2 → � is continuous and F̂ : � L→ � ⬦ � is
an automorphism of (�, ⬦). If ��̂,� < ∞, ��̂,� < ∞, H�̂−1 < ∞,H�̂−1 max{��̂,�, ��̂,�} < 1 and mappings �, � : � → � satisfy
inequalities (48) and (49), then there exists a unique mapping�∞ : � → � such that (50) holds,

� (� (
) , �∞ (
)) ≤ H�̂−1G (
, 
) + � (
)1 − H�̂−1 max {��̂,�, ��̂,�} , 
 ∈ �,
� (� (
) , �∞ (
)) ≤ H�̂−1 (G (
, 
) + ��̂,�� (
))1 − H�̂−1 max {��̂,�, ��̂,�} , 
 ∈ �.

(59)


eorem 15 with � = � and � ≡ 0 yields the next
corollary.

Corollary 16 ([25], Corollary 2.3). Let � be a nonempty set,G : �2 → R+, ∘ : �2 → � and Ê : 
 L→ 
 ∘ 

an endomorphism of �. Assume also that (�, �) is a complete

metric space, ⬦ : �2 → � is continuous and F̂ : � L→ � ⬦ �
is an automorphism of �. If ��̂,� < ∞, H�̂−1 < ∞, H�̂−1��̂,� < 1

and a mapping � : � → � satis�es inequality (52), then there
exists a unique mapping �∞ : � → � such that (50) holds
and

� (� (
) , �∞ (
)) ≤ H�̂−1G (
, 
)1 − H�̂−1��̂,� , 
 ∈ �. (60)

Another consequence of 
eorem 15 is the following.

�eorem 17 ([25], 
eorem 3.2). Let � be a nonempty set,�, G : � → R+ and E : � → �. Assume also that (�, �) is a
completemetric space and F : � → � is a continuous bijection.
If ��,� < ∞, ��,� < ∞, H�−1 < ∞, H�−1 max{��,�, ��,�} < 1 and
mappings�, � : � → � satisfy (49) and (48), then there exists
a unique mapping �∞ : � → � such that (55) holds,

� (� (
) , �∞ (
)) ≤ H�−1G (
) + � (
)1 − H�−1 max {��,�, ��,�} , 
 ∈ �,
� (� (
) , �∞ (
)) ≤ H�−1 (G (
) + ��,�� (
))1 − H�−1 max {��,�, ��,�} , 
 ∈ �.

(61)


eorem 17 with � = � and � ≡ 0 implies the following.

Corollary 18 ([25], Corollary 3.2). Let � be a nonempty set,G : � → R+ and E : � → �. Assume also that (�, �) is a
completemetric space and F : � → � is a continuous bijection.
If ��,� < ∞, H�−1 < ∞, H�−1��,� < 1 and amapping� : � → �
satis�es (57), then there exists a unique mapping�∞ : � → �
such that (55) holds and

� (� (
) , �∞ (
)) ≤ H�−1G (
)1 − H�−1��,� , 
 ∈ �. (62)

Let us �nally mention that it is also shown in [25]
that the above results imply some classical outcomes on the
generalized stability of the Cauchy functional equation.

2.2. Other Classical eorems. In this section, we present
applications of three other �xed point theorems. To formulate
the �rst of them we need two more de�nitions.

A nondecreasing function H : R+ → R+ is called a
comparison function [32, 33] or Matkowski gauge function
[34, 35] if

lim�→∞H� (�) = 0, � ∈ (0,∞) . (63)

Given such a mapping H and a metric space (�, �), we say
that a function O : � → � is aMatkowski H-contraction if

� (O (
) , O (�)) ≤ H (� (
, �)) , 
, � ∈ �. (64)

We can now recall Matkowski’s �xed point theorem from
[36].

�eorem 19. If (�, �) is a complete metric space and� : � →� is a Matkowski contraction, then � has a unique �xed point ∈ � and the sequence (��(
))�∈N converges to  for every
 ∈ �.

In [37], this theorem was applied to prove the following
generalization of 
eorem 2.
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�eorem 20 ([37], 
eorem 2.2). Let � be a nonempty set,(�, �) be a complete metric space, � : � → �, � : �×� → �.
Assume also that

� (� (�, �) , � (�, V)) ≤ H (� (�, V)) , � ∈ �, �, V ∈ �, (65)

where H : R+ → R+ is a comparison function, and let � :� → �, � > 0 be such that (3) holds. en there is a unique
function � : � → � satisfying (4) and

� (�, �) := sup {� (� (�) , � (�)) : � ∈ �} < ∞. (66)

Moreover,

� (�, �) − H (� (�, �)) ≤ �. (67)


eorem 20 with

� (�, 
) := O (
) , � ∈ �, 
 ∈ � (68)

gives the subsequent result.

Corollary 21 ([37], Corollary 2.3). Let � be a nonempty set,(�, �) a complete metric space, � : � → �. Assume also thatO : � → � is a Matkowski H-contraction and let � : � → �,� > 0 be such that
� ((O ∘ � ∘ �) (�) , � (�)) ≤ �, � ∈ �. (69)

en there is a unique function � : � → � satisfying the
equation

O ∘ � ∘ � = � (70)

and condition (66). e function � is given by

� (�) = lim�→∞O� (� (�� (�))) , � ∈ �. (71)

On the other hand, in [38], the following variant of Ćirić’s
�xed point theorem was proved.

�eorem 22 ([38], 
eorem 2.1). Assume that (�, �) is a
complete metric space and � : � → � is a mapping such that

� (� (
) , � (�))
≤ �1 (
, �) � (
, �) + �2 (
, �) � (
, � (
))

+ �3 (
, �) � (�, � (�)) + �4 (
, �) � (
, � (�))
+ �5 (
, �) � (�, � (
)) , 
, � ∈ �,

(72)

where �1, . . . , �5 : � × � → R+ satisfy

5∑
�=1

�� (
, �) ≤ �, (73)

for all 
, � ∈ � and some �xed � ∈ [0, 1). en � has a unique
�xed point  ∈ � and

� (�, ) ≤ (2 + �) � (�, � (�))2 (1 − �) , � ∈ �. (74)

Next, Baker’s idea and 
eorem 22 were used to obtain
the following result concerning the stability of (4).

�eorem 23 ([38], 
eorem 2.2). Let � be a nonempty set,(�, �) a complete metric space, � : � → �, � : � × � → �
and� (� (�, 
) , � (�, �))

≤ �1 (
, �) � (
, �) + �2 (
, �) � (
, � (�, 
))
+ �3 (
, �) � (�, � (�, �)) + �4 (
, �) � (
, � (�, �))
+ �5 (
, �) � (�, � (�, 
)) , � ∈ �, 
, � ∈ �,

(75)

where �1, . . . , �5 : � × � → R+ satisfy (73) for all 
, � ∈ �
and some � ∈ [0, 1). If � : � → �, � > 0 and (3) holds, then
there is a unique function � : � → � satisfying (4) and

� (� (�) , � (�)) ≤ (2 + �) �2 (1 − �) , � ∈ �. (76)

A consequence of 
eorem 23 is the following.

Corollary 24 ([38], 
eorem 2.3). Let � be a nonempty set,� a real or complex Banach space, � : � → �, � : � → �,Q : � → L(�) (here L(�) denotes the Banach algebra of all
bounded linear operators on �), � ∈ [0, 1) and

‖Q (�)‖ ≤ �, � ∈ �. (77)

If � : � → �, � > 0 and����� (�) − (� (�) + Q (�) (� (� (�))))���� ≤ �, � ∈ �, (78)

then there exists a unique function � : � → � satisfying the
equation

� (�) = � (�) + Q (�) (� (� (�))) , � ∈ � (79)

and condition (10).

Now, let us recall the Markov-Kakutani theorem (see [39,
40]).

�eorem 25. Let� be a linear topological space and letC ⊂ �
be a nonempty convex compact subset of �. LetF be a family
of a�ne continuous self-mappings of C such that

� ∘ A = A ∘ �, �, A ∈ F. (80)

en there is a common �xed point � ∈ C of familyF; that is,

� (�) = �, � ∈ F. (81)


eorem 25 has been applied in [41] to provide an
alternative (quite involved) proof of the following classical
stability result due to Hyers [2].

�eorem 26. Let � be an abelian semigroup, G ≥ 0, K ∈{R,C}, � : � → K and����� (
 + �) − � (
) − � (�)���� ≤ G, 
, � ∈ �. (82)

en there exists an additive function 7 : � → K such that����7 ( ) − � ( )���� ≤ G,  ∈ �. (83)
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2.3. Fixed Point Alternatives eorems on Generalized Metric
Space. In this part of the paper, we show how several �xed
points alternatives can be used to get some Hyers-Ulam
stability results.

In order to do this let us �rst recall (see [42, 43]) that � :�2 → [0,∞] is said to be a generalizedmetric on a nonempty
set � if and only if for any 
, �, R ∈ � we have

� (
, �) = 0 if and only if 
 = �,
� (
, �) = � (�, 
) ,

� (
, R) ≤ � (
, �) + � (�, R) .
(84)

In 2002, at the 14th European Conference on Iteration
eory (ECIT 2002 - Evora, Portugal), L. Cădariu and V.
Radu delivered a lecture titled “On the stability of the
Cauchy functional equation: a �xed points approach.” 
ey
presented a generalized Hyers-Ulam stability result for the
Cauchy functional equation, in the case when the equation
perturbation is controlled by a givenmapping�, with a simple
property of contractive type. 
eir idea was to obtain the
existence of the exact solution and the error estimations by
using the following �xed point alternative theorem of Diaz
and Margolis [44].

�eorem 27. Let (�, �) be a complete generalized metric
space. Assume that � : � → � is a strictly contractive
operator with the Lipschitz constant " < 1.en, for each given
element 
 ∈ �, either

(S1) �(��
, ��+1
) = +∞, for all T ≥ 0, or
(S2) there exists T0 ∈ N such that �(��
, ��+1
) <+∞,�UV 7WW T ≥ T0. Actually, if (S2) holds, then the

following three conditions are valid.

(S21) e sequence (��(
))�∈N converges to a �xed point �∗
of �.

(S22) �∗ is the unique �xed point of � in the set

X := {� ∈ � : � (��0 (
) , �) < ∞} . (85)

(S23) If � ∈ X, then
� (�, �∗) ≤ 11 − "� (� (�) , �) . (86)

Remark 28. If the �xed point �∗ exists, it is not necessarily
unique in the whole space�; this may depend on the starting
approximation. It is worth noting that, in case (S2), the pair(X, �) is a complete metric space and S(X) ⊂ X. 
erefore,
properties (S21)–( S23) follow from Banach’s Contraction
Principle.


is method has been next used in [20] (for the additive
Cauchy equation) and in [45] (for Jensen’s equation).

Now, let us remind one of themost classical results, which
was �rst proved by the direct method: for  ∈ [0, 1) in [46]
(see also [47], where a similar result has been obtained under
some regularity assumptions), and for  ∈ (1,∞) in [48]
(see also for instance [5] and [20,
eorem]; information and
recent results on the case  < 0 can be found in [49, 50]).

�eorem 29. Let � be a real normed space, � a real Banach
space, Y ∈ [0,∞),  ∈ [0,∞)\{1} and � : � → � be such that

����� (
 + �) − � (
) − � (�)���� ≤ Y (‖
‖� + ����������) , 
, � ∈ �.
(87)

en there exists a unique additive mapping 7 : � → � such
that

����� (
) − 7 (
)���� ≤ 2Y|2 − 2�| ‖
‖�, 
 ∈ �. (88)


e lecture from ECIT 2002 was materialized in [51] in
the following extension of 
eorem 29.

�eorem 30 ([51], 
eorem 2.5). Let �1, �2 be two linear
spaces over the same (real or complex) �eld, �2 a complete �-
normed space, Z0 = 2, Z1 = 1/2, and � : �1 × �1 → R+.
Assume that � : �1 → �2 with �(0) = 0 satis�es

�����(
 + �) − � (
) − � (�)����� ≤ � (
, �) , 
, � ∈ �1. (89)

If there exist an _ ∈ {0, 1} and a positive constant " < 1 such
that the mapping


 →̀ O (
) = � (
2 , 
2 ) (90)

has the property

O (
) ≤ " ⋅ Z�� ⋅ O ( 
Z�) , 
 ∈ �1, (91)

and � satis�es the condition

lim�→∞
� (Z�� 
, Z�� �)

Z��� = 0, 
, � ∈ �1, (92)

then there exists a unique additive mapping 7 : �1 → �2 such
that

�����(
) − 7(
)����� ≤ "1−�1 − "O (
) , 
 ∈ �1. (93)

Let � be a linear space over the �eld K ∈ {R,C}. Recall
that a mapping ‖ ⋅ ‖� : � → R+ is called a �-norm provided
it has the following properties:

T�� : ‖
‖� = 0 if and only if 
 = 0;
T��� : ‖� ⋅ 
‖� = |�|� ⋅ ‖
‖�, 
 ∈ �, � ∈ K;

T���� : ‖
 + �‖� ≤ ‖
‖� + ‖�‖�, 
, � ∈ �.

e idea emphasized in [20, 45, 51] has been subsequently

used for the quadratic equation in [52], the cubic equation
in [53], the quartic equation in [54], equations (2) and (5)
in [55], and the monomial equation in [56]. We present that
last result below. To this end, let us recall that a function �
(mapping an abelian group (�, +) into a real vector space �)
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is called amonomial function of degreef (f is a �xed positive
integer) if it is a solution of themonomial functional equation

Δ��� (
) − f!� (�) = 0, 
, � ∈ �, (94)

where the di�erence operator Δ�� is de�ned in the following
manner:

Δ1�� (
) := � (
 + �) − � (
) , 
, � ∈ �, � ∈ ��, (95)

and, inductively,

Δ�+1� = Δ1� ∘ Δ��, T ∈ N, � ∈ �. (96)

�eorem 31 ([56], 
eorem 2.1). Let � be a group that is
uniquely divisible by 2 (i.e., for any 
 ∈ � there exists a unique7 ∈ � with 
 = 27), � a (real or complex) complete �-normed
space, and � : � × � → R+ ful�l the following property:

lim�→∞
� (V�
, V��)V��� = 0, 
, � ∈ �, V ∈ {2, 12} . (97)

Suppose � : � → �, with �(0) = 0, satis�es the condition
�����Δ���(
) − f!�(�)������ ≤ � (
, �) , 
, � ∈ �. (98)

If there exists a positive constant " < 1 such that the mapping


 →̀ O (
) = 1(f!)� (� (0, 
) + �∑
�=0

( ff − _)�(_
2 , 
2 )) ,

 ∈ �,

(99)

satis�es the inequality

O (V	
) ≤ "V��	 O (
) , 
 ∈ �, (100)

then there exists a unique monomial mapping � : � → � of
degree f with

�����(
) − �(
)����� ≤ "1−	1 − "O (
) , 
 ∈ �. (101)

In [43], Mihet has given one more generalization of

eorem 2; he obtained it by proving another �xed point
alternative.

Recall that a mapping H : [0,∞] → [0,∞] is called a
generalized strict comparison function if it is nondecreasing,H(∞) = ∞,

lim�→∞H� (�) = 0, � ∈ (0,∞) (102)

and lim�→∞(� − H(�)) = ∞. Given such a mapping H and a
generalized metric space (�, �), we say that a function O :� → � is a strict H-contraction if it satis�es inequality (64).

Now, we can formulate the �xed point result from [43].

�eorem 32 ([43], 
eorem 2.2). Let (�, �) be a complete
generalizedmetric space and� : � → � a strict H-contraction
such that �(
, �(
)) < ∞ for an 
 ∈ �. en � has a unique
�xed point  in the set

X := {� ∈ � : � (
, �) < ∞} , (103)

and the sequence (��(�))�∈N converges to  for every � ∈ X.
Moreover,

� (, 
) ≤ sup { > 0 :  − H ( ) ≤ � (
, � (
))} , 
 ∈ �.
(104)

Using this theorem we can get the following generaliza-
tion of 
eorem 2.

�eorem 33 ([43], 
eorem 3.1). Let � be a nonempty set,(�, �) a complete metric space, � : � → �, � : � × � → �.
Assume also that

� (� (�, �) , � (�, V)) ≤ H (� (�, V)) , � ∈ �, �, V ∈ �, (105)

where H : [0,∞] → [0,∞] is a generalized strict comparison
function, and let � : � → �, � > 0 be such that (3) holds.
en there is a unique function � : � → � satisfying (4) and

� (� (�) , � (�)) ≤ sup { > 0 :  − H ( ) ≤ �} , � ∈ �. (106)

We also have the following.

�eorem 34 ([43], 
eorem 4.1). Let � be a nonempty set,(�, �) a complete metric space, � : � → �, O : � → �.
Assume also that � : � → � and � > 0 are such that
(69) holds. If H : [0,∞] → [0,∞] is a generalized strict
comparison function satisfying inequality (64), then there is a
unique mapping� : � → � such that (70) and (106) hold.e
function � is given by formula (71).

We end this section with some applications of the �xed
point alternatives of the Bianchini-Grandol� and Matkowski
types. To this end, we introduce some notations and de�ni-
tions.

A nondecreasing function k : R+ → R+ is said to
be a c-comparison function [32] or Bianchini-Grandol� gauge

function [35, 57] if for each � ∈ (0,∞) the series ∑∞
�=0 k�(�) is

convergent (here k� denotes the mth iteration of k).
A self-mapping S of the metric space (�, �) for which

there exists a k-comparison function k such that

� (S
, S�) ≤ k (� (
, �)) , 
, � ∈ � (107)

is called a Bianchini-Grandol� contraction [34] (see also the
notion of a Matkowski contraction in Section 2.2).


e following result is the �xed point alternative of
Bianchini and Grandol� [57] (see [58, Lemma 2.1]).

�eorem 35. Let (�, �) be a complete generalized metric
space, that is, one for which � may assume in�nite values, andS : � → � a Bianchini-Grandol� contraction.en, for each
 ∈ �, either

(S1) �(S�
, S�+1
) = +∞, for all T ≥ 0, or
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(S2) there exists T0 ∈ N such that �(S�
, S�+1
) < +∞ forT ≥ T0.
If (S2) holds, then the sequence (S�(
))�∈N converges to a �xed
point �∗ of S, �∗ is the unique �xed point of S in the set

Z := {� ∈ � : � (S�0 (
) , �) < ∞} ,
� (�, �∗) ≤ ∞∑

�=0
k� (� (�, S (�))) , � ∈ Z. (108)

Next, we introduce the notion of an admissible pair. Let us
consider a 2-divisible group� and denote byM the family of
all mappings n : � × R+ → R+ with the properties:

(i) n� is continuous at 0, for each 
 ∈ �;

(ii) n� is superadditive; that is

n� (� +  ) ≥ n� (�) + n� ( ) , �,  ∈ R+, (109)

where n� := n(
, ⋅) for each 
 ∈ �.

Let us consider a comparison function k, an element n ∈
M and numbers V0 = 2 and V1 = 1/2.

Given 0 < � ≤ 1 and f ∈ N, we say that (n, k) is a o-
admissible pair of order f� if

n(V	
, �) ≤ V��	 n(
, k (�)) , � ∈ R+, 
 ∈ �. (S	)
Now, we are in a position to present a stability theorem

for monomial functional equation (94) of degree f.

�eorem 36 ([58], 
eorem 3.1). Let (A, +) be a 2-divisible
group, � a (real or complex) complete �-normed space, k be
a c-comparison function, and (n, k) be a o-admissible pair of
orderf�, with a o ∈ {0, 1}. Suppose that � : A×A → R+ and� : A → � with �(0) = 0 satisfy the inequality�����Δ���(
) − f!�(�)������ ≤ � (
, �) , 
, � ∈ A. (110)

If there exist o ∈ {0, 1} and � > 0 such that
1(f!)� (� (0, 
) + �∑

�=0
( ff − _)�(_
2 , 
2 )) ≤ n (
, �) ,


 ∈ A,
lim�→∞

� (V�	 
, V�	 �)
V���	

= 0, 
, � ∈ A,
(111)

then there exists a unique monomial function � : A → � of
degree f such that

�����(
) − �(
)����� ≤ n(
, ∞∑
�=0

k�+1−	 (�)) , 
 ∈ A. (112)

Remark 37. If (in 
eorem 36) n(
, �) = �(�) ⋅ (H(�) + O(
)),
with H and � having suitable properties, then we obtain [58,
Corollary 4.1]; if �(�) = �, H ≡ 0 and k(�) = "� with an " < 1,
then we get 
eorem 31.


e �xed point alternative of Bianchini andGrandol� has
been used in [59] to prove a generalized Hyers-Ulam stability
result for the additive Cauchy functional equation. In what
follows, we yet recall the �xed point alternative of Matkowski
and the corresponding outcome on stability of the Cauchy
equation.

�eorem 38 ([59], Lemma 3.2). Let (�, �) be a complete
generalized metric space and S : � → � a H-Matkowski
contraction. en, for each 
 ∈ �, either

(S1) �(S�
, S�+1
) = +∞, for all T ≥ 0, or
(S2) there exists an T0 ∈ N such that �(S�
, S�+1
) < +∞,

for all T ≥ T0.
If (S2) holds, then the sequence (S�(
))�∈N converges to a �xed
point �∗ of S and �∗ is the unique �xed point of S in the set

Z := {� ∈ � : � (S�0 (
) , �) < ∞} ; (113)

moreover, if additionally the mapping H0 : � L→ � − H(�) is a
bijection, then

� (�, �∗) ≤ H−10 (� (�, S (�))) , � ∈ Z. (114)


e above �xed point result has been used to prove the
following stability result for the Cauchy equation.

�eorem 39 ([59],
eorem 2.5). Let us consider a real linear
space�, a complete �-normed space �, a comparison functionH, and a o-admissible pair (n, H) of order�with a o ∈ {0, 1}. Let
us suppose that the mapping H0 : � L→ � − H(�) is an increasing
bijection and that a mapping � : � → � with �(0) = 0
satis�es the inequality

����� (
 + �) − �(
) − �(�)����� ≤ � (
, �) , 
, � ∈ �, (115)

where � : � × � → R+ is a given function such that

lim�→∞

� (V�	
, V�	�)
V��	 = 0, 
, � ∈ �. (116)

If there exists a � > 0 such that
�(
2 , 
2 ) ≤ n (
, �) , 
 ∈ �, (117)

then there exists a unique additive mapping 7 : � → � such
that

�����(
) − 7(
)����� ≤ n(
, H−10 (H1−	 (�))) , 
 ∈ �. (118)

3. New Fixed Point Theorems and
Their Applications

In this section, we present a somewhat di�erent �xed point
approach to the stability of functional equations, in which the
stability results are simple consequences of some new �xed
point theorems.
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Given a nonempty set � and a metric space (�, �), we
de�ne a mapping Δ : (��)2 → R+

� (S� denotes the family
of all functions mapping a set Q into a set S) by

Δ (p, �) (�) := � (p (�) , � (�)) , p, � ∈ ��, � ∈ �. (119)

With this notation, we have the following.

�eorem 40 ([60], 
eorem 1). Let � be a nonempty set,(�, �) a complete metric space, m ∈ N, �1, . . . , �� : � → �,"1, . . . , "� : � → R+ and Λ : R+
� → R+

� be given by

(Λ�) (�) := �∑
�=1

" � (�) � (�� (�)) , � ∈ R+
�, � ∈ �. (120)

IfT : �� → �� is an operator satisfying the inequality

Δ (Tp,T�) (�)
≤ Λ (Δ (p, �)) (�) , p, � ∈ ��, � ∈ � (121)

and functions G : � → R+ and � : � → � are such that

Δ (T�, �) (�) ≤ G (�) , � ∈ �, (122)

∞∑
�=0

(Λ�G) (�) =: E (�) < ∞, � ∈ �, (123)

then for every � ∈ � the limit

lim�→∞ (T��) (�) =: � (�) (124)

exists and the function � : � → �, de�ned in this way, is a
unique �xed point ofT with

Δ (�, �) (�) ≤ E (�) , � ∈ �. (125)

A consequence of 
eorem 40 is the following result on
the stability of a quite wide class of functional equations in a
single variable.

Corollary 41 ([60], Corollary 3). Let � be a nonempty set,(�, �) be a complete metric space, m ∈ N, �1, . . . , �� : � → �,"1, . . . , "� : � → R+, a function Φ : � × �� → � satisfy the
inequality

� (Φ (�, �1, . . . , ��) , Φ (�, R1, . . . , R�)) ≤ �∑
�=1

" � (�) � (��, R�)
(126)

for any (�1, . . . , ��), (R1, . . . , R�) ∈ �� and � ∈ �, and T :�� → �� be an operator de�ned by

(T�) (�) := Φ (�, � (�1 (�)) , . . . , � (�� (�))) , � ∈ ��, � ∈ �.
(127)

Assume also that Λ is given by (120) and functions � : � → �
and G : � → R+ are such that

� (� (�) , Φ (�, � (�1 (�)) , . . . , � (�� (�)))) ≤ G (�) , � ∈ �
(128)

and (123) holds. en for every � ∈ � limit (124) exists and the
function � : � → � is a unique solution of the functional
equation

Φ(�, � (�1 (�)) , . . . , � (�� (�))) = � (�) , � ∈ � (129)

satisfying inequality (125).

Another application of 
eorem 40 has been given in
[61]; it concerns stability of the polynomial equation (for a
survey on related results see [62]).

Next, following [63], we consider the case of non-
Archimedeanmetric spaces (let us mention here that the �rst
paper dealing with the Hyers-Ulam stability of functional
equations in non-Archimedean normed spaces was [64],
whereas [65] seems to be the �rst one in which the stability
problem in a particular type of these spaces was considered).
In order to do this, we introduce some notations and
de�nitions.

Let � be a nonempty set. For any �1, �2 ∈ R
�
+ we write�1 ≤ �2 provided

�1 (�) ≤ �2 (�) , � ∈ �, (130)

and we say that an operator Λ : R�
+ → R

�
+ is nondecreasing

if it satis�es the condition

Λ�1 ≤ Λ�2, �1, �2 ∈ R
�
+, �1 ≤ �2. (131)

Moreover, given a sequence (��)�∈N in R
�
+, we write

lim�→∞�� = 0 provided
lim�→∞�� (�) = 0, � ∈ �. (132)

We will also use the following hypothesis concerning

operators Λ : R�
+ → R

�
+:

(C) lim�→∞Λ�� = 0 for every sequence (��)�∈N in R
�
+

with lim�→∞�� = 0.
Finally, let us recall that a metric � on a nonempty set �

is called non-Archimedean (or an ultrametric) provided

� (
, R) ≤ max {� (
, �) , � (�, R)} , 
, �, R ∈ �. (133)

We can now formulate the following �xed point theorem.

�eorem42 ([63],
eorem 1). Let � be a nonempty set, (�, �)
a complete non-Archimedean metric space and Λ : R+

� →
R+

� a nondecreasing operator satisfying hypothesis (C). If
T : �� → �� is an operator satisfying inequality (121) and
functions G : � → R+ and � : � → � are such that

lim�→∞Λ�G = 0 (134)

and (122) holds, then for each � ∈ � limit (124) exists and the
function � : � → �, de�ned in this way, is a �xed point ofT
with

Δ (�, �) (�) ≤ sup
�∈N0

(Λ�G) (�) =: E (�) , � ∈ �. (135)
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If, moreover,

(ΛE) (�) ≤ sup
�∈N

(Λ�G) (�) , � ∈ �, (136)

then � is the unique �xed point ofT satisfying (135).

An immediate consequence of 
eorem 42 is the fol-
lowing result on the stability of (129) in the complete non-
Archimedean metric spaces.

Corollary 43 (see [63]). Let � be a nonempty set, (�, �) a
complete non-Archimedean metric space, m ∈ N, �1, . . . , �� :� → �, "1, . . . , "� : � → R+, a function Φ : � × �� → �
satisfy the inequality

� (Φ (�, �1, . . . , ��) , Φ (�, R1, . . . , R�))
≤ max
�∈{1,...,�}

" � (�) � (��, R�) (137)

for any (�1, . . . , ��), (R1, . . . , R�) ∈ �� and � ∈ �, and T :�� → �� an operator de�ned by (127). Assume also that Λ is
given by

(Λ�) (�) := max
�∈{1,...,�}

" � (�) � (�� (�)) , � ∈ R+
�, � ∈ � (138)

and functions � : � → � and G : � → R+ are such that (128)
and (134) hold. en for every � ∈ � limit (124) exists and the
function � : � → � is a solution of functional equation (129)
satisfying inequality (135).

A variant of 
eorem 42 in arbitrary complete metric
spaces was also proved in [63, 
eorem 2]. A slightly
improved version of this outcome was obtained in [66] in
response to an open problem concerning the uniqueness of
the mappingO, de�ned below. Namely, we have the following
result.

�eorem 44 ([66], Corollary 2.2). Let � be a nonempty set,(�, �) a complete metric space and Λ : R
�
+ → R

�
+ a

nondecreasing operator satisfying the hypothesis

lim�→∞�� (�) = 0 r⇒ lim�→∞ (Λ��) (�) = 0, (C1)
for every sequence (��)�∈N of elements of R�

+ and every � ∈ �.

IfT : �� → �� is an operator satisfying the inequality

� ((Tp) (
) , (T�) (
))
≤ Λ (Δ (p, �)) (
) , p, � ∈ ��, 
 ∈ �, (139)

and the functions G : � → R+, � : � → � are such that

� ((T�) (
) , � (
)) ≤ G (
) , 
 ∈ �, (140)

G∗ (
) := ∞∑
�=0

(Λ�G) (
) < ∞, 
 ∈ �, (C2)
then, for every 
 ∈ �, the limit

O (
) := lim�→∞ (T��) (
) (141)

exists and the function O ∈ ��, de�ned in this way, is a �xed
point ofT with

� (� (
) , O (
)) ≤ G∗ (
) , 
 ∈ �. (142)

Moreover, if the condition

lim�→∞ (Λ�G∗) (�) = 0, � ∈ �, (C3)
holds, then the mapping O is the unique �xed point ofT with
the property

� (� (
) , O (
)) ≤ G∗ (
) , 
 ∈ �. (143)


eorem 44 is a consequence of the following �xed point
theorem for a class of operators satisfying some very general

conditions (recall that given Λ : R
�
+ → R

�
+ , we say that

T : �� → �� is Λ-contractive if for any �, V : � → � and� ∈ R
�
+ with �(�(�), V(�)) ≤ �(�) for � ∈ �, it follows that�((T�)(�), (TV)(�)) ≤ (Λ�)(�) for � ∈ �).

�eorem 45 ([66], 
eorem 2.1). Let � be a nonempty set,(�, �) a complete metric space and Λ : R�
+ → R

�
+ . Suppose

that T : �� → �� is Λ-contractive, hypotheses (C1) and(C2) hold, and � ∈ �� fu�ls

� ((T�) (�) , � (�)) ≤ G (�) , � ∈ �. (144)

en, for every � ∈ �, the limit

� (�) := lim�→∞ (T��) (�) , (145)

exists and the mapping � is the unique �xed point of T with
the property

� ((T��) (�) , � (�)) ≤ ∞∑
�=�

(Λ�G) (�) , � ∈ �, n ∈ N.
(146)

Moreover, if we have

lim�→∞ (Λ�G∗) (�) = 0, � ∈ �, (147)

then � is the unique �xed point ofT with the property

� (� (�) , � (�)) ≤ G∗ (�) , � ∈ �. (148)

It is also worth noting that 
eorem 40 can be directly
obtained from
eorem 45 (see [66] for details).

Given nonempty sets �, X and functions � : � → �, � :� × X → X, we de�ne an operatorL�
� : X� → X� by

L
�
� (�) (�) := � (�, � (� (�))) , � ∈ X�, � ∈ �, (149)

and we say that U : X� → X� is an operator of substitution

providedU = L�
 with someO : � → � andA : �×X → X.

Moreover, if A(�, ⋅) is continuous for each � ∈ � (with respect
to a topology in X), then we say thatU is continuous.
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�eorem 46 ([67], 
eorem 2.1). Let � be a nonempty set,(�, �) a complete metric space, Λ : � ×R+ → R+,T : �� →��, � : � → � and
Δ (T�,T�) (�) ≤ Λ (�, Δ (� ∘ �, � ∘ �) (�)) ,

�, � ∈ ��, � ∈ �. (150)

Assume also that for every � ∈ �,Λ � := Λ(�, ⋅) is nondecreasing,G : � → R+, � : � → �,

∞∑
�=0

((LΛ
�)�G) (�) =: E (�) < ∞, � ∈ � (151)

and (122) holds. en for every � ∈ � limit (124) exists
and inequality (125) is satis�ed. Moreover, the following two
statements are true.

(i) If T is a continuous operator of substitution or Λ � is
continuous at 0 for each � ∈ �, then � is a �xed point of
T.

(ii) If Λ � is subadditive; that is,

Λ � (7 + 8) ≤ Λ � (7) + Λ � (8) (152)

for all 7, 8 ∈ R+, � ∈ �, then T has at most one �xed

point � ∈ �� such that there exists t ∈ N with

Δ (�, �) (�) ≤ tE (�) , � ∈ �. (153)

Actually, it can be deduced from the proof of [67, 
eo-
rem 2.1] that 
eorem 46 can be derived from
eorem 44.


eorem 46 with T = L�
� immediately gives the

following generalization of 
eorem 2.

Corollary 47 ([67], Corollary 2.1). Let � be a nonempty set,(�, �) a complete metric space, � : �×� → �,Λ : �×R+ →
R+ and

� (� (�, 
) , � (�, �)) ≤ Λ (�, � (
, �)) , � ∈ �, 
, � ∈ �.
(154)

Assume also that � : � → �, G : � → R+, (151) holds, � :� → �, for every � ∈ �, Λ � := Λ(�, ⋅) is nondecreasing, �(�, ⋅)
is continuous and

� (� (�) , � (�, � (� (�)))) ≤ G (�) , � ∈ �. (155)

en for every � ∈ � the limit

� (�) := lim�→∞(L�
�)� (�) (�) (156)

exists, (125) holds and � is a solution of (4). Moreover, if Λ � is
subadditive for every � ∈ � and t ∈ N, then � : � → � is the
unique solution of (4) ful�lling (153).

Some results related to those presented above, proved for
functions taking values in Riesz spaces, can be found in [68].

Further applications of 
eorem 40 have been proposed
in [49, 50] (in solving a problem of
.M. Rassias concerning

optimality of estimations in 
eorem 29) and in [69] (in
proving stability of the equation of-Wright a�ne functions);
in particular, it has been discovered in this way in [49] that the
property of hyperstability for the additive Cauchy equation
appears quite oen in a natural way (see [8, 70] for more
information on this issue and related results); generalizations
of that approach have been presented in [71, 72]. Similar
methods (also involving 
eorem 42) have been applied for
some other equations in [73–78].

4. Stability of the Fixed Point
Equation and Its Generalization

In [79] one can �nd the following de�nition (as well as
some related notions concerning the generalizedUlam-Hyers
stability).

Let (�, �) be a metric space and � : � → �. We say that
the �xed point equation


 = � (
) (157)

is Ulam-Hyers stable if there is a  > 0 such that for any G > 0
and � ∈ � with

� (�, � (�)) ≤ G (158)

there exists an 
 ∈ � satisfying (157) and

� (�, 
) ≤  G. (159)

Let us recall (see [79, 80]) that � : � → � is called
a weakly Picard operator if for every 
 ∈ � the sequence(��(
))�∈N is convergent and its limit, denoted by �∞(
), is
a �xed point of �. Given such an operator � and a k > 0, we
say that � is a k-weakly Picard operator if

� (
, �∞ (
)) ≤ k� (
, � (
)) , 
 ∈ �. (160)


e following two results comes from [79].

�eorem 48 ([79], Remark 2.1). Let (�, �) be a metric space
and k > 0. If � : � → � is a k-weakly Picard operator, then
(157) is Ulam-Hyers stable.

�eorem 49 ([79], Remark 2.2). Let (�, �) be a metric space,6 ̸= 0 a set and � = ⋃�∈���. Assume also that � : � → �
satis�es �(��) ⊂ �� for _ ∈ 6. If for every _ ∈ 6, the equation


 = �|�� (
) (161)

is Ulam-Hyers stable, then (157) is also Ulam-Hyers stable.

Let us mention here that in [79] some applications of
these outcomes (e.g., to the stability of an integral equation)
are also presented.

Now, let (�, �) and (�, �) be metric spaces, and �, � :� → �. 
e coincidence equation

� (
) = � (
) (162)
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is calledUlam-Hyers stable if there is a  > 0 such that for anyG > 0 and � ∈ � with

� (� (�) , � (�)) ≤ G (163)

there exists an 
 ∈ � satisfying (162) and (159).
Let k > 0 and �, � : � → �. We say that (�, �) is ak-weakly Picard pair if there exists a weakly Picard operatorℎ : � → � such that

{
 ∈ � : ℎ (
) = 
} = {
 ∈ � : � (
) = � (
)} ,
� (
, ℎ∞ (
)) ≤ k� (� (
) , � (
)) , 
 ∈ �. (164)

�eorem 50 ([79], Remark 6.1). Let (�, �), (�, �) be metric
spaces, �, � : � → � and k > 0. If (�, �) is a k-weakly Picard
pair, then (162) is Ulam-Hyers stable.

More results on these as well as related problems can be
found in [81–95].

5. Final Remarks

Applications of di�erent �xed point theorems to the Ulam
type stability have been presented in this survey. On the other
hand, some �xed point theorems can be derived from such
stability results; we refer to [96–98] for suitable examples.
Below we show how to get another such an example.

Let (�, �) be a metric space. We denote by T(�) the family
of all nonempty subsets of �. 
e convergence of subsets of� is with respect to the Hausdor� metric derived from the
metric �. 
e number �(S) := sup {�(
, �) : 
, � ∈ S} is
said to be the diameter of S ⊂ �. 
e next theorem has been
obtained in [99,
eorem 2] (cf. [100,
eorem 1]; we refer the
reader to [99–102] for further similar results and to [103] for
a survey on the subject).

�eorem 51 ([99], 
eorem 2). Let C be a nonempty set, 7 :C → C, Ψ : � → �, � ∈ (0,∞) and � : C → T(�) satisfy
� (Ψ (
) , Ψ (�)) ≤ �� (
, �) , 
, � ∈ �,

lim�→∞��� (� (7� (
))) = 0, 
 ∈ C. (165)

en one of the following two statements is valid.

(i) If � is complete and

Ψ (� (7 (
))) ⊂ � (
) , 
 ∈ C, (166)

then, for each 
 ∈ C, the limit

lim�→∞kW (Ψ� (� (7� (
)))) =: �̂ (
) (167)

exists, the function �̂ : C → T(�) is single-valued and
it is the unique function (whichmapsC into T(�)) such
that Ψ(�̂(7(
))) = �̂(
) and �̂(
) ⊂ kW�(
) for 
 ∈ C.

(ii) If

� (
) ⊂ Ψ (� (7 (
))) , 
 ∈ C, (168)

then F is single-valued and Ψ(�(7(
))) = �(
) for 
 ∈C.

It is easily seen that
eorem 51 yields the following �xed
point result.

Corollary 52. Let C be a nonempty set, 7 : C → C, Ψ :� → �, � ∈ (0,∞), and � : C → T(�) satisfy (165). WriteΦA(
) := Ψ(A(7(
))) for A : C → T(�) and 
 ∈ C. en
one of the following two statements is valid.

(a) If � is complete and

Φ� (
) ⊂ � (
) , 
 ∈ C, (169)

then, for each 
 ∈ C, the limit

lim�→∞ cl (Φ�� (
)) =: �̂ (
) (170)

exists, �̂ is single-valued and it is the unique �xed point

of Φ such that �̂(
) ⊂ kW�(
) for 
 ∈ C.

(b) If

� (
) ⊂ Φ� (
) , 
 ∈ C, (171)

then F is a single-valued �xed point of Φ.

Analogously, a �xed point result can be deduced from the
main outcome in [104], concerning stability of a generaliza-
tion of the Volterra integral equation.

We end the paper with an example of stability result
for the Cauchy additive equation, proved in [26, Corollary
1] through a modi�ed �xed point approach (somewhat
analogous to that in [105]); it corresponds to 
eorem 29.

�eorem 53 ([26], Corollary 1). Let � be a normed space,k1, k2, , Z, V ∈ R+ with

( − 1) (Z + V − 1) > 0, (172)

a nonempty � ⊂ � such that 2� = �, and ℎ : � → R satisfy
the inequality

− k1‖
‖"���������# ≤ ℎ (
 + �) − ℎ (
) − ℎ (�)
≤ k2 (‖
‖� + ����������) , 
, � ∈ �, 
 + � ∈ �. (173)

en there exists a unique function � : � → R such that

� (
 + �) = � (
) + � (�) , 
, � ∈ �, 
 + � ∈ �,
− k1‖
‖"+#����1 − 2"+#−1���� ≤ � (
) − ℎ (
) ≤ k2‖
‖�����1 − 2�−1���� , 
 ∈ �. (174)
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bility of the Fréchet equation and a characterization of inner
product spaces,” Journal of Function Spaces and Applications,
vol. 2013, Article ID 496361, 6 pages, 2013.

[75] A. Bahyrycz and M. Piszczek, “Hyperstability of the Jensen
functional equation,”ActaMathematica Hungarica, vol. 142, no.
2, pp. 353–365, 2014.

[76] M. Piszczek, “Remark on hyperstability of the general linear
equation,” Aequationes Mathematicae, 2013.
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[91] O. Mleşniţe, “Existence and Hyers-Ulam stability results for a
coincidence problem with applications,” Miskolc Mathematical
Notes, vol. 14, no. 1, pp. 183–189, 2013.
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