

DOI: 10.2478/awutm-2019-0007

Analele Universității de Vest, Timișoara Seria Matematică – Informatică LVII, 1, (2019), 66–76

# Fixed point theory for nonself generalized contractions in Kasahara spaces

Alexandru-Darius Filip and Ioan A. Rus

Dedicated to the memory of Professor Ştefan Măruşter

**Abstract.** In this paper we extend some results of V. Berinde, Şt. Măruşter and I.A. Rus (*Saturated contraction principles* for nonself operators, generalizations and applications, Filomat, 31:11(2017), 3391-3406), which were given in metric spaces, to Kasahara spaces. Some research directions are also presented.

**AMS Subject Classification (2000).** 47H10; 54H25; 47H09; 65J15; 68N17

**Keywords.** Kasahara space; nonself operator; fixed point; retraction; retraction-displacement condition; well posedness; Ostrowski's property; data dependence; research directions

# 1 Introduction and preliminaries

The aim of this paper is to extend some results given in [4], in a metric space, to a Kasahara space.

#### 1.0 Notations

Throughout this paper we follow the notations given in [18] and [8].

#### 1.1 L-spaces

**Definition 1.1** (M. Fréchet [9]). Let X be a nonempty set. Let

 $s(X) := \{ (x_n)_{n \in \mathbb{N}} \mid x_n \in X, \ n \in \mathbb{N} \}.$ 

Let  $c(X) \subset s(X)$  be a subset of s(X) and  $Lim : c(X) \to X$  be an operator. By definition, the triple (X, c(X), Lim) is called an L-space if the following conditions are satisfied:

- (i) If  $x_n = x$ , for all  $n \in \mathbb{N}$ , then  $\{x_n\}_{n \in \mathbb{N}} \in c(X)$  and  $Lim\{x_n\}_{n \in \mathbb{N}} = x$ .
- (ii) If  $\{x_n\}_{n\in\mathbb{N}} \in c(X)$  and  $Lim\{x_n\}_{n\in\mathbb{N}} = x$ , then for all subsequences  $\{x_{n_i}\}_{i\in\mathbb{N}}$  of  $\{x_n\}_{n\in\mathbb{N}}$  we have that  $\{x_{n_i}\}_{i\in\mathbb{N}} \in c(X)$  and  $Lim\{x_{n_i}\}_{i\in\mathbb{N}} = x$ .

By definition, an element  $\{x_n\}_{n\in\mathbb{N}}$  of c(X) is a convergent sequence and  $x = Lim\{x_n\}_{n\in\mathbb{N}}$  is the limit of this sequence and we shall write

$$x_n \xrightarrow{F} x \text{ as } n \to \infty.$$

We denote an *L*-space by  $(X, \stackrel{F}{\rightarrow})$ .

**Example 1.1.** In general, an *L*-space is any set endowed with a structure implying a notion of convergence for sequences. For example, Hausdorff topological spaces, metric spaces,  $\mathbb{R}^m_+$ -metric spaces, generalized metric spaces in Luxemburg' sense (i.e.  $d(x, y) \in \mathbb{R}_+ \cup \{+\infty\}$ ), *K*-metric spaces (i.e.  $d(x, y) \in K$ , where *K* is a cone in an ordered Banach space), gauge spaces, 2-metric spaces, *D*-*R*-spaces, probabilistic metric spaces, syntopogenous spaces, are relevant examples of such *L*-spaces.

#### 1.2 Kasahara spaces

In this paper, by a Kasahara space we understand a triple  $(X, \xrightarrow{F}, \rho)$  where (i.e., a large Kasahara space in the terminology of [18] and [8]):

- (1)  $(X, \stackrel{F}{\rightarrow})$  is an *L*-space;
- (2)  $\rho: X \times X \to \mathbb{R}_+$  is a dislocated metric, i.e.,

(i) 
$$\rho(x, y) = 0 \Rightarrow x = y;$$

- (*ii*)  $\rho(x, y) = \rho(y, x)$ , for all  $x, y \in X$ ;
- (*iii*)  $\rho(x, y) \le \rho(x, z) + \rho(z, y)$ , for all  $x, y, z \in X$ ;

(3) if  $\{y_n\}_{n \in \mathbb{N}} \subset X$  is such that

$$\rho(y_n, y_m) \to 0 \text{ as } n, m \to \infty,$$

then  $\{y_n\}_{n\in\mathbb{N}}$  is convergent in  $(X, \stackrel{F}{\rightarrow})$ .

For examples of such Kasahara spaces see [18] and [8]. For dislocated metric spaces see [15] and the references therein.

A relevant example of Kasahara space is the following one.

**Example 1.2.** Let X be a nonempty set,  $d : X \times X \to \mathbb{R}_+$  be a complete metric on X and  $\rho : X \times X \to \mathbb{R}_+$  be a dislocated metric on X. We suppose that there exists c > 0 such that

$$d(x, y) \leq c\rho(x, y)$$
, for all  $x, y \in X$ .

Then,  $(X, \stackrel{d}{\rightarrow}, \rho)$  is a Kasahara space.

#### **1.3** Partial metric spaces as Kasahara spaces

Let (X, p) be a partial metric space (see [1], [7]-[17], [22], ...; for an heuristic introduction to the partial metric spaces, see [5]). Let us consider the following functionals induced by a partial metric on X:

$$d_p^s : X \times X \to \mathbb{R}_+, \ d_p^s(x,y) := 2p(x,y) - p(x,x) - p(y,y)$$

and

$$\tilde{d}_p: X \times X \to \mathbb{R}_+, \ \tilde{d}_p(x, y) := \begin{cases} p(x, y), \ \text{if } x \neq y, \\ 0, \ \text{if } x = y. \end{cases}$$

These two functionals are metrics on X.

Moreover we have:

- $d_p^s(x,y) \le 2p(x,y)$ , for all  $x, y \in X$ ;
- $\tilde{d}_p(x,y) \le p(x,y)$ , for all  $x, y \in X$ .

It is clear that if  $d_p^s$  is complete then  $(X, \stackrel{d_p^s}{\rightarrow}, p)$  is a Kasahara space.

It is also clear that if  $\tilde{d}_p$  is complete then  $(X, \stackrel{\tilde{d}_p}{\rightarrow}, p)$  is a Kasahara space.

#### 2 Theorems of equivalent statements

The basic problem for a nonself operator f is to give conditions which imply that  $F_f \neq \emptyset$ . For a better understanding of this problem, in what follows we shall present some of such conditions.

**Theorem 2.1** (Theorem of equivalent statements). Let  $(X, \stackrel{F}{\rightarrow}, \rho)$  be a Kasahara space,  $Y \in P_{cl}(X, \stackrel{F}{\rightarrow})$  and  $f: Y \to X$  be an operator. We suppose that:

- (i) if  $x_n \xrightarrow{F} x^*$ ,  $y_n \xrightarrow{F} y^*$  and  $\rho(x_n, y_n) \to 0$  as  $n \to \infty$ , then  $x^* = y^*$ ;
- (ii)  $f: (Y, \xrightarrow{F}) \to (X, \xrightarrow{F})$  is continuous;
- (iii)  $f:(Y,\rho) \to (X,\rho)$  is an *l*-contraction.

Then the following statements are equivalent:

- (a)  $F_f = \{x^*\};$
- (b) There exists a sequence  $\{y_n\}_{n\in\mathbb{N}}$  in Y such that  $\rho(y_n, f(y_n)) \to 0$  as  $n \to \infty$ ;
- (c) There exists a sequence  $\{y_n\}_{n\in\mathbb{N}} \subset P_b(Y,\rho)$  such that  $\rho(y_{n+1}, f(y_n)) \to 0$  as  $n \to \infty$ ;
- (d) There exists  $U \in P_{cl}(Y, \xrightarrow{F})$  such that  $f(U) \subset U$ ;
- (e) There exists  $U \in P_{cl}(Y, \xrightarrow{F})$  and a nonexpansive retraction  $r : (X, \rho) \to (U, \rho)$  such that  $f : U \to X$  is retractible with respect to r.

*Proof.* First, we remark that (a) implies all of the statements (b)-(e). Indeed, by choosing the sequence  $\{y_n\}_{n\in\mathbb{N}}\subset Y, y_n:=x^*$ , for all  $n\in\mathbb{N}$ , and the set  $U = \{x^*\}\subset Y$ , the conclusions follow.

 $(b) \Rightarrow (a)$ . Let  $\{y_n\}_{n \in \mathbb{N}}$  in Y such that  $\rho(y_n, f(y_n)) \to 0$  as  $n \to \infty$ . Let  $m \in \mathbb{N}, m > n$ . We have

$$\rho(y_n, y_m) \le \rho(y_n, f(y_n)) + \rho(f(y_n), f(y_m)) + \rho(f(y_m), y_m) \le \\
\le \rho(y_n, f(y_n)) + l\rho(y_n, y_m) + \rho(f(y_m), y_m),$$

which implies further that

$$\rho(y_n, y_m) \le \frac{1}{1-l} [\rho(y_n, f(y_n)) + \rho(f(y_m), y_m)] \to 0 \text{ as } n, m \to \infty.$$

Hence,  $\{y_n\}_{n\in\mathbb{N}^*}$  is convergent in  $(X, \stackrel{F}{\rightarrow})$ . So, there exists  $y^* \in X$  such that  $y_n \stackrel{F}{\rightarrow} y^*$  as  $n \to \infty$ . By (*ii*), we have that  $f(y_n) \stackrel{F}{\rightarrow} f(y^*)$  as  $n \to \infty$ . Since  $\rho(y_n, f(y_n)) \to 0$  as  $n \to \infty$ , we have:

$$\lim_{n \to \infty} \rho(y_n, f(y_n)) = \rho(y^*, f(y^*)) = 0.$$

So  $y^* \in F_f$ . The uniqueness of the fixed point  $y^*$  is assured by (*iii*). Indeed, if  $x^* \in Y$  is another fixed point for f, then  $\rho(x^*, y^*) = \rho(f(x^*), f(y^*)) \leq l\rho(x^*, y^*)$ , i.e.,  $(1 - l)\rho(x^*, y^*) \leq 0$ , so  $\rho(x^*, y^*) = 0$  which implies that  $x^* = y^*$ .

 $(c) \Rightarrow (a)$ . Let  $\{y_n\}_{n \in \mathbb{N}} \subset P_b(Y, \rho)$  such that  $\rho(y_{n+1}, f(y_n)) \to 0$  as  $n \to \infty$ . Let  $p \in \mathbb{N}$ . We have

$$\rho(y_{n+p+1}, y_{n+1}) \leq \rho(y_{n+p+1}, f(y_{n+p})) + \rho(f(y_{n+p}), f(y_n)) + \rho(y_{n+1}, f(y_n)) 
\leq \rho(y_{n+p+1}, f(y_{n+p})) + l\rho(y_{n+p}, y_n) + \rho(y_{n+1}, f(y_n)) 
\leq \rho(y_{n+p+1}, f(y_{n+p})) + l\rho(y_{n+p}, f(y_{n+p-1})) + \dots + l^{n+1}\rho(y_p, f(y_{p-1})) + l^{n+1}\rho(y_p, y_0) + l^n\rho(y_1, f(y_0)) + \dots + l^1\rho(y_n, f(y_{n-1})) + \rho(y_{n+1}, f(y_n)).$$

From a Cauchy lemma, we get that

$$\rho(y_{n+p+1}, y_{n+1}) \to 0 \text{ as } n \to \infty, \text{ for all } p \in \mathbb{N} \text{ or } p \to \infty.$$

It follows that  $\{y_n\}_{n\in\mathbb{N}^*}$  is convergent in  $(X, \xrightarrow{F})$ . So, there exists  $y^* \in X$  such that  $y_n \xrightarrow{F} y^*$  as  $n \to \infty$ . By (*ii*) we have that  $f(y_n) \xrightarrow{F} f(y^*)$  as  $n \to \infty$ . Since  $\rho(y_{n+1}, f(y_n)) \to 0$  as  $n \to \infty$ , by (*i*), we get that  $y^* = f(y^*)$ . The uniqueness of  $y^*$  follows from (*iii*).

 $(d) \Rightarrow (a)$ . It follows from the contraction condition (*iii*).

 $(e) \Rightarrow (a).$  Since  $f|_U$  is retractible with respect to r, it follows that  $F_{f|_U} = F_{r \circ f|_U}.$  But  $r \circ f|_U : U \to U$  is a contraction.  $\Box$ 

## **3** Saturated principle of fixed points

In a Kasahara space we have the following saturated principle of contraction (see [19], [18], [8], [7]).

**Theorem 3.1.** Let  $(X, \xrightarrow{F}, \rho)$  be a Kasahara space and  $f : X \to X$  be an operator. We suppose that:

- (i)  $f: (X, \xrightarrow{F}) \to (X, \xrightarrow{F})$  is orbitally continuous;
- (ii)  $f: (X, \rho) \to (X, \rho)$  is an *l*-contraction.

Then we have that:

Vol. LVII (2019) Fixed point theory for nonself generalized contractions 71

- (a)  $F_f = F_{f^n} = \{x^*\}, \text{ for all } n \in \mathbb{N}^*;$
- (b)  $f^n(x) \xrightarrow{F} x^*$  as  $n \to \infty$ , for all  $x \in X$ ;
- (c)  $\rho(f^n(x), x^*) \to 0 \text{ as } n \to \infty, \text{ for all } x \in X;$
- (d)  $\rho(x, x^*) \leq \frac{1}{1-l}\rho(x, f(x)), \text{ for all } x \in X;$
- (e) if  $\{y_n\}_{n\in\mathbb{N}} \subset X$  is such that  $\rho(y_n, f(y_n)) \to 0$  as  $n \to \infty$ , then  $\rho(y_n, x^*) \to 0$  as  $n \to \infty$ , i.e., the fixed point problem for f is well posed in  $(X, \rho)$ ;
- (f) if  $\{y_n\}_{n\in\mathbb{N}} \subset X$  is such that  $\rho(y_{n+1}, f(y_n)) \to 0$  as  $n \to \infty$ , then  $\rho(y_n, x^*) \to 0$  as  $n \to \infty$ , i.e., the operator f has the Ostrowski's property.

*Proof.* The proof is similar with the proof of Theorem 2.1.2 in [8].  $\Box$ 

So, our problem is to extend Theorem 3.1 for the case of nonself operators.

**Theorem 3.2** (Saturated principle of nonself contractions). Let  $(X, \stackrel{F}{\rightarrow}, \rho)$  be a Kasahara space,  $Y \subset P_{cl}(X, \stackrel{F}{\rightarrow})$ . Let  $f : Y \to X$  be an operator. We suppose that:

- (*i*) f is an l-contraction;
- (*ii*)  $F_f \neq \emptyset$ .

Then:

- (a)  $F_f = \{x^*\}$ . Moreover, if for some  $y \in Y$  and  $n \in \mathbb{N}^*$ ,  $f^n(y)$  is defined and  $f^n(y) = y$  then  $y = x^*$ ;
- (b)  $\rho(x, x^*) \leq \psi(\rho(x, f(x)))$ , for all  $x \in Y$  where  $\psi(t) = \frac{t}{1-t}, t \geq 0$ ;
- (c) for each sequence  $\{y_n\}_{n\in\mathbb{N}}$  in Y with  $\rho(y_n, f(y_n)) \to 0$  as  $n \to \infty$ , we have that  $y_n \xrightarrow{F} x^*$  as  $n \to \infty$ , i.e., the fixed point problem for f is well posed in  $(X, \rho)$ ;
- (d) for each sequence  $\{y_n\}_{n\in\mathbb{N}}$  in Y with  $\rho(y_{n+1}, f(y_n)) \to 0$  as  $n \to \infty$ , we have that  $y_n \xrightarrow{F} x^*$  as  $n \to \infty$ , i.e., the operator f has the Ostrowski's property.

An. U.V.T.

*Proof.* (a) The uniqueness of the fixed point follows by the contraction condition. Let  $y \in Y$  and  $n \in \mathbb{N}^*$  be such that  $f^n(y)$  is defined. Since  $f^n(y) = y$ , we have  $f^{n+1}(y) = f(f^n(y)) = f(y)$  and  $f^{n+1}(y) = f^n(f(y))$  which imply y = f(y), i.e.,  $y \in F_f = \{x^*\}$ .

(b) It follows by the fact that

$$\rho(x, x^*) \le \rho(x, f(x)) + \rho(f(x), x^*) \le \rho(x, f(x)) + l\rho(x, x^*)$$

which yields the retraction-displacement condition, i.e.,

$$\rho(x, x^*) \le \frac{1}{1-l}\rho(x, f(x)), \text{ for all } x \in Y.$$

(c) It follows by (b), by setting  $x := y_n$  in the retraction-displacement condition.

(d) By (i), we obtain, in particular, that f is an l-quasicontraction, i.e.,  $\rho(f(x), f(x^*)) \leq l\rho(x, x^*)$ , for all  $x \in Y$ . We have

$$\rho(y_{n+1}, x^*) \leq \rho(y_{n+1}, f(y_n)) + \rho(f(y_n), x^*) \leq l\rho(y_n, x^*) + \rho(y_{n+1}, f(y_n)) \\
\leq l[\rho(y_n, f(y_{n-1})) + \rho(f(y_{n-1}), x^*)] + \rho(y_{n+1}, f(y_n)) \\
\leq l\rho(y_n, f(y_{n-1})) + l^2\rho(y_{n-1}, x^*) + \rho(y_{n+1}, f(y_n)) \\
\leq \dots \leq l\rho(y_n, f(y_{n-1})) + l^2\rho(y_{n-1}, f(y_{n-2})) + \dots \\
\dots + l^{n+1}\rho(y_0, x^*) + \rho(y_{n+1}, f(y_n))$$

and by a Cauchy lemma, the conclusion follows.

**Theorem 3.3.** Let X be a nonempty set,  $d : X \times X \to \mathbb{R}_+$  be a complete metric on X,  $\rho : X \times X \to \mathbb{R}_+$  be a dislocated metric on X,  $Y \in P_{cl}(X, d)$ and  $f : (Y, \rho) \to (X, \rho)$  be an l-contraction. In addition, we suppose that:

- (i) there exists c > 0 such that  $d(x, y) \le c\rho(x, y)$ , for all  $x, y \in X$ ;
- (ii)  $f: (Y, d) \to (X, d)$  is continuous;
- (*iii*)  $F_f \neq \emptyset$ .

Then we have:

- (a)  $F_f = \{x^*\};$
- (b)  $\rho(x, x^*) \leq \frac{1}{1-l}\rho(x, f(x)), \text{ for all } x \in X;$
- (c) for each sequence  $\{y_n\}_{n\in\mathbb{N}}$  in Y with  $\rho(y_n, f(y_n)) \to 0$  as  $n \to \infty$ , we have that  $y_n \stackrel{d}{\to} x^*$  as  $n \to \infty$ , i.e., the fixed point problem for f is well posed in  $(X, \rho)$ ;

Vol. LVII (2019) Fixed point theory for nonself generalized contractions 73

(d) for each sequence  $\{y_n\}_{n\in\mathbb{N}}$  in Y with  $\rho(y_{n+1}, f(y_n)) \to 0$  as  $n \to \infty$ , we have that  $y_n \stackrel{d}{\to} x^*$  as  $n \to \infty$ , i.e., the operator f has the Ostrowski's property.

*Proof.* We remark that  $(X, \stackrel{d}{\rightarrow}, \rho)$  is a Kasahara space and we are in the conditions of Theorem 3.2, with  $\stackrel{F}{\rightarrow} = \stackrel{d}{\rightarrow}$ . The proof follows from Theorem 3.2.

#### 4 Partial metric spaces

The notion of partial metric was introduced by S.G. Matthews in [13] as follows:

**Definition 4.1.** Let X be a nonempty set. A functional  $p: X \times X \to \mathbb{R}_+$  is a partial metric on X if p satisfies the following conditions:

- (i) p(x,x) = p(y,y) = p(x,y) if and only if x = y;
- (ii)  $p(x,x) \le p(x,y)$ , for all  $x, y \in X$ ;
- (iii) p(x, y) = p(y, x), for all  $x, y \in X$ ;
- (iv)  $p(x,y) \le p(x,z) + p(z,y) p(z,z)$ , for all  $x, y, z \in X$ .

The couple (X, p), where X is a nonempty set and p is a partial metric on X, is called a partial metric space.

For examples of partial metric spaces see [13], [17].

Let us consider now the Kasahara spaces  $(X, \stackrel{d_p^s}{\rightarrow}, p)$  and  $(X, \stackrel{\tilde{d}_p}{\rightarrow}, p)$ . We have:

**Theorem 4.1.** Let (X,p) be a partial metric space,  $Y \in P_{cl}(X, d_p^s)$  and  $f: (X,p) \to (X,p)$  be an *l*-contraction. We suppose that:

- (i)  $f: (Y, d_p^s) \to (Y, d_p^s)$  is continuous;
- (*ii*)  $F_f \neq \emptyset$ .

Then we have:

(a)  $F_f = \{x^*\};$ (b)  $p(x, x^*) \le \frac{1}{1-l}p(x, f(x)), \text{ for all } x \in X;$ 

- (c) for each sequence  $\{y_n\}_{n\in\mathbb{N}}$  in Y with  $p(y_n, f(y_n)) \to 0$  as  $n \to \infty$ , we have that  $y_n \xrightarrow{d_p^s} x^*$  as  $n \to \infty$ , i.e., the fixed point problem for f is well posed in (X, p);
- (d) for each sequence  $\{y_n\}_{n\in\mathbb{N}}$  in Y with  $p(y_{n+1}, f(y_n)) \to 0$  as  $n \to \infty$ , we have that  $y_n \xrightarrow{d_p^s} x^*$  as  $n \to \infty$ , i.e., the operator f has the Ostrowski's property.

*Proof.* The proof follows from Theorem 3.3.

**Theorem 4.2.** Let (X, p) be a partial metric space,  $Y \in P_{cl}(X, d_p^s)$  and  $f: (X, p) \to (X, p)$  be an *l*-contraction. We suppose that:

- (i)  $f: (Y, \tilde{d}_p) \to (Y, \tilde{d}_p)$  is continuous;
- (*ii*)  $F_f \neq \emptyset$ .

Then we have:

- (a)  $F_f = \{x^*\};$
- (b)  $p(x, x^*) \leq \frac{1}{1-l}p(x, f(x)), \text{ for all } x \in X;$
- (c) for each sequence  $\{y_n\}_{n\in\mathbb{N}}$  in Y with  $p(y_n, f(y_n)) \to 0$  as  $n \to \infty$ , we have that  $y_n \xrightarrow{\tilde{d}_p} x^*$  as  $n \to \infty$ , i.e., the fixed point problem for f is well posed in (X, p);
- (d) for each sequence  $\{y_n\}_{n\in\mathbb{N}}$  in Y with  $p(y_{n+1}, f(y_n)) \to 0$  as  $n \to \infty$ , we have that  $y_n \xrightarrow{\tilde{d}_p} x^*$  as  $n \to \infty$ , i.e., the operator f has the Ostrowski's property.

*Proof.* The proof follows from Theorem 3.3.

## 5 Research directions

- 5.1. To extend the results of this paper in the case of some generalized contractions (φ-contractions, Kannan type contractions, strongly demicontractive operators, ...).
  References: [12], [21], [1], [8], [14], [16], [17], [20], [22], [3], [21], [6], ...
- 5.2. To extend the results of this paper to the case of multivalued operators. References: [12], [21], [8], ...

Vol. LVII (2019) Fixed point theory for nonself generalized contractions 75

5.3. To apply these type of results in logic semantic programing and more general, to computer science.

References:  $[5], [1], [11], [2] \dots$ 

#### References

- M.A. Alghamdi, N. Shahzad, and O. Valero, On fixed point theory in partial metric spaces, *Fixed Point Theory Appl.*, 2012:175, (2012), 1–30
- [2] M.A. Alghamdi, N. Shahzad, and O. Valero, Fixed point theorems in generalized metric spaces with applications to computer science, *Fixed Point Theory Appl.*, 2013:118, (2013), 1–20
- [3] V. Berinde and M. Choban, Generalized distances and their associate metrics. Impact on fixed point theory, *Creat. Math. Inform.*, 22 (1), (2013), 23–32
- [4] V. Berinde, Şt. Măruşter, and I.A. Rus, Saturated contraction principles for nonself operators, generalizations and applications, *Filomat*, 31:11, (2017), 3391–3406
- [5] M. Bukatin, R. Kopperman, S. Matthews, and H. Pajoohesh, Partial metric spaces, *The American Mathematical Monthly*, **116**, (2009), 708–718
- [6] S. Cobzaş, Fixed points and completeness in metric and in generalized metric spaces, arXiv: 1508.05173v4, (8 Feb 2016)
- [7] A.-D. Filip, Fixed point theory in large Kasahara spaces, An. Univ. Vest Timişoara, Ser. Mat.-Inf., 49 (2), (2011), 21–36
- [8] A.-D. Filip, Fixed Point Theory in Kasahara Spaces, Casa Cărții de Ştiință, Cluj-Napoca, 2015
- [9] M. Fréchet, Les espaces abstraits, Gauthier-Villars, Paris, 1928
- [10] R.H. Haghi, Sh. Rezapour, and N. Shahzad, Be careful on partial metric fixed point results, *Topology Appl.*, 160, (2013), 450–454
- [11] P. Hitzler, Generalized metrics and topology in logic programming semantics, Ph.D. Dissertation, National Univ. of Ireland, 2001
- [12] W.A. Kirk and B. Sims (Eds.), Handbook of Metric Fixed Point Theory, Kluwer, 2001
- [13] S.G. Matthews, Partial metric topology, Ann. New York Acad. Sci., 728, (1994), 183–197
- [14] Şt. Măruşter and I.A. Rus, Kannan contractions and strongly demicontractive mappings, *Creative Math. Inform.*, 24 (2), (2015), 171–180
- [15] L. Pasicki, Dislocated metric and fixed point theorems, Fixed Point Theory Appl., 2015:82, (2015), 1–14
- [16] L. Pasicki, Partial metric, fixed points, variational principles, *Fixed Point Theory*, 17 (2), (2016), 435–450

- [17] I.A. Rus, Fixed point theory in partial metric spaces, An. Univ. Vest Timişoara, Ser. Mat.-Inf., 46, (2008), 149–160
- [18] **I.A. Rus**, Kasahara spaces, *Scientiae Math. Japonicae*, **72** (1), (2010), 101–110
- [19] I.A. Rus, Some variants of contraction principle, generalizations and applications, Stud. Univ. Babes-Bolyai, Math., 61 (3), (2016), 343-358
- [20] I.A. Rus and M.A. Şerban, Some fixed point theorems for nonself generalized contractions, *Miskolc Math. Notes*, 17 (2), (2016), 1021–1031
- [21] I.A. Rus, A. Petruşel, and G. Petruşel, Fixed Point Theory, Cluj Univ. Press, Cluj-Napoca, 2008
- [22] B. Samet, C. Vetro, and F. Vetro, From metric spaces to partial metric spaces, Fixed Point Theory Appl., 2013:5, (2013), 1-11

Alexandru-Darius Filip

"Babeş-Bolyai" University Faculty of Economics and Business Administration Department of Statistics-Forecast-Mathematics Teodor Mihali Street, No. 58-60 400591 Cluj-Napoca, Romania E-mail: darius.filip@econ.ubbcluj.ro

Ioan A. Rus

"Babeş-Bolyai" University Faculty of Mathematics and Computer Science Department of Mathematics Mihail Kogalniceanu Street, No. 1 400084 Cluj-Napoca Romania E-mail: iarus@math.ubbcluj.ro