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1 Introduction and preliminaries

The aim of this paper is to extend some results given in [4], in a metric space,
to a Kasahara space.

1.0 Notations

Throughout this paper we follow the notations given in [18] and [8].

1.1 L-spaces

Definition 1.1 (M. Fréchet [9]). Let X be a nonempty set. Let

s(X) :=
{

(xn)n∈N | xn ∈ X, n ∈ N
}
.
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Let c(X) ⊂ s(X) be a subset of s(X) and Lim : c(X) → X be an operator.
By definition, the triple (X, c(X), Lim) is called an L-space if the following
conditions are satisfied:

(i) If xn = x, for all n ∈ N, then {xn}n∈N ∈ c(X) and Lim{xn}n∈N = x.

(ii) If {xn}n∈N ∈ c(X) and Lim{xn}n∈N = x, then for all subsequences
{xni
}i∈N of {xn}n∈N we have that {xni

}i∈N ∈ c(X) and Lim{xni
}i∈N =

x.

By definition, an element {xn}n∈N of c(X) is a convergent sequence and
x = Lim{xn}n∈N is the limit of this sequence and we shall write

xn
F→ x as n→∞.

We denote an L-space by (X,
F→).

Example 1.1. In general, an L-space is any set endowed with a struc-
ture implying a notion of convergence for sequences. For example, Haus-
dorff topological spaces, metric spaces, Rm

+ -metric spaces, generalized metric
spaces in Luxemburg’ sense (i.e. d(x, y) ∈ R+ ∪ {+∞}), K-metric spaces
(i.e. d(x, y) ∈ K, where K is a cone in an ordered Banach space), gauge
spaces, 2-metric spaces, D-R-spaces, probabilistic metric spaces, syntopoge-
nous spaces, are relevant examples of such L-spaces.

1.2 Kasahara spaces

In this paper, by a Kasahara space we understand a triple (X,
F→, ρ) where

(i.e., a large Kasahara space in the terminology of [18] and [8]):

(1) (X,
F→) is an L-space;

(2) ρ : X ×X → R+ is a dislocated metric, i.e.,

(i) ρ(x, y) = 0 ⇒ x = y;

(ii) ρ(x, y) = ρ(y, x), for all x, y ∈ X;

(iii) ρ(x, y) ≤ ρ(x, z) + ρ(z, y), for all x, y, z ∈ X;

(3) if {yn}n∈N ⊂ X is such that

ρ(yn, ym)→ 0 as n,m→∞,

then {yn}n∈N is convergent in (X,
F→).
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For examples of such Kasahara spaces see [18] and [8]. For dislocated
metric spaces see [15] and the references therein.

A relevant example of Kasahara space is the following one.

Example 1.2. Let X be a nonempty set, d : X × X → R+ be a complete
metric on X and ρ : X ×X → R+ be a dislocated metric on X. We suppose
that there exists c > 0 such that

d(x, y) ≤ cρ(x, y), for all x, y ∈ X.

Then, (X,
d→, ρ) is a Kasahara space.

1.3 Partial metric spaces as Kasahara spaces

Let (X, p) be a partial metric space (see [1], [7]-[17], [22], . . . ; for an heuris-
tic introduction to the partial metric spaces, see [5]). Let us consider the
following functionals induced by a partial metric on X:

dsp : X ×X → R+, d
s
p(x, y) := 2p(x, y)− p(x, x)− p(y, y)

and

d̃p : X ×X → R+, d̃p(x, y) :=

{
p(x, y), if x 6= y,

0, if x = y.

These two functionals are metrics on X.
Moreover we have:

• dsp(x, y) ≤ 2p(x, y), for all x, y ∈ X;

• d̃p(x, y) ≤ p(x, y), for all x, y ∈ X.

It is clear that if dsp is complete then (X,
dsp→, p) is a Kasahara space.

It is also clear that if d̃p is complete then (X,
d̃p→, p) is a Kasahara space.

2 Theorems of equivalent statements

The basic problem for a nonself operator f is to give conditions which imply
that Ff 6= ∅. For a better understanding of this problem, in what follows we
shall present some of such conditions.
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Theorem 2.1 (Theorem of equivalent statements). Let (X,
F→, ρ) be a Kasa-

hara space, Y ∈ Pcl(X,
F→) and f : Y → X be an operator. We suppose that:

(i) if xn
F→ x∗, yn

F→ y∗ and ρ(xn, yn)→ 0 as n→∞, then x∗ = y∗;

(ii) f : (Y,
F→)→ (X,

F→) is continuous;

(iii) f : (Y, ρ)→ (X, ρ) is an l-contraction.

Then the following statements are equivalent:

(a) Ff = {x∗};

(b) There exists a sequence {yn}n∈N in Y such that ρ(yn, f(yn)) → 0 as
n→∞;

(c) There exists a sequence {yn}n∈N ⊂ Pb(Y, ρ) such that ρ(yn+1, f(yn))→
0 as n→∞;

(d) There exists U ∈ Pcl(Y,
F→) such that f(U) ⊂ U ;

(e) There exists U ∈ Pcl(Y,
F→) and a nonexpansive retraction r : (X, ρ)→

(U, ρ) such that f : U → X is retractible with respect to r.

Proof. First, we remark that (a) implies all of the statements (b)-(e). Indeed,
by choosing the sequence {yn}n∈N ⊂ Y , yn := x∗, for all n ∈ N, and the set
U = {x∗} ⊂ Y , the conclusions follow.

(b) ⇒ (a). Let {yn}n∈N in Y such that ρ(yn, f(yn)) → 0 as n → ∞.
Let m ∈ N, m > n. We have

ρ(yn, ym) ≤ ρ(yn, f(yn)) + ρ(f(yn), f(ym)) + ρ(f(ym), ym) ≤
≤ ρ(yn, f(yn)) + lρ(yn, ym) + ρ(f(ym), ym),

which implies further that

ρ(yn, ym) ≤ 1

1− l
[ρ(yn, f(yn)) + ρ(f(ym), ym)]→ 0 as n,m→∞.

Hence, {yn}n∈N∗ is convergent in (X,
F→). So, there exists y∗ ∈ X such that

yn
F→ y∗ as n → ∞. By (ii), we have that f(yn)

F→ f(y∗) as n → ∞. Since
ρ(yn, f(yn))→ 0 as n→∞, we have:

lim
n→∞

ρ(yn, f(yn)) = ρ(y∗, f(y∗)) = 0.
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So y∗ ∈ Ff . The uniqueness of the fixed point y∗ is assured by (iii). Indeed,
if x∗ ∈ Y is another fixed point for f , then ρ(x∗, y∗) = ρ(f(x∗), f(y∗)) ≤
lρ(x∗, y∗), i.e., (1 − l)ρ(x∗, y∗) ≤ 0, so ρ(x∗, y∗) = 0 which implies that
x∗ = y∗.

(c) ⇒ (a). Let {yn}n∈N ⊂ Pb(Y, ρ) such that ρ(yn+1, f(yn)) → 0 as
n→∞. Let p ∈ N. We have

ρ(yn+p+1, yn+1) ≤ ρ(yn+p+1, f(yn+p)) + ρ(f(yn+p), f(yn)) + ρ(yn+1, f(yn))

≤ ρ(yn+p+1, f(yn+p)) + lρ(yn+p, yn) + ρ(yn+1, f(yn))

≤ ρ(yn+p+1, f(yn+p)) + lρ(yn+p, f(yn+p−1)) + . . .+

+ ln+1ρ(yp, f(yp−1)) + ln+1ρ(yp, y0)+

+ lnρ(y1, f(y0)) + . . .+ l1ρ(yn, f(yn−1)) + ρ(yn+1, f(yn)).

From a Cauchy lemma, we get that

ρ(yn+p+1, yn+1)→ 0 as n→∞, for all p ∈ N or p→∞.

It follows that {yn}n∈N∗ is convergent in (X,
F→). So, there exists y∗ ∈ X such

that yn
F→ y∗ as n → ∞. By (ii) we have that f(yn)

F→ f(y∗) as n → ∞.
Since ρ(yn+1, f(yn)) → 0 as n → ∞, by (i), we get that y∗ = f(y∗). The
uniqueness of y∗ follows from (iii).

(d) ⇒ (a). It follows from the contraction condition (iii).
(e) ⇒ (a). Since f

∣∣
U

is retractible with respect to r, it follows that
Ff |U = Fr◦f |U . But r ◦ f |U : U → U is a contraction.

3 Saturated principle of fixed points

In a Kasahara space we have the following saturated principle of contraction
(see [19], [18], [8], [7]).

Theorem 3.1. Let (X,
F→, ρ) be a Kasahara space and f : X → X be an

operator. We suppose that:

(i) f : (X,
F→)→ (X,

F→) is orbitally continuous;

(ii) f : (X, ρ)→ (X, ρ) is an l-contraction.

Then we have that:
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(a) Ff = Ffn = {x∗}, for all n ∈ N∗;

(b) fn(x)
F→ x∗ as n→∞, for all x ∈ X;

(c) ρ(fn(x), x∗)→ 0 as n→∞, for all x ∈ X;

(d) ρ(x, x∗) ≤ 1
1−lρ(x, f(x)), for all x ∈ X;

(e) if {yn}n∈N ⊂ X is such that ρ(yn, f(yn)) → 0 as n → ∞, then
ρ(yn, x

∗) → 0 as n → ∞, i.e., the fixed point problem for f is well
posed in (X, ρ);

(f) if {yn}n∈N ⊂ X is such that ρ(yn+1, f(yn)) → 0 as n → ∞, then
ρ(yn, x

∗) → 0 as n → ∞, i.e., the operator f has the Ostrowski’s
property.

Proof. The proof is similar with the proof of Theorem 2.1.2 in [8].

So, our problem is to extend Theorem 3.1 for the case of nonself operators.

Theorem 3.2 (Saturated principle of nonself contractions). Let (X,
F→, ρ)

be a Kasahara space, Y ⊂ Pcl(X,
F→). Let f : Y → X be an operator. We

suppose that:

(i) f is an l-contraction;

(ii) Ff 6= ∅.

Then:

(a) Ff = {x∗}. Moreover, if for some y ∈ Y and n ∈ N∗, fn(y) is defined
and fn(y) = y then y = x∗;

(b) ρ(x, x∗) ≤ ψ(ρ(x, f(x))), for all x ∈ Y where ψ(t) = t
1−l , t ≥ 0;

(c) for each sequence {yn}n∈N in Y with ρ(yn, f(yn)) → 0 as n → ∞, we

have that yn
F→ x∗ as n→∞, i.e., the fixed point problem for f is well

posed in (X, ρ);

(d) for each sequence {yn}n∈N in Y with ρ(yn+1, f(yn))→ 0 as n→∞, we

have that yn
F→ x∗ as n → ∞, i.e., the operator f has the Ostrowski’s

property.
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Proof. (a) The uniqueness of the fixed point follows by the contraction con-
dition. Let y ∈ Y and n ∈ N∗ be such that fn(y) is defined. Since fn(y) = y,
we have fn+1(y) = f(fn(y)) = f(y) and fn+1(y) = fn(f(y)) which imply
y = f(y), i.e., y ∈ Ff = {x∗}.

(b) It follows by the fact that

ρ(x, x∗) ≤ ρ(x, f(x)) + ρ(f(x), x∗) ≤ ρ(x, f(x)) + lρ(x, x∗)

which yields the retraction-displacement condition, i.e,

ρ(x, x∗) ≤ 1

1− l
ρ(x, f(x)), for all x ∈ Y.

(c) It follows by (b), by setting x := yn in the retraction-displacement
condition.

(d) By (i), we obtain, in particular, that f is an l-quasicontraction,
i.e., ρ(f(x), f(x∗)) ≤ lρ(x, x∗), for all x ∈ Y. We have

ρ(yn+1, x
∗) ≤ ρ(yn+1, f(yn)) + ρ(f(yn), x∗) ≤ lρ(yn, x

∗) + ρ(yn+1, f(yn))

≤ l[ρ(yn, f(yn−1)) + ρ(f(yn−1), x
∗)] + ρ(yn+1, f(yn))

≤ lρ(yn, f(yn−1)) + l2ρ(yn−1, x
∗) + ρ(yn+1, f(yn))

≤ . . . ≤ lρ(yn, f(yn−1)) + l2ρ(yn−1, f(yn−2)) + . . .

. . .+ ln+1ρ(y0, x
∗) + ρ(yn+1, f(yn))

and by a Cauchy lemma, the conclusion follows.

Theorem 3.3. Let X be a nonempty set, d : X × X → R+ be a complete
metric on X, ρ : X × X → R+ be a dislocated metric on X, Y ∈ Pcl(X, d)
and f : (Y, ρ)→ (X, ρ) be an l-contraction. In addition, we suppose that:

(i) there exists c > 0 such that d(x, y) ≤ cρ(x, y), for all x, y ∈ X;

(ii) f : (Y, d)→ (X, d) is continuous;

(iii) Ff 6= ∅.

Then we have:

(a) Ff = {x∗};

(b) ρ(x, x∗) ≤ 1
1−lρ(x, f(x)), for all x ∈ X;

(c) for each sequence {yn}n∈N in Y with ρ(yn, f(yn)) → 0 as n → ∞, we

have that yn
d→ x∗ as n→∞, i.e., the fixed point problem for f is well

posed in (X, ρ);
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(d) for each sequence {yn}n∈N in Y with ρ(yn+1, f(yn))→ 0 as n→∞, we

have that yn
d→ x∗ as n → ∞, i.e., the operator f has the Ostrowski’s

property.

Proof. We remark that (X,
d→, ρ) is a Kasahara space and we are in the

conditions of Theorem 3.2, with
F→ =

d→. The proof follows from Theorem
3.2.

4 Partial metric spaces

The notion of partial metric was introduced by S.G. Matthews in [13] as
follows:

Definition 4.1. Let X be a nonempty set. A functional p : X ×X → R+ is
a partial metric on X if p satisfies the following conditions:

(i) p(x, x) = p(y, y) = p(x, y) if and only if x = y;

(ii) p(x, x) ≤ p(x, y), for all x, y ∈ X;

(iii) p(x, y) = p(y, x), for all x, y ∈ X;

(iv) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z), for all x, y, z ∈ X.

The couple (X, p), where X is a nonempty set and p is a partial metric
on X, is called a partial metric space.

For examples of partial metric spaces see [13], [17].

Let us consider now the Kasahara spaces (X,
dsp→, p) and (X,

d̃p→, p). We
have:

Theorem 4.1. Let (X, p) be a partial metric space, Y ∈ Pcl(X, d
s
p) and

f : (X, p)→ (X, p) be an l-contraction. We suppose that:

(i) f : (Y, dsp)→ (Y, dsp) is continuous;

(ii) Ff 6= ∅.

Then we have:

(a) Ff = {x∗};

(b) p(x, x∗) ≤ 1
1−lp(x, f(x)), for all x ∈ X;
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(c) for each sequence {yn}n∈N in Y with p(yn, f(yn)) → 0 as n → ∞, we

have that yn
dsp→ x∗ as n→∞, i.e., the fixed point problem for f is well

posed in (X, p);

(d) for each sequence {yn}n∈N in Y with p(yn+1, f(yn))→ 0 as n→∞, we

have that yn
dsp→ x∗ as n → ∞, i.e., the operator f has the Ostrowski’s

property.

Proof. The proof follows from Theorem 3.3.

Theorem 4.2. Let (X, p) be a partial metric space, Y ∈ Pcl(X, d
s
p) and

f : (X, p)→ (X, p) be an l-contraction. We suppose that:

(i) f : (Y, d̃p)→ (Y, d̃p) is continuous;

(ii) Ff 6= ∅.

Then we have:

(a) Ff = {x∗};

(b) p(x, x∗) ≤ 1
1−lp(x, f(x)), for all x ∈ X;

(c) for each sequence {yn}n∈N in Y with p(yn, f(yn)) → 0 as n → ∞, we

have that yn
d̃p→ x∗ as n→∞, i.e., the fixed point problem for f is well

posed in (X, p);

(d) for each sequence {yn}n∈N in Y with p(yn+1, f(yn))→ 0 as n→∞, we

have that yn
d̃p→ x∗ as n → ∞, i.e., the operator f has the Ostrowski’s

property.

Proof. The proof follows from Theorem 3.3.

5 Research directions

5.1. To extend the results of this paper in the case of some generalized con-
tractions (ϕ-contractions, Kannan type contractions, strongly demicon-
tractive operators, . . .).

References: [12], [21], [1], [8], [14], [16], [17], [20], [22], [3], [21], [6], . . .

5.2. To extend the results of this paper to the case of multivalued operators.

References: [12], [21], [8], . . .
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5.3. To apply these type of results in logic semantic programing and more
general, to computer science.

References: [5], [1], [11], [2] . . .
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