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	e aim of this paper is to introduce new concepts of �-�-complete metric space and �-�-continuous function and establish 
xed
point results for modi
ed �-�-�-rational contraction mappings in �-�-complete metric spaces. As an application, we derive some
Suzuki type 
xed point theorems and new 
xed point theorems for�-graphic-rational contractions. Moreover, some examples and
an application to integral equations are given here to illustrate the usability of the obtained results.

	is paper is dedicated to Professor Miodrag Mateljević on the occasion of his 65th birthday

1. Preliminaries

We know by the Banach contraction principle [1], which is
a classical and powerful tool in nonlinear analysis, that a
self-mapping � on a complete metric space (�, �) such that�(��, �	) ≤ � �(�, 	) for all �, 	 ∈ �, where � ∈ [0, 1), has a
unique 
xed point. Since then, the Banach contraction prin-
ciple has been generalized in several directions (see [2–26]
and references cited therein).

In 2008, Suzuki [21] proved the following result that is an
interesting generalization of the Banach contraction principle
which also characterizes the metric completeness.

�eorem 1. Let (�, �) be a complete metric space and let 
be a self-mapping on �. De�ne a nonincreasing function � :[0, 1) → (1/2, 1] by

� (�) =
{{{{{{{{{{{{{{{

1, �� 0 ≤ � ≤ (√5 − 1)
2 ,

(1 − �) �−2, �� (√5 − 1)
2 < � < 2−1/2,

(1 + �)−1, �� 2−1/2 ≤ � < 1.
(1)

Assume that there exists � ∈ [0, 1) such that
� (�) � (�, �) ≤ � (�, 	) ������� � (�, 	) ≤ �� (�, 	)

(2)

for all �, 	 ∈ �. 	en there exists a unique �xed point  of .
Moreover, lim�→+∞�� =  for all � ∈ �.

In 2012, Samet et al. [19] introduced the concepts of �-�-contractive and �-admissible mappings and established
various 
xed point theorems for such mappings de
ned on
complete metric spaces. A�erwards Salimi et al. [16] and
Hussain et al. [7]modi
ed the notions of�-�-contractive and�-admissible mappings and established 
xed point theorems
which are proper generalizations of the recent results in [12,
19].

De�nition 2 (see [19]). Let  be a self-mapping on � and let� : � × � → [0, +∞) be a function. One says that  is an�-admissible mapping if

�, 	 ∈ �, � (�, 	) ≥ 1 #⇒ � (�, 	) ≥ 1. (3)
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De�nition 3 (see [16]). Let  be a self-mapping on � and let�, � : � ×� → [0, +∞) be two functions. One says that  is
an �-admissible mapping with respect to � if
�, 	 ∈ �, � (�, 	) ≥ � (�, 	) #⇒ � (�, 	) ≥ � (�, 	) .

(4)

Note that if we take �(�, 	) = 1, then this de
nition reduces
to De
nition 2. Also, if we take �(�, 	) = 1, then we say that is an �-subadmissible mapping.

Here we introduce the notions of �-�-complete metric
space and �-�-continuous function and establish 
xed point
results for modi
ed �-�-�-rational contractions in �-�-
complete metric spaces which are not necessarily complete.
As an application, we derive some Suzuki type 
xed point the-
orems and new 
xed point theorems for �-graphic-rational
contractions.Moreover, some examples and an application to
integral equations are given here to illustrate the usability of
the obtained results.

2. Main Results

First, we introduce the notions of �-�-complete metric space
and �-�-continuous function.
De�nition 4. Let (�, �) be a metric space and �, � : �×� →[0, +∞). 	e metric space � is said to be �-�-complete if
and only if every Cauchy sequence {��} with �(��, ��+1) ≥�(��, ��+1) for all % ∈ N converges in �. One says � is an �-
complete metric space when �(�, 	) = 1 for all �, 	 ∈ � and
one says (�, �) is an �-complete metric space when �(�, 	) =1 for all �, 	 ∈ �.

Example 5. Let � = (0,∞) and �(�, 	) = |� − 	| be a metric
function on �. Let & be a closed subset of �. De
ne �, � :� × � → [0, +∞) by

� (�, 	) = {(� + 	)2, if �, 	 ∈ &,0, otherwise,
� (�, 	) = 2�	.

(5)

Clearly, (�, �) is not a complete metric space, but (�, �) is
an �-�-complete metric space. Indeed, if {��} is a Cauchy
sequence in � such that �(��, ��+1) ≥ �(��, ��+1) for all% ∈ N, then �� ∈ & for all % ∈ N. Now, since (&, �) is a
complete metric space, then there exists �∗ ∈ & such that�� → �∗ as % → ∞.

Remark 6. Let : � → � be a self-mapping onmetric space� and let� be an orbitally-complete. De
ne�, � : �×� →[0, +∞) by
� (�, 	) = {3, if �, 	 ∈ * (-) ,0, otherwise,

� (�, 	) = 1,
(6)

where*(-) is an orbit of a point- ∈ �.	en (�, �) is an�-�-
complete metric space. Indeed, if {��} be a Cauchy sequence,

where �(��, ��+1) ≥ �(��, ��+1) for all % ∈ N, then {��} ⊆*(-). Now, since � is an orbitally -complete metric space,
then {��} converges in �. 	at is, (�, �) is an �-�-complete
metric space. Also, suppose that �(�, 	) ≥ �(�, 	); then �, 	 ∈*(-). Hence, �, 	 ∈ *(-). 	at is, �(�, 	) ≥ �(�, 	).
	us,  is an �-admissible mapping with respect to �.
De�nition 7. Let (�, �) be a metric space. Let �, � : � ×� →[0,∞) and  : � → �. One says  is an �-�-continuous
mapping on (�, �), if for given � ∈ � and sequence {��}with

�� 6→ �, as % 6→ ∞,
� (��, ��+1) ≥ � (��, ��+1) , ∀% ∈ N #⇒ �� 6→ �.

(7)

Example 8. Let� = [0,∞) and �(�, 	) = |� − 	| be a metric
on�. Assume that  : � → � and �, � : � ×� → [0, +∞)
be de
ned by

� = {�5, if � ∈ [0, 1] ,
sin8� + 2, if (1,∞) ,

� (�, 	) = {�2 + 	2 + 1, if �, 	 ∈ [0, 1] ,0, otherwise,
� (�, 	) = �2.

(8)

Clearly,  is not continuous, but  is �-�-continuous on(�, �). Indeed, if �� → � as % → ∞ and �(��, ��+1) ≥ �(��,��+1), then �� ∈ [0, 1] and so lim�→∞�� = lim�→∞�5� =�5 = �.
Remark 9. De
ne (�, �) and �, � : � × � → [0, +∞) as in
Remark 6. Let  : � → � be a an orbitally continuous map
on (�, �).	en is�-�-continuous on (�, �). Indeed if�� →� as % → ∞ and �(��, ��+1) ≥ �(��, ��+1) for all % ∈ N, so�� ∈ *(-) for all % ∈ N, then there exists sequence (9�)�∈N
of positive integer such that �� = ��- → � as � → ∞.
Now since  is an orbitally continuous map on (�, �), then�� = (��-) → � as � → ∞ as required.

A function � : [0,∞) → [0,∞) is called Bianchini-
Grandol
 gauge function [13, 14, 27] if the following condi-
tions hold:

(i) � is nondecreasing;

(ii) there exist 90 ∈ N and ; ∈ (0, 1) and a convergent
series of nonnegative terms ∑∞�=1 V� such that

��+1 (?) ≤ ;�� (?) + V�, (9)

for 9 ≥ 90 and any ? ∈ R
+.

In some sources, Bianchini-Grandol
 gauge function is
known as (�)—comparison function (see e.g., [2]).We denote
by Ψ the family of Bianchini-Grandol
 gauge functions. 	e
following lemma illustrates the properties of these functions.
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Lemma 10 (see [2]). If � ∈ Ψ, then the following hold:

(i) (��(?))�∈N converges to 0 as % → ∞ for all ? ∈ R
+;

(ii) �(?) < ?, for any ? ∈ (0,∞);
(iii) � is continuous at 0;
(iv) the series ∑∞�=1 ��(?) converges for any ? ∈ R

+.

De�nition 11. Let (�, �) be a metric space and let  be a self-
mapping on�. Let

A(�, 	) = max{� (�, 	) , � (�, �)1 + � (�, �) ,
� (	, 	)

1 + � (	, 	) ,
� (�, 	) + � (	, �)

2 } .
(10)

	en,

(a) we say  is a modi
ed �-�-�-rational contraction
mapping if

�, 	 ∈ �,
� (�, �) ≤ � (�, 	) #⇒ � (�, 	) ≤ � (A(�, 	)) , (11)

where � ∈ Ψ;
(b) we say  is a modi
ed �-�-rational contraction

mapping if

�, 	 ∈ �, � (�, 	) ≥ 1 #⇒ � (�, 	) ≤ � (A(�, 	)) ,
(12)

where � ∈ Ψ.
	e following is our 
rst main result of this section.

�eorem 12. Let (�, �) be a metric space and let  be a self-
mapping on �. Also, suppose that �, � : � × � → [0,∞) are
two functions and � ∈ Ψ. Assume that the following assertions
hold true:

(i) (�, �) is an �-�-complete metric space;

(ii)  is an �-admissible mapping with respect to �;
(iii)  is modi�ed �-�-�-rational contraction mapping on�;

(iv)  is an �-�-continuous mapping on�;

(v) there exists �0 ∈ � such that �(�0, �0) ≥ �(�0, �0).
	en  has a �xed point.

Proof. Let �0 ∈ � be such that �(�0, �0) ≥ �(�0, �0).
De
ne a sequence {��} in � by �� = ��0 = ��−1 for all% ∈ N. If ��+1 = �� for some % ∈ N, then � = �� is a

xed point for  and the result is proved. Hence, we suppose
that ��+1 ̸= �� for all % ∈ N. Since  is �-admissible mapping
with respect to � and �(�0, �0) ≥ �(�0, �0), we deduce

that �(�1, �2) = �(�0, 2�0) ≥ �(�0, 2�0) = �(�1, �2).
Continuing this process, we get

� (��, ��+1) ≥ � (��, ��+1) = � (��, ��) (13)

for all % ∈ N ∪ {0}. Now, by (a) we get
� (��, ��+1) = � (��−1, ��) ≤ � (A(��−1, ��)) , (14)

where

A(��−1, ��) = max{� (��−1, ��) ,
� (��−1, ��−1)1 + � (��−1, ��−1) ,

� (��, ��)1 + � (��, ��) ,
� (��−1, ��) + � (��, ��−1)2 }

= max{� (��−1, ��) , � (��−1, ��)1 + � (��−1, ��) ,
� (��, ��+1)1 + � (��, ��+1) ,

� (��−1, ��+1)2 }
≤ max{� (��−1, ��) , � (��, ��+1) ,

� (��−1, ��) + � (��, ��+1)2 }
= max {� (��−1, ��) , � (��, ��+1)}

(15)

and so, A(��−1, ��) ≤ max{�(��−1, ��), �(��, ��+1)}. Now
since � is nondecreasing, so from (14), we have

� (��, ��+1) ≤ � (max {� (��−1, ��) , � (��, ��+1)}) . (16)

Now, if max{�(��−1, ��), �(��, ��+1)} = �(��, ��+1) for some% ∈ N, then

� (��, ��+1) ≤ � (max {� (��−1, ��) , � (��, ��+1)})
= � (� (��, ��+1)) < � (��, ��+1) (17)

which is a contradiction. Hence, for all % ∈ N we have

� (��, ��+1) ≤ � (� (��−1, ��)) . (18)

By induction, we have

� (��, ��+1) ≤ �� (� (�0, �1)) . (19)

Fix G > 0; there existsI ∈ N such that

∑
�≥


�� (� (�0, �1)) < G. (20)

Let �, % ∈ N with � > % ≥ I. 	en by triangular inequality
we get

� (��, ��) ≤ �−1∑
�=�

� (��, ��+1) ≤ ∑
�≥


�� (� (�0, �1)) < G.
(21)
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Consequently lim�,�,→+∞�(��, ��) = 0. Hence {��} is a
Cauchy sequence. On the other hand from (13) we know that�(��, ��+1) ≥ �(��, ��+1) for all % ∈ N. Now since � is an �-�-complete metric space, there is  ∈ � such that �� →  
as % → ∞. Also, since  is an �-�-continuous mapping,
so ��+1 = �� →  as % → ∞. 	at is,  =  as
required.

Example 13. Let� = (−∞, −2)∪[−1, 1]∪(2, +∞). We endow� with the metric

� (�, 	) = {max {|�| , LLLL	LLLL} , if � ̸= 	,
0, � = 	. (22)

De
ne  : � → �, �, � : � × � → [0,∞), and � : [0,∞) → [0,∞) by

� =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

√2�2 − 1, if � ∈ (−∞, −3] ,
�3 − 1, if � ∈ (−3, −2) ,
14�2, if � ∈ [−1, 0] ,
14�, if � ∈ (0, 1] ,
5 + sin8�, if � ∈ (2, 4) ,
3�3 + ln� + 1, if � ∈ [4,∞) ,

� (�, 	) = {�2 + 	2 + 1, if �, 	 ∈ [−1, 1] ,�2, otherwise,
� (�, 	) = �2 + 	2,

� (?) = 12?.

(23)

Clearly, (�, �) is not a complete metric space. However, it
is an �-�-complete metric space. In fact, if {��} is a Cauchy
sequence such that �(��, ��+1) ≥ �(��, ��+1) for all % ∈ N,
then {��} ⊆ [−1, 1] for all % ∈ N. Now, since ([−1, 1], �) is
a complete metric space, then the sequence {��} converges
in [−1, 1] ⊆ �. Let �(�, 	) ≥ �(�, 	); then �, 	 ∈ [−1, 1].
On the other hand, - ∈ [−1, 1] for all - ∈ [−1, 1]. 	en,�(�, 	) ≥ �(�, 	). 	at is,  is an �-admissible mapping
with respect to �. Let {��} be a sequence, such that �� → �
as % → ∞ and �(��+1, ��) ≥ �(��, ��+1) for all % ∈ N.
	en, {��} ⊆ [−1, 1] for all % ∈ N. So, {��} ⊆ [−1, 1]
(since - ∈ [−1, 1] for all - ∈ [−1, 1]). Now, since  is
continuous on [−1, 1]. 	en, �� → � as % → ∞. 	at is, is an�-�-continuousmapping. Clearly,�(0, 0) ≥ �(0, 0).
Let �(�, 	) ≥ �(�, �). Now, if � ∉ [−1, 1] or 	 ∉ [−1, 1],
then �2 ≥ �2 + 	2 + 1 which implies 	2 + 1 ≤ 0 which is
a contradiction. 	en, �, 	 ∈ [−1, 1]. Now we consider the
following cases:

(i) let �, 	 ∈ [−1, 0) with � ̸= 	; then,
� (�, 	) = 14 max {�2, 	2}

≤ 12 max {|�| , LLLL	LLLL} = � (� (�, 	)) ≤ � (A(�, 	)) ;
(24)

(ii) let �, 	 ∈ (0, 1] with � ̸= 	; then
� (�, 	) = 14 max {|�| , LLLL	LLLL}

≤ 12 max {|�| , LLLL	LLLL} = � (� (�, 	)) ≤ � (A(�, 	)) ;
(25)

(iii) let � ∈ (−1, 0) and 	 ∈ (0, 1); then
� (�, 	) = 14 max {�2, 	}

≤ 12 max {|�| , LLLL	LLLL} = � (� (�, 	)) ≤ � (A(�, 	))
(26)

(iv) let � = 	 ∈ [−1, 0), � = 	 ∈ (0, 1] or let � = −1, 	 = 1;
then, � = 	. 	at is,

� (�, 	) = 0 ≤ � (A(�, 	)) . (27)

	us  is a modi
ed �-�-�-rational contraction mapping.
Hence all conditions of 	eorem 12 are satis
ed and  has
a 
xed point. Here, � = 0 is 
xed point of .

By taking �(�, 	) = 1 for all �, 	 ∈ � in 	eorem 12, we
obtain the following corollary.

Corollary 14. Let (�, �) be a metric space and let  be a self-
mapping on �. Also, suppose that � : � × � → [0,∞) is a
function and � ∈ Ψ. Assume that the following assertions hold
true:

(i) (�, �) is an �-complete metric space;

(ii)  is an �-admissible mapping;

(iii)  is a modi�ed �-�-rational contraction on �;

(iv)  is an �-continuous mapping on �;

(v) there exists �0 ∈ � such that �(�0, �0) ≥ 1.
	en  has a �xed point.

�eorem 15. Let (�, �) be a metric space and let  be a self-
mapping on �. Also, suppose that �, � : � × � → [0,∞) are
two functions and � ∈ Ψ. Assume that the following assertions
hold true:

(i) (�, �) is an �-�-complete metric space;

(ii)  is an �-admissible mapping with respect to �;
(iii)  is a modi�ed �-�-�-rational contraction on�;
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(iv) there exists �0 ∈ � such that �(�0, �0) ≥ �(�0, �0);
(v) if {��} is a sequence in � such that �(��, ��+1) ≥�(��, ��+1) with �� → � as % → ∞, then either

� (��, 2��) ≤ � (��, �)
R� � (2��, 3��) ≤ � (2��, �) (28)

holds for all % ∈ N.

	en  has a �xed point.

Proof. Let �0 ∈ � be such that �(�0, �0) ≥ �(�0, �0).
De
ne a sequence {��} in� by �� = ��0 = ��−1 for all % ∈
N. Now as in the proof of 	eorem 12 we have �(��+1, ��) ≥�(��+1, ��) for all % ∈ N and there exists  ∈ � such that�� →  as % → ∞. Let �( ,  ) ̸= 0. From (v) either

� (��−1, 2��−1) ≤ � (��−1,  )
or � (2��−1, 3��−1) ≤ � (2��−1,  ) (29)

holds for all % ∈ N. 	en,

� (��, ��+1) ≤ � (��,  )
or � (��+1, ��+2) ≤ � (��+1,  ) (30)

holds for all % ∈ N. Let �(��, ��+1) ≤ �(��,  ) hold for all% ∈ N. Now from (a) we get

� (���+1,  )
= � (��� ,  )
≤ �(max{� (��� ,  ) , � (��� , ���)1 + � (��� , ���) ,

� ( ,  )1 + � ( ,  ) ,
� (��� ,  ) + � ( , ���)2 })

= �(max{� (��� ,  ) , � (��� , ���+1)1 + � (��� , ���+1) ,
� ( ,  )1 + � ( ,  ) ,

� (��� ,  ) + � ( , ���+1)2 })

< max{� (��� ,  ) , � (��� , ���+1)1 + � (��� , ���+1) ,
� ( ,  )1 + � ( ,  ) ,

� (��� ,  ) + � ( , ���+1)2 } .
(31)

By taking limit as 9 → ∞ in the above inequality we get

� ( ,  ) ≤ max{ � ( ,  )1 + � ( ,  ) , � ( ,  )2 } < � ( ,  )
(32)

which is a contradiction. Hence, �( ,  ) = 0 implies  = . By the similar method we can show that  =  if�(��+1, ��+2) ≤ �(��+1,  ) holds for all % ∈ N.

Example 16. Let � = (0, +∞). We endow � with usual met-
ric. De
ne  : � → �, �, � : � × � → [0,∞), and � : [0,∞) → [0,∞) by

� =
{{{{{{{{{{{{{{{{{

√�2 + 1
sin� + cos� + 3 , if � ∈ (0, 1) ,
116�2 + 1, if � ∈ [1, 2] ,
�3 + 1√�2 + 1 , if � ∈ (2,∞) ,

� (�, 	) = {{{{{
12 , if �, 	 ∈ [1, 2] ,
0, otherwise,

� (�, 	) = 14 , � (?) = 14?.

(33)

Note that (�, �) is not a complete metric space. But it is an �-�-completemetric space. Indeed, if {��} is a Cauchy sequence
such that �(��, ��+1) ≥ �(��, ��+1) for all % ∈ N, then {��} ⊆[1, 2] for all % ∈ N. Now, since ([1, 2], �) is a complete metric
space, then the sequence {��} converges in [1, 2] ⊆ �. Let�(�, 	) ≥ �(�, 	); then �, 	 ∈ [1, 2]. On the other hand, - ∈[1, 2] for all - ∈ [1, 2]. 	en, �(�, 	) ≥ �(�, 	). 	at is, is an �-admissible mapping with respect to �. If {��} is a
sequence in� such that �(��, ��+1) ≥ �(��, ��+1) with �� →� as % → ∞. 	en, ��, 2��, 3�� ∈ [1, 2] for all % ∈ N.
	at is,

� (��, 2��) ≤ � (��, �) ,
� (2��, 3��) ≤ � (2��, �) , (34)

holds for all % ∈ N. Clearly, �(0, 0) ≥ �(0, 0). Let, �(�, 	) ≥�(�, �). Now, if � ∉ [1, 2] or 	 ∉ [1, 2], then 0 ≥ 1/4, which
is a contradiction. So, �, 	 ∈ [1, 2]. 	erefore,

� (�, 	) = 116 LLLLL�2 − 	2LLLLL
= 116 LLLL� − 	LLLL LLLL� + 	LLLL ≤ 14 LLLL� − 	LLLL
= 14� (�, 	) ≤ 14A(�, 	) = � (A(�, 	)) .

(35)

	erefore  is a modi
ed �-�-�-rational contraction map-
ping. Hence all conditions of 	eorem 15 hold and  has a


xed point. Here, � = 8 − 2√14 is a 
xed point of .
If in	eorem 15 we take �(�, 	) = 1 for all �, 	 ∈ �, then

we obtain the following result.

Corollary 17. Let (�, �) be a metric space and let  be a self-
mapping on �. Also, suppose that � : � × � → [0,∞) is a
function and � ∈ Ψ. Assume that the following assertions hold
true:
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(i) (�, �) is a �-complete metric space;

(ii)  is an �-admissible mapping;

(iii)  is a modi�ed �-�-rational contraction mapping on�;

(iv) there exists �0 ∈ � such that �(�0, �0) ≥ 1;
(v) if {��} is a sequence in� such that �(��, ��+1) ≥ 1with�� → � as % → ∞, then either

� (��, �) ≥ 1 R� � (2��, �) ≥ 1 (36)

holds for all % ∈ N.

	en  has a �xed point.

Corollary 18. Let (�, �) be a complete metric space and let 
be a continuous self-mapping on�. Assume that is amodi�ed
rational contraction mapping, that is,

∀�, 	 ∈ �, � (�, 	) ≤ � (A(�, 	)) , (37)

where � ∈ Ψ. 	en  has a �xed point.

Corollary 19. Let (�, �) be a complete metric space and let 
be a continuous self-mapping on�. Assume that  satis�es the
following rational inequality:

∀�, 	 ∈ �, � (�, 	) ≤ �A(�, 	) , (38)

where 0 ≤ � < 1 and
A(�, 	) = max{� (�, 	) , � (�, �)1 + � (�, �) ,

� (	, 	)
1 + � (	, 	) ,

� (�, 	) + � (	, �)
2 } .

(39)

	en  has a �xed point.

3. Consequences

3.1. Suzuki Type Fixed Point Results. From 	eorem 12 we
deduce the following Suzuki type 
xed point result.

�eorem 20. Let (�, �) be a complete metric space and let 
be a continuous self-mapping on �. Assume that there exists� ∈ [0, 1) such that

� (�, �) ≤ � (�, 	) ������� � (�, 	) ≤ �A(�, 	)
(40)

for all �, 	 ∈ �, where

A(�, 	) = max{� (�, 	) , � (�, �)1 + � (�, �) ,
� (	, 	)

1 + � (	, 	) ,
� (�, 	) + � (	, �)

2 } .
(41)

	en  has a unique �xed point.

Proof. De
ne �, � : � × � → [0,∞) and � : [0,∞) →[0,∞) by
� (�, 	) = � (�, 	) , � (�, 	) = � (�, 	) , (42)

for all �, 	 ∈ � and �(?) = �?, where 0 ≤ � < 1. Clearly,�(�, 	) ≤ �(�, 	) for all �, 	 ∈ �. 	at is, conditions (i)–(v)
of 	eorem 12 hold true. Let �(�, �) ≤ �(�, 	). 	en, �(�,�) ≤ �(�, 	). Now from (40) we have �(�, 	) ≤ �A(�,	) = �(A(�, 	)). 	at is,  is a modi
ed �-�-�-rational
contractionmapping on�.	en all conditions of	eorem 12
hold andhas a 
xed point.	euniqueness of the 
xed point
follows easily from (40).

Corollary 21. Let (�, �) be a complete metric space and let 
be a continuous self-mapping on �. Assume that there exists� ∈ [0, 1) such that

� (�, �) ≤ � (�, 	) ������� � (�, 	) ≤ �� (�, 	)
(43)

for all �, 	 ∈ �. 	en  has a unique �xed point.

Now, we prove the following Suzuki type 
xed point
theorem without continuity of .
�eorem 22. Let (�, �) be a complete metric space and let 
be a self-mapping on �. De�ne a nonincreasing function Z :[0, 1) → (1/2, 1] by

Z (�) = 11 + � . (44)

Assume that there exists � ∈ [0, 1) such that
Z (�) � (�, �) ≤ � (�, 	) ������� � (�, 	) ≤ �� (�, 	)

(45)

for all �, 	 ∈ �. 	en  has a unique �xed point.

Proof. De
ne �, � : � × � → [0,∞) and � : [0,∞) →[0,∞) by
� (�, 	) = � (�, 	) , � (�, 	) = Z (�) � (�, 	) (46)

for all �, 	 ∈ � and �(?) = �?, where 0 ≤ � < 1. Now, sinceZ(�)�(�, 	) ≤ �(�, 	) for all �, 	 ∈ �, �(�, 	) ≤ �(�, 	) for
all �, 	 ∈ �. 	at is, conditions (i)–(iv) of 	eorem 15 hold
true. Let {��} be a sequence with �� → � as % → ∞. SinceZ(�)�(��, 2��) ≤ �(��, 2��) for all % ∈ N, then from
(45) we get

� (2��, 3��) ≤ �� (��, 2��) (47)

for all % ∈ N.
Assume there exists %0 ∈ N such that

� (��0 , 2��0) > � (��0 , �) ,
� (2��0 , 3��0) > � (2��0 , �) ;

(48)
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then,

Z (�) � (��0 , 2��0) > � (��0 , �) ,
Z (�) � (2��0 , 3��0) > � (2��0 , �) ,

(49)

and so by (47) we have

� (��0 , 2��0)
≤ � (��0 , �) + � (2��0 , �)
< Z (�) � (��0 , 2��0) + Z (�) � (2��0 , 3��0)
≤ Z (�) � (��0 , 2��0) + �Z (�) � (��0 , 2��0)
= Z (�) (1 + �) � (��0 , 2��0) = � (��0 , 2��0)

(50)

which is a contradiction. Hence, either

� (��, 2��) ≤ � (��, �)
or � (2��, 3��) ≤ � (2��, �) (51)

holds for all % ∈ N. 	at is condition (v) of	eorem 15 holds.
Let, �(�, �) ≤ �(�, 	). So, Z(�)�(�, �) ≤ �(�, 	).

	en from (45) we get �(�, 	) ≤ ��(�, 	) ≤ �A(�, 	) =�(A(�, 	)). Hence, all conditions of 	eorem 15 hold and 
has a 
xed point. 	e uniqueness of the 
xed point follows
easily from (45).

3.2. Fixed Point Results in Orbitally -Complete Metric Spaces

�eorem 23. Let (�, �) be a metric space and let  : � → �
be a self-mapping on�. Suppose the following assertions hold:

(i) (�, �) is an orbitally -complete metric space;

(ii) there exists � ∈ Ψ such that

� (�, 	) ≤ � (A(�, 	)) (52)

holds for all �, 	 ∈ *(-) for some - ∈ �, where

A(�, 	)
= max{� (�, 	) , � (�, �)1 + � (�, �) ,

� (	, 	)
1 + � (	, 	) ,

� (�, 	) + � (	, �)
2 } ;

(53)

(iii) if {��} is a sequence such that {��} ⊆ *(-) with �� →� as % → ∞, then � ∈ *(-).
	en  has a �xed point.

Proof. De
ne � : � × � → [0, +∞) as in Remark 6. From
Remark 6 we know that (�, �) is an �-complete metric space
and is an�-admissiblemapping. Let�(�, 	) ≥ 1; then�, 	 ∈*(-). 	en from (ii) we have

� (�, 	) ≤ � (A(�, 	)) . (54)

	at is, is amodi
ed�-�-rational contractionmapping. Let{��} be a sequence such that �(��, ��+1) ≥ 1 with �� → � as% → ∞. So, {��} ⊆ *(-). From (iii) we have � ∈ *(-). 	at
is,�(��, �) ≥ 1. Hence, all conditions of Corollary 17 hold and has a 
xed point.

Corollary 24. Let (�, �) be ametric space and let : � → �
be a self-mapping on�. Suppose the following assertions hold:

(i) (�, �) is an orbitally -complete metric space;

(ii) there exists � ∈ [0, 1) such that
� (�, 	) ≤ �A(�, 	) (55)

holds for all �, 	 ∈ *(-) for some - ∈ �, where

A(�, 	) = max{� (�, 	) , � (�, �)1 + � (�, �) ,
� (	, 	)

1 + � (	, 	) ,
� (�, 	) + � (	, �)

2 } ;
(56)

(iii) if {��} is a sequence such that {��} ⊆ *(-) with �� →� as % → ∞, then � ∈ *(-).
	en  has a �xed point.

3.3. Fixed Point Results for Graphic Contractions. Consistent
with Jachymski [11], let (�, �) be a metric space and let Δ
denote the diagonal of the Cartesian product�×�. Consider
a directed graph ^ such that the set _(^) of its vertices
coincides with �, and the set `(^) of its edges contains all
loops; that is, `(^) ⊇ Δ. We assume that ^ has no parallel
edges, so we can identify ^ with the pair (_(^), `(^)).
Moreover, we may treat ^ as a weighted graph (see [11]) by
assigning to each edge the distance between its vertices. If �
and 	 are vertices in a graph ^, then a path in ^ from � to	 of lengthI(I ∈ N) is a sequence {��}
�=0 ofI + 1 vertices
such that �0 = �, �
 = 	 and (��−1, ��) ∈ `(^) for � =1, . . . , I. A graph ^ is connected if there is a path between

any two vertices.^ is weakly connected if ̃̂ is connected (see
for details [3, 6, 10, 11]).

Recently, some results have appeared providing su�cient
conditions for a mapping to be a Picard operator if (�, �) is
endowed with a graph. 	e 
rst result in this direction was
given by Jachymski [11].

De�nition 25 (see [11]). We say that a mapping  : � → � is
a Banach ^-contraction or simply ^-contraction if  pre-
serves edges of ^; that is,

∀�, 	 ∈ � ((�, 	) ∈ ` (^) #⇒ ( (�) ,  (	)) ∈ ` (^))
(57)

and  decreases weights of edges of ^ in the following way:

∃� ∈ (0, 1) , ∀�, 	 ∈ �
((�, 	) ∈ ` (^) #⇒ � ( (�) ,  (	)) ≤ �� (�, 	)) . (58)
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De�nition 26 (see [11]). A mapping  : � → � is called^-continuous, if given � ∈ � and sequence {��}
�� 6→ �, as % 6→ ∞,

(��, ��+1) ∈ ` (^) , ∀% ∈ N implying �� 6→ �. (59)

�eorem 27. Let (�, �) be a metric space endowed with a
graph ^ and let  be a self-mapping on �. Suppose that the
following assertions hold:

(i) for all �, 	 ∈ �, (�, 	) ∈ `(^) ⇒ ((�), (	)) ∈`(^);
(ii) there exists �0 ∈ � such that (�0, �0) ∈ `(^);
(iii) there exists � ∈ Ψ such that

� (�, 	) ≤ � (A(�, 	)) (60)

for all (�, 	) ∈ `(^), where
A(�, 	) = max{� (�, 	) , � (�, �)1 + � (�, �) ,

� (	, 	)
1 + � (	, 	) ,

� (�, 	) + � (	, �)
2 } ;

(61)

(iv)  is ^-continuous;
(v) if {��} is a Cauchy sequence in � with (��, ��+1) ∈`(^) for all % ∈ N, then {��} is convergent in�.

	en  has a �xed point.

Proof. De
ne � : �2 → [0, +∞) by
� (�, 	) = {1, if (�, 	) ∈ ` (^) ,0, otherwise. (62)

At 
rst we prove that  is an �-admissible mapping. Let�(�, 	) ≥ 1; then (�, 	) ∈ `(^). From (i), we have (�, 	) ∈`(^). 	at is, �(�, 	) ≥ 1. 	us  is an �-admissible
mapping. Let  be ^-continuous on (�, �). 	en,

�� 6→ �, as % 6→ ∞,
(��, ��+1) ∈ ` (^) , ∀% ∈ N implying �� 6→ �. (63)

	at is,

�� 6→ �, as % 6→ ∞,
� (��, ��+1) ≥ 1, ∀% ∈ N implying �� 6→ � (64)

which implies that  is �-continuous on (�, �). From (ii)
there exists �0 ∈ � such that (�0, �0) ∈ `(^). 	at is,�(�0, �0) ≥ 1. Let �(�, 	) ≥ 1; then (�, 	) ∈ `(^). Now,
from (iii) we have �(�, 	) ≤ �(A(�, 	)). 	at is,

� (�, 	) ≥ 1 #⇒ � (�, 	) ≤ � (A(�, 	)) . (65)

Condition (v) implies that (�, �) is an �-complete metric
space. Hence, all conditions of Corollary 14 are satis
ed and has a 
xed point.

�eorem 28. Let (�, �) be a complete metric space endowed
with a graph ^ and let  be a self-mapping on�. Suppose that
the following assertions hold:

(i) for all �, 	 ∈ �, (�, 	) ∈ `(^) ⇒ ((�), (	)) ∈`(^);
(ii) there exists �0 ∈ � such that (�0, �0) ∈ `(^);
(iii) there exists � ∈ Ψ such that

� (�, 	) ≤ � (A(�, 	)) (66)

for all (�, 	) ∈ `(^), where
A(�, 	) = max{� (�, 	) , � (�, �)1 + � (�, �) ,

� (	, 	)
1 + � (	, 	) ,

� (�, 	) + � (	, �)
2 } ;

(67)

(iv)  is ^-continuous.
	en  has a �xed point.

As an application of Corollary 17, we obtain.

�eorem 29. Let (�, �) be a metric space endowed with a
graph ^ and let  be a self-mapping on �. Suppose that the
following assertions hold:

(i) for all �, 	 ∈ �, (�, 	) ∈ `(^) ⇒ ((�), (	)) ∈`(^);
(ii) there exists �0 ∈ � such that (�0, �0) ∈ `(^);
(iii) there exists � ∈ Ψ such that

� (�, 	) ≤ � (A(�, 	)) (68)

for all (�, 	) ∈ `(^), where
A(�, 	) = max{� (�, 	) , � (�, �)1 + � (�, �) ,

� (	, 	)
1 + � (	, 	) ,

� (�, 	) + � (	, �)
2 } ;

(69)

(iv) if {��} is a sequence such that (��, ��+1) ∈ `(^) with�� → � as % → ∞, then either

(��, �) ∈ ` (^) R� (2��, �) ∈ ` (^) (70)

holds for all % ∈ N;

(v) if {��} is a Cauchy sequence in � with (��, ��+1) ∈`(^) for all % ∈ N, then either {��} is convergent in� or (�, �) is a complete metric space.

	en  has a �xed point.
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Let (�, �, ⪯) be a partially ordered metric space. De
ne
the graph ^ by

` (^) := {(�, 	) ∈ � × � : � ⪯ 	} . (71)

For this graph, condition (i) in 	eorem 27 means that is nondecreasing with respect to this order [5]. From
	eorems 27–29 we derive the following important results in
partially ordered metric spaces.

�eorem 30. Let (�, �, ⪯) be a partially ordered metric space
and let  be a self-mapping on �. Suppose that the following
assertions hold:

(i)  is nondecreasing map;

(ii) there exists �0 ∈ � such that �0 ⪯ �0;
(iii) there exists � ∈ Ψ such that

� (�, 	) ≤ � (A(�, 	)) (72)

for all � ⪯ 	, where
A(�, 	) = max{� (�, 	) , � (�, �)1 + � (�, �) ,

� (	, 	)
1 + � (	, 	) ,

� (�, 	) + � (	, �)
2 } ;

(73)

(iv) either for a given � ∈ � and sequence {��}
�� 6→ �, ;� % 6→ ∞,

�� ⪯ ��+1, ∀% ∈ N, R%� ℎ;� �� 6→ � (74)

or  is continuous;

(v) if {��} is a Cauchy sequence in� with �� ⪯ ��+1 for all% ∈ N, then either {��} is convergent in� or (�, �) is a
complete metric space.

	en  has a �xed point.

Corollary 31 (Ran and Reurings [15]). Let (�, �, ⪯) be a
partially ordered complete metric space and let  : � → � be
a continuous nondecreasing self-mapping such that �0 ⪯ �0
for some �0 ∈ �. Assume that

� (�, 	) ≤ �� (�, 	) (75)

holds for all �, 	 ∈ � with � ⪯ 	, where 0 ≤ � < 1. 	en  has
a �xed point.

�eorem 32. Let (�, �, ⪯) be a partially ordered metric space
and let  be a self-mapping on �. Suppose that the following
assertions hold:

(i)  is nondecreasing map;

(ii) there exists �0 ∈ � such that �0 ⪯ �0;

(iii) there exists � ∈ Ψ such that

� (�, 	) ≤ � (A(�, 	)) (76)

for all � ⪯ 	, where
A(�, 	) = max{� (�, 	) , � (�, �)1 + � (�, �) ,

� (	, 	)
1 + � (	, 	) ,

� (�, 	) + � (	, �)
2 } ;

(77)

(iv) if {��} is a sequence such that �� ⪯ ��+1 with �� → �
as % → ∞, then either

�� ⪯ � R� 2�� ⪯ � (78)

holds for all % ∈ N;

(v) if {��} is a Cauchy sequence in� with �� ⪯ ��+1 for all% ∈ N, then either {��} is convergent in� or (�, �) is a
complete metric space.

	en  has a �xed point.

4. Application to Existence of Solutions of
Integral Equations

Fixed point theorems for monotone operators in ordered
metric spaces are widely investigated and have found various
applications in di�erential and integral equations (see [28–
30] and references therein). In this section, we apply our
result to the existence of a solution of an integral equation.
Let � = f([0, ],R) be the set of real continuous functions
de
ned on [0, ] and let � : � × � → R+ be de
ned by

� (�, 	) = gggg� − 	gggg∞ (79)

for all �, 	 ∈ �. 	en (�, �) is a complete metric space. Also,
assume this metric space endowed with a graph ^.

Consider the integral equation as follows:

� (?) = � (?) + ∫�
0
i (?, �) � (�, � (�)) �� (80)

and let j : � → � be de
ned by

j (�) (?) = � (?) + ∫�
0
i (?, �) � (�, � (�)) ��. (81)

We assume that

(A) � : [0, ] ×R → R is continuous;

(B) � : [0, ] → R is continuous;

(C) i : [0, ] ×R → [0, +∞) is continuous;
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(D) there exists a � ∈ Ψ such that for all � ∈ [0, ]
∀�, 	 ∈ � (�, 	) ∈ ` (^) #⇒ (j (�) , j (	)) ∈ ` (^) ,

∀�, 	 ∈ � (�, 	) ∈ ` (^) #⇒ 0
≤ � (�, � (�)) − � (�, 	 (�))
≤ �(max{ LLLL� (�) − 	 (�)LLLL1 + LLLL� (�) − 	 (�)LLLL ,

|� (�) − j (� (�))|1 + |� (�) − j (� (�))| , LLLL	 (�) − j (	 (�))LLLL ,
12 [LLLL� (�) − j (	 (�))LLLL + LLLL	 (�) − j (� (�))LLLL] }) ;

(82)

(E) there exists �0 ∈ � such that (�0, j(�0)) ∈ `(^);
(F) if {��} is a sequence such that (��, ��+1) ∈ `(^) with�� → � as % → ∞, then either

(j��, �) ∈ ` (^) R� (j2��, �) ∈ ` (^) (83)

holds for all % ∈ N;

(G) ∫�0 i(?, �)�� ≤ 1 for all ?.
�eorem 33. Under assumptions (A)–(G), the integral equa-
tion (80) has a solution in � = f([0, ],R).
Proof. Consider the mapping j : � → � de
ned by (81).
Let (�, 	) ∈ `(^). 	en from (D) we deduce

LLLLj (�) (?) − j (	) (?)LLLL
= LLLLLLLLL∫
�

0
i (?, �) [� (�, � (�)) − � (�, 	 (�))] ��LLLLLLLLL

≤ ∫�
0
i (?, �) LLLL� (�, � (�)) − � (�, 	 (�))LLLL ��

≤ ∫�
0
i (?, �) �

× (max{ LLLL� (�) − 	 (�)LLLL ,
|� (�) − j (� (�))|1 + |� (�) − j (� (�))| ,

LLLL	 (�) − j (	 (�))LLLL1 + LLLL	 (�) − j (	 (�))LLLL ,
12 [LLLL� (�)−j (	 (�))LLLL+LLLL	 (�)−j (� (�))LLLL] }) ��

≤ (∫�
0
i (?, �) ��)�

× (max{ gggg� (�) − 	 (�)gggg ,
‖� (�) − j (� (�))‖1 + ‖� (�) − j (� (�))‖ ,

gggg	 (�) − j (	 (�))gggg1 + gggg	 (�) − j (	 (�))gggg ,
12 [gggg� (�) − j (	 (�))gggg + gggg	 (�) − j (� (�))gggg] }) .

(84)

	en

ggggj� − j	gggg∞
≤ �(max{ gggg� (�) − 	 (�)gggg ,

‖� (�) − j (� (�))‖1 + ‖� (�) − j (� (�))‖ ,
gggg	 (�) − j (	 (�))gggg1 + gggg	 (�) − j (	 (�))gggg ,

12 [gggg� (�) − j (	 (�))gggg+gggg	 (�) − j (� (�))gggg] }) .
(85)

	at is, (�, 	) ∈ `(^) implies

ggggj� − j	gggg∞
≤ �(max{gggg� − 	gggg∞,

‖� − j(�)‖∞1 + ‖� − j(�)‖∞ ,
gggg	 − j(	)gggg∞1 + gggg	 − j(	)gggg∞ ,

12 [gggg� − j (	)gggg∞ + gggg	 − j (�)gggg∞] }) .

(86)

It easily shows that all the hypotheses of 	eorem 29 are
satis
ed and hence the mapping j has a 
xed point that is a
solution in� = f([0, ],R) of the integral equation (80).
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