

# Fixed points for $\alpha$-admissible contractive mappings via simulation functions 

<br>${ }^{a}$ Department of Mathematics and Statistics, College of Sciences, King Faisal University, Hafouf, P. O. Box 400 Post code. 31982, Saudi Arabia.<br>${ }^{b}$ Department of Mathematics, College of Education of Jubail, University of Dammam, P. O: 12020, Industrial Jubail 31961, Saudi Arabia.<br>${ }^{c}$ Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.<br>${ }^{d}$ Peking University, School of Mathematical Sciences, 100871, Beijing, China.

Communicated by N. Shahzad


#### Abstract

Based on concepts of $\alpha$-admissible mappings and simulation functions, we establish some fixed point results in the setting of metric-like spaces. We show that many known results in the literature are simple consequences of our obtained results. We also provide some concrete examples to illustrate the obtained results. © 2016 All rights reserved.


Keywords: Metric-like, fixed point, simulation functions, $\alpha$-admissible mappings.
2010 MSC: 47H10, 54H25.

## 1. Introduction and preliminaries

As generalizations of standard metric spaces, metric-like spaces were considered first by Hitzler and Seda [10] under the name of dislocated metric spaces and partial metric spaces were introduced by Matthews [13] in 1994 to study the denotational semantics of dataflow networks. Many authors obtained (common) fixed point results in the setting of above spaces, for example see [1, 2, 4, 5, [7] 9, 16]. Let us recall some notations and definitions we will need in the sequel.

[^0]Definition 1.1. Let $X$ be a nonempty set. A function $\sigma: X \times X \rightarrow[0, \infty)$ is said to be a metric-like (or a dislocated metric) on $X$, if for any $x, y, z \in X$, the following conditions hold:

$$
\begin{aligned}
& \left(\sigma_{1}\right) \sigma(x, y)=0 \Longrightarrow x=y \\
& \left(\sigma_{2}\right) \sigma(x, y)=\sigma(y, x) \\
& \left(\sigma_{3}\right) \sigma(x, z) \leq \sigma(x, y)+\sigma(y, z)
\end{aligned}
$$

The pair $(X, \sigma)$ is then called a metric-like space.
Now, let $(X, \sigma)$ be a metric-like space. A sequence $\left\{x_{n}\right\}$ in $X$ converges to $x \in X$, if and only if

$$
\lim _{n \rightarrow \infty} \sigma\left(x_{n}, x\right)=\sigma(x, x)
$$

A sequence $\left\{x_{n}\right\}$ is Cauchy in $(X, \sigma)$, if and only if $\lim _{n, m \rightarrow \infty} \sigma\left(x_{n}, x_{m}\right)$ exists and is finite. Moreover, $(X, \sigma)$ is complete, if and only if for every Cauchy sequence $\left\{x_{n}\right\}$ in $X$, there exists $x \in X$ such that $\lim _{n \rightarrow+\infty} \sigma\left(x, x_{n}\right)=\sigma(x, x)=\lim _{n, m \rightarrow+\infty} \sigma\left(x_{n}, x_{m}\right)$.
Lemma 1.2 ([4, 5]). Let $(X, \sigma)$ be a metric-like space and $\left\{x_{n}\right\}$ be a sequence that converges to $x$ with $\sigma(x, x)=0$. Then, for each $y \in X$ one has

$$
\lim _{n \rightarrow \infty} \sigma\left(x_{n}, y\right)=\sigma(x, y)
$$

Definition 1.3. A partial metric on a nonempty set $X$ is a function $p: X \times X \rightarrow[0, \infty)$, such that for all $x, y, z \in X$
(PM1) $p(x, x)=p(x, y)=p(y, y)$, then $x=y ;$
(PM2) $p(x, x) \leq p(x, y)$;
(PM3) $p(x, y)=p(y, x)$;
(PM4) $p(x, z)+p(y, y) \leq p(x, y)+p(y, z)$.
The pair $(X, p)$ is then called a partial metric space.
It is known that each partial metric is a metric-like, but the converse is not true in general.
Example 1.4. Let $X=\{0,1\}$ and $\sigma: X \times X \rightarrow[0, \infty)$ defined by

$$
\sigma(0,0)=2, \quad \sigma(x, y)=1 \quad \text { if }(x, y) \neq(0,0)
$$

Then, $(X, \sigma)$ is a metric-like space. Note that $\sigma$ is not a partial metric on $X$ because $\sigma(0,0) \not \leq \sigma(1,0)$.
In 2012, Samet et al. [17] introduced the concept of $\alpha$-admissible mappings.
Definition $1.5([17])$. For a nonempty set $X$, let $T: X \rightarrow X$ and $\alpha: X \times X \rightarrow[0, \infty)$ be given mappings. We say that $T$ is $\alpha$-admissible, if for all $x, y \in X$, we have

$$
\alpha(x, y) \geq 1 \Longrightarrow \alpha(T x, T y) \geq 1
$$

The concept of $\alpha$-admissible mappings has been used in many works, see for example [6, 14]. Later, Karapinar et al. [11] introduced the notion of triangular $\alpha$-admissible mappings.

Definition 1.6 ([11]). Let $T: X \rightarrow X$ and $\alpha: X \times X \rightarrow[0, \infty)$ be given mappings. A mapping $T: X \rightarrow X$ is called a triangular $\alpha$-admissible if
$\left(\mathrm{T}_{1}\right) T$ is $\alpha$-admissible;
$\left(\mathrm{T}_{2}\right) \alpha(x, y) \geq 1$ and $\alpha(y, z) \geq 1 \Rightarrow \alpha(x, z) \geq 1, x, y, z \in X$.

Very recently, Khojasteh et al. [12] introduced a new class of mappings called simulation functions. By using the above concept, they [12] proved several fixed point theorems and showed that many known results in the literature are simple consequences of their obtained results. Later, Argoubi et al. [3] slightly modified the definition of simulation functions by withdrawing a condition.

Let $\mathcal{Z}^{*}$ be the set of simulation functions in the sense of Argoubi et al. 3].
Definition 1.7 ([3]). A simulation function is a mapping $\zeta:[0, \infty) \times[0, \infty) \rightarrow \mathbb{R}$, satisfying the following conditions:
$\left(\zeta_{1}\right) \zeta(t, s)<s-t$ for all $t, s>0 ;$
$\left(\zeta_{2}\right)$ if $\left\{t_{n}\right\}$ and $\left\{s_{n}\right\}$ are sequences in $(0, \infty)$ such that $\lim _{n \rightarrow \infty} t_{n}=\lim _{n \rightarrow \infty} s_{n}=\ell \in(0, \infty)$, then

$$
\limsup _{n \rightarrow \infty} \zeta\left(t_{n}, s_{n}\right)<0
$$

Example $1.8([3])$. Let $\zeta_{\lambda}:[0, \infty) \times[0, \infty) \rightarrow \mathbb{R}$ be the function defined by

$$
\zeta_{\lambda}(t, s)=\left\{\begin{array}{lr}
1 & \text { if }(t, s)=(0,0) \\
\lambda s-t & \text { otherwise }
\end{array}\right.
$$

where $\lambda \in(0,1)$. Then, $\zeta_{\lambda} \in \mathcal{Z}^{*}$.
Example 1.9. Let $\zeta:[0, \infty) \times[0, \infty) \rightarrow \mathbb{R}$ be the function defined by $\zeta(t, s)=\psi(s)-\varphi(t)$ for all $t, s \geq 0$, where $\psi:[0, \infty) \rightarrow \mathbb{R}$ is an upper semi-continuous function and $\varphi:[0, \infty) \rightarrow \mathbb{R}$ is a lower semi-continuous function such that $\psi(t)<t \leq \varphi(t)$, for all $t>0$. Then, $\zeta \in \mathcal{Z}^{*}$.

## 2. Fixed points via simulation functions

The first main result is as follows.
Theorem 2.1. Let $(X, \sigma)$ be a complete metric-like space. Let $T: X \rightarrow X$ be a given mapping. Suppose that there exist a simulation function $\zeta \in \mathcal{Z}^{*}$ and $\alpha: X \times X \rightarrow[0, \infty)$ such that

$$
\begin{equation*}
\zeta(\sigma(T x, T y), M(x, y)) \geq 0 \tag{2.1}
\end{equation*}
$$

for all $x, y \in X$ satisfying $\alpha(x, y) \geq 1$, where

$$
M(x, y)=\max \left\{\sigma(x, y), \sigma(x, T x), \sigma(y, T y), \frac{\sigma(x, T y)+\sigma(y, T x)}{4}\right\}
$$

## Assume that

(i) $T$ is triangular $\alpha$-admissible;
(ii) there exists an element $x_{0} \in X$ such that $\alpha\left(x_{0}, T x_{0}\right) \geq 1$;
(iii) if $\left\{x_{n}\right\}$ is a sequence in $X$ such that $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ for all $n$ and $x_{n} \rightarrow x \in X$ as $n \rightarrow \infty$, then there exists a subsequence $\left\{x_{n(k)}\right\}$ of $\left\{x_{n}\right\}$ such that $\alpha\left(x_{n(k)}, x\right) \geq 1$, for all $k$.

Then, $T$ has a fixed point $z \in X$ such that $\sigma(z, z)=0$.
Proof. By assumption (ii), there exists a point $x_{0} \in X$ such that $\alpha\left(x_{0}, T x_{0}\right) \geq 1$. Define a sequence $\left\{x_{n}\right\}$ by $x_{n}=T^{n} x_{0}$, for all $n \geq 0$.

We split the proof into several steps.
(Step 1): $\alpha\left(x_{n}, x_{m}\right) \geq 1$, for all $m>n \geq 0$.
We have $\alpha\left(x_{0}, x_{1}\right)=\alpha\left(x_{0}, T x_{0}\right) \geq 1$. Since $T$ is $\alpha$-admissible, by the induction we have

$$
\alpha\left(x_{n}, x_{n+1}\right) \geq 1, \quad \text { for all } n \geq 0
$$

$T$ is triangular $\alpha$-admissible, then

$$
\alpha\left(x_{n}, x_{n+1}\right) \geq 1, \text { and } \alpha\left(x_{n+1}, x_{n+2}\right) \geq 1 \Rightarrow \alpha\left(x_{n}, x_{n+2}\right) \geq 1
$$

Thus, by the induction

$$
\alpha\left(x_{n}, x_{m}\right) \geq 1, \quad \text { for all } m>n \geq 0
$$

(Step 2): We shall prove

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sigma\left(x_{n}, x_{n+1}\right)=0 \tag{2.2}
\end{equation*}
$$

By Step 1, we have $\alpha\left(x_{n}, x_{m}\right) \geq 1$, for all $m>n \geq 0$. Then, from (2.1)

$$
\zeta\left(\sigma\left(x_{n}, x_{n+1}\right), M\left(x_{n-1}, x_{n}\right)\right)=\zeta\left(\sigma\left(T x_{n-1}, T x_{n}\right), M\left(x_{n-1}, x_{n}\right)\right) \geq 0
$$

where

$$
\begin{aligned}
M\left(x_{n-1}, x_{n}\right) & =\max \left\{\sigma\left(x_{n-1}, x_{n}\right), \sigma\left(x_{n-1}, T x_{n-1}\right), \sigma\left(x_{n}, T x_{n}\right), \frac{\sigma\left(x_{n-1}, T x_{n}\right)+\sigma\left(x_{n}, T x_{n-1}\right)}{4}\right\} \\
& =\max \left\{\sigma\left(x_{n-1}, x_{n}\right), \sigma\left(x_{n}, x_{n+1}\right), \frac{\sigma\left(x_{n-1}, x_{n+1}\right)+\sigma\left(x_{n}, x_{n}\right)}{4}\right\}
\end{aligned}
$$

By a triangular inequality, we have

$$
\begin{aligned}
\frac{\sigma\left(x_{n-1}, x_{n+1}\right)+\sigma\left(x_{n}, x_{n}\right)}{4} & \leq \frac{3 \sigma\left(x_{n-1}, x_{n}\right)+\sigma\left(x_{n}, x_{n+1}\right)}{4} \\
& \leq \max \left\{\sigma\left(x_{n-1}, x_{n}\right), \sigma\left(x_{n}, x_{n+1}\right)\right\}
\end{aligned}
$$

Thus

$$
M\left(x_{n-1}, x_{n}\right)=\max \left\{\sigma\left(x_{n-1}, x_{n}\right), \sigma\left(x_{n}, x_{n+1}\right)\right\}
$$

It follows that

$$
\begin{equation*}
\zeta\left(\sigma\left(x_{n}, x_{n+1}\right), \max \left\{\sigma\left(x_{n-1}, x_{n}\right), \sigma\left(x_{n}, x_{n+1}\right)\right\}\right) \geq 0 \tag{2.3}
\end{equation*}
$$

If $\sigma\left(x_{n}, x_{n+1}\right)=0$ for some $n$, then $x_{n}=x_{n+1}=T x_{n}$, that is, $x_{n}$ is a fixed point of $T$ and so the proof is finished. Suppose now that

$$
\sigma\left(x_{n}, x_{n+1}\right)>0, \quad \text { for all } n=0,1, \cdots
$$

Therefore, from condition $\left(\zeta_{1}\right)$, we have

$$
\begin{aligned}
0 & \leq \zeta\left(\sigma\left(x_{n}, x_{n+1}\right), \max \left\{\sigma\left(x_{n-1}, x_{n}\right), \sigma\left(x_{n}, x_{n+1}\right)\right\}\right) \\
& <\max \left\{\sigma\left(x_{n-1}, x_{n}\right), \sigma\left(x_{n}, x_{n+1}\right)\right\}-\sigma\left(x_{n}, x_{n+1}\right), \quad \text { for all } n \geq 1
\end{aligned}
$$

Then

$$
\sigma\left(x_{n}, x_{n+1}\right)<\max \left\{\sigma\left(x_{n-1}, x_{n}\right), \sigma\left(x_{n}, x_{n+1}\right)\right\}, \quad \text { for all } n \geq 1
$$

Necessarily, we have

$$
\begin{equation*}
\max \left\{\sigma\left(x_{n-1}, x_{n}\right), \sigma\left(x_{n}, x_{n+1}\right)\right\}=\sigma\left(x_{n-1}, x_{n}\right), \quad \text { for all } n \geq 1 \tag{2.4}
\end{equation*}
$$

Consequently, we obtain

$$
\begin{equation*}
\sigma\left(x_{n}, x_{n+1}\right)<\sigma\left(x_{n-1}, x_{n}\right), \quad \text { for all } n \geq 1 \tag{2.5}
\end{equation*}
$$

which implies that $\left\{\sigma\left(x_{n}, x_{n+1}\right)\right\}$ is a decreasing sequence of positive real numbers, so there exists $t \geq 0$ such that

$$
\lim _{n \rightarrow \infty} \sigma\left(x_{n}, x_{n+1}\right)=t
$$

Suppose that $t>0$. By (2.3), (2.4) and the condition $\left(\zeta_{2}\right)$,

$$
0 \leq \limsup _{n \rightarrow \infty} \zeta\left(\sigma\left(x_{n}, x_{n+1}\right), \sigma\left(x_{n-1}, x_{n}\right)\right)<0
$$

which is a contradiction. Then, we conclude that $t=0$.
(Step 3): Now, we shall prove that

$$
\begin{equation*}
\lim _{n, m \rightarrow \infty} \sigma\left(x_{n}, x_{m}\right)=0 \tag{2.6}
\end{equation*}
$$

Suppose to the contrary that there exists $\varepsilon>0$, for which we can find subsequences $\left\{x_{m(k)}\right\}$ and $\left\{x_{n(k)}\right\}$ of $\left\{x_{n}\right\}$ with $m(k)>n(k)>k$ such that for every $k$,

$$
\begin{equation*}
\sigma\left(x_{n(k)}, x_{m(k)}\right) \geq \varepsilon \tag{2.7}
\end{equation*}
$$

Moreover, corresponding to $n(k)$ we can choose $m(k)$ in such a way that it is the smallest integer with $m(k)>n(k)$ and satisfying (2.7). Then

$$
\begin{equation*}
\sigma\left(x_{n(k)}, x_{m(k)-1}\right)<\varepsilon \tag{2.8}
\end{equation*}
$$

By using (2.7), 2.8) and the triangular inequality, we get

$$
\begin{aligned}
\varepsilon & \leq \sigma\left(x_{n(k)}, x_{m(k)}\right) \leq \sigma\left(x_{n(k)}, x_{m(k)-1}\right)+\sigma\left(x_{m(k)-1}, x_{m(k)}\right) \\
& <\sigma\left(x_{m(k)-1}, x_{m(k)}\right)+\varepsilon
\end{aligned}
$$

By (2.2)

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \sigma\left(x_{n(k)}, x_{m(k)}\right)=\lim _{k \rightarrow \infty} \sigma\left(x_{n(k)}, x_{m(k)-1}\right)=\varepsilon \tag{2.9}
\end{equation*}
$$

We also have

$$
\sigma\left(x_{n(k)}, x_{m(k)-1}\right)-\sigma\left(x_{n(k)}, x_{n(k)-1}\right)-\sigma\left(x_{m(k)}, x_{m(k)-1}\right) \leq \sigma\left(x_{n(k)-1}, x_{m(k)}\right)
$$

and

$$
\sigma\left(x_{n(k)-1}, x_{m(k)}\right) \leq \sigma\left(x_{n(k)-1}, x_{n(k)}\right)+\sigma\left(x_{n(k)}, x_{m(k)}\right)
$$

Letting $k \rightarrow \infty$ in the above inequalities and by using $(2.2)$ and $(2.9)$, we obtain

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \sigma\left(x_{n(k)-1}, x_{m(k)}\right)=\varepsilon \tag{2.10}
\end{equation*}
$$

Moreover, the triangular inequality gives that

$$
\left|\sigma\left(x_{n(k)-1}, x_{m(k)}\right)-\sigma\left(x_{n(k)-1}, x_{m(k)-1}\right)\right| \leq \sigma\left(x_{m(k)-1}, x_{m(k)}\right)
$$

Let again $k \rightarrow \infty$ in the above inequality and by using 2.2 and 2.10 , we have

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \sigma\left(x_{n(k)-1}, x_{m(k)-1}\right)=\varepsilon . \tag{2.11}
\end{equation*}
$$

By (2.1) and as $\alpha\left(x_{n(k)-1}, x_{m(k)-1}\right) \geq 1$ for all $k \geq 1$, we get

$$
0 \leq \zeta\left(\sigma\left(x_{n(k)}, x_{m(k)}\right), M\left(x_{n(k)-1}, x_{m(k)-1}\right)\right)
$$

where

$$
\begin{gathered}
M\left(x_{n(k)-1}, x_{m(k)-1}\right)=\max \left\{\sigma\left(x_{n(k)-1}, x_{m(k)-1}\right), \sigma\left(x_{n(k)-1}, x_{n(k)}\right), \sigma\left(x_{m(k)-1}, x_{m(k)}\right),\right. \\
\left.\frac{\sigma\left(x_{n(k)-1}, x_{m(k)}\right)+\sigma\left(x_{m(k)-1}, x_{n(k)}\right)}{4}\right\}
\end{gathered}
$$

From (2.9), 2.10, 2.11) and 2.2

$$
\lim _{k \rightarrow \infty} \sigma\left(x_{n(k)}, x_{m(k)}\right)=\lim _{k \rightarrow \infty} M\left(x_{n(k)-1}, x_{m(k)-1}\right)=\varepsilon
$$

On the other hand, if $x_{n}=x_{m}$ for some $n<m$, then $x_{n+1}=T x_{n}=T x_{m}=x_{m+1}$. Equation (2.5) leads to

$$
0<\sigma\left(x_{n}, x_{n+1}\right)=\sigma\left(x_{m}, x_{m+1}\right)<\sigma\left(x_{m-1}, x_{m}\right)<\cdots<\sigma\left(x_{n}, x_{n+1}\right)
$$

which is a contradiction. Then $x_{n} \neq x_{m}$ for all $n<m$. The condition $\left(\zeta_{2}\right)$ implies that

$$
0 \leq \limsup _{k \rightarrow \infty} \zeta\left(\sigma\left(x_{n(k)}, x_{m(k)}\right), M\left(x_{n(k)-1}, x_{m(k)-1}\right)\right)<0
$$

which is a contradiction. This completes the proof of (2.6).
It follows that $\left\{x_{n}\right\}$ is a Cauchy sequence. Since $(X, \sigma)$ is complete, there exists some $z \in X$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sigma\left(x_{n}, z\right)=\sigma(z, z)=\lim _{n, m \rightarrow \infty} \sigma\left(x_{n}, x_{m}\right)=0 \tag{2.12}
\end{equation*}
$$

(Step 4): Now, we shall prove that $z$ is a fixed point of $T$.
If there exists a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $x_{n_{k}}=z$ or $T x_{n_{k}}=T z$ for all $k$, then $\sigma(z, T z)=$ $\sigma\left(z, x_{n_{k}+1}\right)$ for all $k$. Let $k \rightarrow \infty$ and use 2.12 to get $\sigma(z, T z)=0$, that is, $z=T z$ and the proof is finished. So, without loss of generality, we may suppose that $x_{n} \neq z$ and $T x_{n} \neq T z$ for all nonnegative integers $n$. Suppose that $\sigma(z, T z)>0$. By assumption (iii), there exists a subsequence $\left\{x_{n(k)}\right\}$ of $\left\{x_{n}\right\}$ such that $\alpha\left(x_{n(k)}, z\right) \geq 1$ for all $k$. By (2.1) and as $\alpha\left(x_{n(k)}, z\right) \geq 1$ for all $k \geq 1$, we get

$$
0 \leq \zeta\left(\sigma\left(x_{n(k)+1}, T z\right), M\left(x_{n(k)}, z\right)\right)=\zeta\left(\sigma\left(T x_{n(k)}, T z\right), M\left(x_{n(k)}, z\right)\right)
$$

where

$$
\begin{gathered}
M\left(x_{n(k)}, z\right)=\max \left\{\sigma\left(x_{n(k)}, z\right), \sigma\left(x_{n(k)}, x_{n(k)+1}\right), \sigma(z, T z),\right. \\
\left.\frac{\sigma\left(x_{n(k)}, T z\right)+\sigma\left(z, x_{n(k)+1}\right)}{4}\right\} .
\end{gathered}
$$

By Lemma 1.2 and 2.12

$$
\lim _{k \rightarrow \infty} \sigma\left(x_{n(k)+1}, T z\right)=\lim _{k \rightarrow \infty} M\left(x_{n(k)}, z\right)=\sigma(z, T z)>0
$$

From the condition $\left(\zeta_{2}\right)$

$$
0 \leq \limsup _{k \rightarrow \infty} \zeta\left(\sigma\left(x_{n(k)+1}, T z\right), M\left(x_{n(k)}, z\right)\right)<0
$$

which is a contradiction and hence $\sigma(z, T z)=0$, that is, $T z=z$ and so $z$ is a fixed point of $T$. This ends the proof of Theorem 2.1 .

By using the same techniques, we obtain the following result.
Theorem 2.2. Let $(X, p)$ be a complete partial metric space. Let $T: X \rightarrow X$ be a given mapping. Suppose there exist a simulation function $\zeta \in \mathcal{Z}^{*}$ and $\alpha: X \times X \rightarrow[0, \infty)$ such that

$$
\begin{equation*}
\zeta\left(p(T x, T y), M_{p}(x, y)\right) \geq 0 \tag{2.13}
\end{equation*}
$$

for all $x, y \in X$ satisfying $\alpha(x, y) \geq 1$, where

$$
M_{p}(x, y)=\max \left\{p(x, y), p(x, T x), p(y, T y), \frac{p(x, T y)+p(y, T x)}{2}\right\}
$$

Assume that
(i) $T$ is triangular $\alpha$-admissible;
(ii) there exists an element $x_{0} \in X$ such that $\alpha\left(x_{0}, T x_{0}\right) \geq 1$;
(iii) if $\left\{x_{n}\right\}$ is a sequence in $X$ such that $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ for all $n$ and $x_{n} \rightarrow x \in X$ as $n \rightarrow \infty$, then there exists a subsequence $\left\{x_{n(k)}\right\}$ of $\left\{x_{n}\right\}$ such that $\alpha\left(x_{n(k)}, x\right) \geq 1$ for all $k$.
Then, $T$ has a fixed point $z \in X$ such that $p(z, z)=0$.
Now, we prove the uniqueness fixed point result. For this, we need the following additional condition.
(U): For all $x, y \in F i x(T)$, we have $\alpha(x, y) \geq 1$, where $F i x(T)$ denotes the set of fixed points of $T$.

Theorem 2.3. By adding condition $(\mathrm{U})$ to the hypotheses of Theorem 2.2 , we obtain that $z$ is the unique fixed point of $T$.
Proof. We argue by contradiction, that is, there exist $z, w \in X$ such that $z=T z$ and $w=T w$ with $z \neq w$. By assumption (U), we have $\alpha(z, w) \geq 1$. So, by 2.13 and by using the condition $\left(\zeta_{2}\right)$, we get that

$$
\begin{aligned}
0 \leq \zeta\left(p(T z, T w), M_{p}(z, w)\right) & =\zeta(p(z, w), \max \{p(z, w), p(z, z), p(w, w)\}) \\
& =\zeta(p(z, w), p(z, w))<p(z, w)-p(z, w)=0
\end{aligned}
$$

which is a contradiction. Hence, $z=w$.
We also state the following result.
Theorem 2.4. Let $(X, \sigma)$ be a complete metric-like space. Let $T: X \rightarrow X$ be a given mapping. Suppose that there exist a simulation function $\zeta \in \mathcal{Z}^{*}$ and $\alpha: X \times X \rightarrow[0, \infty)$ such that

$$
\begin{equation*}
\zeta(\sigma(T x, T y), \sigma(x, y)) \geq 0 \tag{2.14}
\end{equation*}
$$

for all $x, y \in X$ satisfying $\alpha(x, y) \geq 1$. Assume that
(i) $T$ is triangular $\alpha$-admissible;
(ii) there exists an element $x_{0} \in X$ such that $\alpha\left(x_{0}, T x_{0}\right) \geq 1$;
(iii) if $\left\{x_{n}\right\}$ is a sequence in $X$ such that $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ for all $n$ and $x_{n} \rightarrow x \in X$ as $n \rightarrow \infty$, then there exists a subsequence $\left\{x_{n(k)}\right\}$ of $\left\{x_{n}\right\}$ such that $\alpha\left(x_{n(k)}, x\right) \geq 1$ for all $k$.
Then, $T$ has a fixed point $z \in X$ such that $\sigma(z, z)=0$.
Proof. By following the proof of Theorem 2.1, we can construct a sequence $\left\{x_{n}\right\}$ such that $\alpha\left(x_{n}, x_{m}\right) \geq 1$ for all $m>n \geq 0$. $\left\{x_{n}\right\}$ is also Cauchy in $(X, \sigma)$ and converges to some $z \in X$ such that 2.12 holds. We claim that $z$ is a fixed point of $T$. Similarly, if there exists a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $x_{n_{k}}=z$ or $T x_{n_{k}}=T z$ for all $k$, so $z$ is a fixed point of $T$ and the proof is finished. Without loss of generality, we may suppose that $x_{n} \neq z$ and $T x_{n} \neq T z$ for all nonnegative integer $n$. By assumption (iii) and by using (2.14) together with the condition $\left(\zeta_{1}\right)$, again we deduce that

$$
0 \leq \zeta\left(\sigma\left(T x_{n(k)}, T z\right), \sigma\left(x_{n(k)}, z\right)\right)<\sigma\left(x_{n(k)}, z\right)-\sigma\left(x_{n(k)+1}, T z\right)
$$

This implies

$$
\sigma\left(x_{n(k)+1}, T z\right)<\sigma\left(x_{n(k)}, z\right), \quad \forall k \geq 0
$$

Letting $k \rightarrow \infty$ in the above inequality and by Lemma 1.2 and 2.12 , we get

$$
\sigma(z, T z) \leq \sigma(z, z)=0
$$

that is, $\sigma(z, T z)=0$ and so $z=T z$.

Theorem 2.5. By adding condition $(\mathrm{U})$ to the hypotheses of Theorem 2.4, we obtain that $z$ is the unique fixed point of $T$.
Proof. We argue by contradiction, that is, there exist $z, w \in X$ such that $z=T z$ and $w=T w$ with $z \neq w$. By assumption (U), we have $\alpha(z, w) \geq 1$. So, by 2.14 and by using the condition $\left(\zeta_{2}\right)$, we get that

$$
0 \leq \zeta(\sigma(T z, T w), \sigma(z, w))<\sigma(z, w)-\sigma(T z, T w)=0
$$

which is a contradiction. Hence, $z=w$.
Example 2.6. Take $X=[0, \infty)$ endowed with the metric-like $\sigma(x, y)=x+y$. Consider the mapping $T: X \rightarrow X$ given by

$$
T x= \begin{cases}\frac{x^{2}}{2} & \text { if } x \in[0,1] \\ x+1 & \text { if } x>1\end{cases}
$$

Note that $(X, \sigma)$ is a complete metric-like space. Define the mapping $\alpha: X \times X \rightarrow[0, \infty)$ by

$$
\alpha(x, y)= \begin{cases}1 & \text { if } x, y \in[0,1] \\ 0 & \text { otherwise }\end{cases}
$$

Let $\zeta(t, s)=s-\frac{2+t}{1+t} t$ for all $s, t \geq 0$. Note that $T$ is $\alpha$-admissible. In fact, let $x, y \in X$ such that $\alpha(x, y) \geq 1$. By definition of $\alpha$, this implies that $x, y \in[0,1]$. Thus,

$$
\alpha(T x, T y)=\alpha\left(\frac{x^{2}}{2}, \frac{y^{2}}{2}\right)=1
$$

$T$ is also triangular $\alpha$-admissible. In fact, let $x, y, z \in X$ such that $\alpha(x, y) \geq 1$ and $\alpha(y, z) \geq 1$, this implies that $x, y, z \in[0,1]$. It follows that $\alpha(x, z) \geq 1$.

Now, we show that the contraction condition 2.14 is verified. Let $x, y \in X$ such that $\alpha(x, y) \geq 1$. So, $x, y \in[0,1]$. In this case, we have

$$
\begin{aligned}
\zeta(\sigma(T x, T y), \sigma(x, y)) & =\sigma(x, y)-\frac{2+\sigma(T x, T y)}{1+\sigma(T x, T y)} \sigma(T x, T y) \\
& =x+y-\frac{\left(4+x^{2}+y^{2}\right)\left(x^{2}+y^{2}\right)}{4+2\left(x^{2}+y^{2}\right)} \\
& =\frac{4(1-x) x+4(1-y) y+(2-x) x^{3}+2(1-x) x y^{2}+(2-y) y^{3}+2 x^{2} y}{4+2\left(x^{2}+y^{2}\right)} \geq 0
\end{aligned}
$$

Now, we show that condition (iii) of Theorem 2.4 is verified. Let $\left\{x_{n}\right\}$ be a sequence in $X$ such that $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ for all $n$ and $x_{n} \rightarrow x \in X$. Then, $\left\{x_{n}\right\} \subset[0,1]$ and $x_{n}+x \rightarrow 2 x$ as $n \rightarrow \infty$. Thus, $x_{n} \rightarrow x$ as $n \rightarrow \infty$ in $(X,||$.$) . This implies that x \in[0,1]$ and so $\alpha\left(x_{n}, x\right)=1$ for all $n$. Moreover, there exists $x_{0} \in X$ such that $\alpha\left(x_{0}, T x_{0}\right) \geq 1$. In fact, for $x_{0}=1$, we have $\alpha(1, T 1)=\alpha\left(1, \frac{1}{2}\right)=1$. Thus, all hypotheses of Theorem 2.4 are verified. Here $x=0$ is the unique fixed point of $T$.

On the other, Theorem 5.1 in [15] is not applicable for the partial metric $p(x, y)=\max \{x, y\}$. Indeed, for $x=2$ and $y=3$, we have

$$
\zeta(p(T 2, T 3), p(2,3))=\zeta(4,3)=-\frac{9}{5}<0
$$

Also, the Banach contraction principle is not applicable because, for $x=2$ and $y=3$, we have

$$
\sigma(T 2, T 3)=7>5=\sigma(2,3)
$$

Now, we present the following result in the setting of metric-like spaces which generalizes the result obtained by [15].

Theorem 2.7. Let $(X, \sigma)$ be a complete metric-like space. Let $T: X \rightarrow X$ be a given mapping. Suppose that there exist a simulation function $\zeta \in \mathcal{Z}^{*}$ and a lower semi-continuous function $\varphi: X \rightarrow[0, \infty)$ and $\alpha: X \times X \rightarrow[0, \infty)$ such that

$$
\begin{equation*}
\zeta(\sigma(T x, T y)+\varphi(T x)+\varphi(T y), \sigma(x, y)+\varphi(x)+\varphi(y)) \geq 0 \tag{2.15}
\end{equation*}
$$

for all $x, y \in X$ satisfying $\alpha(x, y) \geq 1$. Assume that
(i) $T$ is triangular $\alpha$-admissible;
(ii) there exists an element $x_{0} \in X$ such that $\alpha\left(x_{0}, T x_{0}\right) \geq 1$;
(iii) if $\left\{x_{n}\right\}$ is a sequence in $X$ such that $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ for all $n$ and $x_{n} \rightarrow x \in X$ as $n \rightarrow \infty$, then there exists a subsequence $\left\{x_{n(k)}\right\}$ of $\left\{x_{n}\right\}$ such that $\alpha\left(x_{n(k)}, x\right) \geq 1$ for all $k$.
Then, $T$ has a fixed point $z \in X$ such that $\sigma(z, z)=0$ and $\varphi(z)=0$.
Proof. By following the proof of Theorem 2.1, we construct a sequence $\left\{x_{n}\right\}$ such that $\alpha\left(x_{n}, x_{m}\right) \geq 1$ for all $m>n \geq 0$. We shall prove

$$
\lim _{n \rightarrow \infty} \sigma\left(x_{n}, x_{n+1}\right)=0
$$

Since $\alpha\left(x_{n}, x_{m}\right) \geq 1$ for all $m>n \geq 0$, it follows from 2.15 that

$$
\zeta\left(\sigma\left(T x_{n-1}, T x_{n}\right)+\varphi\left(T x_{n-1}\right)+\varphi\left(T x_{n}\right), \sigma\left(x_{n-1}, x_{n}\right)+\varphi\left(x_{n-1}\right)+\varphi\left(x_{n}\right)\right) \geq 0
$$

It means that

$$
\zeta\left(\sigma\left(x_{n}, x_{n+1}\right)+\varphi\left(x_{n}\right)+\varphi\left(x_{n+1}\right), \sigma\left(x_{n-1}, x_{n}\right)+\varphi\left(x_{n-1}\right)+\varphi\left(x_{n}\right)\right) \geq 0
$$

If $\sigma\left(x_{n}, x_{n+1}\right)=0$ for some $n$, then $x_{n}=x_{n+1}=T x_{n}$, that is, $x_{n}$ is a fixed point of $T$ and so the proof is finished. Suppose now that

$$
\sigma\left(x_{n}, x_{n+1}\right)>0, \quad \text { for all } n=0,1, \cdots
$$

Therefore, from condition $\left(\zeta_{1}\right)$, we have

$$
\begin{aligned}
0 & \leq \zeta\left(\sigma\left(x_{n}, x_{n+1}\right)+\varphi\left(x_{n}\right)+\varphi\left(x_{n+1}\right), \sigma\left(x_{n-1}, x_{n}\right)+\varphi\left(x_{n-1}\right)+\varphi\left(x_{n}\right)\right) \\
& <\sigma\left(x_{n-1}, x_{n}\right)+\varphi\left(x_{n-1}\right)+\varphi\left(x_{n}\right)-\left[\sigma\left(x_{n}, x_{n+1}\right)+\varphi\left(x_{n}\right)+\varphi\left(x_{n+1}\right)\right], \quad \text { for all } n \geq 1
\end{aligned}
$$

This leads to

$$
\begin{equation*}
\sigma\left(x_{n}, x_{n+1}\right)+\varphi\left(x_{n}\right)+\varphi\left(x_{n+1}\right)<\sigma\left(x_{n-1}, x_{n}\right)+\varphi\left(x_{n-1}\right)+\varphi\left(x_{n}\right), \quad \text { for all } n \geq 1 \tag{2.16}
\end{equation*}
$$

which implies that $\left\{\sigma\left(x_{n}, x_{n+1}\right)+\varphi\left(x_{n}\right)+\varphi\left(x_{n+1}\right)\right\}$ is a decreasing sequence of positive real numbers, so there exists $t \geq 0$ such that

$$
\lim _{n \rightarrow \infty}\left[\sigma\left(x_{n}, x_{n+1}\right)+\varphi\left(x_{n}\right)+\varphi\left(x_{n+1}\right)\right]=t
$$

Suppose that $t>0$. From the condition $\left(\zeta_{2}\right)$,

$$
0 \leq \limsup _{n \rightarrow \infty} \zeta\left(\sigma\left(x_{n}, x_{n+1}\right)+\varphi\left(x_{n}\right)+\varphi\left(x_{n+1}\right), \sigma\left(x_{n-1}, x_{n}\right)+\varphi\left(x_{n-1}\right)+\varphi\left(x_{n}\right)\right)<0
$$

which is a contradiction. Then, we conclude that $t=0$. Since $\varphi \geq 0$, we get that

$$
\lim _{n \rightarrow \infty} \sigma\left(x_{n}, x_{n+1}\right)=0
$$

Also,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \varphi\left(x_{n}\right)=0 \tag{2.17}
\end{equation*}
$$

From (2.16), mention that $x_{n} \neq x_{m}$ for all $n<m$. Now, we shall prove that

$$
\begin{equation*}
\lim _{n, m \rightarrow \infty} \sigma\left(x_{n}, x_{m}\right)=0 \tag{2.18}
\end{equation*}
$$

Suppose to the contrary that there exists $\varepsilon>0$ for which we can find subsequences $\left\{x_{m(k)}\right\}$ and $\left\{x_{n(k)}\right\}$ of $\left\{x_{n}\right\}$ with $m(k)>n(k)>k$ such that for every $k$

$$
\begin{equation*}
\sigma\left(x_{n(k)}, x_{m(k)}\right) \geq \varepsilon \tag{2.19}
\end{equation*}
$$

Moreover, corresponding to $n(k)$, we can choose $m(k)$ in such a way that it is the smallest integer with $m(k)>n(k)$ and satisfying (2.19). By following again the proof of Theorem 2.1 we see that (2.9), (2.10) and 2.11) hold. Put $a_{k}=\sigma\left(x_{n(k)}, x_{m(k)}\right)$ and $b_{k}=\sigma\left(x_{n(k)-1}, x_{m(k)-1}\right)$. By 2.15) and as $\alpha\left(x_{n(k)-1}, x_{m(k)-1}\right) \geq 1$ for all $k \geq 1$, we get

$$
0 \leq \zeta\left(a_{k}+\varphi\left(x_{n(k)}\right)+\varphi\left(x_{m(k)}\right), b_{k}+\varphi\left(x_{n(k)-1}\right)+\varphi\left(x_{m(k)-1}\right)\right)
$$

By 2.9, 2.10, 2.11 and 2.17, we have

$$
\lim _{k \rightarrow \infty}\left[a_{k}+\varphi\left(x_{n(k)}\right)+\varphi\left(x_{m(k)}\right)\right]=\lim _{k \rightarrow \infty}\left[b_{k}+\varphi\left(x_{n(k)-1}\right)+\varphi\left(x_{m(k)-1}\right)\right]=\varepsilon
$$

From the condition $\left(\zeta_{2}\right)$, it follows that

$$
0 \leq \limsup _{k \rightarrow \infty} \zeta\left(a_{k}+\varphi\left(x_{n(k)}\right)+\varphi(m(k)), b_{k}+\varphi\left(x_{n(k)-1}\right)+\varphi\left(x_{m(k)-1}\right)\right)<0
$$

which is a contradiction. This completes the proof of 2.18.
Therefore, $\left\{x_{n}\right\}$ is a Cauchy sequence. Since $(X, \sigma)$ is complete, there exists some $z \in X$ such that

$$
\lim _{n \rightarrow \infty} \sigma\left(x_{n}, z\right)=\sigma(z, z)=\lim _{n, m \rightarrow \infty} \sigma\left(x_{n}, x_{m}\right)=0
$$

By referring to 2.17 and taking into account that $\varphi$ is lower semi-continuous, we have

$$
0 \leq \varphi(z) \leq \liminf _{n \rightarrow \infty} \varphi\left(x_{n}\right)=0
$$

and so $\varphi(z)=0$. Now, we claim that $z$ is a fixed point of $T$. If there exists a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $x_{n_{k}}=z$ or $T x_{n_{k}}=T z$ for all $k$, then $z$ is a fixed point of $T$ and the proof is finished. Without loss of generality, we may suppose that $x_{n} \neq z$ and $T x_{n} \neq T z$ for all nonnegative integer $n$. By assumption (iii), there exists a subsequence $\left\{x_{n(k)}\right\}$ of $\left\{x_{n}\right\}$ such that $\alpha\left(x_{n(k)}, z\right) \geq 1$ for all $k$. By using 2.15 and the condition $\left(\zeta_{1}\right)$, we deduce that

$$
\begin{aligned}
0 & \leq \zeta\left(\sigma\left(x_{n(k)+1}, T z\right)+\varphi\left(x_{n(k)+1}\right)+\varphi(T z), \sigma\left(x_{n(k)}, z\right)+\varphi\left(x_{n(k)}\right)+\varphi(z)\right) \\
& <\sigma\left(x_{n(k)}, z\right)+\varphi\left(x_{n(k)}\right)+\varphi(z)-\left[\sigma\left(x_{n(k)+1}, T z\right)+\varphi\left(x_{n(k)+1}\right)+\varphi(T z)\right]
\end{aligned}
$$

This implies

$$
\sigma\left(x_{n(k)+1}, T z\right)+\varphi\left(x_{n(k)+1}\right)+\varphi(T z)<\sigma\left(x_{n(k)}, z\right)+\varphi\left(x_{n(k)}\right)+\varphi(z), \quad \forall k \geq 0
$$

By letting $k \rightarrow \infty$ in the above inequality and by taking into account that $\varphi \geq 0$ and $\varphi(z)=0$,

$$
\sigma(z, T z)+\varphi(T z) \leq \sigma(z, z)+\varphi(z)=0
$$

that is, $\sigma(z, T z)+\varphi(T z)=0$ and so $\sigma(z, T z)=0$. This ends the proof of Theorem 2.7.

Theorem 2.8. By adding condition $(\mathrm{U})$ to the hypotheses of Theorem 2.7, we obtain that $z$ is the unique fixed point of $T$.
Proof. We argue by contradiction, that is, there exist $z, w \in X$ such that $z=T z$ and $w=T w$ with $z \neq w$. By assumption (U), we have $\alpha(z, w) \geq 1$. So, by 2.15 and by using the condition $\left(\zeta_{2}\right)$, we get that

$$
\begin{aligned}
0 & \leq \zeta(\sigma(T z, T w)+\varphi(T z)+\varphi(T w), \sigma(z, w)+\varphi(z)+\varphi(w)) \\
& =\zeta(\sigma(z, w)+\varphi(z)+\varphi(w), \sigma(z, w)+\varphi(z)+\varphi(w)) \\
& <\sigma(z, w)+\varphi(z)+\varphi(w)-[\sigma(z, w)+\varphi(z)+\varphi(w)]=0
\end{aligned}
$$

which is a contradiction. Hence, $z=w$.
Example 2.9. Take $X=[0, \infty)$ endowed with the metric-like $\sigma(x, y)=x^{2}+y^{2}$. Consider the mapping $T: X \rightarrow X$ given by

$$
T x= \begin{cases}\frac{x^{2}}{x+1} & \text { if } x \in[0,1] \\ x^{2} & \text { if } x>1\end{cases}
$$

Note that $(X, \sigma)$ is a complete metric-like space. Define the mapping $\alpha: X \times X \rightarrow[0, \infty)$ by

$$
\alpha(x, y)= \begin{cases}1 & \text { if } x, y \in[0,1] \\ 0 & \text { otherwise }\end{cases}
$$

Let $\zeta(t, s)=\frac{1}{2} s-t$ for all $s, t \geq 0$ and $\varphi(x)=x$ for all $x \in X$. Note that $T$ is $\alpha$-admissible. In fact, let $x, y \in X$ such that $\alpha(x, y) \geq 1$. By definition of $\alpha$, this implies that $x, y \in[0,1]$. Thus,

$$
\alpha(T x, T y)=\alpha\left(\frac{x^{2}}{x+1}, \frac{y^{2}}{y+1}\right)=1
$$

$T$ is also triangular $\alpha$-admissible.
Let $x, y \in X$ such that $\alpha(x, y) \geq 1$. So, $x, y \in[0,1]$. In this case, we have

$$
\begin{aligned}
\sigma(T x, T y)+\varphi(T x)+\varphi(T y) & =\left(\frac{x^{2}}{x+1}\right)^{2}+\left(\frac{y^{2}}{y+1}\right)^{2}+\frac{x^{2}}{x+1}+\frac{y^{2}}{y+1} \\
& \leq \frac{1}{4}\left(x^{2}+y^{2}\right)+\frac{1}{2}(x+y) \\
& \leq \frac{1}{2}\left(x^{2}+y^{2}+x+y\right) \\
& =\frac{1}{2}(\sigma(x, y)+\varphi(x)+\varphi(y))
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\zeta(\sigma(T x, T y) & +\varphi(T x)+\varphi(T y), \sigma(x, y)+\varphi(x)+\varphi(y)) \\
= & \frac{1}{2}(\sigma(x, y)+\varphi(x)+\varphi(y))-[\sigma(T x, T y)+\varphi(T x)+\varphi(T y)] \geq 0
\end{aligned}
$$

Now, we show that condition (iii) of Theorem 2.7 is verified. Let $\left\{x_{n}\right\}$ be a sequence in $X$ such that $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ for all $n$ and $x_{n} \rightarrow x \in X$. Then, $\left\{x_{n}\right\} \subset[0,1]$ and $x_{n}^{2}+x^{2} \rightarrow 2 x^{2}$ as $n \rightarrow \infty$. Thus, $x_{n} \rightarrow x$ as $n \rightarrow \infty$ in $(X,|\cdot|)$. This implies that $x \in[0,1]$ and so $\alpha\left(x_{n}, x\right)=1$ for all $n$. Moreover, there exists $x_{0} \in X$ such that $\alpha\left(x_{0}, T x_{0}\right) \geq 1$. In fact, for $x_{0}=1$, we have $\alpha(1, T 1)=\alpha\left(1, \frac{1}{2}\right)=1$. Thus, all hypotheses of Theorem 2.7 are verified. Here, $x=0$ is the unique fixed point of $T$ and $\varphi(0)=0$.

On the other hand, Theorem 3.2 in [15] is not applicable for the standard metric $d$. Indeed, for $x=2$ and $y=3$, we have

$$
\zeta(d(T x, T y)+\varphi(T x)+\varphi(T y), d(x, y)+\varphi(x)+\varphi(y))=-15<0
$$

Moreover, $\sigma(T \sqrt{2}, T \sqrt{3})=13>5=\sigma(\sqrt{2}, \sqrt{3})$, then $T$ is not a Banach contraction on $X$.

## 3. Consequences

In this section, as consequences of our obtained results, we provide various fixed point results in the literature including fixed point theorems in partially ordered metric-like spaces.

Corollary 3.1. Let $(X, \sigma)$ be a complete metric-like space. Let $T: X \rightarrow X$ be a given mapping. Suppose that there exist $k \in(0,1)$ and $\alpha: X \times X \rightarrow[0, \infty)$ such that

$$
\sigma(T x, T y) \leq k \max \left\{\sigma(x, y), \sigma(x, T x), \sigma(y, T y), \frac{\sigma(x, T y)+\sigma(y, T x)}{4}\right\}
$$

for all $x, y \in X$, satisfying $\alpha(x, y) \geq 1$. Then, $T$ has a fixed point $z \in X$ such that $\sigma(z, z)=0$.
Proof. It suffices to take a simulation function $\zeta(t, s)=k s-t$ for all $s, t \geq 0$ in Theorem 2.1.

Corollary 3.2. Let $(X, \sigma)$ be a complete metric-like space. Let $T: X \rightarrow X$ be a given mapping. Suppose that there exist $k \in(0,1)$ and $\alpha: X \times X \rightarrow[0, \infty)$ such that

$$
\sigma(T x, T y) \leq k \sigma(x, y)
$$

for all $x, y \in X$, satisfying $\alpha(x, y) \geq 1$. Then, $T$ has a fixed point $z \in X$ such that $\sigma(z, z)=0$.

Corollary 3.3. Let $(X, p)$ be a complete partial metric space. Let $T: X \rightarrow X$ be a given mapping. Suppose that there exist $k \in(0,1)$ and $\alpha: X \times X \rightarrow[0, \infty)$ such that

$$
p(T x, T y) \leq k \max \left\{p(x, y), p(x, T x), p(y, T y), \frac{p(x, T y)+p(y, T x)}{2}\right\}
$$

for all $x, y \in X$, satisfying $\alpha(x, y) \geq 1$. Then, $T$ has a fixed point $z \in X$ such that $p(z, z)=0$.
Proof. It suffices to take a simulation function $\zeta(t, s)=k s-t$ for all $s, t \geq 0$ in Theorem 2.4.
Corollary 3.4. Let $(X, \sigma)$ be a complete metric-like space. Let $T: X \rightarrow X$ be a given mapping. Suppose that there exist a lower semi-continuous function $\varphi:[0, \infty) \rightarrow[0, \infty)$ with $\varphi(t)>0$ for all $t>0$ and $\alpha: X \times X \rightarrow[0, \infty)$ such that

$$
\begin{aligned}
\sigma(T x, T y) \leq & \max \left\{\sigma(x, y), \sigma(x, T x), \sigma(y, T y), \frac{\sigma(x, T y)+\sigma(y, T x)}{4}\right\} \\
& -\varphi\left(\max \left\{\sigma(x, y), \sigma(x, T x), \sigma(y, T y), \frac{\sigma(x, T y)+\sigma(y, T x)}{4}\right\}\right)
\end{aligned}
$$

for all $x, y \in X$, satisfying $\alpha(x, y) \geq 1$. Then, $T$ has a fixed point $z \in X$ such that $\sigma(z, z)=0$.
Proof. It suffices to take a simulation function $\zeta(t, s)=s-\varphi(s)-t$ for all $s, t \geq 0$ in Theorem 2.1.
Corollary 3.5. Let $(X, \sigma)$ be a complete metric-like space. Let $T: X \rightarrow X$ be a given mapping. Suppose there exist a lower semi-continuous function $\varphi:[0, \infty) \rightarrow[0, \infty)$ with $\varphi(t)>0$ for all $t>0$ and $\alpha: X \times X \rightarrow$ $[0, \infty)$ such that

$$
\sigma(T x, T y) \leq \sigma(x, y)-\varphi(\sigma(x, y))
$$

for all $x, y \in X$, satisfying $\alpha(x, y) \geq 1$. Then, $T$ has a fixed point $z \in X$ such that $\sigma(z, z)=0$.
Proof. It suffices to take a simulation function $\zeta(t, s)=s-\varphi(s)-t$ for all $s, t \geq 0$ in Theorem 2.4 .

Corollary 3.6. Let $(X, p)$ be a complete partial metric space. Let $T: X \rightarrow X$ be a given mapping. Suppose there exist a lower semi-continuous function $\varphi:[0, \infty) \rightarrow[0, \infty)$ with $\varphi(t)>0$ for all $t>0$ and $\alpha: X \times X \rightarrow[0, \infty)$ such that

$$
\begin{aligned}
p(T x, T y) \leq & \max \left\{p(x, y), p(x, T x), p(y, T y), \frac{p(x, T y)+p(y, T x)}{2}\right\} \\
& -\varphi\left(\max \left\{p(x, y), p(x, T x), p(y, T y), \frac{p(x, T y)+p(y, T x)}{2}\right\}\right)
\end{aligned}
$$

for all $x, y \in X$, satisfying $\alpha(x, y) \geq 1$. Then, $T$ has a fixed point $z \in X$ such that $p(z, z)=0$.
Proof. It suffices to take a simulation function $\zeta(t, s)=s-\varphi(s)-t$ for all $s, t \geq 0$ in Theorem 2.2.
Corollary 3.7. Let $(X, \sigma)$ be a complete metric-like space. Let $T: X \rightarrow X$ be a given mapping. Suppose there exist a function $\varphi:[0, \infty) \rightarrow[0,1)$ with $\lim _{t \rightarrow r^{+}} \varphi(t)<1$ for all $r>0$ and $\alpha: X \times X \rightarrow[0, \infty)$ such that

$$
\begin{aligned}
\sigma(T x, T y) \leq & \varphi\left(\max \left\{\sigma(x, y), \sigma(x, T x), \sigma(y, T y), \frac{\sigma(x, T y)+\sigma(y, T x)}{4}\right\}\right) \\
& \left.\max \left\{\sigma(x, y), \sigma(x, T x), \sigma(y, T y), \frac{\sigma(x, T y)+\sigma(y, T x)}{4}\right\}\right)
\end{aligned}
$$

for all $x, y \in X$, satisfying $\alpha(x, y) \geq 1$. Then, $T$ has a fixed point $z \in X$ such that $\sigma(z, z)=0$.
Proof. It suffices to take a simulation function $\zeta(t, s)=s \varphi(s)-t$ for all $s, t \geq 0$ in Theorem 2.1.
Corollary 3.8. Let $(X, \sigma)$ be a complete metric-like space. Let $T: X \rightarrow X$ be a given mapping. Suppose there exist a function $\varphi:[0, \infty) \rightarrow[0,1)$ with $\lim _{t \rightarrow r^{+}} \varphi(t)<1$ for all $r>0$ and $\alpha: X \times X \rightarrow[0, \infty)$ such that

$$
\sigma(T x, T y) \leq \varphi(\sigma(x, y)) \sigma(x, y)
$$

for all $x, y \in X$, satisfying $\alpha(x, y) \geq 1$. Then, $T$ has a fixed point $z \in X$ such that $\sigma(z, z)=0$.
Proof. It suffices to take a simulation function $\zeta(t, s)=s \varphi(s)-t$ for all $s, t \geq 0$ in Theorem 2.4.
Corollary 3.9. Let $(X, \sigma)$ be a complete partial metric space. Let $T: X \rightarrow X$ be a given mapping. Suppose there exist a function $\varphi:[0, \infty) \rightarrow[0,1)$ with $\lim _{t \rightarrow r^{+}} \varphi(t)<1$ for all $r>0$ and $\alpha: X \times X \rightarrow[0, \infty)$ such that

$$
\begin{aligned}
p(T x, T y) \leq & \varphi\left(\max \left\{p(x, y), p(x, T x), p(y, T y), \frac{p(x, T y)+p(y, T x)}{2}\right\}\right) \\
& \left.\max \left\{p(x, y), p(x, T x), p(y, T y), \frac{p(x, T y)+p(y, T x)}{2}\right\}\right)
\end{aligned}
$$

for all $x, y \in X$, satisfying $\alpha(x, y) \geq 1$. Then, $T$ has a fixed point $z \in X$ such that $\sigma(z, z)=0$.
Proof. It suffices to take a simulation function $\zeta(t, s)=s \varphi(s)-t$ for all $s, t \geq 0$ in Theorem 2.2.
Corollary 3.10. Let $(X, \sigma)$ be a complete metric-like space. Let $T: X \rightarrow X$ be a given mapping. Suppose there exist an upper semi-continuous function $\varphi:[0, \infty) \rightarrow[0, \infty)$ with $\varphi(t)<t$ for all $t>0$ and $\alpha$ : $X \times X \rightarrow[0, \infty)$ such that

$$
\sigma(T x, T y) \leq \varphi\left(\max \left\{\sigma(x, y), \sigma(x, T x), \sigma(y, T y), \frac{\sigma(x, T y)+\sigma(y, T x)}{4}\right\}\right)
$$

for all $x, y \in X$, satisfying $\alpha(x, y) \geq 1$. Then, $T$ has a fixed point $z \in X$ such that $\sigma(z, z)=0$.

Proof. It suffices to take a simulation function $\zeta(t, s)=\varphi(s)-t$ for all $s, t \geq 0$ in Theorem 2.1.
Corollary 3.11. Let $(X, \sigma)$ be a complete metric-like space. Let $T: X \rightarrow X$ be a given mapping. Suppose there exist an upper semi-continuous function $\varphi:[0, \infty) \rightarrow[0, \infty)$ with $\varphi(t)<t$ for all $t>0$ and $\alpha$ : $X \times X \rightarrow[0, \infty)$ such that

$$
\sigma(T x, T y) \leq \varphi(\sigma(x, y))
$$

for all $x, y \in X$, satisfying $\alpha(x, y) \geq 1$. Then, $T$ has a fixed point $z \in X$ such that $\sigma(z, z)=0$.
Proof. It suffices to take a simulation function $\zeta(t, s)=\varphi(s)-t$ for all $s, t \geq 0$ in Theorem 2.4.
Corollary 3.12. Let $(X, p)$ be a complete metric-like space. Let $T: X \rightarrow X$ be a given mapping. Suppose there exist an upper semi-continuous function $\varphi:[0, \infty) \rightarrow[0, \infty)$ with $\varphi(t)<t$ for all $t>0$ and $\alpha$ : $X \times X \rightarrow[0, \infty)$ such that

$$
p(T x, T y) \leq \varphi\left(\max \left\{p(x, y), p(x, T x), p(y, T y), \frac{p(x, T y)+p(y, T x)}{2}\right\}\right)
$$

for all $x, y \in X$, satisfying $\alpha(x, y) \geq 1$. Then, $T$ has a fixed point $z \in X$ such that $p(z, z)=0$.
Proof. It suffices to take simulation function $\zeta(t, s)=\varphi(s)-t$, for all $s, t \geq 0$ in Theorem 2.2.
Corollary 3.13. Let $(X, \sigma)$ be a complete metric-like space. Let $T: X \rightarrow X$ be a given mapping. Suppose there exist $k \in(0,1)$ and a lower semi-continuous function $\varphi: X \rightarrow[0, \infty)$ and $\alpha: X \times X \rightarrow[0, \infty)$ such that

$$
\sigma(T x, T y)+\varphi(T x)+\varphi(T y) \leq k[\sigma(x, y)+\varphi(x)+\varphi(y)]
$$

for all $x, y \in X$, satisfying $\alpha(x, y) \geq 1$. Then, $T$ has a fixed point $z \in X$ such that $\sigma(z, z)=0$.
Proof. It suffices to take a simulation function $\zeta(t, s)=k s-t$ for all $s, t \geq 0$ in Theorem 2.7.
Corollary 3.14. Let $(X, \sigma)$ be a complete metric-like space. Let $T: X \rightarrow X$ be a given mapping. Suppose there exist two lower semi-continuous function $\varphi, \psi: X \rightarrow[0, \infty)$ with $\psi(t)>0$ for all $t>0$ and $\alpha$ : $X \times X \rightarrow[0, \infty)$ such that

$$
\sigma(T x, T y)+\varphi(T x)+\varphi(T y) \leq \sigma(x, y)+\varphi(x)+\varphi(y)-\psi(\sigma(x, y)+\varphi(x)+\varphi(y))
$$

for all $x, y \in X$, satisfying $\alpha(x, y) \geq 1$. Then, $T$ has a fixed point $z \in X$ such that $\sigma(z, z)=0$.
Proof. It suffices to take a simulation function $\zeta(t, s)=s-\psi(s)-t$ for all $s, t \geq 0$ in Theorem 2.7.
Remark 3.15. We can obtain other fixed point results in the class of metric-like spaces via $\alpha$-admissible mappings by choosing an appropriate simulation function. Moreover, if we take $\alpha(x, y)=1$ we can obtain known fixed point results in the literature.

Corollary 3.16. Let $(X, \sigma)$ be a complete metric-like space. Let $T: X \rightarrow X$ be a given mapping. Suppose there exists a simulation function $\zeta \in \mathcal{Z}^{*}$ such that

$$
\zeta(\sigma(T x, T y), M(x, y)) \geq 0
$$

for all $x, y \in X$, where

$$
M(x, y)=\max \left\{\sigma(x, y), \sigma(x, T x), \sigma(y, T y), \frac{\sigma(x, T y)+\sigma(y, T x)}{4}\right\}
$$

Then, $T$ has a fixed point $z \in X$ such that $\sigma(z, z)=0$.

Proof. It suffices to take $\alpha(x, y)=1$ in Theorem 2.1 .
Corollary 3.17. Let $(X, \sigma)$ be a complete metric-like space. Let $T: X \rightarrow X$ be a given mapping. Suppose there exists a simulation function $\zeta \in \mathcal{Z}^{*}$ such that

$$
\zeta(\sigma(T x, T y), \sigma(x, y)) \geq 0
$$

for all $x, y \in X$. Then, $T$ has a unique fixed point $z \in X$ such that $\sigma(z, z)=0$.
Corollary 3.18 ([15], Theorem 5.1). Let $(X, \sigma)$ be a complete partial metric space. Let $T: X \rightarrow X$ be $a$ given mapping. Suppose there exists a simulation function $\zeta$ such that

$$
\zeta(p(T x, T y), p(x, y)) \geq 0, \quad \text { for all } x, y \in X
$$

Then, $T$ has a unique fixed point $z \in X$ such that $p(z, z)=0$.
Corollary 3.19. Let $(X, \sigma)$ be a complete metric-like space. Let $T: X \rightarrow X$ be a given mapping. Suppose there exist a simulation function $\zeta \in \mathcal{Z}^{*}$ and a lower semi-continuous function $\varphi: X \rightarrow[0, \infty)$ such that

$$
\zeta(\sigma(T x, T y)+\varphi(T x)+\varphi(T y), \sigma(x, y)+\varphi(x)+\varphi(y)) \geq 0, \quad \text { for all } x, y \in X
$$

Then, $T$ has a unique fixed point $z \in X$ such that $\sigma(z, z)=0$ and $\varphi(z)=0$.
Proof. It suffices to take $\alpha(x, y)=1$ in Theorem 2.7 .
Corollary 3.20 ([15], Theorem 3.2). Let $(X, d)$ be a complete metric space. Let $T: X \rightarrow X$ be a mapping. Suppose there exist a simulation function $\zeta$ and a lower semi-continuous function $\varphi: X \rightarrow[0, \infty)$ such that

$$
\zeta(\sigma(T x, T y)+\varphi(T x)+\varphi(T y), \sigma(x, y)+\varphi(x)+\varphi(y)) \geq 0, \quad \text { for all } x, y \in X
$$

Then, $T$ has a unique fixed point $z \in X$ such that $\varphi(z)=0$.
Now, we give some fixed point results in partially ordered metric-like spaces as consequences of our results.

Definition 3.21. Let $X$ be a nonempty set. We say that $(X, \sigma, \preceq)$ is a partially ordered metric-like space if $(X, \sigma)$ is a metric-like space and $(X, \preceq)$ is a partially ordered set.

Definition 3.22. Let $T: X \rightarrow X$ be a given mapping. We say that $T$ is non-decreasing if

$$
(x, y) \in X \times X, x \preceq y \Rightarrow T x \preceq T y
$$

Corollary 3.23. Let $(X, \sigma, \preceq)$ be a complete partially ordered metric-like space. Let $T: X \rightarrow X$ be a given mapping. Suppose there exists a simulation function $\zeta \in \mathcal{Z}^{*}$ such that

$$
\zeta(\sigma(T x, T y), M(x, y)) \geq 0
$$

for all $x, y \in X$ satisfying $x \preceq y$, where

$$
M(x, y)=\max \left\{\sigma(x, y), \sigma(x, T x), \sigma(y, T y), \frac{\sigma(x, T y)+\sigma(y, T x)}{4}\right\}
$$

Assume that
(i) $T$ is non-decreasing;
(ii) there exists an element $x_{0} \in X$ such that $x_{0} \preceq T x_{0}$;
(iii) if $\left\{x_{n}\right\}$ is a sequence in $X$ such that $x_{n} \preceq x_{n+1}$ for all $n$ and $x_{n} \rightarrow x \in X$ as $n \rightarrow \infty$, then there exists a subsequence $\left\{x_{n(k)}\right\}$ of $\left\{x_{n}\right\}$ such that $x_{n(k)} \preceq x$ for all $k$.

Then, $T$ has a fixed point $z \in X$ such that $\sigma(z, z)=0$.
Proof. Let $\alpha: X \times X \rightarrow X$ be such that

$$
\alpha(x, y)= \begin{cases}1 & \text { if } x \preceq y \\ 0 & \text { otherwise }\end{cases}
$$

Then, all hypotheses of Theorem 2.1 are satisfied and hence $T$ has a fixed point.
Corollary 3.24. Let $(X, p, \preceq)$ be a complete partially ordered partial metric space. Let $T: X \rightarrow X$ be $a$ given mapping. Suppose there exists a simulation function $\zeta \in \mathcal{Z}^{*}$ such that

$$
\zeta\left(p(T x, T y), M_{p}(x, y)\right) \geq 0
$$

for all $x, y \in X$ satisfying $x \preceq y$, where

$$
M(x, y)=\max \left\{p(x, y), p(x, T x), p(y, T y), \frac{p(x, T y)+p(y, T x)}{2}\right\}
$$

Assume that
(i) $T$ is non-decreasing;
(ii) there exists an element $x_{0} \in X$ such that $x_{0} \preceq T x_{0}$;
(iii) if $\left\{x_{n}\right\}$ is a sequence in $X$ such that $x_{n} \preceq x_{n+1}$ for all $n$ and $x_{n} \rightarrow x \in X$ as $n \rightarrow \infty$, then there exists a subsequence $\left\{x_{n(k)}\right\}$ of $\left\{x_{n}\right\}$ such that $x_{n(k)} \preceq x$ for all $k$.
Then, $T$ has a fixed point $z \in X$ such that $p(z, z)=0$.
Corollary 3.25 ([3], Theorem 3.7). Let $(X, d, \preceq)$ be a complete partially ordered metric space. Let $f: X \rightarrow$ $X$ be a given mapping. Suppose the following conditions hold:
(i) $f$ is non-decreasing;
(ii) there exists $x_{0} \in X$ such that $x_{0} \preceq f x_{0}$;
(iii) if $\left\{x_{n}\right\}$ is a non-decreasing sequence with $x_{n} \rightarrow z$, then $x_{n} \preceq z$ for all $n \in \mathbb{N}$;
(iv) there exists a simulation function $\zeta$ such that for every $(x, y) \in X \times X$ with $x \preceq y$, we have

$$
\zeta(d(f x, f y), M(f, x, y)) \geq 0
$$

where

$$
M(f, x, y)=\max \left\{d(x, y), d(x, f x), d(y, f y), \frac{d(x, f y)+d(y, f x)}{2}\right\}
$$

Then, $\left\{f^{n} x_{0}\right\}$ converges to a fixed point of $f$.
Corollary 3.26. Let $(X, \sigma, \preceq)$ be a complete partially ordered metric-like space. Let $T: X \rightarrow X$ be $a$ given mapping. Suppose there exist a simulation function $\zeta \in \mathcal{Z}^{*}$ and a lower semi-continuous function $\varphi: X \rightarrow[0, \infty)$ such that

$$
\zeta(\sigma(T x, T y)+\varphi(T x)+\varphi(T y), \sigma(x, y)+\varphi(x)+\varphi(y)) \geq 0
$$

for all $x, y \in X$ satisfying $x \preceq y$. Assume that
(i) $T$ is non-decreasing;
(ii) there exists an elements $x_{0} \in X$ such that $x_{0} \preceq T x_{0}$;
(iii) if $\left\{x_{n}\right\}$ is a sequence in $X$ such that $x_{n} \preceq x_{n+1}$ for all $n$ and $x_{n} \rightarrow x \in X$ as $n \rightarrow \infty$, then there exists a subsequence $\left\{x_{n(k)}\right\}$ of $\left\{x_{n}\right\}$ such that $x_{n(k)} \preceq x$ for all $k$.
Then, $T$ has a fixed point $z \in X$ such that $\sigma(z, z)=0$ and $\varphi(z)=0$.

## References

[1] T. Abdeljawad, E. Karapınar, K. Taş, A generalized contraction principle with control functions on partial metric spaces, Comput. Math. Appl., 63 (2012), 716-719. 1
[2] A. Amini-Harandi, Metric-like spaces, partial metric spaces and fixed points, Fixed Point Theory Appl., 2012 (2012), 10 pages. 1
[3] H. Argoubi, B. Samet, C. Vetro, Nonlinear contractions involving simulation functions in a metric space with a partial order, J. Nonlinear Sci. Appl., 8 (2015), 1082-1094. 1. $1.7,1.8$, 3.25
[4] H. Aydi, A. Felhi, E. Karapınar, S. Sahmim, A Nadler-type fixed point theorem in metric-like spaces and applications, Miskolc Math. Notes, (2015), accepted. 1. 1.2
[5] H. Aydi, A. Felhi, S. Sahmim, Fixed points of multivalued nonself almost contractions in metric-like spaces, Math. Sci. (Springer), 9 (2015), 103-108. 1. 1.2
[6] H. Aydi, M. Jellali, E. Karapınar, On fixed point results for $\alpha$-implicit contractions in quasi-metric spaces and consequences, Nonlinear Anal. Model. Control, 21 (2016), 40-56. 1
[7] H. Aydi, E. Karapınar, Fixed point results for generalized $\alpha-\psi$-contractions in metric-like spaces and applications, Electron. J. Differential Equations, 2015 (2015), 15 pages. 1
[8] H. Aydi, E. Karapınar, C. Vetro, On Ekeland's variational principle in partial metric spaces, Appl. Math. Inf. Sci., 9 (2015), 257-262.
[9] R. George, R. Rajagopalan, S. Vinayagam, Cyclic contractions and fixed points in dislocated metric spaces, Int. J. Math. Anal., 7 (2013), 403-411. 1
[10] P. Hitzler, A. K. Seda, Dislocated topologies, J. Electr. Eng., 51 (2000), 3-7. 1
[11] E. Karapınar, P. Kumam, P. Salimi, On $\alpha-\psi$-Meir-Keeler contractive mappings, Fixed Point Theory Appl., 2013 (2013), 12 pages. 1.6
[12] F. Khojasteh, S. Shukla, S. Radenović, A new approach to the study of fixed point theory for simulation functions, Filomat, 29 (2015), 1189-1194. 1
[13] S. G. Matthews, Partial metric topology, Papers on general topology and applications, Flushing, NY, (1992), 183-197, Ann. New York Acad. Sci., New York Acad. Sci., New York, (1994). 1
[14] B. Mohammadi, Sh. Rezapour, N. Shahzad, Some results on fixed points of $\alpha-\psi$-Ciric generalized multifunctions, Fixed Point Theory Appl., 2013 (2013), 10 pages. 1
[15] A. Nastasi, P. Vetro, Fixed point results on metric and partial metric spaces via simulation functions, J. Nonlinear Sci. Appl., 8 (2015), 1059-1069. 2.6, 2, 2.9, 3.18, 3.20
[16] S. J. O'Neill, Partial metrics, valuations, and domain theory, Papers on general topology and applications, Gorham, ME, (1995), 304-315, Ann. New York Acad. Sci., New York Acad. Sci., New York, (1996). 1
$[17]$ B. Samet, C. Vetro, P. Vetro, Fixed point theorems for $\alpha-\psi$-contractive type mappings, Nonlinear Anal., 75 (2012), 2154-2165. 1. 1.5


[^0]:    *Corresponding author
    Email addresses: afelhi@kfu.edu.sa (Abdelbasset Felhi), hmaydi@uod.edu.sa (Hassen Aydi), dongzhang@pku.edu.cn; zd20082100333@163.com (Dong Zhang)

