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Addendum 

Introduction 

A domain in the Riemann sphere C is called a circle domain if 

every connected component of its boundary is either a circle or a point. 

In 1908, P. Koebe [Kol] posed the following conjecture, known as Koebe's 

Kreisnormierungsproblem: A ny plane domain is conformally homeomorphic 

to a circle domain in C. When the domain is simply connected, this is the con

tent of the Riemann mapping theorem. The conjecture was proved for finitely 

connected domains and certain symmetric domains by Koebe himself ([K02], 

[K03]); for domains with various conditions on the "limit boundary compo

nents" by R. Denneberg [De], H. Grotzsch [Gr], L. Sario [Sa], H. Meschowski 

*The authors were supported by N.S.F. Grants DMS-9006954 and DMS-9112150, respectively. The 

authors express their thanks to Mike Freedman, Dennis Hejhal, Al Marden, Curt McMullen, Burt Rodin, 

Steffen Rohde and Bill Thurston for conversations relating to this work. Also thanks are due to the referee, 

and to Steffen Rohde, for their careful reading and subsequent corrections. 

The paper of Sibner [Si3l served as a very useful introduction to the subject. 
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([Mel], [Me2]), K.L. Strebel ([Strl], [Str2]), L. Bers [Be], A. Haas [Haa] and 

others; and for domains quasiconformally homeomorphic to a circle domain 

by R.J. Sibner [Sil] , [Si2]. 

In this article we prove the following theorem: 

THEOREM 0.1. Any domain 0 in C, whose boundary ao has at most 

countably many components, is conformally homeomorphic to a circle domain 

0* in C. Moreover 0* is unique up to Mobius transformations, and every 

conformal automorphism of 0* is the restriction of a Mobius transformation. 

The uniqueness of 0* in the above theorem can fail if 0 has uncountably 

many boundary components. The theory of quasiconformal maps and the 

Beltrami equation (cf. [LV]) can be used to show that the complement of a 

Cantor set in C of nonzero area provides such an example. This is done by 

placing a nonzero Beltrami differential supported on the Cantor set and solving 

the Beltrami equation to obtain a quasiconformal map which is conformal 

outside the Cantor set. 

A circle domain in a Riemann surface is a domain, whose complement's 

connected components are all closed geometric disks and points. Here a geo

metric disk (or, in short, a disk) means a topological disk, whose lifts in the 

universal cover of the Riemann surface (which is the hyperbolic plane, the 

euclidean plane or the sphere) are round. As a consequence of Theorem 0.1 

we have the following theorem: 

THEOREM 0.2. Let 0 be an open Riemann surface with finite genus and 

at most countably many ends. Then there is a closed Riemann surface R* such 

that 0 is conformally homeomorphic to a circle domain 0* in R*. Moreover 

the pair (R*, 0*) is unique up to conformal homeomorphisms. 

Circle domains are closely related to circle packings, and results similar 

to the above hold for circle packings. Recall that a circle packing P is a col

lection of closed geometric disks with disjoint interiors. The (tangency) graph, 

or nerve, of a circle packing P is a graph, whose vertices are in one-to-one 

correspondence with the packed sets, and an edge appears in the graph if and 

only if the corresponding disks are tangent. The carrier of a circle packing 

P is the union of the packed disks and the finite interstices (the connected 

components of the complement, whose boundaries lie on finitely many of the 

packed disks). The circle packing theorem says that, for any triangulation T 

of the 2-sphere, there is a circle packing in C, unique up to Mobius trans

formations, whose graph is combinatorially equivalent to the I-skeleton of T. 

This theorem was first discovered by Koebe [Ko4], who obtained it as a limit

ing case for his uniformization theorem of finitely connected domains as circle 
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domains. 1 But the circle packing theorem was unnoticed, or forgotten, until 

W.P. Thurston [Th1] rediscovered it as a corollary of E.M. Andreev's theorem 

([An1], [An2l). Thurston [Th2] then conjectured that finite circle packings can 

approximate the Riemann map from a simply connected domain to the unit 

disk. This conjecture was proved by B. Rodin and D. Sullivan [RoSu], and 

much research on circle packings followed. 

A slightly modified proof of Theorem 0.1 yields the following generaliza

tion of the circle packing theorem to infinite triangulations: 

THEOREM 0.3. Let T be a triangulation of a domain in t with at most 

countably many boundary components. Then there is a circle packing P in t 
whose graph is combinatorially equivalent to the 1-skeleton of T and whose 

carrier is a circle domain. Moreover P is unique up to Mobius transforma

tions. 

This theorem was conjectured in [Sch2]. More generally we have the 

following theorem: 

THEOREM 0.4. Let T be a triangulation of a finite-genus open surface 

with at most countably many ends. Then there are a closed Riemann surface 

R and a circle packing PeR whose graph is combinatorially equivalent to the 

1-skeleton of T and whose carrier is a circle domain in R. Moreover Rand 

P are unique up to conformal or anticonformal homeomorphisms. 

As a special case of Theorem 0.3 we have the following corollary: 

COROLLARY 0.5. Let T be a triangulation of a simply connected plane 

domain. Then there is a circle packing P in C whose graph is combinatorially 

equivalent to the 1-skeleton of T and whose carrier is either the (euclidean) 

plane C or the unit disk U. Moreover P is unique up to Mobius transforma

tions. 

The 1-skeleton of T is called a parabolic graph if the carrier of the circle 

packing P of the above corollary is equal to C; otherwise it is called a hyper

bolic graph. In [HeSch] and [BSte2] some combinatorial criteria are given for 

determining if a graph is parabolic or hyperbolic. 

The uniqueness (or rigidity) statement of Corollary 0.5 was previously 

proved by the second author in [Sch2]. In the restricted case, when there is a 

uniform upper bound on the valences of all the vertices in the triangulation 

T, the existence statement of Corollary 0.5 follows from [BSte1], and the 

uniqueness can be obtained by the methods of [RoSu] or [He2] (see also [Roll). 

IThe authors thank Horst Sachs for this reference. 
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This work originated with the proof of Theorem 0.3, and then we noticed 

that the techniques apply to circle domains as well. However the proof of 

Theorem 0.1 does not mention circle packings. 

Theorem 0.1 has two parts: uniqueness and existence. The uniqueness is 

derived from an analysis of fixed-point indices of mappings. Given a domain 

n c C and a mapping f : an -t C, the fixed-point index of f can be defined 

as the total number of fixed points of a continuous map F : n -t C whose 

restriction to an is f, counting multiplicities. (One should restrict f to having 

no fixed points, and F to having only isolated fixed points.) This number does 

not depend on the choice of F. Conformal maps have only positive-multiplicity 

fixed points, and so, if the index of f is negative, then one can conclude that 

there is no continuous F whose restriction to an is f and whose restriction to 

n is conformal. The first fundamental observation in the proof of uniqueness 

is that the index of any orientation-preserving homeomorphism that takes a 

circle to a circle is nonnegative; thus much information is available for do

mains that have circles as boundary components. As was known already to 

Strebel [Str1], this observation implies that a conformal homeomorphism be

tween circle domains with countably many boundary components that extends 

continuously to the boundary is a Mobius transformation. However Strebel 

was not able to prove the continuous extension to the boundary, as is done 

below.2 

One of the main tools we use both in the uniqueness and existence parts 

of Theorem 0.1 is the following Schwarz-Pick lemma for multiply connected 

domains: 

THEOREM 0.6 (Schwarz-Pick lemma for multiply connected domains). 

Let U c C denote the open unit disk and let A and A * be Jordan domains in C 

with A ::::> U ::::> A *. Let n be a domain, which is obtained from A by the deletion 

of a closed disjoint union of at most countably many closed (geometric) disks 

and points in A. Similarly let n* be a domain obtained from A * by the deletion 

of a closed disjoint union of at most countably many closed disks and points. 

Suppose that f : n -t n* is a conformal homeomorphism between nand n* 

and that fB(aA) = aA*. Then f is a contraction in the hyperbolic metric in 

the following sense: If p, q E n n U are distinct, then 

where dhyp("') denotes the distance in the hyperbolic metric of U. Further

more, if equality holds for one pair p =1= q, then n c U and f is a restriction 

to n of a hyperbolic isometry. 

2The authors thank Dennis Hejhal for pointing out this work of Strebel. 
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This is already an interesting result in the finite-connectivity case; that 

is, when the collection of deleted disks and points is finite. Our proof of this 

theorem is also based on fixed-point arguments. A version of the Schwarz-Pick 

lemma for circle packings was previously obtained by Rodin ([Rol], [R02]) and 

by A. Beardon and K. Stephenson ([BStel], [BSte3]). 

Both the proof of the continuous extension to the boundary and the proof 

of existence use transfinite induction, where the induction is with respect to the 

"complexity" of the boundary, as in Sibner's paper [Si3]. We prove existence 

by taking limits of maps from simpler sub domains of D. A maximum modulus 

principle and normality results, as well as the Schwarz-Pick lemma, are needed 

to conclude that the limit has the required properties. 

1. The space of boundary components 

In this section we recall the definition and properties of the space of 

boundary components of an open planar set. 

We will use the term domain for a connected open set in the Riemann 

sphere C. Let D be a domain in C. The collection B(D) of boundary com

ponents of D has the structure of a compact Hausdorff space. One way to 

describe the topology on B(D) is the following: On the boundary of D, aD, 

consider the equivalence relation '" in which z '" w if and only if z and w 

belong to the same connected component of aD. Then B(D) is the set of 

equivalence classes of "', B(D) = aD/ "', with the quotient topology. 

An intrinsic way to describe B(D) is as the space of ends of D, denoted 

by £(D). An end e E £(D) is a function that ,assigns to each compact subset 

FeD a connected component e(F) of D - F in such a way that e(F) ~ e(F*) 

whenever F c F*. The topology on the collection of ends is then defined as 

the minimal topology containing all sets of the form {e E £(D) : e(F) = C}, 

where F is some compact subset of D and C is some connected component 

of D - F. It is then not hard to check that B(D) is naturally homeomorphic 

to the space of ends. (The end eK corresponding to a boundary component 

K E B(D) is the end for which eK(F) is the connected component of D - F 

whose closure intersects K, whenever FeD is compact.) Since the space of 

ends is clearly independent of the embedding of D in C, we have the following 

well-known fact: 

FACT 1.1. Let f : D -----+ D* be a homeomorphism of connected open sets 

in C. Then f induces a canonical homeomorphism fB : B(D) -----+ B(D*). 

In the following, we shall use the notation fB for that homeomorphism 

induced by f. 
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This article deals with domains n, where B(n) is at most countable (and 

nonempty), and henceforth we make this assumption on B(n). From Baire 

category considerations it follows that any countable compact Hausdorff space 

has isolated points. Given a topological space X, let X' be X - {its isolated 

points}. Then X' is closed in X. Now, for each ordinal a, we define X Q 

by transfinite induction (see [Hau] for background on ordinals and transfinite 

induction): let XO = X; for successor ordinals a = j3 + 1 let X Q = (X.B)'; and 

for limit ordinals a define XQ = n.B<Q X.B. Then, for each ordinal a, XQ is 

closed in X. 

Since X' eX, we have X' =/: X for every closed nonempty subset X 

of B(n). There is some ordinal j3 so that B(n).B = 0. Let 'Y be the minimal 

ordinal with that property. By compactness, 'Y must be a successor ordinal 

and 'Y is, of course, countable. Let a be its predecessor. We will refer to a as 

the rank of n. The rank is also defined as the only ordinal a such that B(n)Q 

is finite and nonempty. If B(n)Q contains n points, 0 < n < 00, then the pair 

(a, n) will be called the type of n. For every ordinal j3, an isolated point of 

B(n).B will be called a boundary component of rank j3. 

2. The fixed-point index 

Definition. Let 'Y be an oriented Jordan curve in the plane C. Let 1 : 
'Y --7 C be a continuous map without fixed points. The (fixed-point) index 

of I, denoted by index(f), is defined to be the winding number with respect 

to the origin 0 of the closed curve I(z) - z as z varies in 'Y. In other words, 

index(f) is the winding number of go 'Y around 0, where g(z) = I(z) - z and 

'Y is parametrized in accordance with its orientation. 

If the domain of definition of 1 is a finite, disjoint union of oriented 

Jordan curves in C (and 1 has no fixed points), then the index of 1 is defined 

as the sum of the indices of the restrictions of 1 to the individual curves. 

Definition. Let 1 : A --7 C be continuous, where A c C, and suppose that 

z E int(A) (the interior of A) is an isolated fixed point of I. The index of 1 
at z, denoted by index(f, z), is defined as the index of the restriction of 1 to 

aD, where DcA is a closed disk that contains z in its interior, but does not 

contain any other fixed point of I, and where aD is positively oriented with 

respect to D. Considering homotopies makes it clear that index(f, z) does not 

depend on the particular choice of D. The index of 1 at z will also be called 

the multiplicity of the fixed point z. 

THEOREM 2.1 (Poincare-Ropf). Let A c C be a compact set that is the 

closure 01 its interior and whose boundary consists 01 finitely many disjoint 
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Jordan curves. Let the boundary components oj A be positively oriented with 

respect to A. Suppose that J : A ---7 <C is continuous, has only isolated fixed 

points and has no fixed points on the boundary oj A. Then the index oj the 

restriction oj J to aA is equal to the sum oj the indices oj J at all its fixed 

points. 

Remarks. A simple and elementary proof of Theorem 2.1 is given below. 

However, for the sake of the reader whose topology is a little rusty, we will 

now try to put Theorem 2.1 in perspective. The common formulation of 

the Poincare-Hopf theorem (cf. [Mil, [GPo]) is that on a compact smooth 

manifold without boundary the number of zeroes, counting multiplicities, of 

any continuous vector field with only isolated zeroes is equal to the Euler 

characteristic of the manifold. This relates to our setting in the following way: 

A function J : A ---7 <C gives a vector field v(z) = J(z) - z, and the fixed points 

of the function J correspond to the zeroes of the vector field v. 

The boundary enters the picture in the usual manner: given a compact 

smooth manifold M with boundary aM and a zeroless vector field v on aM 

(with values taken in the tangent space of M, denoted by TM), the number of 

zeroes of a continuous extension of v to all of M with only isolated zeroes is 

independent of the extension and is therefore an invariant of the pair (M, v). 

That is an easy consequence of the Poincare-Hopf theorem, as follows: Let 

VI, v2 be two such extensions and let M' be a manifold identical to M, but 

with the reversed orientation. Glue M and M' along the boundary (via the 

identification of aM and aM') to form a manifold M* without boundary. Now 

v is a vector field on aM with values in T M*. Extend it to some continuous 

vector field v' on M' c M* with only isolated zeroes. Now consider two vector 

fields on M*: WI, which is VI on M and v' on M', and W2, which is V2 on M 

and v' on M'. The Poincare-Hopf theorem implies that the number of zeroes 

of WI and W2 is the same, and that says that the number of zeroes of VI and 

V2 is the same. 

The Lefschetz fixed-point theorem is also very much related. Its rele

vant consequence here is that an orientation-preserving homeomorphism of the 

sphere C with only isolated fixed points has, counting multiplicities, 2 fixed 

points. (The number 2 appears as the Euler characteristic of the sphere.) 

This fact is in the background of this article. For example, consider a con

formal homeomorphism of C. By composing with a Mobius transformation, 

one can arrange to get at least 3 fixed points and, as we shall see below, it 

is impossible in this case to get fixed points with negative index. Therefore, 

by the Lefschetz theorem, there must be nonisolated fixed points. This says 

that the composition must be the identity map, and the original conformal 

homeomorphism must be a Mobius transformation. This simple proof that 
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any conformal homeomorphism of C is a Mobius transformation can be seen 

as the prototype for the proofs of our rigidity results below. 

ProoJ oj Theorem 2.1. Suppose first that J has no fixed points. Define 

F: A ~ C - {O} by F(z) = J(z) - z. The boundary of A, with the orientation 

induced by A, is obviously trivial in the first homology of A. Therefore its 

image under F in the first homology of C - {O} is also O. This means that the 

index of the restriction of J to the boundary of A is o. And so the theorem 

holds in this case. 

Note that the assumptions imply that J will have at most finitely many 

fixed points. If J has fixed points Zl, ... , Zk, then let D 1, ... , Dk be small 

disjoint closed disks in int(A) containing Zl, ... , Zk in their respective interiors. 

Let A* be the closure of A-u7=1 Dj. In A* the map J has no fixed points, and 

so the index of the restriction of J to aA* is O. Each aDj has the opposite 

orientations as a boundary component of A * . Therefore the index of the 

restriction of J to aDj is negated if one takes the orientation induced by A*. 

We conclude that the index of the restriction of J to aA is equal to the index 

of the restriction of J to U7=1 aDj. The theorem follows. 0 

A variation of the following lemma appears in [Str1]. 

CIRCLE INDEX LEMMA 2.2. Let J, K be Jordan curves in C, positively 

oriented with respect to the Jordan domains that they bound (in C); and let 

J : J ~ K be an orientation-preserving homeomorphism with no fixed points. 

Then 

(1) index(J) = index(J-l). 

(2) IJ J is contained in the closure oj the Jordan domain determined by 

K, or K is contained in the closure oj the Jordan domain determined by J, 

then index(J) = 1. 

(3) IJ the intersection oj K and J contains at most 2 points, then 

index(J) ~ O. 

(4) IJ J and K are circles, then index(J) ~ O. 

Proof. Let g : K ~ C be defined by g(z) = J-l(z) - z. Then the 

winding number around the origin of 9 0 J : J ~ C is clearly the same as that 

of g. But go J(z) = z - J(z), which has the same winding number around 0 

as z ~ J(z) - z. Therefore part (1) holds. 

Let j and K denote the closures of the Jordan domains determined by J 

and K, respectively. To prove part (2) suppose that J c K. Let h : Jx [0, 1] ~ 

K be a homotopy from the identity map of J to some constant c E int(K) 

with the property that h(z, t) ~ K for t > O. Define H(z, t) = J(z) - h(z, t) 

for z E J, t E [0, 1]. Then 0 is not in the image of H, and H is a homotopy 

from z ~ J(z) - z to z ~ J(z) - c. Since c E int(K), the map z ~ J(z) - c 
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g(K) -- 40- g(J) 

g(zo) ~ 
~ g(f(zo)) 

FIGURE 2.1. After the isotopy. 

has the winding number 1 around O. Therefore the map z ---+ J(z) - z has 

the winding number 1 around 0, and index(f) = 1. Using (1), we see that (2) 

holds. 

Consider now the case where the interiors of k and J are disjoint. Let 

h : J x [0,1] ---+ C - int(k) be a homotopy from the identity map on J to 

some constant c rf. k with the property that h(z, t) rf. k for t > O. Define 

H(z, t) = J(z) - h(z, t) for z E J, t E [0,1]' as in the previous paragraph. Then 

H is a homotopy from z ---+ J(z) - Z to z ---+ J(z) - c in C - {O}. The winding 

number of z ---+ J(z) - c around 0 is zero, because c rf. k. This shows that the 

winding number of z ---+ J(z)-z around 0 is also zero. Therefore index (f) = 0, 

in the case where the interiors of k and J are disjoint. 

To prove part (3), it remains to consider the case where J and K in

tersect in exactly 2 points and neither J c k nor K c J. In that case, let 

h: (JUK) x [0,1] ---+ C be an isotopy from the identity map on JUK to a map 

9 : J U K ---+ C with the property that g( J) is the square and g( K) is the circle 

indicated in Figure 2.1. Let H(z, t) = h(f(z), t) - h(z, t) for z E J, t E [0,1]. 

Then H is a homotopy in C - {O} from z ---+ J(z) - Z to z ---+ g(f(z)) - g(z); 

therefore index(f) is the winding number of z ---+ g(f(z)) - g(z) around O. If 

Zo is some point where g(f(z)) - g(z) is real and positive, then g(zo) must 

be in the line segment joining the 2 intersection points of g(J) and g(K); 

obviously g(f(zo)) is to the right of this line segment. Therefore, as z moves 

near Zo in the positive direction along J, the imaginary part of g(z) decreases 

and the imaginary part of g(f (z)) increases. This implies that the imaginary 

part of g(f(z)) - g(z) is increasing near every point Zo E J where the curve 

z ---+ g(f(z)) - g(z) crosses the positive real ray. Thus the winding number 

around 0 of this curve is nonnegative, and the proof of (3) is complete. 

Now part (4) follows from (2) and (3). D 

We now recall another well-known fact. 
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q3 q2 

P3 P2 

P4 Pi 

q4 qi 

FIGURE 2.2. These rectangles are conformaily unequivaient. 

FACT 2.3. Let 0 c C be open and connected and let f : 0 -+ C be an 

analytic map that is not the identity. Then f has only isolated fixed points in 

0; and if z is a fixed point of f, then index(J, z) ~ l. 

Proof. Since f is not the identity, f(z)-z is not identically 0 and therefore 

has only isolated zeroes in O. So the fixed points of f are isolated. The 

multiplicity of a 0 of f(z) - z is the fixed-point index of f at that point. Thus 

index(J, z) ~ 1 at each fixed point z. D 

Example. Consider the two rectangles in Figure 2.2. Let f be a homeo

morphism between them that maps PI, P2, P3, P4 to qI, q2, Q3, Q4, respectively. 

Then it is easy to see that the fixed-point index of f is -1. One concludes 

that there is no conformal homeomorphism between these rectangles whose 

continuous extension to the boundary takes each Pi to Qi; that is, the quadri

laterals have distinct conformal moduli. This result is hardly surprising, but 

it is meant to exhibit a simple application of the fixed-point index, which is 

very much in the spirit of our arguments below. 

The next corollary, which is more or less immediate from the above ob

servations, will be most useful. 

COROLLARY 2.4. Let f : 0 -+ 0* be a conformal homeomorphism be

tween bounded plane domains that extends continuously to a homeomorphism 

F : 0 -+ 0*. Let Bo C B(O) be a finite collection of boundary components 

of o. Suppose that the following conditions hold: 

(1) 0 has at most countably many boundary components; 

(2) all of the boundary components in B(O) - Bo and B(O*) - fB(Bo) 

are circles and points, and all of the boundary components in Bo are Jordan 

curves; 

(3) Bo contains the boundary component of 0 that is contained in the 

unbounded component of C - 0; and similarly, fB(Bo) contains the boundary 

component of 0* that is contained in the unbounded component of C - 0* ; 
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(4) F has no fixed points in any of the boundary components in Bo. 

Let n be the index of the restriction of F to the boundary components in Bo. 

Then j has at most n fixed points in O. Furthermore, if S is a set of fixed 

points of j, then the total number of fixed points for f in S, counting multi

plicity, is at most n. 

Note that conditions (4) and (3) imply that j is not the identity and 

therefore, being conformal, has only isolated fixed points in O. One conclusion 

of the corollary is that n ;?: o. 

Proof. Let S be a finite set of fixed points of j and let m be the total 

number of fixed points in S, counting multiplicity. Because j is conformal, all 

of the fixed points of j have positive multiplicity. Therefore it is sufficient to 

show that m :(: n. 

Our first goal is to make a perturbation to the case that F has no fixed 

points in a~. For any constant c E C with Icl sufficiently small, the map 

z -+ F(z) + c will have at least m fixed points, counting multiplicities, in 

some neighborhood of S. (This follows from RoucM's theorem, and it is also 

clear from the topological definition.) 

Let J E B(O) - Bo be a boundary component of O. Since J and jB(J) 

are circles or points, the set of complex numbers c such that the mapping 

z -+ F(z) + c has a fixed point in J is a closed set with empty interior in C. 

Therefore, since the collection of boundary components is countable, by Baire 

category considerations there are complex numbers c arbitrarily close to 0 so 

that z -+ F(z) + c has no fixed points on the boundary components in B(O)

Bo. Since F has no fixed points on the boundary components in Bo, we can 

find acE C arbitrarily close to 0 such that z -+ F(z) + c will have no fixed 

points in a~. Pick such a c with Icl sufficiently small that 

(a) z -+ f(z) + c has at least m fixed points in 0, counting multiplicity, 

(b) the index of the restriction of the map z -+ F (z) + c to the boundary 

components in Bo is still n. Define Fe(z) = F(z) + c. 

If {zo} is a boundary component of 0 consisting of a single point, then 

Fe(zo) =I- zo, since Fe has no fixed points in a~. 

When J is a circle in C, we will denote by D( J) the closed disk in C 

determined by J. Let B+ be the set of boundary components J in B(O) - Bo, 

which are circles and for which D(J) n D(Fe(J)) =I- 0. Let B_ consist of all 

the other circle boundary components in B(O) - Bo. 

The set B+ is necessarily finite. To see this, consider an infinite sequence 

of distinct circles in B+. The radii of these circles must tend to O. By taking 

a subsequence, if necessary, we may assume that this sequence of circles con

verges to some point. This point would necessarily be a fixed point for Fe on 

a~, which gives a contradiction and shows that B+ is finite. 
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Let ~ = 0 U (UJEB- D(J)). We now continuously extend the map Fe to 

a map G : ~ ~ C by letting the restriction of G to every D(J), J E B_, be 

an arbitrary homeomorphism onto D(Fe(J)), which agrees with Fe on J. By 

the definition of B_, the fixed points of G will be exactly those of Fe. 

Since B+ is finite, ~ is a closed set, whose boundary consists of finitely 

many Jordan curves (Bo U B+). What is the index of the restriction of G to 

a~? The index of the restriction of G to the boundary components in Bo is n. 

On the other hand, the Circle Index Lemma 2.2 tells us that the index of the 

restriction of G to every J E B+ is nonnegative, since J and G(J) are circles, 

provided that we consider J with the orientation induced by D( J) and that 

G is orientation preserving. But for J E B+ the disks D( J) and D( G( J)) are 

disjoint from ~ and G(~), respectively; hence G is orientation preserving, and 

the orientation we must consider for J is the opposite orientation from the one 

induced by D(J). Therefore the index of the restriction of G to every J E B+ 

is nonpositive. Thus the index of the restriction of G to a~ is at most n. 

We now appeal to Theorem 2.1, and conclude that the total number of 

fixed points of G, counting multiplicities, is at most n. Certainly the same 

would be true for Fe. This gives n ~ m, since every fixed point of G has 

positive multiplicity, and so the proof of the corollary is complete. 0 

3. The Uniqueness Theorem 

Recall that a circle domain in C is a connected open subset of C, all 

of whose boundary components are circles and points. We now restate the 

uniqueness part of Theorem 0.1. 

THE UNIQUENESS THEOREM 3.1. Let 0, 0* be circle domains in the Rie

mann sphere having at most countably many boundary components. Suppose 

that f : 0 ~ 0* is a conformal homeomorphism of 0 onto 0*. Then f is a 

restriction to 0 of a Mobius transformation and, in particular, 0 and 0* are 

Mobius equivalent. 

BOUNDARY EXTENSION THEOREM 3.2. Let 0,0* be open connected sets 

in the Riemann sphere and let f : 0 ~ 0* be a conformal homeomorphism 

between them. Let W be an open subset of B(O), which is at most countable. 

Suppose that the boundary components of 0 corresponding to elements of W 

are all circles and points and that the corresponding (under f) boundary com

ponents of 0* are also all circles and points. Then f extends continuously 

to the boundary components in Wand extends to a homeomorphism between 

U{ K : K E W} U 0 and U{ K* : K* E fB (W)} U 0* . 

In the hypotheses of the theorem, we do not assume that f B (K) is a circle 

when K E W is a circle or that fB(K) is a point when K E W is a point. 



117

FIXED POINTS AND KOEBE UNIFORMIZATION 381 

The proof of Theorem 3.2 will appear in the following sections. Now we 

will see how the Uniqueness Theorem 3.1 follows from our Boundary Extension 

Theorem 3.2. This was also pointed out by Strebel [Str1] (who was unable to 

prove Theorem 3.2). 

Proof of the Uniqueness Theorem 3.1. Assuming Theorem 3.2, we apply it 

with W = B(n) to conclude that f extends continuously to a homeomorphism 

F from n to n* (closures in C). 
Since we are free to normalize in the domain and range by Mobius trans

formations, we assume, without loss of generality, that 00 E n is a fixed point 

for f and that f has the form 

al a2 
f(z) = z + - + - + ... 

z z2 

near 00. If all of the coefficients aj are 0, then f(z) = z, and we are done. 

Suppose that j is the least positive integer with aj =1= 0. Then there is a real 

number R large enough that 8D(0, R) c nand If(z) - z - ajz-jj < lajz-jl 

for z E 8D(0, R), where D(O, R) is the disk centered at ° with radius R. The 

index of the restriction of f to 8D(0, R) is the same as the winding number 

around ° of the restriction of z ---t ajz-j to 8D(0, R), because the homotopy 

H: 8D(0, R) x [0, 1]---t te, H(z, t) = (1- t)(f(z) - z) + tajz-j , has no zeroes. 

But that winding number is - j, which is negative. If we now look at the 

restriction of f to n n D(O, R), this gives a contradiction to Corollary 2.4 

with Bo = {8D(0, RH. This contradiction shows that all of the coefficients aj 

are 0, completing the proof. D 

4. The Schwarz-Pick lemma 

The generalization Theorem 0.6 of the Schwarz-Pick lemma is of central 

importance in this work;3 we now start its proof. 

Note that the assumptions in Theorem 0.6 imply that n is a domain that 

has at most count ably many boundary components, and all but one of them 

are circles and points. The same holds for n*. 

The following lemma, which will also be used in the proof of Theorem 3.2, 

shows that Theorem 0.6 reduces to Theorem 3.2. 

LEMMA 4.1. Theorem 0.6 is true under the additional hypothesis that f 

extends to a homeomorphism of n - 8A onto n* - 8A*. 

Proof. Let p =1= q be two points in n and assume first that f (P) = p 

and f(q) = q. Suppose that f is not the identity. Let h(z) = az, where 

3 A generalization of this Schwarz-Pick lemma for noninjective mappings will appear in a subsequent 

paper. 
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lal < 1, but a is sufficiently close to 1 that the composition h 0 f still has 

2 distinct fixed points, p' near p and q' near q. Now h(A*) c U. Therefore 

there is a Jordan curve 'Y C 0, which separates h(O*) from aA. Since h 0 f 
maps 'Y into h(O*), the index of the restriction of h 0 f to 'Y is 1, by part 

(2) of Lemma 2.2. Let E be the intersection of 0 with the Jordan domain 

bounded by'Y. The points p' and q' must certainly be in E, because they are 

in 0 n h(O*). We therefore get a contradiction to Corollary 2.4 by considering 

the restriction of h 0 f to E and taking Bo = {'Y}. This contradiction shows 

that f must be the identity if it fixes 2 distinct points. 

We now deal with the general case. Suppose that p, q EOn U, p =I q, 

and d hyp (f(p), f(q)) ~ dhyp(P, q). Then there is a Mobius transformation g, 

which takes f(p) to p, takes f(q) to q and takes U into U. (If gl, and g2 are 

hyperbolic isometries of U taking p and f(p), respectively, to 0, then one can 

take g(z) = g11(g2(Z)gl(q)/g2(f(q))).) Then, by the above, the composition 

go f is the identity on 0*. Now g, being the inverse of f, maps A* C U 

onto A ::J U. Hence 9 is a Mobius transformation, which maps U onto U, and 

it is therefore a hyperbolic isometry. This implies that f is the restriction of 

a hyperbolic isometry and completes the proof of the lemma. 0 

5. Extension to the boundary 

In this section we will prove Theorem 3.2 using transfinite induction. In 

the inductive step we will encounter the situation where a conformal map f 
extends continuously to all but perhaps one of the boundary components of 

its domain, and we will have to prove that it also continuously extends to that 

one boundary component. The following lemmas, like Lemma 4.1, deal with 

the situation where there is only one boundary component to which we do not 

know if f extends. 

LEMMA 5.1. Let f : 0 ---+ 0* be a conformal homeomorphism between 

connected open subsets of the unit disk U, which extends continuously to a 

homeomorphism from 0 - au onto 0* - au. Suppose that au is a boundary 

component of both 0 and 0* and that fB(aU) = au. Further suppose that 

J and J* = fB(J) are corresponding boundary components of 0 and 0*, all 

other boundary components of 0 and 0* are circles and points and there are at 

most countably many such boundary components. Consider U with the hyper

bolic metric. Then, given any € > 0, f is bi-Lipschitz (in the hyperbolic metric) 

on the set L£ of points in 0 having hyperbolic distance > € from J. Further

more the restriction of f to L€ extends to a bi-Lipschitz homeomorphism from 

U onto U. 
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Proof. We will first verify a Lipschitz condition near O. Assume that J 

does not separate 0 from O. Let a > 0 be some number less than the euclidean 

distance from 0 to J and set g(z) = z/a. Then g(J) does not intersect U. 

Let 'Y C g(O) be some Jordan curve separating g(J) from U and let ~ be 

the connected component of g(O) - 'Y containing O. The restriction of the 

map f 0 g-1 to ~ then satisfies the conditions of Lemma 4.1. We conclude 

from that lemma that f 0 g-1 is hyperbolic-length-decreasing on ~ n U. But 

the restriction of 9 to the disk D(O, a/2) of euclidean radius a/2 around 0 

is Lipschitz in the hyperbolic metric, with the Lipschitz constant 1 = l(a) 

depending only on a. Since f 0 g-1 is contracting, it follows that f is Lipschitz 

with constant l(a) on D(O, a/2) nO. 

For every number t E (0,1) let h(t) denote the hyperbolic radius of a circle 

of euclidean radius t around O. Since we may precompose f by any hyperbolic 

isometry, our above Lipschitz condition near 0 translates to every point in 

U - J as follows: Let P be a point in U whose hyperbolic distance from J is 

greater than h(a); then f has Lipschitz constant l(a) on 0 n Dhyp(p, h(a/2)), 

where Dhyp(p, r) denotes the disk of hyperbolic radius r centered at p. By 

taking limits, we find that the continuous extension of f to 0 - au, which we 

continue to denote by f, is Lipschitz with constant l(a) on On Dhyp(p, h(a/2)). 

Let M ¢ {J, aU} be some circle boundary component of 0, which bounds 

a disk D(M), and let M* be the corresponding boundary component of 0*. 

As we have seen, for every point P in M, f satisfies a local Lipschitz condition 

at p. (The local Lipschitz constant of f at P is, by definition, 

lim sup dhyp(f(Pl) , f(P2))/ dhyp(Pl,P2) 

as PI and P2 tend to p, while PI i- P2.) But one can further extend f to D(M) 

by mapping the hyperbolic center of D(M) to the center of the corresponding 

disk D(M*) and extending radially. Clearly the local Lipschitz constant of 

this extension at any point in D(M) is at most the supremum of the local 

Lipschitz constants of f in M. We extend f in this way over the interior of 

every such boundary circle M to obtain a map F. 

Now take any E' > 0 and let Rfl be the set of points in U having distance 

of at least E' from J and which are not separated from au by J. From the 

above, it follows that F satisfies a uniform local Lipschitz condition on Rf/; 

that is, there is some constant 1 such that all of the local Lipschitz constants 

of F in Rfl are bounded by l. Since the same arguments can be applied to the 

inverses of f and F, and since F(Rf/) is bounded away from J*, we conclude 

that F-l also satisfies a uniform local Lipschitz condition on F(Rf/). It is 

easy to see that one can modify F in the complement of Rf and then extend 

F to the whole of U so that the resulting homeomorphism, which we will 

continue to denote by F, as well as its inverse will satisfy a uniform local 
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Lipschitz condition on U. (To get an explicit construction take an analytic 

Jordan curve (3 c n, which separates J from R f • Let Dl be the topological 

disk bounded by (3, let D2 be the topological disk bounded by F((3) and let 

91 and 92 be Riemann maps from a euclidean geometric disk D to Dl and 

D2, respectively. Note that 91 and 92 extend analytically to aD. Consider the 

map 9 : aD --t aD defined by 9(Z) = 92"I(F(91(Z))), This map 9 is analytic 

and therefore bi-Lipschitz in aD. Let G be the radial extension of 9 to D. 

Then G is bi-Lipschitz. Let F stay as it is outside Dl and, in Dl, redefine 

F by F(z) = 92(G(911(Z))). In other words, with 91 and 92 parametrize Dl 

and D2 as euclidean disks and then use the usual euclidean radial extension. 

Because 91,92 and G are bi-Lipschitz, so is the restriction of F to Dd 
Since the domain of F is now U, which is hyperbolically convex, clearly F 

is bi-Lipschitz (globally). (If p, q E U, take the hyperbolic line segment joining 

p and q; the image of that segment will be a path of length at most dhyp(p, q)l 

joining F(p) and F(q), where l is the uniform local Lipschitz constant of F. 

This gives dhyp(F(p) , F(q)) ~ l dhyp(P, q). A similar argument with F-1 gives 

lf dhyp(F(p) , F(q)) ~ dhyp(p, q).) Since Lf C R f , this completes the proof of 

Lemma 5.1. D 

Remark. Though we will not use this, the above argument can be used 

to show that the Lipschitz constant of f on the set Ld tends to 1 as d --t 00. 

LEMMA 5.2. Let f : n --t n* be a conformal homeomorphism between 

open connected subsets of C. Let J =1= K be boundary components of n and let 

J* and K* be the corresponding boundary components of n*. Suppose that n 
has at most countably many boundary components and all of them, with the 

possible exception of J, are circles and points. Similarly assume that all of 

the boundary components of n*, with the possible exception of J*, are circles 

and points. Also assume that f extends continuously to a homeomorphism of 

n - K onto n* - K*. Then K is a circle if and only if K* is a circle. 

Proof. We assume that K is a circle and K* is a point. Since the situation 

is symmetric, it is enough to reach a contradiction in this case. Since K* is 

a point, f extends continuously to K and maps K to K*. By replacing J 

with some Jordan curve in n separating J from K, we assume, without loss 

of generality, that J and J* are Jordan curves. 

Normalizing with Mobius transformations allows us to assume that the 

situation is as in Figure 5.1; that is, K* = {O}; K is a circle with center 

o which separates 0 from J; J separates K from J*; and J* separates J 

from 00. By further renormalization we want to replace f with a map which 

fixes some point in n, without losing the above properties. To achieve that 

let a = max{lzl : z E J}, let r be the (euclidean) radius of K and let d 
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-J* 

FIGURE 5.1 

be the (euclidean) distance from a to J*. Pick some point P E 0, so that 

If(P)1 < rdla, and consider the map g(z) = f(z)pI f(p). We have g(p) = p. 

Since Ipi > r, it follows that Ipi f(p) I > aid and, therefore, gB(J) is disjoint 

from J and separates J from 00. Let F : 0 -t g(O) be the continuous extension 

of g. By the Circle Index Lemma 2.2, the index of the restriction of F to J is 

1 and the index of the restriction of F to K is -1, when K has the orientation 

induced by 0; the sum of these is O. But F has a fixed point at p, which 

contradicts Corollary 2.4 with Bo = {K, J}. This completes the proof of 

Lemma 5.2. D 

Proof of Theorem 3.2. We will prove by transfinite induction on a that, for 

each countable ordinal a, the map f extends continuously to a homeomorphism 

from 0 U (UKEW" K) to 0* U (UK*EW~ K*), where Wo: is the collection of 

boundary components in W having rank at most a and W~ is the collection 

of corresponding boundary components of 0* . 

Suppose that this holds for all ordinals f3 < a. Let K E W be a boundary 

component of rank a and let K* be the corresponding boundary component 

of 0*. Let J c 0 be a Jordan curve separating K from every other boundary 

component of 0 that has rank ~ a, and from every boundary component 

outside W. And let E be the connected component of 0 - J, which has K as 

a boundary component. Denote by E* the image of E under f, E* = f(E), 

and let F denote the restriction of f to E. We shall show that F extends to 

a homeomorphism from E onto E*. This will clearly suffice to complete the 

inductive step. 

By the inductive hypothesis we already know that F extends to a homeo

morphism from E - K onto E* - K*. Lemma 5.2 shows that K and K* are 

either both points or both circles. If K and K* are points, then it is obvious 
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that F extends as needed, and we only consider the case where K and K* are 

circles. Since we are free to renormalize by Mobius transformations , we as

sume, without loss of generality, that K = K* = au and that E , E* c U. Now 

Lemma 5.1 applies and shows that the restriction of F to the set of points 

having hyperbolic distance at least 1, say, from J extends to a hi-Lipschitz 

homeomorphism 9 : U --+ U. We briefly reproduce here, for the convenience 

of the reader, a standard geometric argument (maybe due to Mostow), which 

shows that 9 extends to a self-homeomorphism of U. (Alternatively one can 

conclude that 9 extends to a homeomorphism of U from the fact that 9 is 

quasiconformal.) 

Let 1 be the hi-Lipschitz constant of g. Consider some straight ray A of 

infinite hyperbolic length starting at O. We now show that g(A) has 1 limit 

point in au. Take some r > O. Since the diameter of a disk of radius r + 2 is 

2(r + 2) , the preimage under 9 of the disk with center the origin and radius 

r + 2 has diameter at most 2(r + 2)1. Therefore the total length of the part 

of g(A) , whose distance from 0 is between rand r + 2, is at most 2(r + 2)l2. 

This implies that 

L 9(E) " 2n 2(r + 2)/', 

EEH(, j p(r) 

where H (r) denotes the collection of connected components of the intersection 

of g(A) with the open annulus between the circles of radii rand r + 2 around 

0, and where each 9(E) denotes the angular diameter of E with respect to 

0, O(E) = sUPx,yEE L(x , O,y) , and p(r) is the length of the perimeter of a 

hyperbolic circle with radius r. Since p(r) increases exponentially as r -+ 00, 

it follows that limn .... oo L ~ n LEe H(r) O(E) = O. This shows that g(A) , which 

clearly has some limit points in au, has in fact a unique limit point there. 

Now we extend 9 to au by letting g(p) be the unique limit point of the ray 

g(A), where A is the ray [O,p) and p is any point in au. One easily uses the 

above inequalities to verify that 9 extended thusly is continuous. Checking 

that it is a homeomorphism is also straightforward. 

This clearly implies that f extends as needed, completing the inductive 

step. An appeal to the principle of transfinite induction now establishes the 

theorem. -(Note that it is not necessary to verify the base of the induction, 

since the inductive hypothesis is empty when Q: = O. Of course the base of 

the induction is also standard.) 0 

6. Maximum modulus, normality and angles 

The results of this section, besides their independent interest, will prepare 

us for the proof of the existence part of Theorem 0.1. 
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MAXIMUM MODULUS THEOREM 6.1. Let A and A · be Jordan domains 

in It; let 0 be a domain which is obtained from A by the deletion of a closed 

disjoint union of at most countably many closed (geometric) disks and points 

in A; and similarly let 0' be a domain obtained from A· by the deletion of 

a closed disjoint union of at most countably many closed disks and points. 

Suppose that f : 0 - 0 * is a conformal homeomorphism between 0 and 0' 

that extends continuously to oA, and that fB(oA ) = oA'. Then 

I(z) - z E convex hull {f(w) - w, w E oA} 

for every point Z E O. In particular, 

sup I/(z) - zl = max I/(w) - wi. 
zEn wE8A 

Proof. Note first that Theorem 3.2 implies that f extends to a homeo

morphism between the closures of 0 and 0*. 

Let ZO E 0 and define g(z) = f(z) - f(zo) + zoo Then ZO is a fixed point 

for g. Assume that f( zo) - zo is not in the convex hull of {few) - w : w E fJA} . 

It then follows that 0 is not in the convex hull of {g(w) - w : w E fJA}. 

Therefore the winding number around 0 of the restriction of w - g( w) - w to 

fJA is O. This means that the restriction of 9 to fJA has index O. However 9 

has a fixed point at ZO, in contradiction to Corollary 2.4. This proves the first 

assertion, and the second assertion clearly follows. 0 

By the same method as above, it is possible to get estimates analogous 

to Cauchy'S estimates for the first and second derivative. This will be done in 

a subsequent paper. 

COROLLARY 6.2 (Normality). Let 0 be as above and let fk : 0 - Ok be a 

sequence of conformal homeomorphisms such that each fk and Ok satisfy the 

conditions placed on f and 0* above. Suppose that the ik converge uniformly 

on compact subsets of 0 to a function g. Then 9 is either a constant map 

or a conformal homeomorphism, and gB(K) is a circle or a point for every 

boundary component K E B(n) - {fJA}. Moreover the convergence to g is 

uniform on any subset of 0 whose closure does not intersect fJA. 

Proof. We start with the last assertion. Let E be some subset of n whose 

closure does not intersect fJA, and let f > O. There is some Jordan curve 

, c n separating E from fJA. The convergence on , is uniform. Therefore 

there is some integer N so that Ifm(z) - fk(z)1 < f for all k,m > N and all 

z E ,; equivalently, Ifm 0 f
k
-

1(w) - wi < f for k,m > N, wE lkh). Now 

apply the Maximum Modulus Theorem 6.1 to the maps fm 0 f;l to conclude 

that 11m 0 I,l(w) - wi < , for all k, m > N and all w E ME). This gives 
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Ifm(z) - ik(Z)1 < €, for all k, m > N and all Z E E, and implies the uniform 

convergence. 

That 9 is either a constant or a conformal homeomorphism is a well-known 

consequence of Rouche's theorem. Let K E 8(0) - {8A}, let W be an open set 

that contains K and whose closure is disjoint from 8A, and set Wo = W n n. 
By the above, the convergence ik -+ 9 is uniform on Woo Let € > 0 and let k 

be large enough that lik(z) - g(z)1 < € for Z E Woo Then clearly the distance 

from any point in gB(K} to ff!(K) is at most E, and the distance from any 

point in ff!(K) to gB(K) is at most L In other words, the Hausdorff distance 

from gB(K) to ff!(K) is at most (, Since ff!(K) is a circle or a point, and 

since € was arbitrary, we conclude that g8 (K) is a circle or a point, because 

the collection of circles and points is closed in the Hausdorff metric. This 

completes the proof of the normality corollary. 0 

Definition 6.3 . Let 1} C t be a circular arc with endpoints p, q and let z 

be some point not on the circle containing 1}. We define the angle of 1} from 

z, denoted by ang(z,1}), to be the length of m(1}) , where m is any Mobius 

transformation taking z to 0 and ." into au, the unit circle. (This is the 

same as the angle at z between the two circular arcs that join z to p and q , 

respectively, and which are orthogonal to 1}.) 

The definition is clearly Mobius invariant. 

ANGLE LEMMA 6.4. Let 11 be a domain obtained from a Jordan domain 

A c t by the removal of a closed, disjoint, countable union of disks and 

points in A. Suppose that f is a conformal homeomorphism from 11 onto 

a circle domain that extends continuously to a homeomorphism from a A to a 

circle. Further suppose that Zo E nand D is an open geometric disk containing 

Zo such that the boundary of the connected component of DnA that contains 

ZO , is the union of the arcs 0 c aA n D and (3 c aD n A, as in Figure 6.1. 

Then 

ang(J(zo),J(a)) "ang(ZQ, ~), 

where 1} is the arc of aD complementary to {3. 

In a slight abuse of notation we are using f to denote also the continuous 

extension of f to aA. 

Proof. By normal izing with Mobius transformations , we assume without 

loss of generality that f maps aA onto aD, respecting orientation, and that 

D = U, zo = f(zo) and 00 E 11. Striving for a contradiction, we assume 

that ang(f(zo),J(a)) < ang(ZQ , ~) , which is equivalent to ang(f(zo) , !(a)) + 
ang(zo, {3) < 27r. Then, by further normalizing with a hyperbolic isometry of 

U that fixes ZQ , we assume that {3 and f(o) are disjoint. 
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Now let i C 0 - U be some simple curve with endpoints in aA - U, such 

that i U aA separates Zo from any other connected component of U n A and 

from 00. (See Figure 6.1.) It is easy to check that such a i exists. Let 0- be 

the connected component of n - i containing Zo . We now examine the index 

of the restriction of I to the boundary component KI of n- that contains 

i and a. Let h denote that restriction and let H : a x [0, 1J - u U {3 be 

an endpoints-fixing homotopy in U U f3 from the identity map on a to some 

homeomorphism hi from a to {3. Since h(a) = I(a) C au is disjoint from {3 , 

it follows that H(z , t) =f:. fl(z) for each z E Q:, t E [0,1). Therefore the index 

of It is equal to the index of the map h : {3 U KI - Q; _ au, defined by 

J,(z) ~ h(z) for z E K! - " and J,(z) ~ h 0 h i! (z) for z E (3. But the index 

of h is clearly 0, because the Jordan domain in rt determined by {3 U Kl - a 

is disjoint from U. So the index of II is 0. 

However, every boundary component K E B(O- ) - {KI} is a circle or a 

point, and I maps these to circles and points (J extends continuously to the 

boundary, by Theorem 3.2). Since J(zo) = Zo and the index of the restriction 

h of I to KI is 0, this gives a contradiction to Corollary 2.4, as usual. This 

completes the proof of the lemma. 0 

We will also need the following elementary geometric lemma: 

LEMMA 6.5. Let Tf be a circular arc with endpoints p, q, say. Suppose that 

z is a point not on the circle containing 1} and let 6: be the circular arc with 

endpoints p, q that passes through z. Then ang(z, 7]) + 29 = 211" , where e is the 

angle between"., and 6: at p (or at q). 

Proof. By normalizing with a Mobius transformation, we assume that z = 

00. Let 0 be the center of the circle containing 7]. Then ang(o,,,.,) = ang(z, 7]). 



126

390 z.-x. H E AND O. SCHRAMM 

, 
I 

t ' t 
- ---'-----k--------------;;,-, ;A--'-----

ang(o,T/) 

FIGURE 6.2 

Now consider the angle 1/J indicated in Figure 6.2. Clearly 1/J + 1f /2 = (J 

and ang(o, 1]) + 21jJ = 7[, From these the lemma follows. 0 

7. Uniforrnization 

We will now restate and prove the existence part of Theorem 0.1. 

UNIFORMIZATION THEOREM 7.1. Every connected planar domain n with 

at most countably many boundary components is conformally equivalent to a 

circle domain. 

Proof. The proof will proceed by transfinite induction on the type of n. 
Recall that the type of 11, denoted by tp(fl), is defined as the pair (.\, n) 

such that). is a countable ordinal, n is a positive integer and B(D)A has n 

elements. The collection of such pairs is ordered lexicographically; that is, 

().\,nt) < (A2,nz) if A\ < ).2 , or)q = >'2 and nl < nz . Since this is a well 

ordering, one can transfinitely induct with respect to it. 

Let ("\, n) be the type of n. If). = 0, that is, if n has finitely many 

boundary components, then the existence was proved by Koebe. Therefore we 

will assume that 0 has infinitely many boundary components and the theorem 

holds for all domains of lesser type. Let Ko be some boundary component of 0 

of rank), (Ko E B(O)~). Let Jk, k = 1,2, .. . , be a sequence of Jordan domains 

satisfying 8Jk C 0, Jk C Jk+1 and U ~\ Jk :::) n - Ko. Define Ok = Jk n n. 
By the inductive hypothesis, since tp(Ok) < tp(O), eacil Ok is conformaJly 

homeomorphic to some circle domain. For each k let fk : Ok - Ok be such a 

homeomorphism. By normalizing with a Mobius transformation, we assume 

without loss of generality that ff(8Jk) = au and A(zo) = 0, where Zo is 

some arbitrary point in n\. Since the sequence Uk} is a normal family, by 

choosing a subsequence if necessary, we also assume that the maps !k converge 
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uniformly on compact subsets of O. Let I be the limit of the sequence Uk}. 

Then I is either the constant 0 or a conformal homeomorphism I : 0 -> 0* , 

where 0' cU. We will consider these two cases separately. 

Hyperbolic Case (J f- constant). Since the maps Ik converge to I uni

formly on compacts of 0 , we conclude from Corollary 6.2 that IB(K) is a circle 

or a point whenever K E 8(0) - {Ko} . The application of that corollary is 

feasible here, because every such K can be separated from Ko by a J ordan 

curve in 0. It only remains to show that IB(Ko) = 8U. 

L EMMA 7.2. Let W be the connected component 01 U - IB(Ko) which 

contains 0* = 1(0 ). Then W is convex in the hyperbolic metric dhyp 01 u. 

Proof. Let x, y be 2 distinct points in 0 and let their images under I 
be x",y" E n", x" = [(x) , y' = [(y). Let, > 0 and let m be such that 

x,y E nm, and dhyp(x"'/m(x)) < ,and dhyp(Y", [m(y)) < ,. Let e be the 

hyperbolic line segment joining Im(x) and Im(Y) . For k > m now consider the 

map hk = !k 0 1;;;,1, whose domain is Im(Om ). By the Schwarz- P ick lemma, 

Theorem 0.6, it follows that hk is a contraction in the hyperbolic metric and 

extends to a contraction hk of U. Define ek = hk(e). Then the length of each 

path €k is at most the length of e, which is less than dhyp(x ' , yO) + 2€ . Taking 

a limit of the €k, we get some curve e, which joins x* and y., has length at 

most dhyp(X*, yO) + 2€ and obviously lies in W. 

This shows that any 2 points in 0* can be joined by a path in W , whose 

length is arbitrarily close to the distance between the points . Since O' is open 

and W is simply connected, this implies that W contains the convex hull of 

0*; but because aw c aO" , we see that W is the convex hull of 0*. T his 

completes the proof of the lemma. 0 

Knowing now that W is convex, in order to reach a contradiction assume 

that W f- U. Then there is some hyperbolic line L , which contains a. point 

in aw, say p, and has W entirely on one side of it. (Through every point 

p E aw n U passes such a line L. ) Let L' be the hyperbolic line that is an arc 

of a euclidean circle with euclidean radius 1 and whose euclidean midpoint pi 

lies on the negative real ray. Let 9 be the hyperbolic orientation-preserving 

isometry that takes L to LI and p to p' and takes W into the region to the left 

of L'. (That is, Re(w) < Re(p') for W E g(W ).) Now let q be the euclidean 

translation q(z) = z + 1 - pl. Then q takes g(W ) into U. Furthermore q is 

clearly (strongly) expanding in the hyperbolic metric at points in g(W) near pl. 

Therefore the ma.p q 0 9 takes 0' into U and is expanding in the hyperbolic 

metric at some point of n* near p, at x· = f(x), say. Let 0: > 1 be the 

expansion factor of q 0 g at x· . 
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Since Ik - f and Ik - !' as k - 00, uniformly on compact subsets of 

n, the expansion factor of the map J 0 1k-
1 at Ik{X) tends to 1. Let k be 

large enough that this expansion factor {3 is greater than 1/0:. Then the map 

q 0 9 0 10/;;1 , Ik(nk) ~ q(g(W)) has an expansion f""tor /3a > 1 at Ik(X). 

But this contradicts the Schwarz- Pick lemma, Theorem 0.6, since the image 

of this map is contained in U) and q and 9 preserve circles. This contradiction 

completes the proof of the uniformization theorem in the hyperbolic case. 

Parabolic Case (f(n) = (o}). Define maps gk(Z) = !k(z)/ I~(zo), 

9k : Ok - C. These maps clearly form a normal family, since g~(Z(l) = l. 

Therefore we assume without loss of generality that the 9k converge uniformly 

on compact subsets of n to some map, say, g. Since g'(zo ) = 1, 9 cannot be 

a constant and therefore is a conformal homeomorphism of n onto a domain, 

say, n·. As in the hyperbolic case, it follows from Corollary 6.2 that each 

boundary component of n*, with the possible exception of gB(Ko), is a circle 

or a point. We will show that Ko = gB(Ko ) is a point (the point 00), and 

then the proof will be complete. Striving for a contradiction, assume that Ko 
consists of more than a single point and let F be the connected component of 

t - fr containing Ko. 
We first consider the case where F has interior points. Then there is a 

Mobius transformation m, which maps fr into U, and with 00 E m(F). For 

each k the map 

mogo/;;l, !kInk) ~ U 

satisfies the hypotheses of the Schwarz- Pick lemma, Theorem 0.6, and is there

fore a contraction in t he hyperbolic metric. This implies that the inverse map 

!k 0 g - l 0 m - 1 is an expansion, which clearly contradicts our assumption that 

fk --+ 0 as k --+ 00. The contradiction shows that int F = 0. 

The argument for the case where int F = 0 is more involved, but will still 

use the Schwarz- Pick lemma. Let D c t be some open geometric disk , whose 

closure D contains F such that there are at least two distinct points, say, p 

and q, in aD n F. One can take for D, for example, the closed disk with 

minimal radius, which contains F , in the spherical metric. (We allow 00 E D. ) 

We also assume that at least one of the two relatively open arcs of aD with 

endpoints p and q is disjoint from F, as we may, without loss of generality. 

Let 0 be such an arc. 

For each angle (J let 09 be thf! circul ar arc. whosf! endpoi nt.s ~re p and 

q, such that the oriented angle from 8 to 09 at P is O. We take 08 to be a 

relatively open arc; that is, p,q ~ O(). For every Z E t - {p,q} let O(z) be 

that angle 0 such that Z E 09(z)' This defines O( z) modulo 211' . However, since 

t - F is simply connected, there is a continuous function iJ : t - F --+ lR with 

B(z) = 8(z) modulo 21r for Z E t - F. 
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D, D, 

- p, 

-ih 

FIGURE 7.1 

Now let 0, ~ iof{O(z) : z E rn ~ iof{O(z) : z E t - F) , aod let 0, ~ 

sup{O(z) : z E f1') ~ sup{O(z) : z E t - F) . From the fact that F C D it 

follows that 81 and 82 are finite. Let Zl be a point in 0 ° with 8(Zl } < 81 +(-11" / 4) 

and let Z2 E 0° with 8(Z2) > 82 - {11"/ 4}. Let 111 = 6(1l' 1J2 = 6 ~, PI = 6(11+71' 

and {h = 6 ~ -71" Let D I a.nd D2 be the open disks 

D, ~ U 6" D, ~ U 6, . 
th <9<8,+11" 8~ - 71' < 8<92 

Then we have Zj E Dj, 8Vj = Pj u l1j U {p, q}, for j = 1,2. Let HI be 

the connected component of VJ - F , which contains ZI , and let H2 be the 

connected component of V 2 - F , which contains Z2. (See Figure 7.1.) 

LEMMA 7.3 . ih = 8H I - F and fh = aH2 - F are subarcs of p, and {h, 

respectively. 

Proof. Clearly 8HI - F c aDI' From the definition of 7"}, it follows that 

aH, n 111 c F , and this gives aH, - F c {31 ' 

Suppose now that av, i- av. Then the arc 111 is contained in either V 

or the complement of V , because its endpoints p and q are in aD. But since 

there must be points Z E F c V with 8(z} arbitrarily close to 81, and since 

111 = 68[, it is impossible that 111 is disjoint from V. Therefore 11, C V and 

fiJ is disjoint from D , which gives p, n F = 0. This implies that (31 = PI in 

the case where 8D "# 8V I • 

If 8V I = av, then we use t he assumption that 6 is an arc of fJV with 

endpoints p and q, which is disjoint from F. Then 6 must be equal to 111 

or PI; and thus F n 111 = 0 or F n /31 = 0. If F n PI = 0, then we get 

again /31 = {31' Therefore suppose that F n 111 = 0. (A priori this can happen. ) 

From the definitions of 81 and 7"}, it then follows that F must intersect V I. 
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Since aD = aD l and F c D , this shows that D = D l- This implies that 

fil = aRI - F is connected, because given 2 points x, y E ill. one can connect 

them by a simple path I in H I U {x , y }, and P, being connected, must be 

contained in one of the two connected components of D, - "y. This proves that 

PI is a subarc of PI; the proof for h is similar. 0 

Returning to the proof of the Uniformization Theorem 7.1, we will now 

show that H I n H 2 = 0. Observe that lh < O(z) < (h + 7r for z E H I, because 

H I is connected, Zl E H I C D J = U{6e : 81 < () < (h + 71"} and fh < O(zil < 
81 + 1r j 2. Similarly (h - 1r < 9(z) < 02 for Z E H 2o So it will be sufficient to 

show that flt + 211" ~ (h. For every z rt. F we have 81 < DC z) < (Jz. Thus if B 
is a number satisfying flt + 271" > () > fh , then 8 cannot equal O(z) modulo 27r . 

Consequently U{oo : (h + 271" > 0 > 02} C F. However, since F has empty 

interior, this gives 0, + 211" :s;;;: 02 , which establishes HI n H2 = 0. 

Let k be some integer such that g- l(Zl), g- '(Z2 ) E Ok. Let A be a J ordan 

domain , which contains g(Ok} and whose boundary J A is contained in 0' . We 

also require that 8A intersect /3, in precisely 2 points P!,ql and intersect fh 
in precisely 2 points 1'2, q2. Thanks to Lemma 7.3, it is not difficult to see 

that such a Jordan domain exists. (One can just take some Jordan curve in 

0* , which circles around F very close to F , and then modify it, if necessary, 

to avoid access intersections with /3, and ih The domain disjoint from F 

bounded by this curve is taken as A. ) 

By the inductive hypothesis, there is a conformal map fA : A n O· -+ U, 

which takes each boundary component of A n O' to a circle or a point, and 

with fA(I!A) = I!U. Let " I = I!A n HI, '" = I!A n H" {3 = ~I n A and ~ = 

aDl - {3. Now we can apply the Angle Lemma 6.4 , with fA , A n O*, z" D"a, 

in place of f , 0, Zo, D , a, respectively. We then conclude that 

By similar reasoning we also have 

ang(!A(z,),fA("')) > ang(z,,'12) . 

Because 8, < 8( Zt) < lh + (11"/4), it follows from Lemma 6.5 that ang( z" 1"/1) > 
371"/ 2. Likewise ang( z2, 1"/2} > 371" / 2. From the above we conclude that 

(7.1 ) 

and 

(7.2) 
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But 0'1 n 0'2 = 0, because HI n H2 = 0; and therefore, !A(O'I) n !A(O'2) = 0. It 

thus follows from (7.2) that 

ang(JA(z2),!A(a!l) < 1</2. 

When compared with (7.1), this gives a lower bound C > 0 for the hyperbolic 

distance from /A(ZI) to /A(Z2) in the hyperbolic metric on U. The number 

C is an absolute constant, which can be described as the hyperbolic distance 

between two distinct circular arcs in U that have common endpoints in au, 
each having an angle of rr / 4 with au (again by Lemma 6.5). 

The domain An f!* contains g(f!k ), and so we can consider the map fA 0 

go/;;I : A(f!k) _ u. By the Schwarz- Pick lemma, Theorem 0.6, it follows 

that this map is a contraction in the hyperbolic metric. This tells us that 

dhyp (Jk(g- I(Z I)),!k(g-I(Z2))) "dhyp(JA(ZI),!A(Z2)) > C, 

and dhyp(fk(g- l(z!l),!k(g - I(Z2))) > C > 0 holds fa; every sufficiently large k. 

That is a contradiction to our assumption that A - 0 as k - 00. And this 

contradiction completes the proof of the theorem. D 

8. Domains in Riemann surfaces 

In this section we prove Theorem 0.2. We will make use of the space of 

ends £(f!) of a Riemann surface f!, which is defined exactly as in Section 1. 

The term closed sur/ace means a compact surface with no boundary and an 

open sur/ace means a surface without boundary. We use the term "surface" 

to mean "connected surface" . 

Pro%/ Theorem 0.2. We start with the proof of existence. If the genus 

of f! is 0, then f! can be conformally embedded in the Riemann sphere t, 
and existence follows from Theorem 0.1. Assume therefore that the genus is 

nonzero. 

Because f! has finite genus, there is some compact subset F c f! such t hat 

each connected component of f! - F is a O-genus (planar) surface, which has one 

boundary component in f!. It follows that there is a topological embedding 

i : f! _ S of f! into a closed topological surface such that every boundary 

component of i(f!) in S is contained in some topological disk in S. (One 

can "fill in the holes" in each connected component of f! - F.) Let S be the 

universal cover of S , let p: S --- S be the covering map and let n = p- l(i(O»). 

Then n is a covering surface for 0, with covering map Pn = i - lop, and thus 

has the structure of a Riemann surface. Moreover n is planar, since S is a 

topological disk. From this it follows that n can be conformally embedded in 

the plane and, therefore , by Theorem 0.1 , n is conformally homeomorphic to 

a circle domain n* c C. 
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Let r be the group of deck transformations for the covering p ; § --+ S. 

The group r acts by conformal homeomorphisms on n and, via the conformal 

homeomorphism of n and fl*, it also acts by conformal homeomorphisms 

on n*. Furthermore the uniqueness part in Theorem 0.1 shows that the action 

of r on O· is by Mobius transformations . 

Suppose that K is some boundary component of n in 5. Since p(K) is 

contained in a topological disk in S, it follows that no nontrivial element of 

r stabilizes K. Let eoo be the only end of 8. Consequently no nontrivial 

element of r fixes an end of 0*, except for the end e~, which corresponds 

to eoo _ Let Eoo be the connected component of t - n" corresponding to e~ 

and let R = t - Eoo_ Then r acts freely, co-compactly and discretely on it 
The pair (Rlr, 0* If) is then the required pair. 

To prove uniqueness let RI and R2 be closed Riemann surfaces, let D1, D2 

be circle domains in RI and R2 , respectively, and suppose that h : DI -- D2 is a 

conformal homeomorphism. Let RI , R2 be the universal covers of R1, R2, with 

covering maps PI,P2, respectively. We think of RI c t and R2 C t. as being 

the unit disk, the plane or the sphere. Set 0 1 = p,ID J , 02 = p;-ID2i these 

are circle domains in t. From the fact that DI and D2 are circle domains 

in RJ and R2 , respectively, it follows that the homeomorph i s~ h lifts to a 

homeomorphism h : 0 1 __ 02. From Theorem 0.1 we know that h is a Mobius 

transformation. Therefore h extends to a conformal homeomorphism if : 
RI -- R2. From the fact that h conjugates the deck transformations of the 

cover PI : 01 - DI to the deck transformations of the cover P2 : 02 -- D2, it 

follows that if conjugates the deck transformations of the cover PI : Rl -- Rl 

to the deck transformations of the cover 1>2 : R2 -- R2 and therefore descends 

to a conformal homeomorphism H : RI __ R2• The restriction of H to DI is 

obviously h. This shows uniqueness, completing the proof of the theorem. 0 

9. Uniforrnizations of circle packings 

Surely circle packings and circle domains are closely related. The following 

definitions give a common generalization of these two concepts. 

Definitions. Let D be any domain in t. (or, more generally, in a Riemann 

surface). A D-packing in D is an indexed collection P = {Pi: i E V} of 

compact topological disks in n with disjoint interiors. The nerve, or graph, of 

the packing P is the abstract graph G = (V, E), whose vertex set is V and 

where an edge (i, j) occurs in E precisely when the disks ~ and Pj intersect. 

An interstice of the packing is a connected component of D- U{Pv : v E V}, a 

finite interstice is an interstice whose boundary is contained in finitely many of 

the packed disks, and the carrier of the packing is the union of all the packed 
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sets and all the finite interstices. A decent packing is a D-packing in which the 

intersection of any two sets is at most a single point, and the intersection of 

any three sets is empty. The limit points of a packing are the set of all points p 

in t. with the property that every neighborhood of p intersects infinitely many 

of the packed sets. A packing P in a domain n is said to be an acceptable 

packing in n if P is decent and has no limit points in n. If P is an acceptable 

packing in n, then np = n - U{int(p'-) : i E V} is a generalized domain; 

specifically it is the generalized domain associated with P and n. 

Note that, in general, a generalized domain is not a domain , since it is 

not open. However it is connected and is the closure of its interior. 

Given aD-packing P in t., one can get a planar embedding of its graph. 

To do that choose a point in the interior of each packed set to be the image 

of the associated vertex. Then the image of each edge (i, j) can be chosen 

as a simple path that lies in ~ U Fj and connects the images of the vertices. 

There is no problem in making the images of the edges disjoint, except at the 

vertices. Thus nerves of planar D-packings are planar. 

Of particular interest are nerves that are maximal with respect to being 

planar; that is , the introduction of one additional edge to the graph would 

make it nonplanar. These are the I-skeletons of a triangulation of an open 

planar surface. We will call them planar triangulations, for short, and when we 

use the term triangulation , it will be implicitly assumed that the triangulation 

is connected. Planar triangulations have another important property: their 

embedding in the sphere t is topologically unique (or unique up to reflection , if 

the orientation of the sphere is taken into account). This means that any two 

embeddings of a planar triangulation in t are related by a self-homeomorphism 

of t. Thus a decent packing in t, whose nerve is a triangulation, is topolog

ically determined by its nerve. We will see below that when the packed sets 

are geometric disks and the nerve is a given planar triangulation, then under 

certain conditions the packing is also geometrically determined. 

One can study either a packing or the generalized domain associated to 

it. The difference is like the proverbial difference between looking at the half

full glass or at the half-empty glass . Of course, when there are few edges in 

the nerve of the packing, there is little to work with , and one must look at 

the domain. Historically both approaches to the subject are present. For ex

ample, Koebe looked at the domain and achieved the circle packing theorem 

as a consequence of his uniformization theorem. On the other hand , Thurston 

mostly looked at the circles, while the Rodin- Sullivan work [RoSu] and the 

paper [He2] adopt a mixture of the two views. In retrospect , the incompat

ibility theorem, which is the main tool in [Sch2] and [Sch3], can be seen as 

some kind of fixed-point theorem for packings. There, two finite topological 
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packings satisfy some boundary conditions analogous to the condition that the 

associated map on the boundary of the domain have a fixed-point index - 1. 

The conclusion is that there exists a "fixed point of negative index" between 

the packings. 

Definitions. A conformal homeomorphism between generalized domains 

h : n _ O· is a homeomorphism that is conformal in the interior of n, 
while an anticon/ormal homeomorphism is a homeomorphism that is anti

conformal in the interior of n. If such an h exists, then n and 0* are said to 

be conformally or anticonformally homeomorphic, respectively. 

Example 9.1. Let P and P* be decent packings in t. having carriers !1 

and fr and planar triangulations T and T* as nerves, respectively. Then P 

and p. are acceptable packings in S1 and S1*, respectively; and the associated 

generalized domains S1 p and S1j,. are conformally homeomorphic or anticonfor

mally homeomorphic if and only if T and T* are combinatorially isomorphic. 

To see this, note that all of the interstices in the packings must be triangular 

interstices; that is, their boundary lies on three of the packed sets . Thus all 

one has to do to show that S1p and nj,. are conformally or anticonformally 

homeomorphic is to construct the conformal , or anticonformal, maps between 

combinatorically corresponding triangular interstices and glue them properly. 

Since there is a freedom of choice of the image of three points on the boundary 

for Riemann maps between Jordan domains, one can do this while maintain

ing the continuity at the points of contact between any two interstices. This 

shows that S1 and S1* are conformally or anticonformally homeomorphic. The 

other direction is obvious. 

When we speak of a circle packing, we will mean a D-packing of geometric, 

rather than topological , closed disks. If a circle packing has no limit points in 

a domain S1 , then it follows that it is acceptable in S1. A circle packing, whose 

nerve is a triangulation, is always acceptable in its carrier. 

Definition. Let S1 be a circle domain and let P he an acceptable circle 

packing in S1. The associated generalized domain S1p will be called a general

ized circle domain. 

We can now state a generalization of Theorem 0.1 , which is applicable to 

circle packings. 

THEOREM 9.2. Any generalized domain n in t that has at most countably 

many ends is conformally homeomorphic to a generalized circle domain S1* C 

t. Moreover S1* is unique up to Mobius tmnsformations, and every conformal 

automorphism of S1* is the restriction of a Mobius transformation. 
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Theorem 0.3 follows immediately as a corollary: 

Proof of Theorem 0.3. We start with existence. One easily constructs a 

decent planar packing p. with nerve T. Since P* is acceptable in its car

rier 0· , one can form the generalized domain Op.. From Theorem 9.2 we 

conclude that there is a generalized circle domain 0 c t that is conformally 

homeomorphic to Op . . The circle packing associated to 0 is then the required 

packing P . This proves existence. The uniqueness follows from Example 9.1 

and Theorem 9.2. D 

To prove Theorem 9.2 one must essentially adapt, for generalized domains, 

the proof of Theorem 0. 1 and the proofs of all the theorems that precede it. 

There are two minor difficulties, which require some changes in the proofs. The 

first has to do with the fact that the interior of a generalized domain is not 

connected. When working with domains, we used the fact that if a conformal 

function has nonisolated fixed points, then it is the identity. This is no longer 

true when the domain of the function is not connected and, therefore, in the 

proof of Theorem 9.2, one must take special care to avoid nonisolated fixed 

points. 

In the proofs above, quite often we have chosen a Jordan curve I in the 

domain 0 to cut and isolate a part of the domain we wanted to examine 

from other parts. This can still be done in generalized domains, but the 

resulting two pieces that n breaks into may no longer be generalized domains. 

An example of this phenomenon can be seen in the generalized domain OH 

obtained from the plane by the deletion of the interiors of disks that form an 

infinite hexagonal circle packing. The bounded part of nH determined by any 

Jordan curve I C nH will not be a generalized domain, unless it is contained 

in one interstice, because I would have to touch some boundary circles more 

than once. This forces us to further broaden the class of "domains" under 

discussion . 

Definitions. Let n be some domain in t and let P be a D-packing in n. 
Suppose that the intersection of any three sets in the packing P is empty and 

the intersection of any two contains at most a finite number of points. Further 

suppose that at most one of the connected components of the complement of 

any pair of sets in P intersects with other sets in the packing. Then 0 = 

n - U{int(Pv) : v E V} will be called a degenerated generalized domain. 

A bi-gon in a degenerated generalized domain is a finite interstice whose 

boundary lies in two of the sets in the packing. Thus a degenerate generalized 

domain without bi-gons is a generalized domain. 

A morphism of degenerate generalized domains is a continuous map 

f n -+ n* between degenerate generalized domains that is conformal and 
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injective in int(f2) - B , where B is some union of bi-gons of n and f is con

stant in each bi-goo contained in B. 

As explained above, the advantage of working with degenerated general

ized domains over generalized domains is that it is easy to cut a degenerated 

generalized domain along a Jordan curve and get two degenerated generalized 

domains. 

Proof of Theorem 9.2. Let nand P = (~ : i E V ) be the domain and the 

packing, which define n; that is, n = n - U{int(p;) : i E V}. 

We need a construct for degenerated generalized domains analogous to 

t he space of boundary components of domains. The elements of this space 

will be called the boundary elements. These come in two flavors: the elements 

at infinity are just the boundary components of fl, and the border elements 

are the sets of the form a F1 . The topology on the set of boundary elements 

Be(o) is such that any neighborhood in Be(o) around any element at infinity 

K E B(s1) is t he set of all boundary elements that intersect a neighborhood of 

K in t., and {8Pd is a neighborhood of any border element aPi . (Thus the set 

of border elements is discrete in B e(f2), and the inclusion of B(s1) in B e(o) 

is a homeomorphic embedding.) As with B (s1) , the set Be(o) is compact, 

Hausdorff and countable. The type and rank are then defined for Be(o) as 

for B(n). 

In the following paragraphs we outline the modifications needed in the 

theorems and lemmas leading to Theorem 0.1 to get corresponding statements 

for degenerate generalized domains. 

Note t hat Theorem 2.1 also holds if we allow the boundary of A to be a 

finite union of Jordan curves, which may intersect at finitely many points . 

We will need a slightly more general version of Lemma 2.2. In the more 

general version we do not require f to be a homeomorphism, but we do require 

t he preimage of any point in K to be a point or an arc on J. The hypothesis 

that f is orientation preserving should then be weakened to the requirement 

that the image of a positively oriented arc from a point x to a point y in J 

be a positively oriented arc from f(x) to f(y) in J , or a single point . In this 

situation part (1) of Lemma 2.2 is dropped, the proof for the case J c Kin 

part (2) remains unchanged and the proof for the case K c j is done similarly 

as t he proof for J c K. The proofs of parts (3) and (4) remain unchanged. 

Some adjustments are needed in Corollary 2.4 as well. First f2 and 0· are 

permitted to be possibly degenerated generalized domains, with f a morphism 

between them. Obviously any mention of boundary components is replaced 

by boundary elements. (This same change is needed in all of the lemmas 

and theorems we discuss here and will not be mentioned, unless there is some 
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special need.) Of course we no longer require that F, the continuous extension 

of I, be a homeomorphism, since I does not have to be a homeomorphism, 

but only t hat the restriction of F to each boundary element at infini ty be a 

homeomorphism. The conclusions of the corollary also need some revision. 

The new conclusions are that f has at most n isolated fixed points and the 

number of fixed points in any set S of isolated fixed points is at most n, 

counting multiplicities. This change is needed, since f may fix whole connected 

components of the interior of O. The proof remains almost unchanged . One 

only needs to note that z -+ F(z) + c has only isolated fixed points if it has 

no fixed points on the boundary. 

The description of 0 in the statement of the Schwarz- Pick lemma, The

orem 0.6, is modified to the following: 0 is a possibly degenerate generalized 

domain contained in A, and every boundary element of it is a circle or a 

point, except possibly for 8A, which is also a boundary element of O. A simi

lar change is done for 0*. The statement of Lemma 4.1 changes only in that 

the continuous extension of f to n is not required to be a homeomorphism, 

only its restriction to each boundary element at infinity needs to be a homeo

morphism. A change is needed in the proof of this lemma, since when one 

of the fixed points p, q is a nonisolated fixed point, one cannot immediately 

conclude that f is the identity. Suppose this to be the case. Then f must fix 

a connected component of the interior of 0 that is not a bi-gon. Let H be the 

union of the connected components t hat f fixes. If H is the interior of 0, the 

lemma follows; if not, t hen t here is some border boundary element K that has 

nontrivial arcs in H and in the closure of some connected component B of the 

interior of 0 which is not in H. Since f fixes an arc of K , then f(K) = K , 

because both are circles. If f is the identity on K , then f must fix B , which 

contradicts our assumptions. If not, then there will be two points, x, y E K , 

such t hat dhyp(X,y) < dhyp(f(X),J(y)) . The same would hold for some points 

x', y' in t he interior of 0 sufficiently close to x, y, respectively. Then one can 

postcompose f with a Mobius transformation m, which contracts distances in 

the hyperbolic metric on U and takes f(x' ) and f(y') to x' and y', respectively. 

Since one has 2 dimensions of freedom in choosing m, one easily arranges that 

x' and y' will be isolated fixed points of m 0 f . Then the contradiction follows 

as in t he original proof of Lemma 4.l. 

The statement and proof of Lemma 5.1 for possibly degenerated general

ized domains remain essentially unchanged. 

In the formulation of Lemma 5.2, again the requirement that the con

tinuous extension of f to 0 - K be a homeomorphism needs to be changed 

to the requirement that its restriction to each boundary element at infinity 

H E B ~( O ) be a homeomorphism. In the proof, the only modification is that 



138

402 Z.-X. HE AND O. SCHRAMM 

one must make sure that p is an isolated fixed point for g. It is easy to see 

that p can be chosen so that this is the case. (Note that p is chosen before g , 

and a different choice of p may give a different choice of g.) 

The statement and proof of the Boundary Extension Theorem remain 

essentially the same, and the generalized form of Theorem 0.6 follows from it 

and Lemma 4.1. The uniqueness part of Theorem 9.2 now clearly follows from 

Theorem 0.6. 

Except for the obvious modifications, similar to those in the Schwarz- Pick 

lemma (Theorem 0.6) , no change is needed in the formulation of the Maximum 

Modulus Theorem 6.1. In the proof, one must take care of the possibility that 

Z(} is a nonisolated fixed point of 9. In that case, let H be the union of the 

connected components of the interior of 11 that are fixed by g. Obviously H 

cannot contain all of the interior of 11 and, therefore, there is a connected 

component B of the interior of 11 that is disjoint from H , but whose closure 

intersects the closure of H. If p is in the intersection of the closures, then in 

B near p one can find a point q with g(q) - q very close to O. FUrthermore q 

can be chosen to also satisfy l (q) i- 1. Then q is an isolated fixed point for 

g(z) = g(z) - g(q) + q, and a contradiction follows. 

Corollary 6.2 requires substantial changes, and it will be replaced by a 

discussion below. 

The changes necessary in the formulation and proof of the Angle 

Lemma 6.4 are similar to those made in the previous lemmas and theorems 

above. These changes are left to the reader. 

[n the modified proof of existence, the inductive claim is that given a 

degenerate generalized domain 11 c t with tp(11) < ().,n) there exists a 

morphism of it onto a generalized circle domain. [t is not very well known, 

but Koebe [Ko4] also proved the existence statement in the case of degenerate 

generalized domains with finitely many boundary elements by taking limits of 

complements of packings, where the packed disks almost touch. This covers 

the base of the induction. 

The maps A are defined as in the original version, but one has to work 

a little harder to argue that their limits are either a constant or a morphism. 

First it is clear that a subsequence of the A converges uniformly on compact 

subsets of the interior of 11. Using the reflection principle , one easily concludes 

that a subsequence of {A} converges uniformly on compact subsets of 11. Then 

exactly the same argument as in Corollary 6.2 shows that fB(K) is a circle or 

a point whenever K E Be(11) - Ko , where f is the limit of the A. 
We will now show that f is ei ther a constant or a morphism. Restricted 

to each connected component of the interior of 11, f is either a constant or 

a conformal homeomorphism. Also f is clearly injective where it is not a 

constant. Suppose that f is constant on some interstice L, which is not a 
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bi-gon. Say it takes the value c there. Let M be the connected component 

of f - l(c) containing L and let 80M be the relative boundary of M in f! . 

If K is some border boundary element contained in M , then clearly every 

connected component of the interior of n whose boundary has an arc on K , 

is also contained in M. This shows that 80M consists of contact points; that 

is, points in the intersection of the closures of two distinct interstices. The 

number of points in 80M cannot be 1; on the other hand, if there are 2 or more 

contact points in 80M, then there are at least 3 border boundary elements 

intersecting 8nM . These elements will have the property that their images 

under f contain c, but also contain other points. However this is impossible, 

since at most two circles can touch at any given point. This implies that 

80M is empty and thus shows that f is a constant if it is constant on some 

connected component of the interior of n that is not a bi-gon. 

This same argument is repeated for the hyperbolic and parabolic cases. 

Except for this, the proof remains intact. This completes the proof of 

Theorem 9.2. 0 

Proof of Theorem 0.4. Theorem 0.4 follows from Theorem 9.2 exactly as 

Theorem 0.2 followed from Theorem 0.1. 0 

Adden dum : A lmost circular d omains with u ncountably 

many boundary components 

We now state and outline the proof of a generalization to the existence 

part of our main result , Theorem 0.1 , which was obtained after this article 

was accepted. The details will appear in a forthcoming paper. 

THEOREM 10.1. Let n be a domain in C and let B.(O) c B(f!) be the 

collection of all boundary components that are not circles or points. If the 

closure of B.(f!) in B(n) is countable, then n is conformally homeomorphic 

to a circle domain. 

The proof of Theorem 10.1 proceeds by induction in much the same way as 

the proof of existence presented earlier. The sticky point is , however, that the 

rigidity results used, primarily the Schwarz- Pick lemma, require some extra 

hypotheses when there are uncountably many boundary components. For this 

purpose, the theory of quasiconformal maps is useful. More specifically the 

Schwarz- Pick lemma, and most of the other results here, are applications of 

Corollary 2.4 , which in general fails when there are uncountably many bound

ary components. The first step in the proof of Theorem 10.1 is a variation of 

that corollary, as follows: 
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LEMMA 10.2. Let f ; n _ n* be a conformal homeomorphism between 

bounded plane domains and let Bo C B(O) be a finite collection of boundary 

components 0/0,. Suppose that f extends to a quasicon/ormal homeomorphism 

F : C _ C and that the following conditions hold: 

(1) the conformal dilatation of F on an is 0 a.e. (this is automatically 

satisfied if an has measure 0) ,-

(2) all of the boundary components in B(f!) - Bo and B(f!') - f8(Bo) 

are circles and points, and all of the boundary components in 80 are Jordan 

curves; 

(3) Eo contains the boundary component of 0 , which is contained in the 

unbounded component of C - n and, similarly, f8(80) contains the boundary 

component of fl·, which is contained in the unbounded component of C - 0*; 

(4) F has no fixed points in any of the boundary components in Bo. 

Let n be the index of the restriction of F to the boundary components in Bo. 

Then f has at most n fixed points in n. Furthermore, if S is a set of fixed 

points of f, then the total number of fixed points for fin S, counting multi

plicity, is at most n . 

The proof of t his lemma is based on approximations by finitely connected 

domains, on Corollary 2.4 for finitely connected domains and on a rigidity 

result of Sullivan [Su] to show that the approximations converge to f. 

The rest of the proof of Theorem 10.1 is like the proof of the existence 

part of Theorem 0.1, but with the extra burden that whenever Corollary 2.4 

is directly or indirect ly applied, it can be arranged that the hypotheses of 

Lemma 10.2 are satisfied. 
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