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Abstract
Existence and uniqueness of fixed points of a general class of (ψ ,φ) contractive
mappings on complete rectangular metric spaces are discussed. One of the theorems
is a generalization of a fixed point theorem recently introduced by Lakzian and Samet.
Fixed points of (ψ ,φ) contractions under conditions involving rational expressions are
also investigated. Several particular cases and applications as well as an illustrative
example are given.
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1 Introduction and preliminaries
Fixed point theory has been one of the most rapidly developing fields in analysis during
the last few decades.Wide application potential of this theory has accelerated the research
activities which resulted in an enormous increase in publications [–]. In a large class of
studies the classical concept of a metric space has been generalized in different directions
by partly changing the conditions of the metric. Among these generalizations, one can
mention the partial metric spaces introduced by Matthews [, ] (see also [, , –]),
and rectangular metric spaces defined by Branciari [].
Branciari defined a rectangular metric space (RMS) by replacing the sum at the right-

hand side of the triangle inequality by a three-term expression. He also proved an analog
of the Banach Contraction Principle. The intriguing nature of these spaces has attracted
attention, and fixed points theorems for various contractions on rectangularmetric spaces
have been established (see, e.g., [–]).
In  Boyd and Wong [] defined a class of contractive mappings called φ contrac-

tions. In , Alber and Guerre-Delabriere [] generalized this concept by introducing
weak φ contraction. A self-mapping T on a metric space (X,d) is said to be weak φ con-
tractive if there exists a map φ : [, +∞) –→ [, +∞) with φ() =  and φ(t) >  for all t > 
such that

d(Tx,Ty) ≤ d(x, y) – φ
(
d(x, y)

)
, (.)

for all x, y ∈ X. Contractions of this type have been studied by many authors (see, e.g.,
[, ]). The larger class of (ψ ,φ) weakly contractive mappings has also been a subject of
interest (see, e.g., [, –]).
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In a recent paper, Lakzian and Samet [] stated and proved a fixed point theorem for
the (ψ ,φ) weakly contractive mappings on complete rectangular metric spaces. They also
provided interesting examples as particular cases of suchmappings. In this paper, we gen-
eralize the result of Lakzian and Samet [] and, in addition, investigate maps satisfying
rational type contractive conditions. We also give applications and an example.
We state some basic definitions and notations to be used throughout this paper. Rect-

angular metric spaces are defined as follows.

Definition  ([]) Let X be a nonempty set and let d : X × X –→ [,∞] satisfy the fol-
lowing conditions for all x, y ∈ X and all distinct u, v ∈ X each of which is different from x
and y.

(RM) d(x, y) =  if and only if x = y,

(RM) d(x, y) = d(y,x), (.)

(RM) d(x, y)≤ d(x,u) + d(u, v) + d(v, y).

Then the map d is called a rectangular metric and the pair (X,d) is called a rectangular
metric space.

The concepts of convergence, Cauchy sequence and completeness in a RMS are defined
below.

Definition 
() A sequence {xn} in a RMS (X,d) is RMS convergent to a limit x if and only if

d(xn,x) →  as n→ ∞.
() A sequence {xn} in a RMS (X,d) is RMS Cauchy if and only if for every ε >  there

exists a positive integer N(ε) such that d(xn,xm) < ε for all n >m >N(ε).
() A RMS (X,d) is called complete if every RMS Cauchy sequence in X is RMS

convergent.

We also use the following modified notations of Lakzian and Samet [].
Let� denote the set of all continuous functionsψ : [, +∞)→ [, +∞) for whichψ(t) =

 if and only if t = . Nondecreasing functions which belong to the class � are also known
as altering distance functions (see []).
In their paper, Lakzian and Samet [] stated the following fixed point theorem.

Theorem  Let (X,d) be a Hausdorff and complete RMS and let T : X → X be a self-map
satisfying

ψ
(
d(Tx,Ty)

) ≤ ψ
(
d(x, y)

)
– φ

(
d(x, y)

)

for all x, y ∈ X and ψ ,φ ∈ � , where ψ is nondecreasing. Then T has a unique fixed point
in X.

In this paper, we give a generalization of Theorem  for a larger class of (ψ ,φ) weakly
contractive mappings and improve the results obtained by Lakzian and Samet. Moreover,
Theorem  can be considered as a particular case of our generalized theorem.
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2 Main results and applications
We present our main results in this section. First, we state the following fixed point theo-
rem.

Theorem  Let (X,d) be a Hausdorff and complete RMS and let T : X → X be a self-map
satisfying

ψ
(
d(Tx,Ty)

) ≤ ψ
(
M(x, y)

)
– φ

(
M(x, y)

)
+ Lm(x, y) (.)

for all x, y ∈ X and ψ ,φ ∈ � , where L > , the function ψ is nondecreasing and

M(x, y) =max
{
d(x, y),d(x,Tx),d(y,Ty)

}
,

m(x, y) =min
{
d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

}
.

(.)

Then T has a unique fixed point in X.

Proof First, we prove the existence part. Let x ∈ X be an arbitrary point. Define the se-
quence {xn} ⊂ X as

xn = Txn–, n = , , , . . . .

Assume that xn �= xn+ = Txn for all n ≥ . Substitute x = xn– and y = xn in (.) and note
that

m(xn–,xn) =min
{
d(xn–,xn),d(xn,xn+),d(xn–,xn+),d(xn,xn)

}
= .

Then we obtain,

ψ
(
d(Txn–,Txn)

)
= ψ

(
d(xn,xn+)

)
≤ ψ

(
M(xn–,xn)

)
– φ

(
M(xn–,xn)

)
+ Lm(xn–,xn)

= ψ
(
M(xn–,xn)

)
– φ

(
M(xn–,xn)

)
, (.)

where

M(xn–,xn) = max
{
d(xn–,xn),d(xn–,xn),d(xn,xn+)

}
= max

{
d(xn–,xn),d(xn,xn+)

}
.

IfM(xn–,xn) = d(xn,xn+), then we have

ψ
(
d(xn,xn+)

) ≤ ψ
(
d(xn,xn+)

)
– φ

(
d(xn,xn+)

)
,

which implies φ(d(xn,xn+)) = , and hence d(xn,xn+) = . Then xn = xn+ = Txn, which
contradicts the initial assumption. Therefore, we must have M(xn–,xn) = d(xn–,xn), that
is,

ψ
(
d(xn,xn+)

) ≤ ψ
(
d(xn–,xn)

)
– φ

(
d(xn–,xn)

) ≤ ψ
(
d(xn–,xn)

)
. (.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/138
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Since ψ is nondecreasing, then d(xn,xn+) ≤ d(xn–,xn) for all n ≥ , that is, the sequence
{d(xn,xn+)} is decreasing and positive. Hence, it converges to a positive number, say s > .
Taking limit as n→ ∞ in (.), we obtain

ψ(s)≤ ψ(s) – φ(s),

which leads to φ(s) =  and hence to s = . Thus,

lim
n→∞d(xn,xn+) = . (.)

Next, we will show that T has a periodic point, that is, there exist a positive integer p
and a point z ∈ X such that z = Tpz. Assume the contrary, that is, T has no periodic point.
Then, all elements of the sequence {xn} are distinct, i.e., xn �= xm for all n �=m. Suppose also
that {xn} is not a RMS Cauchy sequence. Therefore, there exists ε >  for which one can
find subsequences {xn(i)} and {xm(i)} of {xn} with n(i) >m(i) > i such that

d(xm(i),xn(i)) ≥ ε, (.)

where n(i) is the smallest integer satisfying (.), that is,

d(xm(i),xn(i)–) < ε. (.)

We apply the rectangular inequality (RM) and use (.) and (.) to obtain

ε ≤ d(xm(i),xn(i))

≤ d(xm(i),xn(i)–) + d(xn(i)–,xn(i)–) + d(xn(i)–,xn(i))

≤ ε + d(xn(i)–,xn(i)–) + d(xn(i)–,xn(i)). (.)

Taking limit as i → ∞ in (.) and using (.), we get

lim
i→∞d(xn(i),xm(i)) = ε. (.)

Employing the rectangular inequality (RM) once again, we write the following inequali-
ties:

d(xn(i),xm(i)) ≤ d(xn(i),xn(i)–) + d(xn(i)–,xm(i)–) + d(xm(i)–,xm(i)),

d(xn(i)–,xm(i)–) ≤ d(xn(i)–,xn(i)) + d(xn(i),xm(i)) + d(xm(i),xm(i)–),
(.)

from which we obtain

ε ≤ lim
i→∞d(xn(i)–,xm(i)–) ≤ ε, (.)

using (.) and (.); and therefore,

lim
i→∞d(xn(i)–,xm(i)–) = ε. (.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/138
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Now we substitute x = xn(i)– and y = xm(i)– in (.), which yields

ψ
(
d(Txn(i)–,Txm(i)–)

)
= ψ

(
d(xn(i),xm(i))

)
≤ ψ

(
M(xn(i)–,xm(i)–)

)
– φ

(
M(xn(i)–,xm(i)–)

)
+ Lm(xn(i)–,xm(i)–), (.)

where

M(xn(i)–,xm(i)–) =max
{
d(xn(i)–,xm(i)–),d(xn(i)–,xn(i)),d(xm(i)–,xm(i)

}
,

m(xn(i)–,xm(i)–) =min
{
d(xn(i)–,xn(i)),d(xm(i)–,xm(i)),d(xn(i)–,xm(i)),d(xm(i)–,xn(i)

}
.

Clearly, as i → ∞ we have M(xn(i)–,xm(i)–) → max{ε, , } = ε and m(xn(i)–,xm(i)–) → 
due to (.) and (.). Then letting i→ ∞ in (.), we get

 ≤ ψ(ε) ≤ ψ(ε) – φ(ε) + , (.)

which implies φ(ε) = , and hence ε = . This contradicts the assumption that {xn} is not
RMSCauchy, thus, {xn}must beRMSCauchy. Since (X,d) is complete, then {xn} converges
to a limit, say u ∈ X. Let x = xn and y = u in (.). This gives

ψ
(
d(Txn,Tu)

) ≤ ψ
(
M(xn,u)

)
– φ

(
M(xn,u)

)
+ Lm(xn,u), (.)

with

M(xn,u) =max
{
d(xn,u),d(xn,Txn),d(u,Tu)

}
,

m(xn,u) =min
{
d(xn,Txn),d(u,Tu),d(xn,Tu),d(u,Txn)

}
.

Note that m(xn,u) →  as n → ∞. If M(xn,u) = d(xn,u) or M(xn,u) = d(xn,xn+), then we
have M(xn,u) →  as n → ∞, due to (.) and the fact that the sequence {xn} converges
to u. Regarding the continuity of ψ and φ, we have

 ≤ ψ
(
lim
n→∞d(Txn,Tu)

)
≤ lim

n→∞
[
ψ

(
M(xn,u)

)
– φ

(
M(xn,u)

)
+ Lm(xn,u)

]
= .

Hence, limn→∞ d(Txn,Tu) = , that is, in either case, we end up with xn+ = Txn → Tu.
Since X is Hausdorff, we deduce that u = Tu. If, on the other hand, M(xn,u) = d(u,Tu)
passing to limit as n → ∞ in (.), we get φ(M(u,Tu)) = , hence d(u,Tu) = , that is
u = Tu. This result contradicts the assumption that T has no periodic points. Therefore,
T has a periodic point, that is, z = Tpz for some z ∈ X and a positive integer p.
If p = , then z = Tz, so z is a fixed point of T . Let p > . We claim that the fixed point of

T is Tp–z. Suppose the contrary, that is, Tp–z �= T(Tp–z). Then d(Tp–z,Tpx) >  and so
is φ(d(Tp–z,Tpx)). Letting x = Tp–z and y = Tpz in (.), we have

ψ
(
d(z,Tz)

)
= ψ

(
d
(
Tpz,Tp+z

))
≤ ψ

(
M

(
Tp–z,Tpz

))
– φ

(
M

(
Tp–z,Tpz

))
+ Lm

(
Tp–z,Tpz

)
, (.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/138
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where

M
(
Tp–z,Tpz

)
=max

{
d
(
Tp–z,Tpz

)
,d

(
Tp–z,Tpz

)
,d

(
Tpz,Tp+z

)}
,

m
(
Tp–z,Tpz

)
=min

{
d
(
Tp–z,Tpz

)
,d

(
Tpz,Tp+z

)
,d

(
Tp–z,Tp+z

)
,d

(
Tpz,Tpz

)}
= .

ForM(Tp–z,Tpz) = d(Tpz,Tp+z), (.) becomes

ψ
(
d(z,Tz)

)
= ψ

(
d
(
Tpz,Tp+z

)) ≤ ψ
(
d
(
Tpz,Tp+z

))
– φ

(
d
(
Tpz,Tp+z

))
.

Thus, we get φ(d(Tpz,Tp+z)) =  and hence d(Tpz,Tp+z) = d(z,Tz) = , which is not pos-
sible since p > . If, on the other hand,M(Tp–z,Tpz) = d(Tp–z,Tpz), then (.) turns into

ψ
(
d(z,Tz)

)
= ψ

(
d
(
Tpz,Tp+z

)) ≤ ψ
(
d
(
Tp–z,Tpz

))
– φ

(
d
(
Tp–z,Tpz

))
< ψ

(
d
(
Tp–z,Tpz

))
, (.)

and taking into account the fact that ψ is nondecreasing, we deduce

d(z,Tz) < d
(
Tp–z,Tpz

)
.

Now we write x = Tp–z and y = Tp–z in (.) and get

ψ
(
d
(
Tp–z,Tpz

)) ≤ ψ
(
M

(
Tp–z,Tp–z

))
– φ

(
M

(
Tp–z,Tp–z

))
+ Lm

(
Tp–z,Tp–z

)
, (.)

where

M
(
Tp–z,Tp–z

)
=max

{
d
(
Tp–z,Tp–z

)
,d

(
Tp–z,Tp–z

)
,d

(
Tp–z,Tpz

)}
,

m
(
Tp–z,Tp–z

)
=min

{
d
(
Tp–z,Tp–z

)
,d

(
Tp–z,Tpz

)
,

d
(
Tp–z,Tpz

)
,d

(
Tp–z,Tp–z

)}
= .

ForM(Tp–z,Tp–z) = d(Tp–z,Tpz), we obtain

ψ
(
d
(
Tp–z,Tpz

)) ≤ ψ
(
d
(
Tp–z,Tpz

))
– φ

(
d
(
Tp–z,Tpz

))
,

which is possible only if φ(d(Tp–z,Tpz)) =  and hence, d(Tp–z,Tpz) = . However, we
assumed that d(Tp–z,Tpz) > . Thus, we must haveM(Tp–z,Tp–z) = d(Tp–z,Tp–z), so
that

ψ
(
d
(
Tp–z,Tpz

)) ≤ ψ
(
d
(
Tp–z,Tp–z

))
– φ

(
d
(
Tp–z,Tp–z

))
≤ ψ

(
d
(
Tp–z,Tp–z

))
, (.)

which implies d(Tp–z,Tp–z) ≥ d(Tp–z,Tpz) since ψ is nondecreasing. This leads to

 < d(z,Tz) = d
(
Tpz,Tp+z

)
< d

(
Tp–z,Tpz

) ≤ d
(
Tp–z,Tp–z

)
.
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We continue in this way and end up with the inequality

 < d(z,Tz) = d
(
Tpz,Tp+z

)
< d

(
Tp–z,Tpz

) ≤ d
(
Tp–z,Tp–z

) ≤ · · · ≤ d(z,Tz),

which yields d(z,Tz) < d(z,Tz). Therefore, the assumption d(Tp–z,Tpx) >  is wrong, that
is, d(Tp–z,Tpx) =  and Tp–z is the fixed point of T .
Finally, to prove the uniqueness, we assume that T has two distinct fixed points, say z

and w. Then letting x = z and y = w in (.), we have

ψ
(
d(z,w)

)
= ψ

(
d(Tz,Tw)

) ≤ ψ
(
M(z,w)

)
– φ

(
M(z,w)

)
+ Lm(z,w), (.)

where

M(z,w) =max
{
d(z,w),d(z,Tz),d(w,Tw)

}
= d(z,w),

m(z,w) =min
{
d(z,Tz),d(w,Tw),d(w,Tz),d(z,Tw)

}
= .

Thus, we have

ψ
(
d(z,w)

) ≤ ψ
(
d(z,w)

)
– φ

(
d(z,w)

)
, (.)

implying φ(d(z,w)) = , and hence d(z,w) = , which completes the proof of the unique-
ness. �

It is worth mentioning that the Theorem . given in [] is a particular case of Theo-
rem . We next give some consequences of Theorem .

Corollary  Let (X,d) be a Hausdorff and complete RMS and let T : X → X be a self-map
satisfying

ψ
(
d(Tx,Ty)

) ≤ ψ
(
M(x, y)

)
– φ

(
M(x, y)

)
(.)

for all x, y ∈ X and ψ ,φ ∈ � , where the function ψ is nondecreasing and

M(x, y) =max
{
d(x, y),d(x,Tx),d(y,Ty)

}
. (.)

Then T has a unique fixed point in X.

Proof Observe that

ψ
(
d(Tx,Ty)

) ≤ ψ
(
M(x, y)

)
– φ

(
M(x, y)

)
≤ ψ

(
M(x, y)

)
– φ

(
M(x, y)

)
+ Lmin

{
d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

}

for some L > . Then by Theorem , T has a unique fixed point in X. �

http://www.fixedpointtheoryandapplications.com/content/2012/1/138
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Corollary  Let (X,d) be a Hausdorff and complete RMS and let T : X → X be a self-map
satisfying

d(Tx,Ty) ≤ kmax
{
d(x, y),d(x,Tx),d(y,Ty)

}
(.)

for all x, y ∈ X and some  ≤ k < . Then T has a unique fixed point in X.

Proof Let ψ(t) = t and φ(t) = ( – k)t. Then by Corollary , T has a unique fixed point.
�

Corollary  Let (X,d) be a Hausdorff and complete RMS and let T : X → X be a self-map
satisfying

d(Tx,Ty) ≤ k
[
d(x, y) + d(x,Tx) + d(y,Ty)

]
+ Lmin

{
d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

}
(.)

for all x, y ∈ X and some  ≤ k < 
 and L > . Then T has a unique fixed point in X.

Proof Obviously,

k
[
d(x, y) + d(x,Tx) + d(y,Ty)

]
+ Lmin

{
d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

}
≤ kmax

{
d(x, y),d(x,Tx),d(y,Ty)

}
+ Lmin

{
d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

}
.

Let ψ(t) = t and φ(t) = ( – k)t. Then by Theorem , T has a unique fixed point. �

Our next corollary is concerned with weak φ contractions.

Corollary  Let (X,d) be a Hausdorff and complete RMS and let T : X → X be a self-map
satisfying

d(Tx,Ty) ≤ M(x, y) – φ
(
M(x, y)

)
+ Lm(x, y) (.)

for all x, y ∈ X, where

M(x, y) =max
{
d(x, y),d(x,Tx),d(y,Ty)

}
,

m(x, y) =min
{
d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

}
.

Then T has a unique fixed point in X.

Proof Let ψ(t) = t. Then by Theorem , T has a unique fixed point. �

As the second result, we state the following existence and uniqueness theorem under
conditions involving rational expressions.

Theorem  Let (X,d) be a Hausdorff and complete RMS and let T : X → X be a self-map
satisfying

ψ
(
d(Tx,Ty)

) ≤ ψ
(
M(x, y)

)
– φ

(
M(x, y)

)
(.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/138
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for all x, y ∈ X and ψ ,φ ∈ � , where ψ is nondecreasing and

M(x, y) =max

{
d(x, y),d(y,Ty)

 + d(x,Tx)
 + d(x, y)

}
. (.)

Then T has a unique fixed point in X.

Proof Let x ∈ X be an arbitrary point. Define the sequence {xn} ⊂ X as

xn = Txn–, n = , , , . . . .

Assume that xn �= xn+ = Txn for all n ≥ . Substituting x = xn– and y = xn in (.), we
obtain

ψ
(
d(Txn–,Txn)

)
= ψ

(
d(xn,xn+)

) ≤ ψ
(
M(xn–,xn)

)
– φ

(
M(xn–,xn)

)
, (.)

where

M(xn–,xn) = max

{
d(xn–,xn),d(xn,Txn)

 + d(xn–,Txn–)
 + d(xn–,xn)

}

= max
{
d(xn–,xn),d(xn,xn+)

}
.

For the rest of the proof, one can follow the same steps as in the proof of Theorem . �

Setting ψ(t) = t and φ(t) = ( – k)t, we obtain the following particular result.

Corollary  Let (X,d) be aHausdorff and complete RMS and let T : X → X be a self-map
satisfying

d(Tx,Ty) ≤ kmax

{
d(x, y),d(y,Ty)

 + d(x,Tx)
 + d(x, y)

}
(.)

for all x, y ∈ X and some k ∈ [, ). Then T has a unique fixed point in X.

We also generalize the applications of Theorem . in [] given by Lakzian and Samet.
Let � be the set of functions f : [, +∞) → [, +∞) such that
() f is Lebesgue integrable on each compact subset of [, +∞);
()

∫ ε

 f (t)dt >  for every ε > .
For this class of functions, we can state the following results.

Theorem  Let (X,d) be a Hausdorff and complete RMS and let T : X → X be a self-map
satisfying

∫ d(Tx,Ty)


f (t)dt ≤

∫ M(x,y)


f (t)dt –

∫ M(x,y)


g(t)dt + Lm(x, y) (.)

for all x, y ∈ X and f , g ∈ �, where L >  and

M(x, y) =max
{
d(x, y),d(x,Tx),d(y,Ty)

}
,

http://www.fixedpointtheoryandapplications.com/content/2012/1/138
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m(x, y) =min
{
d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

}
.

Then T has a unique fixed point in X.

Proof Let ψ(t) =
∫ t
 f (u)du and φ(t) =

∫ t
 g(u)du. Then ψ and φ are functions in � , and

moreover, the function ψ is nondecreasing. By Theorem , T has a unique fixed point.
�

Corollary  Let (X,d) be aHausdorff and complete RMS and let T : X → X be a self-map
satisfying

∫ d(Tx,Ty)


f (u)du≤ k

∫ M(x,y)


f (u)du + Lm(x, y) (.)

for all x, y ∈ X and f ∈ � and some  ≤ k < , L > , where

M(x, y) =max
{
d(x, y),d(x,Tx),d(y,Ty)

}
,

m(x, y) =min
{
d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

}
.

Then T has a unique fixed point in X.

Proof Let g(t) = ( – k)f (t). Then by Theorem , T has a unique fixed point. �

Theorem  Let (X,d) be a Hausdorff and complete RMS and let T : X → X be a self-map
satisfying

∫ d(Tx,Ty)


f (t)dt ≤

∫ M(x,y)


f (t)dt –

∫ M(x,y)


g(t)dt (.)

for all x, y ∈ X and f , g ∈ �, where

M(x, y) =max

{
d(x, y),d(y,Ty)

 + d(x,Tx)
 + d(x, y)

}
.

Then T has a unique fixed point in X.

Proof Let ψ(t) =
∫ t
 f (u)du and φ(t) =

∫ t
 g(u)du. Then ψ and φ are functions in � , and

moreover, the function ψ is nondecreasing. By Theorem , T has a unique fixed point. �

Finally, we give an illustrative example of (ψ ,φ) contraction defined on a generalized
metric space.

Example  Let X = A ∪ B, where A = { 
 ,


 ,


 ,


 } and B = [, ]. Define the generalized

metric d on X as follows:

d
(


,



)
= d

(


,



)
= ., d

(


,



)
= d

(


,



)
= .,

d
(


,



)
= d

(


,



)
= ., d

(


,



)
= d

(


,



)
= d

(


,



)
= d

(


,



)
= 
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and

d(x, y) = |x – y| if x, y ∈ B or x ∈ A, y ∈ B or x ∈ B, y ∈ A.

It is clear that d does not satisfy the triangle inequality on A. Indeed,

. = d
(


,



)
≥ d

(


,



)
+ d

(


,



)
= ..

Notice that (RM) holds, so d is a rectangular metric.
Let T : X → X be defined as

Tx =

⎧⎪⎪⎨
⎪⎪⎩


 if x ∈ [, ],

 if x ∈ { 

 ,

 ,


 },


 if x = 

 .

Define ψ(t) = t and φ(t) = t
 . Then T satisfies the conditions of Theorem  and has a

unique fixed point on X, i.e., x = 
 .
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