Thai Journal of Mathematics Volume 15 (2017) Number 3 : 819–834

http://thaijmath.in.cmu.ac.th ISSN 1686-0209

Fixed Points of Set-Valued Mappings under Generalized Contractive Conditions in Ordered Metric Spaces

Hemant Kumar Nashine[†] and Zoran Kadelburg^{‡,1}

[†]Department of Mathematics, Disha Institute of Management and Technology, Satya Vihar, Vidhansabha-Chandrakhuri Marg Mandir Hasaud, Raipur-492101 (Chhattisgarh), India e-mail : drhknashine@gmail.com [‡]University of Belgrade, Faculty of Mathematics Studentski trg 16, 11000 Beograd, Serbia

e-mail : kadelbur@matf.bg.ac.rs

Abstract : In the present work we establish some new fixed point theorems for a set-valued operator satisfying generalized contractive condition in a partially ordered complete metric space. Thereafter we present common fixed point results for a pair of weakly isotone increasing set-valued mappings. Finally, some examples are given to illustrate the usability of our results, also showing that the use of order can be crucial.

Keywords : common fixed point; Hausdorff distance; set-valued mapping; control function; weakly isotone increasing mappings.
2010 Mathematics Subject Classification : 47H10; 54H25; 54H10.

1 Introduction

Fixed point theory for set-valued mappings was originally initiated by von Neumann in his study on Game Theory. Fixed point theorems for set-valued

Copyright 2017 by the Mathematical Association of Thailand. All rights reserved.

The second author is thankful to the Ministry of Education, Science and Technological Development of Serbia.

¹Corresponding author.

mappings are quite useful in Control Theory and have been frequently used for solving problems in Economics and Game Theory.

The study of fixed points for set-valued contraction mappings was an active topic, as well. The development of geometric fixed point theory for multifunctions was initiated with the work of Nadler [1] in 1969. He used the concept of Hausdorff metric to establish the set-valued contraction principle containing the Banach contraction principle as a special case, as follows.

Theorem 1.1. Let (\mathcal{X}, d) be a complete metric space and let \mathcal{T} be a mapping from \mathcal{X} into $CB(\mathcal{X})$ such that for all $x, y \in \mathcal{X}$,

$$H(\mathcal{T}x, \mathcal{T}y) \le \lambda d(x, y)$$

where, $0 \leq \lambda < 1$. Then \mathcal{T} has a fixed point.

Since then, this discipline has been developed further, and many profound concepts and results have been established with considerable generality; see, for example, the work of Itoh and Takahashi [2], Mizoguchi and Takahashi [3], Rhoades [4], and the references cited therein. Very recently, results on common fixed points for a pair of set-valued operators have been obtained by applying various types of contractive conditions; we refer the reader to [5–13]. Shen and Hong [14] proved fixed point theorems for a pair of set-valued operators which satisfy generalized contractive condition and gave analogy of the results for single-valued operators of Zhang [15].

On the other hand, fixed point theory has developed rapidly in metric spaces endowed with a partial ordering. The first result in this direction was given by Ran and Reurings [16, Theorem 2.1] who presented its applications to matrix equations. Subsequently, Nieto and Rodríguez-López [17] extended the result of [16] for nondecreasing mappings and applied it to obtain a unique solution for a first order ordinary differential equation with periodic boundary conditions. Thereafter, several authors obtained many fixed point theorems in ordered metric spaces. Hong [6] proved new hybrid fixed point theorems involving set-valued operators which satisfy weakly generalized contractive conditions in a complete ordered metric space and presented application for hyperbolic differential inclusion. Beg and Butt [18–20] worked on set-valued mappings and proved common fixed point results for mappings satisfying implicit relation in partially ordered metric space. Recently, Choudhury and Metiya [21] also proved fixed point theorems for set-valued mappings in the framework of a partially ordered metric space.

In the present paper an attempt is made, first, to prove fixed point theorems for a set-valued operator which satisfies generalized contractive condition in a partially ordered complete metric space. Secondly, we extend these results for a pair of set-valued operators. We will do this using the concept of weakly isotone increasing mappings introduced by Dhage, O'Regan and Agarwal [22]. Our results are ordered version generalization of the results of Shen and Hong [14]. They generalize Theorem 2.1–Theorem 2.5 of Choudhury and Metiya [21] by considering a more general contractive condition and a pair of set-valued mappings. Finally, some examples are given to illustrate the usability of our results.

2 Preliminaries

For more details on the following definitions, we refer the reader to [14, 21].

Recall that a function $\psi : [0, \infty) \to [0, \infty)$ is called an altering distance function if the following properties are satisfied:

- 1. ψ is increasing and continuous,
- 2. $\psi(t) = 0$ if and only if t = 0.

Weaker forms of the above conditions have also been used to establish fixed point results in a number of subsequent works, some of which are noted in [23–25] and the references cited therein.

Definition 2.1. Let $\mathcal{N} \in (0, +\infty]$. Denote by \mathcal{F} the set of functions $f : [0, \mathcal{N}) \to \mathbb{R}$ satisfying:

- (i) f(0) = 0 and f(t) > 0 for each $t \in (0, \mathcal{N})$;
- (ii) f is continuous;
- (iii) f is nondecreasing on $[0, \mathcal{N})$;
- (iv) $f(t_1 + t_2) \le f(t_1) + f(t_2)$, whenever $t_1, t_2, t_1 + t_2 \in (0, \mathcal{N})$.

Definition 2.2. Let $\mathcal{N} \in (0, +\infty]$. Denote by Ψ the set of functions $\psi : [0, \mathcal{N}) \to [0, +\infty)$ satisfying:

- (i) $\psi(t) < t$ for each $t \in (0, \mathcal{N})$;
- (ii) for each $t \in (0, \mathcal{N}), \sum_{n=1}^{\infty} \psi^n(t) < \infty$.

If \mathcal{X} is a nonempty set, the set $2^{\mathcal{X}} \setminus \{\emptyset\}$ of nonempty subsets of \mathcal{X} will be denoted by $N(\mathcal{X})$.

Definition 2.3. For arbitrary nonempty subsets \mathcal{A}, \mathcal{B} of a metric space (\mathcal{X}, d) , the expression

$$H(\mathcal{A},\mathcal{B}) = \max\left\{\sup_{a\in\mathcal{A}} D(a,\mathcal{B}), \sup_{b\in\mathcal{B}} D(b,\mathcal{A})\right\}$$

is called the *Hausdorff distance* of \mathcal{A} and \mathcal{B} , where $D(a, \mathcal{B}) = D(\mathcal{B}, a) = \inf_{b \in \mathcal{B}} d(a, b)$.

Definition 2.4. A point $x^* \in \mathcal{X}$ is called a *fixed point* of a set-valued operator $\mathcal{T}: \mathcal{X} \to N(\mathcal{X})$ if $x^* \in \mathcal{T}x^*$.

Definition 2.5. A set $\mathcal{B} \subset \mathcal{X}$ is said to be an *approximation* if for each given $y \in \mathcal{X}$, there exists $z \in \mathcal{B}$ such that $D(\mathcal{B}, y) = d(z, y)$.

A set-valued operator \mathcal{T} is said to have approximate values in \mathcal{X} if $\mathcal{T}x$ is an approximation for each $x \in \mathcal{X}$.

Throughout this paper we always assume that all set-valued operators have approximate values.

Definition 2.6. Let \mathcal{X} be a nonempty set. Then $(\mathcal{X}, d, \preceq)$ is called an *ordered metric space* if:

- (i) (\mathcal{X}, d) is a metric space,
- (ii) (\mathcal{X}, \preceq) is a partially ordered set.

Let (\mathcal{X}, \preceq) be a partially ordered set. Then $x, y \in \mathcal{X}$ are called comparable if $x \preceq y$ or $y \preceq x$ holds.

Definition 2.7 ([6]). Let \mathcal{A} and \mathcal{B} be two nonempty subsets of a partially ordered set (\mathcal{X}, \preceq) . The relation \preceq_2 between two nonempty subsets \mathcal{A} and \mathcal{B} of \mathcal{X} is defined as follows:

 $\mathcal{A} \leq_2 \mathcal{B}$, if $a \leq b$ for every $a \in \mathcal{A}$ and every $b \in \mathcal{B}$.

3 Results for a Single Set-Valued Mapping

In this section, we prove fixed point theorems for a set-valued mapping in ordered complete metric space. The first result is the following

Theorem 3.1. Let $(\mathcal{X}, d, \preceq)$ be a complete ordered metric space and let $\mathcal{Y} = \sup\{d(x, y) : x, y \in \mathcal{X}\}$. Set $\mathcal{N} = \mathcal{Y}$ if $\mathcal{Y} = \infty$, and $\mathcal{N} > \mathcal{Y}$ if $\mathcal{Y} < \infty$. Suppose that $\mathcal{T} : \mathcal{X} \to N(\mathcal{X})$ is a set-valued mapping such that the following conditions are satisfied:

- (i) there exists $x_0 \in \mathcal{X}$ such that $\{x_0\} \leq_2 \mathcal{T} x_0$,
- (ii) for $x, y \in \mathcal{X}, x \preceq y$ implies $\mathcal{T}x \preceq_2 \mathcal{T}y$,
- (iii) $f(H(\mathcal{T}x,\mathcal{T}y)) \leq \psi(f(M(x,y)))$ for all comparable $x, y \in \mathcal{X}$, where $f \in \mathcal{F}$, $\psi \in \Psi$ and

$$M(x,y) = \max\left\{ d(x,y), D(\mathcal{T}x,x), D(\mathcal{T}y,y), \frac{1}{2}(D(\mathcal{T}x,y) + D(\mathcal{T}y,x)) \right\}.$$
(3.1)

If the condition

if
$$\{x_n\} \subset \mathcal{X}$$
 is an increasing sequence with $x_n \to z$ in \mathcal{X} ,
then $x_n \preceq z$ for all n (3.2)

holds, then \mathcal{T} has a fixed point.

Proof. In view of the property of approximation, for $x_0 \in \mathcal{X}$ (given by (i)), there exists $x_1 \in \mathcal{T}x_0$ such that $D(\mathcal{T}x_0, x_0) = d(x_1, x_0)$. Property (i) implies that $x_0 \leq x_1$. Now, there exists $x_2 \in \mathcal{T}x_1$ such that $D(\mathcal{T}x_1, x_1) = d(x_2, x_1)$ and, by (ii), $x_1 \leq x_2$. Continuing this process we construct a nondecreasing sequence $\{x_n\}$ in \mathcal{X} such that $x_{n+1} \in \mathcal{T}x_n$, for all $n \geq 0$,

$$x_0 \preceq x_1 \preceq x_2 \preceq \cdots \preceq x_n \preceq x_{n+1} \preceq \cdots$$
,

and $D(\mathcal{T}x_n, x_n) = d(x_{n+1}, x_n)$. If there exists a positive integer N such that $x_N = x_{N+1}$, then x_N is a fixed point of \mathcal{T} . Hence we shall assume that $x_n \neq x_{n+1}$, for all $n \geq 0$.

Using (3.1), we have for all $n \ge 0$,

$$M(x_n, x_{n+1}) = \max\{d(x_n, x_{n+1}), D(\mathcal{T}x_n, x_n), D(\mathcal{T}x_{n+1}, x_{n+1}), \\ \frac{1}{2}(D(\mathcal{T}x_n, x_{n+1}) + D(\mathcal{T}x_{n+1}, x_n))\} \\ = \max\{d(x_n, x_{n+1}), d(x_{n+1}, x_n), d(x_{n+2}, x_{n+1}), \\ \frac{1}{2}(d(x_{n+1}, x_{n+1}) + d(x_{n+2}, x_n))\} \\ = \max\{d(x_n, x_{n+1}), d(x_{n+2}, x_{n+1}), \frac{1}{2}d(x_{n+2}, x_n)\}.$$

Since $\frac{1}{2}d(x_n, x_{n+2}) \le \max\{d(x_n, x_{n+1}), d(x_{n+1}, x_{n+2})\}$, it follows that

$$M(x_n, x_{n+1}) = \max\{d(x_n, x_{n+1}), d(x_{n+2}, x_{n+1})\}.$$
(3.3)

Suppose that $d(x_{n+2}, x_{n+1}) \ge d(x_n, x_{n+1})$ for some positive integer *n*. Then from condition (iii), (3.3) and the properties of functions $f \in \mathcal{F}, \psi \in \Psi$, we have

$$f(d(x_{n+2}, x_{n+1})) = f(D(\mathcal{T}x_{n+1}, x_{n+1}))$$

$$\leq f(H(\mathcal{T}x_n, \mathcal{T}x_{n+1})) \leq \psi(f(M(x_n, x_{n+1})))$$

$$< f(M(x_n, x_{n+1})) = f(d(x_{n+2}, x_{n+1})),$$

a contradiction. So we have $d(x_{n+2}, x_{n+1}) < d(x_n, x_{n+1})$. This yields

$$f(d(x_{n+2}, x_{n+1})) = f(D(\mathcal{T}x_{n+1}, x_{n+1})) \le f(H(\mathcal{T}x_n, \mathcal{T}x_{n+1})) \\ \le \psi(f(M(x_n, x_{n+1}))) = \psi(f(d(x_{n+1}, x_n))).$$

Using the obtained inequality several times, we get

$$f(d(x_{n+1}, x_n)) \le \psi(f(d(x_n, x_{n-1}))) \le \dots \le \psi^n(f(d(x_1, x_0))).$$

Let $m, n \in N, n > m$; then in virtue of the triangular inequality, we have

$$d(x_n, x_m) \le \sum_{i=m}^{n-1} d(x_i, x_{i+1}).$$

This implies, by the properties of $f \in \mathcal{F}$,

$$f(d(x_n, x_m)) \le f(d(x_n, x_{n-1}) + d(x_{n-1}, x_{n-2}) + \dots + d(x_{m+1}, x_m))$$
$$\le \sum_{i=m}^{n-1} \psi^i(f(d(x_1, x_0))).$$

Let $m, n \to \infty$; by the above inequality, using the condition of $\sum_{i=m}^{\infty} \psi^n(t) < \infty$ of $\psi \in \Psi$, it follows that $\{x_n\}$ is a Cauchy sequence.

From the completeness of \mathcal{X} , there exists a $z \in \mathcal{X}$ such that

$$x_n \longrightarrow z \text{ as } n \longrightarrow \infty.$$

By the assumption (3.2), $x_n \leq z$, for all n.

Now we prove $D(\mathcal{T}z, z) = 0$. Suppose that this is not true; then $D(\mathcal{T}z, z) > 0$. For large enough n, using (3.1) for x = z and $y = x_{2n+1}$, we claim that

$$M(z, x_{2n+1}) = \max\{d(z, x_{2n+1}), D(\mathcal{T}z, z), D(\mathcal{T}x_{2n+1}, x_{2n+1}), \\ \frac{1}{2}(D(\mathcal{T}z, x_{2n+1}) + D(\mathcal{T}x_{2n+1}, z))\} \\ = D(\mathcal{T}z, z).$$

Indeed, since $\lim_{n\to\infty} d(z, x_{2n+1}) = 0$ and $\lim_{n\to\infty} D(\mathcal{T}x_{2n+1}, x_{2n+1}) = 0$, it follows that

$$\lim_{n \to \infty} \frac{1}{2} (D(\mathcal{T}z, x_{2n+1}) + D(\mathcal{T}x_{2n+1}, z)) \\ \leq \lim_{n \to \infty} \frac{1}{2} (D(\mathcal{T}z, z) + d(z, x_{2n+1}) + D(\mathcal{T}x_{2n+1}, x_{2n+1}) + d(x_{2n+1}, z)) \\ = \frac{1}{2} D(\mathcal{T}z, z).$$

Therefore, there exists n_1 such that $M(z, x_{2n+1}) = D(\mathcal{T}z, z)$ for all $n > n_1$. Note that

$$f(D(\mathcal{T}z, x_{2n+2})) \le f(H(\mathcal{T}z, \mathcal{T}x_{2n+1})) \le \psi(f(M(z, x_{2n+1}))).$$

Letting $n \to \infty$ and applying (i) of Definition 2.2, we get

$$f(D(\mathcal{T}z, z)) \le \psi(f(D(\mathcal{T}z, z))) < f(D(\mathcal{T}z, z)),$$

a contradiction. Hence $D(\mathcal{T}z, z) = 0$; in virtue of the approximation property of $\mathcal{T}z$, we have $z \in \mathcal{T}z$. This completes the proof of the theorem.

We illustrate Theorem 3.1 by the following example. It also shows that the use of order is crucial.

Example 3.2. Let $\mathcal{X} = \{A, B, C\}$, where $A = (0, 0), B = (1, 1), C = (2, 0) \in \mathbb{R}^2$. Metric *d* is defined as $d((x_1, y_1), (x_2, y_2)) = \max\{|x_1 - x_2|, |y_1 - y_2|\}$ so that d(A, B) = 1, d(A, C) = 2 and d(B, C) = 1. Order \preceq is introduced by $(x_1, y_1) \preceq (x_2, y_2)$ iff $x_1 \le x_2$ and $y_1 \le y_2$, so that $A \preceq B$ and $A \preceq C$, while *B* and *C* are incomparable.

Consider the mapping $\mathcal{T}: \mathcal{X} \to N(\mathcal{X})$ given by

$$\mathcal{T} = \begin{pmatrix} A & B & C \\ \{A\} & \{A\} & \{A,B\} \end{pmatrix},$$

and functions $f \in \mathcal{F}$, $\psi \in \Psi$ given by $f(t) = \frac{1}{2}t$, $\psi(t) = \frac{2}{3}t$. Conditions (i) and (ii), as well as (3.2) of Theorem 3.1 are satisfied. To prove that (iii) holds, it is

enough to check that it is satisfied for x = A, y = B and for x = A, y = C (in the case when x = y, (iii) is trivially satisfied).

If x = A, y = B, then $\mathcal{T}x = \mathcal{T}y = \{A\}$ and $H(\mathcal{T}x, \mathcal{T}y) = 0$, so (iii) holds. If x = A, y = C, then

$$H(\mathcal{T}x, \mathcal{T}y) = \max\{D(A, \{A, B\}), \max\{D(A, \{A\}), D(B, \{A\})\}\} = d(A, B) = 1,$$

and

$$M(x,y) = \max\{d(A,C), D(A, \{A\}), D(C, \{A,B\}), \frac{1}{2}(D(A, \{A,B\}) + D(C, \{A\}))\}$$

= max{2,0,1, $\frac{1}{2}(0+2)$ } = 2.

Hence, $f(H(\mathcal{T}x,\mathcal{T}y)) = \frac{1}{2} < \frac{2}{3} = \psi(f(M(x,y)))$. All the conditions of Theorem 3.1 are fulfilled and \mathcal{T} has a fixed point A.

Note that for (incomparable) points x = B, y = C condition (iii) is not satisfied, and so Theorem 1 of [14] (with T = S) cannot be applied to reach the conclusion. Indeed, in this case, $\mathcal{T}x = \{A\}, \mathcal{T}y = \{A, B\},$

$$H(\mathcal{T}x, \mathcal{T}y) = d(A, B) = 1, \quad M(x, y) = \max\{1, 1, 1, \frac{1}{2}(0+2)\} = 1,$$

and $f(H(\mathcal{T}x,\mathcal{T}y)) = \frac{1}{2} > \frac{1}{3}\psi(f(M(x,y))).$

The following corollary is a special case of Theorem 3.1 when \mathcal{T} is a single-valued mapping.

Corollary 3.3. Let $(\mathcal{X}, d, \preceq)$ be a complete ordered metric space and let $\mathcal{Y} = \sup\{d(x, y) : x, y \in \mathcal{X}\}$. Set $\mathcal{N} = \mathcal{Y}$ if $\mathcal{Y} = \infty$, and $\mathcal{N} > \mathcal{Y}$ if $\mathcal{Y} < \infty$. Suppose that a mapping $\mathcal{T} : \mathcal{X} \to \mathcal{X}$ satisfies the following conditions:

- 1. there exists $x_0 \in \mathcal{X}$ such that $x_0 \preceq \mathcal{T} x_0$,
- 2. for $x, y \in \mathcal{X}$, $x \leq y$ implies $\mathcal{T}x \leq \mathcal{T}y$,
- 3. $f(d(\mathcal{T}x,\mathcal{T}y)) \leq \psi(f(M(x,y)))$ for all comparable $x,y \in \mathcal{X}$, where $f \in \mathcal{F}$, $\psi \in \Psi$ and

$$M(x,y) = \max\left\{d(x,y), d(\mathcal{T}x,x), d(\mathcal{T}y,y), \frac{1}{2}(d(\mathcal{T}x,y) + d(\mathcal{T}y,x))\right\}.$$

If the condition (3.2) holds, then \mathcal{T} has a fixed point.

In the following theorem we replace condition (3.2) of the above corollary by requiring \mathcal{T} to be continuous.

Theorem 3.4. Let $(\mathcal{X}, d, \preceq)$ be a complete ordered metric space and let $\mathcal{Y} = \sup\{d(x, y) : x, y \in \mathcal{X}\}$. Set $\mathcal{N} = \mathcal{Y}$ if $\mathcal{Y} = \infty$, and $\mathcal{N} > \mathcal{Y}$ if $\mathcal{Y} < \infty$. Suppose that a continuous mapping $\mathcal{T} : \mathcal{X} \to \mathcal{X}$ satisfies the following conditions:

1. there exists $x_0 \in \mathcal{X}$ such that $x_0 \preceq \mathcal{T} x_0$,

- 2. for $x, y \in \mathcal{X}, x \leq y$ implies $\mathcal{T}x \leq \mathcal{T}y$,
- 3. $f(d(\mathcal{T}x,\mathcal{T}y)) \leq \psi(f(M(x,y)))$ for all comparable $x, y \in \mathcal{X}$, where $f \in \mathcal{F}$, $\psi \in \Psi$, and

$$M(x,y) = \max\left\{d(x,y), d(\mathcal{T}x,x), d(\mathcal{T}y,y), \frac{1}{2}(d(\mathcal{T}x,y) + d(\mathcal{T}y,x))\right\}.$$

Then \mathcal{T} has a fixed point.

Proof. Consider \mathcal{T} as a set-valued mapping for which $\mathcal{T}x$ is a singleton set for every $x \in \mathcal{X}$. Then we consider the same sequence $\{x_n\}$ as in the proof of Theorem 3.1 and following the line of its proof, we have that $\{x_n\}$ is a Cauchy sequence and

$$\lim_{n \to \infty} x_n = z.$$

Then, if \mathcal{T} is continuous, we have

$$z = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} \mathcal{T} x_n = \mathcal{T} z$$

and this proves that z is a fixed point of \mathcal{T} and we have the result.

Recall that a subset \mathcal{K} of a partially ordered set \mathcal{X} is said to be totally ordered if every two elements of \mathcal{K} are comparable.

Theorem 3.5. Under the assumptions of Corollary 3.3 or Theorem 3.4, the set $F(\mathcal{T})$ of fixed points of \mathcal{T} is a singleton if and only if it is totally ordered.

Proof. Suppose that the set of fixed points of \mathcal{T} is totally ordered. We claim that the fixed point of \mathcal{T} is unique. Assume to the contrary, that $u \in \mathcal{T}u$ and $v \in \mathcal{T}v$ but $u \neq v$, and hence d(u, v) > 0. By supposition, we can replace x by u and y by v in condition (3) of Corollary 3.3 or Theorem 3.4 to obtain

$$f(d(u,v)) \le f(d(\mathcal{T}u,\mathcal{T}v) \le \psi(f(M(u,v)))$$

where

$$M(u, v) = \max \left\{ d(u, v), d(\mathcal{T}u, v), d(\mathcal{T}v, v), \frac{1}{2}(d(\mathcal{T}u, v) + d(\mathcal{T}v, u)) \right\}$$

$$\leq \max \left\{ d(u, v), d(u, v), 0, \frac{1}{2}(d(u, v) + d(v, u)) \right\} = d(u, v)$$

and

$$f(d(u,v) \le \psi(f(d(u,v))) < f(d(u,v)),$$

a contradiction. Hence d(u, v) = 0, that is, u = v. The converse is trivial.

4 Results for a Pair of Set-valued Mappings

Next we prove common fixed point theorems for a pair of set-valued mappings in a complete ordered metric space. To complete the result, we extend to setvalued mappings the notion of weakly isotone increasing mappings given by Dhage, O'Regan and Agarwal [22].

Definition 4.1. Let (\mathcal{X}, \preceq) be a partially ordered set. Two maps $\mathcal{S}, \mathcal{T} : \mathcal{X} \to N(\mathcal{X})$ are said to be weakly isotone increasing if for any $x \in \mathcal{X}$ we have $\mathcal{S}x \preceq_2 \mathcal{T}y$ for all $y \in \mathcal{S}x$ and $\mathcal{T}x \preceq_2 \mathcal{S}y$ for all $y \in \mathcal{T}x$.

Note that, in particular, single-valued mappings $\mathcal{T}, \mathcal{S} : \mathcal{X} \to \mathcal{X}$ are weakly isotone increasing [22] if $\mathcal{S}x \preceq \mathcal{T}\mathcal{S}x$ and $\mathcal{T}x \preceq \mathcal{S}\mathcal{T}x$ hold for each $x \in \mathcal{X}$.

Theorem 4.2. Let $(\mathcal{X}, d, \preceq)$ be a complete ordered metric space and let $\mathcal{Y} = \sup\{d(x, y) : x, y \in \mathcal{X}\}$. Set $\mathcal{N} = \mathcal{Y}$ if $\mathcal{Y} = \infty$, and $\mathcal{N} > \mathcal{Y}$ if $\mathcal{Y} < \infty$. Suppose that $\mathcal{T}, \mathcal{S} : \mathcal{X} \to \mathcal{N}(\mathcal{X})$ are two set-valued mappings such that the following condition is satisfied:

$$f(H(\mathcal{T}x,\mathcal{S}y)) \le \psi(f(M(x,y))) \tag{4.1}$$

for all comparable $x, y \in \mathcal{X}$, where $f \in \mathcal{F}$, $\psi \in \Psi$ and

$$M(x,y) = \max\left\{d(x,y), D(\mathcal{T}x,x), D(\mathcal{S}y,y), \frac{1}{2}(D(\mathcal{T}x,y) + D(\mathcal{S}y,x))\right\}.$$
 (4.2)

Also suppose that S and T are weakly isotone increasing and there exists an $x_0 \in \mathcal{X}$ such that $\{x_0\} \leq_2 T x_0$. If the condition

$$\begin{cases} \text{ if } \{x_n\} \subset \mathcal{X} \text{ is a non-decreasing sequence with } x_n \to z \text{ in } \mathcal{X}, \\ \text{ then } x_n \preceq z \text{ for all } n \end{cases}$$

$$(4.3)$$

holds, then S and T have a common fixed point.

Proof. First of all we show that, if S or T has a fixed point, then it is a common fixed point of S and T. Indeed, let z be a fixed point of T, that is $z \in Tz$, but $z \notin Sz$. Since Sz is an approximation, D(Sz, z) > 0. If we use the inequality (4.2), for x = y = z, we have

$$M(z,z) = \max\left\{d(z,z), D(\mathcal{T}z,z), D(\mathcal{S}z,z), \frac{1}{2}(D(\mathcal{T}z,z) + D(\mathcal{S}z,z))\right\} = D(\mathcal{S}z,z),$$

and it follows that

$$f(D(\mathcal{S}z, z)) \le f(\mathcal{H}(\mathcal{T}z, \mathcal{S}z)) \le \psi(f(M(z, z)))$$

= $\psi(f(D(\mathcal{S}z, z))) < f(D(\mathcal{S}z, z)).$

This is a contradiction, so $z \in Sz$. Analogously, one can observe that if $z \in Sz$, then $z \in Tz$.

Let us start with the given x_0 . In view of the property of approximation, we can define a sequence $\{x_n\} \subset \mathcal{X}$ as follows

$$\begin{cases} x_{2n+1} \in \mathcal{T}x_{2n}, \ D(\mathcal{T}x_{2n}, x_{2n}) = d(x_{2n+1}, x_{2n}), \\ p(x_{2n+1}, x_{2n}) \in \mathcal{T}x_{2n} \end{cases}$$

$$x_{2n+2} \in \mathcal{S}x_{2n+1}, \ D(\mathcal{S}x_{2n+1}, x_{2n+1}) = d(x_{2n+2}, x_{2n+1}), \ \text{ for } n \in \{0, 1, \dots\}$$

If $x_{n_0} \in Sx_{n_0}$ or $x_{n_0} \in Tx_{n_0}$ for some n_0 , then the proof is finished. So assume $x_n \neq x_{n+1}$ for all n.

Now we use that S and T are weakly isotone increasing. Note that $x_1 \in Tx_0$, so that $x_0 \leq x_1$ and since $Tx_0 \leq_2 Sy$ for all $y \in Tx_0$ we have $Tx_0 \leq_2 Sx_1$. In particular, $x_1 \leq x_2$. Continuing this process we construct a sequence $\{x_n\}$ in \mathcal{X} such that

$$x_1 \preceq x_2 \preceq \cdots \preceq x_n \preceq x_{n+1} \preceq \cdots$$

Now we claim that

$$d(x_{n+1}, x_n) < d(x_n, x_{n-1}).$$

Setting $x = x_{2n}$ and $y = x_{2n+1}$ in (4.2), we have for all $n \ge 0$,

$$M(x_{2n}, x_{2n+1}) = \max\{d(x_{2n}, x_{2n+1}), D(\mathcal{T}x_{2n}, x_{2n}), D(\mathcal{S}x_{2n+1}, x_{2n+1}), \\ \frac{1}{2}(D(\mathcal{T}x_{2n}, x_{2n+1}) + D(\mathcal{S}x_{2n+1}, x_{2n}))\} \\ = \max\{d(x_{2n}, x_{2n+1}), d(x_{2n+1}, x_{2n}), d(x_{2n+2}, x_{2n+1}), \\ \frac{1}{2}(d(x_{2n+1}, x_{2n+1}) + d(x_{2n+2}, x_{2n}))\} \\ = \max\{d(x_{2n}, x_{2n+1}), d(x_{2n+2}, x_{2n+1}), \frac{1}{2}d(x_{2n+2}, x_{2n})\}.$$

Since $\frac{1}{2}d(x_n, x_{n+2}) \le \max\{d(x_n, x_{n+1}), d(x_{n+1}, x_{n+2})\}$, it follows that

$$M(x_{2n}, x_{2n+1}) = \max\{d(x_{2n}, x_{2n+1}), d(x_{2n+2}, x_{2n+1})\}.$$
(4.4)

Suppose that $d(x_{2n+2}, x_{2n+1}) \ge d(x_{2n}, x_{2n+1})$ for some positive integer n. Then from (4.4), we have

$$f(d(x_{2n+2}, x_{2n+1})) = f(D(\mathcal{S}x_{2n+1}, x_{2n+1}))$$

$$\leq f(H(\mathcal{T}x_{2n}, \mathcal{S}x_{2n+1})) \leq \psi(f(M(x_{2n}, x_{2n+1})))$$

$$< f(M(x_{2n}, x_{2n+1})) = f(d(x_{2n+2}, x_{2n+1})),$$

a contradiction. So we have $d(x_{2n+2}, x_{2n+1}) < d(x_{2n}, x_{2n+1})$. This yields

$$f(d(x_{2n+2}, x_{2n+1})) = f(D(\mathcal{T}x_{2n+1}, x_{2n+1})) \le f(H(\mathcal{T}x_{2n}, \mathcal{T}x_{2n+1})) \le \psi(f(M(x_{2n}, x_{2n+1}))) = \psi(f(d(x_{2n+1}, x_{2n}))).$$

Proceeding in the same way, we have

$$d(x_{2n+1}, x_{2n}) < d(x_{2n}, x_{2n-1}),$$

and

$$f(d(x_{2n+1}, x_{2n})) = f(D(\mathcal{T}x_{2n}, x_{2n})) \le f(H(\mathcal{T}x_{2n}, \mathcal{S}x_{2n-1}))$$

$$\le f(M(x_{2n}, x_{2n-1})) = \psi(f(d(x_{2n}, x_{2n-1}))).$$

So for each n, we have

$$f(d(x_{n+1}, x_n)) \le \psi(f(d(x_n, x_{n-1}))).$$

829

Using the obtained inequality several times, we get

$$f(d(x_{n+1}, x_n)) \le \psi(f(d(x_n, x_{n-1}))) \le \dots \le \psi^n(f(d(x_1, x_0))).$$

Let $m, n \in N, n > m$. Then in virtue of the triangular inequality, we have

$$d(x_n, x_m) \le \sum_{i=m}^{n-1} d(x_i, x_{i+1}).$$

This implies, using properties of $f \in \mathcal{F}$,

$$f(d(x_n, x_m)) \le f(d(x_n, x_{n-1}) + d(x_{n-1}, x_{n-2}) + \dots + d(x_{m+1}, x_m))$$
$$\le \sum_{i=m}^{n-1} \psi^i(f(d(x_1, x_0))).$$

Letting $m, n \to \infty$, by the above inequality, using the condition $\sum_{i=m}^{\infty} \psi^n(t) < \infty$, it follows that $\{x_n\}$ is a Cauchy sequence.

From the completeness of \mathcal{X} , there exists a $z \in \mathcal{X}$ such that

$$x_n \longrightarrow z \text{ as } n \longrightarrow \infty.$$

By the assumption (4.3), $x_n \leq z$, for all n.

Now we prove $D(\mathcal{T}z, z) = 0$. Suppose that this is not true, i.e., $D(\mathcal{T}z, z) > 0$. For large enough n, we use that the condition (4.1) holds for x = z and $y = x_{2n+1}$, where

$$M(z, x_{2n+1}) = \max\{d(z, x_{2n+1}), D(\mathcal{T}z, z), D(\mathcal{S}x_{2n+1}, x_{2n+1}), \frac{1}{2}(D(\mathcal{T}z, x_{2n+1}) + D(\mathcal{S}x_{2n+1}, z))\}$$

= $D(\mathcal{T}z, z).$

Indeed, since $\lim_{n\to\infty} d(z, x_{2n+1}) = 0$ and $\lim_{n\to\infty} D(Sx_{2n+1}, x_{2n+1}) = 0$, it follows that

$$\begin{split} \lim_{n \to \infty} \frac{1}{2} (D(\mathcal{T}z, x_{2n+1}) + D(\mathcal{S}x_{2n+1}, z)) \\ &\leq \lim_{n \to \infty} \frac{1}{2} (D(\mathcal{T}z, z) + d(z, x_{2n+1}) + D(\mathcal{S}x_{2n+1}, x_{2n+1}) + d(x_{2n+1}, z)) \\ &= \frac{1}{2} D(\mathcal{T}z, z). \end{split}$$

Therefore, there exists n_1 such that $M(z, x_{2n+1}) = D(\mathcal{T}z, z)$ for all $n > n_1$. Note that

$$f(D(\mathcal{T}z, x_{2n+2})) \le f(H(\mathcal{T}z, \mathcal{S}x_{2n+1})) \le \psi(f(M(z, x_{2n+1}))).$$

Letting $n \to \infty$ and applying (i) of Definition 2.2, we get

$$f(D(\mathcal{T}z, z)) \le \psi(f(D(\mathcal{T}z, z))) < f(D(\mathcal{T}z, z)),$$

a contradiction. Hence $D(\mathcal{T}z, z) = 0$, and in virtue of the approximation of $\mathcal{T}z$, we have $z \in \mathcal{T}z$. Using the conclusion from the beginning of the proof, we get that z is a common fixed point of \mathcal{T} and \mathcal{S} . This completes the proof of the theorem. \Box

Example 4.3. Consider the space $\mathcal{X} = C[a, b]$ of continuous real functions with the standard metric $d(x, y) = \max_{t \in [a, b]} |x(t) - y(t)|$ and the order \leq defined by

$$x \leq y \iff x(t) \geq y(t)$$
 for all $t \in [a, b]$

(note the reverse ordering). Let $f \in \mathcal{F}$ and $\psi \in \Psi$ be given by $f(t) = \frac{2}{3}t$ and $\psi(t) = \frac{1}{2}t$. Consider the following mappings $\mathcal{T}, \mathcal{S} : \mathcal{X} \to \mathcal{X}$:

$$\mathcal{T}x = \left[\frac{1}{4}x, \frac{1}{3}x\right] = \left\{z \in \mathcal{X} : \frac{1}{4}x(t) \le z(t) \le \frac{1}{3}x(t), \ t \in [a, b]\right\}$$
$$\mathcal{S}x = \left[\frac{1}{5}x, \frac{3}{10}x\right] = \left\{z \in \mathcal{X} : \frac{1}{5}x(t) \le z(t) \le \frac{3}{10}x(t), \ t \in [a, b]\right\}.$$

Check first that \mathcal{T} and \mathcal{S} are weakly isotone increasing. Suppose that $y \in \mathcal{S}x = [\frac{1}{5}x, \frac{3}{10}x]$ and $z \in \mathcal{S}x = [\frac{1}{5}x, \frac{3}{10}x]$. Then $u \in \mathcal{T}y = [\frac{1}{4}y, \frac{1}{3}y]$ implies that $u(t) \leq \frac{1}{3} \cdot \frac{3}{10}x(t) = \frac{1}{10}x(t) < \frac{1}{5}x(t) \leq z(t)$ for $t \in [a, b]$ and so $z \leq u$. This means that for any $x \in \mathcal{X}$ we have $\mathcal{S}x \leq_2 \mathcal{T}y$ for all $y \in \mathcal{S}x$. Similarly, one can prove that for each $x \in \mathcal{X}$ we have $\mathcal{T}x \leq_2 \mathcal{S}y$ for all $y \in \mathcal{T}x$.

Take now arbitrary compatible functions $x, y \in \mathcal{X}$. Then, for each $t \in [a, b]$,

$$\begin{aligned} f(H(\mathcal{T}x,\mathcal{S}y)) &\leq \frac{2}{3} \max\left\{\frac{1}{3}x(t),\frac{3}{10}x(t)\right\} &\leq \frac{1}{3} \max\left\{\frac{2}{3}x(t),\frac{7}{10}x(t)\right\} \\ &\leq \frac{1}{3} \max\{D(x,Tx),D(y,Sy)\} = \frac{1}{3}M(x,y) = \psi(f(M(x,y))). \end{aligned}$$

Hence, condition (4.1) of Theorem 4.2 is fulfilled. The other conditions of this theorem are easy to check, and so there is a fixed point z of \mathcal{T} and \mathcal{S} (which is z = 0).

In Theorem 4.2, if \mathcal{T}, \mathcal{S} are single-valued mappings and condition (4.3) is replaced by requiring that one of \mathcal{T}, \mathcal{S} is continuous, then we have the following result.

Theorem 4.4. Let $(\mathcal{X}, d, \preceq)$ be a complete ordered metric space and let $\mathcal{Y} = \sup\{d(x, y) : x, y \in \mathcal{X}\}$. Set $\mathcal{N} = \mathcal{Y}$ if $\mathcal{Y} = \infty$, and $\mathcal{N} > \mathcal{Y}$ if $\mathcal{Y} < \infty$. Suppose that $\mathcal{T}, \mathcal{S} : \mathcal{X} \to \mathcal{X}$ are single-valued operators satisfying

$$f(d(\mathcal{T}x,\mathcal{S}y)) \le \psi(f(M(x,y))) \tag{4.5}$$

for all comparable $x, y \in \mathcal{X}$, where $f \in \mathcal{F}$, $\psi \in \Psi$ and

$$M(x,y) = \max\left\{d(x,y), d(\mathcal{T}x,x), d(\mathcal{S}y,y), \frac{1}{2}(d(\mathcal{T}x,y) + d(\mathcal{S}y,x))\right\}.$$

Also suppose that S and T are weakly isotone increasing and there exists an $x_0 \in X$ such that $x_0 \leq T x_0$. If one of S and T is continuous, then S and T have a common fixed point.

Proof. Consider \mathcal{T} and \mathcal{S} as set-valued mappings for which $\mathcal{T}x$ and $\mathcal{S}x$ are singletons for every $x \in \mathcal{X}$. Then we consider the same sequence $\{x_n\}$ as in the proof of Theorem 4.2 and following the line of its proof, we have that $\{x_n\}$ is a Cauchy sequence and

$$\lim_{n \to \infty} x_n = z.$$

Then, if \mathcal{T} is continuous, we have

$$z = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} \mathcal{T} x_n = \mathcal{T} z$$

and this proves that z is a fixed point of \mathcal{T} and so z is also a fixed point of \mathcal{S} . Similarly, if \mathcal{S} is continuous, we have the result. Thus it is immediate to conclude that \mathcal{T} and \mathcal{S} have a common fixed point.

Theorem 4.5. Under the assumptions of Theorem 4.4, the set of common fixed points of \mathcal{T} and \mathcal{S} is totally ordered if and only if \mathcal{T} and \mathcal{S} have one and only one common fixed point.

Proof. Suppose that the set of common fixed points of \mathcal{T} and \mathcal{S} is totally ordered. We claim that the common fixed point of \mathcal{T} and \mathcal{S} is unique. Assume to the contrary that $u \in Su$, $u \in \mathcal{T}u$ and $v \in Sv$, $v \in \mathcal{T}v$ but $u \neq v$, then d(u, v) > 0. By supposition, we can replace x by u and y by v in (4.5) to obtain

$$f(d(u,v)) \le f(d(\mathcal{T}u,\mathcal{S}v)) \le \psi(f(M(u,v)))$$

where

$$M(u,v) = \max \left\{ d(u,v), d(\mathcal{T}u,v), d(\mathcal{S}v,v), \frac{1}{2}(d(\mathcal{T}u,v) + d(\mathcal{S}v,u)) \right\}$$

$$\leq \max \left\{ d(u,v), d(u,v), 0, \frac{1}{2}(d(u,v) + d(v,u)) \right\} = d(u,v)$$

and

$$f(d(u,v) \le \psi(f(d(u,v))) < f(d(u,v)),$$

a contradiction. Hence d(u, v) = 0, that is, u = v. Conversely, if \mathcal{T} and \mathcal{S} have only one common fixed point then the set of common fixed point of \mathcal{T} and \mathcal{S} , being singleton, is totally ordered.

Putting S = T in Theorem 4.2, we obtain the following

Corollary 4.6. Let $(\mathcal{X}, d, \preceq)$ be a complete ordered metric space and let $\mathcal{Y} = \sup\{d(x, y) : x, y \in \mathcal{X}\}$. Set $\mathcal{N} = \mathcal{Y}$ if $\mathcal{Y} = \infty$, and $\mathcal{N} > \mathcal{Y}$ if $\mathcal{Y} < \infty$. Suppose that $\mathcal{T} : \mathcal{X} \to N(\mathcal{X})$ is a set-valued mapping such that

$$f(H(\mathcal{T}x,\mathcal{T}y)) \le \psi(f(M(x,y)))$$

for all comparable $x, y \in \mathcal{X}$, where $f \in \mathcal{F}, \psi \in \Psi$, and

$$M(x,y) = \max\left\{d(x,y), D(\mathcal{T}x,x), D(\mathcal{T}y,y), \frac{1}{2}(D(\mathcal{T}x,y) + D(\mathcal{T}y,x))\right\}.$$

Also suppose that $\mathcal{T}x \leq_2 \mathcal{T}(\mathcal{T}x)$ for all $x \in \mathcal{X}$ and that $\{x_0\} \leq_2 \mathcal{T}x_0$ for some $x_0 \in \mathcal{X}$. If the condition (4.3) holds, then \mathcal{T} has a fixed point.

If \mathcal{T} is a single-valued mapping in Corollary 4.6, then we have the following consequence:

Corollary 4.7. Let $(\mathcal{X}, d, \preceq)$ be a complete ordered metric space and let $\mathcal{Y} = \sup\{d(x, y) : x, y \in \mathcal{X}\}$. Set $\mathcal{N} = \mathcal{Y}$ if $\mathcal{Y} = \infty$, and $\mathcal{N} > \mathcal{Y}$ if $\mathcal{Y} < \infty$. Suppose that $\mathcal{T} : \mathcal{X} \to \mathcal{X}$ be a mapping such that

$$f(d(\mathcal{T}x,\mathcal{T}y)) \le \psi(f(M(x,y)))$$

for all comparable $x, y \in \mathcal{X}$, where $f \in \mathcal{F}, \psi \in \Psi$ and

$$M(x,y) = \max\left\{d(x,y), d(\mathcal{T}x,x), d(\mathcal{T}y,y), \frac{1}{2}(d(\mathcal{T}x,y) + d(\mathcal{T}y,x))\right\}.$$

Also suppose that $\mathcal{T}x \preceq \mathcal{T}(\mathcal{T}x)$ for all $x \in \mathcal{X}$. If the condition (4.3) holds, then \mathcal{T} has a fixed point.

Acknowledgement : The authors are indebted to the referees for careful reading of the text and suggestions that helped them to improve it.

References

- S.B. Nadler Jr., Multivalued contraction mappings, Pacific J. Math. 30 (1969) 475–488.
- [2] S. Itoh, W. Takahashi, Single-valued mappings, multivalued mappings and fixed point theorems, J. Math. Anal. Appl. 59 (1977) 514–521.
- [3] N. Mizoguchi, W. Takahashi, Fixed point theorem for multivalued mappings on complete metric spaces, J. Math. Anal. Appl. 141 (1989) 177–188.
- [4] B.E. Rhoades, Two fixed point theorems for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci. 63 (2003) 4007–4013.

- [5] S.H. Hong, Fixed points for mixed monotone multivalued operators in Banach spaces with applications, J. Math. Anal. Appl. 337 (2008) 333–342.
- [6] S.H. Hong, Fixed points of multivalued operators in ordered metric spaces with applications, Nonlinear Anal. 72 (2010) 3929–3942.
- [7] S.H. Hong, D. Guan, L. Wang, Hybrid fixed points of multivalued operators in metric spaces with applications, Nonlinear Anal. 70 (2009) 4106–4117.
- [8] H.K. Nashine, Z. Kadelburg, Common fixed point theorems for a pair of multivalued mappings under weak contractive conditions in ordered metric spaces, Bul. Belg. Math. Soc. Simon Stevin 19 (2012) 577–596.
- [9] W. Sintunavarat, P. Kumam, Coincidence and common fixed points for hybrid strict contractions without weakly commuting condition, Appl. Math. Lett. 22 (2009) 1877–1881.
- [10] W. Sintunavarat, P. Kumam, Weak condition for generalized multi-valued (f, α, β) -weak contraction mappings, Appl. Math. Lett. 24 (2011) 460–465.
- [11] W. Sintunavarat, P. Kumam, Coincidence and common fixed points for generalized contraction multi-valued mappings, J. Comput. Anal. Appl. 13 (2011) 362–367.
- [12] W. Sintunavarat, P. Kumam, Gregus type fixed points for a tangential multivalued mappings satisfying contractive conditions of integral type, J. Ineq. Appl. 2011 (3) (2013).
- [13] W. Sintunavarat, P. Kumam, Common fixed point theorems for hybrid generalized multi-valued contraction mappings, Appl. Math. Lett. 25 (2012) 52–57.
- [14] M. Shen, S. Hong, Common fixed points for generalized contractive multivalued operators in complete metric spaces, Appl. Math. Lett. 22 (2009) 1864–1869.
- [15] X. Zhang, Common fixed point theorems for some new generalized contractive type mappings, J. Math. Anal. Appl. 333 (2007) 780–786.
- [16] A.C.M. Ran, M.C.B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132 (2004) 1435–1443.
- [17] J.J. Nieto, R. Rodríguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order 22 (2005) 223–239.
- [18] I. Beg, A.R. Butt, Fixed points for weakly compatible mappings satisfying an implicit relation in partially ordered metric spaces, Carpathian J. Math. 25 (2009) 1–12.
- [19] I. Beg, A.R. Butt, Fixed point for set-valued mappings satisfying an implicit relation in partially ordered metric spaces, Nonlinear Anal. 71 (2009) 3699– 3704.

- [20] I. Beg, A.R. Butt, Common fixed point for generalized set valued contractions satisfying an implicit relation in partially ordered metric spaces, Math. Commun. 15 (2010) 65–76.
- [21] B.S. Choudhury, N. Metiya, Multivalued and singlevalued fixed point results in partially ordered metric spaces, Arab J. Math. Sci. 17 (2011) 135–151.
- [22] B.C. Dhage, D. O'Regan, R.P. Agarwal, Common fixed point theorems for a pair of countably condensing mappings in ordered Banach spaces, J. Appl. Math. Stochastic Anal. 16 (2003) 243–248.
- [23] L.B. Ćirić, N. Cakić, M. Rajović, J.S. Ume, Monotone generalized nonlinear contractions in partially ordered metric spaces, Fixed Point Theory Appl., Vol. 2008 (2008), Article ID 131294 (2008), 11 pages.
- [24] M.S. Khan, M. Swaleh, S. Sessa, Fixed points theorems by altering distances between the points, Bull. Austral. Math. Soc. 30 (1984) 1–9.
- [25] H.K. Nashine, New fixed point theorems for mappings satisfying generalized weakly contractive condition with weaker control functions, Ann. Polonici Math. 104 (2012) 109–119.

(Received 11 September 2012) (Accepted 8 February 2013)

THAI J. MATH. Online @ http://thaijmath.in.cmu.ac.th