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1 Introduction

Fixed point theory for set-valued mappings was originally initiated by von
Neumann in his study on Game Theory. Fixed point theorems for set-valued
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mappings are quite useful in Control Theory and have been frequently used for
solving problems in Economics and Game Theory.

The study of fixed points for set-valued contraction mappings was an active
topic, as well. The development of geometric fixed point theory for multifunctions
was initiated with the work of Nadler [1] in 1969. He used the concept of Hausdorff
metric to establish the set-valued contraction principle containing the Banach
contraction principle as a special case, as follows.

Theorem 1.1. Let (X , d) be a complete metric space and let T be a mapping from
X into CB(X ) such that for all x, y ∈ X ,

H(T x, T y) ≤ λd(x, y)

where, 0 ≤ λ < 1. Then T has a fixed point.

Since then, this discipline has been developed further, and many profound con-
cepts and results have been established with considerable generality; see, for exam-
ple, the work of Itoh and Takahashi [2], Mizoguchi and Takahashi [3], Rhoades [4],
and the references cited therein. Very recently, results on common fixed points
for a pair of set-valued operators have been obtained by applying various types of
contractive conditions; we refer the reader to [5–13]. Shen and Hong [14] proved
fixed point theorems for a pair of set-valued operators which satisfy generalized
contractive condition and gave analogy of the results for single-valued operators
of Zhang [15].

On the other hand, fixed point theory has developed rapidly in metric spaces
endowed with a partial ordering. The first result in this direction was given by
Ran and Reurings [16, Theorem 2.1] who presented its applications to matrix
equations. Subsequently, Nieto and Rodŕıguez-López [17] extended the result
of [16] for nondecreasing mappings and applied it to obtain a unique solution
for a first order ordinary differential equation with periodic boundary conditions.
Thereafter, several authors obtained many fixed point theorems in ordered met-
ric spaces. Hong [6] proved new hybrid fixed point theorems involving set-valued
operators which satisfy weakly generalized contractive conditions in a complete or-
dered metric space and presented application for hyperbolic differential inclusion.
Beg and Butt [18–20] worked on set-valued mappings and proved common fixed
point results for mappings satisfying implicit relation in partially ordered metric
space. Recently, Choudhury and Metiya [21] also proved fixed point theorems for
set-valued mappings in the framework of a partially ordered metric space.

In the present paper an attempt is made, first, to prove fixed point theorems
for a set-valued operator which satisfies generalized contractive condition in a
partially ordered complete metric space. Secondly, we extend these results for a
pair of set-valued operators. We will do this using the concept of weakly isotone
increasing mappings introduced by Dhage, O’Regan and Agarwal [22]. Our results
are ordered version generalization of the results of Shen and Hong [14]. They
generalize Theorem 2.1–Theorem 2.5 of Choudhury and Metiya [21] by considering
a more general contractive condition and a pair of set-valued mappings. Finally,
some examples are given to illustrate the usability of our results.
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2 Preliminaries

For more details on the following definitions, we refer the reader to [14, 21].
Recall that a function ψ : [0,∞) → [0,∞) is called an altering distance function

if the following properties are satisfied:

1. ψ is increasing and continuous,

2. ψ(t) = 0 if and only if t = 0.

Weaker forms of the above conditions have also been used to establish fixed point
results in a number of subsequent works, some of which are noted in [23–25] and
the references cited therein.

Definition 2.1. Let N ∈ (0,+∞]. Denote by F the set of functions f : [0,N ) →
R satisfying:

(i) f(0) = 0 and f(t) > 0 for each t ∈ (0,N );

(ii) f is continuous;

(iii) f is nondecreasing on [0,N );

(iv) f(t1 + t2) ≤ f(t1) + f(t2), whenever t1, t2, t1 + t2 ∈ (0,N ).

Definition 2.2. Let N ∈ (0,+∞]. Denote by Ψ the set of functions ψ : [0,N ) →
[0,+∞) satisfying:

(i) ψ(t) < t for each t ∈ (0,N );

(ii) for each t ∈ (0,N ),
∑∞

n=1 ψ
n(t) <∞.

If X is a nonempty set, the set 2X \ {∅} of nonempty subsets of X will be
denoted by N(X ).

Definition 2.3. For arbitrary nonempty subsets A,B of a metric space (X , d),
the expression

H(A,B) = max

{

sup
a∈A

D(a,B), sup
b∈B

D(b,A)

}

is called the Hausdorff distance ofA and B, whereD(a,B) = D(B, a) = infb∈B d(a, b).

Definition 2.4. A point x∗ ∈ X is called a fixed point of a set-valued operator
T : X → N(X ) if x∗ ∈ T x∗.

Definition 2.5. A set B ⊂ X is said to be an approximation if for each given
y ∈ X , there exists z ∈ B such that D(B, y) = d(z, y).

A set-valued operator T is said to have approximate values in X if T x is an
approximation for each x ∈ X .

Throughout this paper we always assume that all set-valued operators have
approximate values.
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Definition 2.6. Let X be a nonempty set. Then (X , d,�) is called an ordered
metric space if:

(i) (X , d) is a metric space,

(ii) (X ,�) is a partially ordered set.

Let (X ,�) be a partially ordered set. Then x, y ∈ X are called comparable if
x � y or y � x holds.

Definition 2.7 ([6]). Let A and B be two nonempty subsets of a partially ordered
set (X ,�). The relation �2 between two nonempty subsets A and B of X is defined
as follows:

A �2 B, if a � b for every a ∈ A and every b ∈ B.

3 Results for a Single Set-Valued Mapping

In this section, we prove fixed point theorems for a set-valued mapping in
ordered complete metric space. The first result is the following

Theorem 3.1. Let (X , d,�) be a complete ordered metric space and let Y =
sup{ d(x, y) : x, y ∈ X }. Set N = Y if Y = ∞, and N > Y if Y < ∞. Suppose
that T : X → N(X ) is a set-valued mapping such that the following conditions are
satisfied:

(i) there exists x0 ∈ X such that {x0} �2 T x0,

(ii) for x, y ∈ X , x � y implies T x �2 T y,

(iii) f(H(T x, T y)) ≤ ψ(f(M(x, y))) for all comparable x, y ∈ X , where f ∈ F ,
ψ ∈ Ψ and

M(x, y) = max

{

d(x, y), D(T x, x), D(T y, y),
1

2
(D(T x, y) +D(T y, x))

}

.

(3.1)

If the condition

{

if {xn} ⊂ X is an increasing sequence with xn → z in X ,
then xn � z for all n

(3.2)

holds, then T has a fixed point.

Proof. In view of the property of approximation, for x0 ∈ X (given by (i)), there
exists x1 ∈ T x0 such that D(T x0, x0) = d(x1, x0). Property (i) implies that
x0 � x1. Now, there exists x2 ∈ T x1 such that D(T x1, x1) = d(x2, x1) and, by
(ii), x1 � x2. Continuing this process we construct a nondecreasing sequence {xn}
in X such that xn+1 ∈ T xn, for all n ≥ 0,

x0 � x1 � x2 � · · · � xn � xn+1 � · · · ,
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and D(T xn, xn) = d(xn+1, xn). If there exists a positive integer N such that
xN = xN+1, then xN is a fixed point of T . Hence we shall assume that xn 6= xn+1,
for all n ≥ 0.

Using (3.1), we have for all n ≥ 0,

M(xn, xn+1) = max{d(xn, xn+1), D(T xn, xn), D(T xn+1, xn+1),
1
2 (D(T xn, xn+1) +D(T xn+1, xn))}

= max{d(xn, xn+1), d(xn+1, xn), d(xn+2, xn+1),
1
2 (d(xn+1, xn+1) + d(xn+2, xn))}

= max{d(xn, xn+1), d(xn+2, xn+1),
1
2d(xn+2, xn)}.

Since 1
2d(xn, xn+2) ≤ max{d(xn, xn+1), d(xn+1, xn+2)}, it follows that

M(xn, xn+1) = max{d(xn, xn+1), d(xn+2, xn+1)}. (3.3)

Suppose that d(xn+2, xn+1) ≥ d(xn, xn+1) for some positive integer n. Then from
condition (iii), (3.3) and the properties of functions f ∈ F , ψ ∈ Ψ, we have

f(d(xn+2, xn+1)) = f(D(T xn+1, xn+1))

≤ f(H(T xn, T xn+1)) ≤ ψ(f(M(xn, xn+1)))

< f(M(xn, xn+1)) = f(d(xn+2, xn+1)),

a contradiction. So we have d(xn+2, xn+1) < d(xn, xn+1). This yields

f(d(xn+2, xn+1)) = f(D(T xn+1, xn+1)) ≤ f(H(T xn, T xn+1))

≤ ψ(f(M(xn, xn+1))) = ψ(f(d(xn+1, xn))).

Using the obtained inequality several times, we get

f(d(xn+1, xn)) ≤ ψ(f(d(xn, xn−1))) ≤ · · · ≤ ψn(f(d(x1, x0))).

Let m,n ∈ N , n > m; then in virtue of the triangular inequality, we have

d(xn, xm) ≤
n−1
∑

i=m

d(xi, xi+1).

This implies, by the properties of f ∈ F ,

f(d(xn, xm)) ≤ f(d(xn, xn−1) + d(xn−1, xn−2) + · · ·+ d(xm+1, xm))

≤
n−1
∑

i=m

ψi(f(d(x1, x0))).

Let m,n → ∞; by the above inequality, using the condition of
∑∞

i=m ψn(t) < ∞
of ψ ∈ Ψ, it follows that {xn} is a Cauchy sequence.
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From the completeness of X , there exists a z ∈ X such that

xn −→ z as n −→ ∞.

By the assumption (3.2), xn � z, for all n.
Now we prove D(T z, z) = 0. Suppose that this is not true; then D(T z, z) > 0.

For large enough n, using (3.1) for x = z and y = x2n+1, we claim that

M(z, x2n+1) = max{d(z, x2n+1), D(T z, z), D(T x2n+1, x2n+1),
1
2 (D(T z, x2n+1) +D(T x2n+1, z))}

= D(T z, z).

Indeed, since limn→∞ d(z, x2n+1) = 0 and limn→∞D(T x2n+1, x2n+1) = 0, it fol-
lows that

lim
n→∞

1

2
(D(T z, x2n+1) +D(T x2n+1, z))

≤ lim
n→∞

1

2
(D(T z, z) + d(z, x2n+1) +D(T x2n+1, x2n+1) + d(x2n+1, z))

= 1
2D(T z, z).

Therefore, there exists n1 such that M(z, x2n+1) = D(T z, z) for all n > n1. Note
that

f(D(T z, x2n+2)) ≤ f(H(T z, T x2n+1)) ≤ ψ(f(M(z, x2n+1))).

Letting n→ ∞ and applying (i) of Definition 2.2, we get

f(D(T z, z)) ≤ ψ(f(D(T z, z))) < f(D(T z, z)),

a contradiction. Hence D(T z, z) = 0; in virtue of the approximation property of
T z, we have z ∈ T z. This completes the proof of the theorem.

We illustrate Theorem 3.1 by the following example. It also shows that the
use of order is crucial.

Example 3.2. Let X = {A,B,C}, where A = (0, 0), B = (1, 1), C = (2, 0) ∈
R

2. Metric d is defined as d((x1, y1), (x2, y2)) = max{|x1 − x2|, |y1 − y2|} so
that d(A,B) = 1, d(A,C) = 2 and d(B,C) = 1. Order � is introduced by
(x1, y1) � (x2, y2) iff x1 ≤ x2 and y1 ≤ y2, so that A � B and A � C, while B
and C are incomparable.

Consider the mapping T : X → N(X ) given by

T =

(

A B C
{A} {A} {A,B}

)

,

and functions f ∈ F , ψ ∈ Ψ given by f(t) = 1
2 t, ψ(t) = 2

3 t. Conditions (i) and
(ii), as well as (3.2) of Theorem 3.1 are satisfied. To prove that (iii) holds, it is
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enough to check that it is satisfied for x = A, y = B and for x = A, y = C (in the
case when x = y, (iii) is trivially satisfied).

If x = A, y = B, then T x = T y = {A} and H(T x, T y) = 0, so (iii) holds. If
x = A, y = C, then

H(T x, T y) = max{D(A, {A,B}),max{D(A, {A}), D(B, {A})}} = d(A,B) = 1,

and

M(x, y) = max{d(A,C), D(A, {A}), D(C, {A,B}), 12 (D(A, {A,B}) +D(C, {A}))}

= max{2, 0, 1, 12 (0 + 2)} = 2.

Hence, f(H(T x, T y)) = 1
2 <

2
3 = ψ(f(M(x, y)). All the conditions of Theorem

3.1 are fulfilled and T has a fixed point A.
Note that for (incomparable) points x = B, y = C condition (iii) is not

satisfied, and so Theorem 1 of [14] (with T = S) cannot be applied to reach the
conclusion. Indeed, in this case, T x = {A}, T y = {A,B},

H(T x, T y) = d(A,B) = 1, M(x, y) = max{1, 1, 1, 12 (0 + 2)} = 1,

and f(H(T x, T y)) = 1
2 >

1
3ψ(f(M(x, y)).

The following corollary is a special case of Theorem 3.1 when T is a single-
valued mapping.

Corollary 3.3. Let (X , d,�) be a complete ordered metric space and let Y =
sup{ d(x, y) : x, y ∈ X }. Set N = Y if Y = ∞, and N > Y if Y < ∞. Suppose
that a mapping T : X → X satisfies the following conditions:

1. there exists x0 ∈ X such that x0 � T x0,

2. for x, y ∈ X , x � y implies T x � T y,

3. f(d(T x, T y)) ≤ ψ(f(M(x, y))) for all comparable x, y ∈ X , where f ∈ F ,
ψ ∈ Ψ and

M(x, y) = max

{

d(x, y), d(T x, x), d(T y, y),
1

2
(d(T x, y) + d(T y, x))

}

.

If the condition (3.2) holds, then T has a fixed point.

In the following theorem we replace condition (3.2) of the above corollary by
requiring T to be continuous.

Theorem 3.4. Let (X , d,�) be a complete ordered metric space and let Y =
sup{ d(x, y) : x, y ∈ X }. Set N = Y if Y = ∞, and N > Y if Y < ∞. Suppose
that a continuous mapping T : X → X satisfies the following conditions:

1. there exists x0 ∈ X such that x0 � T x0,
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2. for x, y ∈ X , x � y implies T x � T y,

3. f(d(T x, T y)) ≤ ψ(f(M(x, y))) for all comparable x, y ∈ X , where f ∈ F ,
ψ ∈ Ψ, and

M(x, y) = max

{

d(x, y), d(T x, x), d(T y, y),
1

2
(d(T x, y) + d(T y, x))

}

.

Then T has a fixed point.

Proof. Consider T as a set-valued mapping for which T x is a singleton set for every
x ∈ X . Then we consider the same sequence {xn} as in the proof of Theorem 3.1
and following the line of its proof, we have that {xn} is a Cauchy sequence and

lim
n→∞

xn = z.

Then, if T is continuous, we have

z = lim
n→∞

xn+1 = lim
n→∞

T xn = T z

and this proves that z is a fixed point of T and we have the result.

Recall that a subset K of a partially ordered set X is said to be totally ordered
if every two elements of K are comparable.

Theorem 3.5. Under the assumptions of Corollary 3.3 or Theorem 3.4, the set
F (T ) of fixed points of T is a singleton if and only if it is totally ordered.

Proof. Suppose that the set of fixed points of T is totally ordered. We claim that
the fixed point of T is unique. Assume to the contrary, that u ∈ T u and v ∈ T v
but u 6= v, and hence d(u, v) > 0. By supposition, we can replace x by u and y by
v in condition (3) of Corollary 3.3 or Theorem 3.4 to obtain

f(d(u, v)) ≤ f(d(T u, T v) ≤ ψ(f(M(u, v)))

where

M(u, v) = max
{

d(u, v), d(T u, v), d(T v, v), 12 (d(T u, v) + d(T v, u))
}

≤ max
{

d(u, v), d(u, v), 0, 12 (d(u, v) + d(v, u))
}

= d(u, v)

and

f(d(u, v) ≤ ψ(f(d(u, v))) < f(d(u, v)),

a contradiction. Hence d(u, v) = 0, that is, u = v. The converse is trivial.
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4 Results for a Pair of Set-valued Mappings

Next we prove common fixed point theorems for a pair of set-valued mappings
in a complete ordered metric space. To complete the result, we extend to set-
valued mappings the notion of weakly isotone increasing mappings given by Dhage,
O’Regan and Agarwal [22].

Definition 4.1. Let (X ,�) be a partially ordered set. Two maps S, T : X →
N(X ) are said to be weakly isotone increasing if for any x ∈ X we have Sx �2 T y
for all y ∈ Sx and T x �2 Sy for all y ∈ T x.

Note that, in particular, single-valued mappings T ,S : X → X are weakly
isotone increasing [22] if Sx � T Sx and T x � ST x hold for each x ∈ X .

Theorem 4.2. Let (X , d,�) be a complete ordered metric space and let Y =
sup{ d(x, y) : x, y ∈ X }. Set N = Y if Y = ∞, and N > Y if Y <∞. Suppose that
T ,S : X → N(X ) are two set-valued mappings such that the following condition
is satisfied:

f(H(T x,Sy)) ≤ ψ(f(M(x, y))) (4.1)

for all comparable x, y ∈ X , where f ∈ F , ψ ∈ Ψ and

M(x, y) = max

{

d(x, y), D(T x, x), D(Sy, y),
1

2
(D(T x, y) +D(Sy, x))

}

. (4.2)

Also suppose that S and T are weakly isotone increasing and there exists an x0 ∈ X
such that {x0} �2 T x0. If the condition

{

if {xn} ⊂ X is a non-decreasing sequence with xn → z in X ,
then xn � z for all n

(4.3)

holds, then S and T have a common fixed point.

Proof. First of all we show that, if S or T has a fixed point, then it is a common
fixed point of S and T . Indeed, let z be a fixed point of T , that is z ∈ T z, but
z /∈ Sz. Since Sz is an approximation, D(Sz, z) > 0. If we use the inequality
(4.2), for x = y = z, we have

M(z, z) = max
{

d(z, z), D(T z, z), D(Sz, z), 12 (D(T z, z) +D(Sz, z))
}

= D(Sz, z),

and it follows that

f(D(Sz, z)) ≤ f(H(T z,Sz)) ≤ ψ(f(M(z, z)))

= ψ(f(D(Sz, z))) < f(D(Sz, z)).

This is a contradiction, so z ∈ Sz. Analogously, one can observe that if z ∈ Sz,
then z ∈ T z.
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Let us start with the given x0. In view of the property of approximation, we
can define a sequence {xn} ⊂ X as follows
{

x2n+1 ∈ T x2n, D(T x2n, x2n) = d(x2n+1, x2n),
x2n+2 ∈ Sx2n+1, D(Sx2n+1, x2n+1) = d(x2n+2, x2n+1), for n ∈ {0, 1, . . .}.

If xn0
∈ Sxn0

or xn0
∈ T xn0

for some n0, then the proof is finished. So assume
xn 6= xn+1 for all n.

Now we use that S and T are weakly isotone increasing. Note that x1 ∈ T x0,
so that x0 � x1 and since T x0 �2 Sy for all y ∈ T x0 we have T x0 �2 Sx1. In
particular, x1 � x2. Continuing this process we construct a sequence {xn} in X
such that

x1 � x2 � · · · � xn � xn+1 � · · · .

Now we claim that
d(xn+1, xn) < d(xn, xn−1).

Setting x = x2n and y = x2n+1 in (4.2), we have for all n ≥ 0,

M(x2n, x2n+1) = max{d(x2n, x2n+1), D(T x2n, x2n), D(Sx2n+1, x2n+1),
1
2 (D(T x2n, x2n+1) +D(Sx2n+1, x2n))}

= max{d(x2n, x2n+1), d(x2n+1, x2n), d(x2n+2, x2n+1),
1
2 (d(x2n+1, x2n+1) + d(x2n+2, x2n))}

= max{d(x2n, x2n+1), d(x2n+2, x2n+1),
1
2d(x2n+2, x2n)}.

Since 1
2d(xn, xn+2) ≤ max{d(xn, xn+1), d(xn+1, xn+2)}, it follows that

M(x2n, x2n+1) = max{d(x2n, x2n+1), d(x2n+2, x2n+1)}. (4.4)

Suppose that d(x2n+2, x2n+1) ≥ d(x2n, x2n+1) for some positive integer n. Then
from (4.4), we have

f(d(x2n+2, x2n+1)) = f(D(Sx2n+1, x2n+1))

≤ f(H(T x2n,Sx2n+1)) ≤ ψ(f(M(x2n, x2n+1)))

< f(M(x2n, x2n+1)) = f(d(x2n+2, x2n+1)),

a contradiction. So we have d(x2n+2, x2n+1) < d(x2n, x2n+1). This yields

f(d(x2n+2, x2n+1)) = f(D(T x2n+1, x2n+1)) ≤ f(H(T x2n, T x2n+1))

≤ ψ(f(M(x2n, x2n+1))) = ψ(f(d(x2n+1, x2n))).

Proceeding in the same way, we have

d(x2n+1, x2n) < d(x2n, x2n−1),

and

f(d(x2n+1, x2n)) = f(D(T x2n, x2n)) ≤ f(H(T x2n,Sx2n−1))

≤ f(M(x2n, x2n−1)) = ψ(f(d(x2n, x2n−1))).
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So for each n, we have

f(d(xn+1, xn)) ≤ ψ(f(d(xn, xn−1))).

Using the obtained inequality several times, we get

f(d(xn+1, xn)) ≤ ψ(f(d(xn, xn−1))) ≤ · · · ≤ ψn(f(d(x1, x0))).

Let m,n ∈ N , n > m. Then in virtue of the triangular inequality, we have

d(xn, xm) ≤
n−1
∑

i=m

d(xi, xi+1).

This implies, using properties of f ∈ F ,

f(d(xn, xm)) ≤ f(d(xn, xn−1) + d(xn−1, xn−2) + · · ·+ d(xm+1, xm))

≤
n−1
∑

i=m

ψi(f(d(x1, x0))).

Letting m,n→ ∞, by the above inequality, using the condition
∑∞

i=m ψn(t) <∞,
it follows that {xn} is a Cauchy sequence.

From the completeness of X , there exists a z ∈ X such that

xn −→ z as n −→ ∞.

By the assumption (4.3), xn � z, for all n.
Now we prove D(T z, z) = 0. Suppose that this is not true, i.e., D(T z, z) > 0.

For large enough n, we use that the condition (4.1) holds for x = z and y = x2n+1,
where

M(z, x2n+1) = max{d(z, x2n+1), D(T z, z), D(Sx2n+1, x2n+1),
1
2 (D(T z, x2n+1) +D(Sx2n+1, z))}

= D(T z, z).

Indeed, since limn→∞ d(z, x2n+1) = 0 and limn→∞D(Sx2n+1, x2n+1) = 0, it fol-
lows that

lim
n→∞

1

2
(D(T z, x2n+1) +D(Sx2n+1, z))

≤ lim
n→∞

1

2
(D(T z, z) + d(z, x2n+1) +D(Sx2n+1, x2n+1) + d(x2n+1, z))

=
1

2
D(T z, z).

Therefore, there exists n1 such that M(z, x2n+1) = D(T z, z) for all n > n1. Note
that

f(D(T z, x2n+2)) ≤ f(H(T z,Sx2n+1)) ≤ ψ(f(M(z, x2n+1))).
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Letting n→ ∞ and applying (i) of Definition 2.2, we get

f(D(T z, z)) ≤ ψ(f(D(T z, z))) < f(D(T z, z)),

a contradiction. Hence D(T z, z) = 0, and in virtue of the approximation of T z, we
have z ∈ T z. Using the conclusion from the beginning of the proof, we get that z
is a common fixed point of T and S. This completes the proof of the theorem.

Example 4.3. Consider the space X = C[a, b] of continuous real functions with
the standard metric d(x, y) = maxt∈[a,b] |x(t)− y(t)| and the order � defined by

x � y ⇐⇒ x(t) ≥ y(t) for all t ∈ [a, b]

(note the reverse ordering). Let f ∈ F and ψ ∈ Ψ be given by f(t) = 2
3 t and

ψ(t) = 1
2 t. Consider the following mappings T ,S : X → X :

T x =

[

1

4
x,

1

3
x

]

=

{

z ∈ X :
1

4
x(t) ≤ z(t) ≤

1

3
x(t), t ∈ [a, b]

}

Sx =

[

1

5
x,

3

10
x

]

=

{

z ∈ X :
1

5
x(t) ≤ z(t) ≤

3

10
x(t), t ∈ [a, b]

}

.

Check first that T and S are weakly isotone increasing. Suppose that y ∈ Sx =
[ 15x,

3
10x] and z ∈ Sx = [ 15x,

3
10x]. Then u ∈ T y = [ 14y,

1
3y] implies that u(t) ≤

1
3 · 3

10x(t) = 1
10x(t) <

1
5x(t) ≤ z(t) for t ∈ [a, b] and so z � u. This means that

for any x ∈ X we have Sx �2 T y for all y ∈ Sx. Similarly, one can prove that for
each x ∈ X we have T x �2 Sy for all y ∈ T x.

Take now arbitrary compatible functions x, y ∈ X . Then, for each t ∈ [a, b],

f(H(T x,Sy)) ≤
2

3
max

{

1

3
x(t),

3

10
x(t)

}

≤
1

3
max

{

2

3
x(t),

7

10
x(t)

}

≤
1

3
max{D(x, Tx), D(y, Sy)} =

1

3
M(x, y) = ψ(f(M(x, y))).

Hence, condition (4.1) of Theorem 4.2 is fulfilled. The other conditions of this
theorem are easy to check, and so there is a fixed point z of T and S (which is
z = 0).

In Theorem 4.2, if T ,S are single-valued mappings and condition (4.3) is
replaced by requiring that one of T , S is continuous, then we have the following
result.

Theorem 4.4. Let (X , d,�) be a complete ordered metric space and let Y =
sup{ d(x, y) : x, y ∈ X }. Set N = Y if Y = ∞, and N > Y if Y < ∞. Suppose
that T ,S : X → X are single-valued operators satisfying

f(d(T x,Sy)) ≤ ψ(f(M(x, y))) (4.5)
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for all comparable x, y ∈ X , where f ∈ F , ψ ∈ Ψ and

M(x, y) = max

{

d(x, y), d(T x, x), d(Sy, y),
1

2
(d(T x, y) + d(Sy, x))

}

.

Also suppose that S and T are weakly isotone increasing and there exists an x0 ∈ X
such that x0 � T x0. If one of S and T is continuous, then S and T have a common
fixed point.

Proof. Consider T and S as set-valued mappings for which T x and Sx are single-
tons for every x ∈ X . Then we consider the same sequence {xn} as in the proof
of Theorem 4.2 and following the line of its proof, we have that {xn} is a Cauchy
sequence and

lim
n→∞

xn = z.

Then, if T is continuous, we have

z = lim
n→∞

xn+1 = lim
n→∞

T xn = T z

and this proves that z is a fixed point of T and so z is also a fixed point of S.
Similarly, if S is continuous, we have the result. Thus it is immediate to conclude
that T and S have a common fixed point.

Theorem 4.5. Under the assumptions of Theorem 4.4, the set of common fixed
points of T and S is totally ordered if and only if T and S have one and only one
common fixed point.

Proof. Suppose that the set of common fixed points of T and S is totally ordered.
We claim that the common fixed point of T and S is unique. Assume to the
contrary that u ∈ Su, u ∈ T u and v ∈ Sv, v ∈ T v but u 6= v, then d(u, v) > 0.
By supposition, we can replace x by u and y by v in (4.5) to obtain

f(d(u, v)) ≤ f(d(T u,Sv)) ≤ ψ(f(M(u, v)))

where

M(u, v) = max
{

d(u, v), d(T u, v), d(Sv, v), 12 (d(T u, v) + d(Sv, u))
}

≤ max
{

d(u, v), d(u, v), 0, 12 (d(u, v) + d(v, u))
}

= d(u, v)

and

f(d(u, v) ≤ ψ(f(d(u, v))) < f(d(u, v)),

a contradiction. Hence d(u, v) = 0, that is, u = v. Conversely, if T and S have
only one common fixed point then the set of common fixed point of T and S, being
singleton, is totally ordered.

Putting S = T in Theorem 4.2, we obtain the following
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Corollary 4.6. Let (X , d,�) be a complete ordered metric space and let Y =
sup{ d(x, y) : x, y ∈ X }. Set N = Y if Y = ∞, and N > Y if Y < ∞. Suppose
that T : X → N(X ) is a set-valued mapping such that

f(H(T x, T y)) ≤ ψ(f(M(x, y)))

for all comparable x, y ∈ X , where f ∈ F , ψ ∈ Ψ, and

M(x, y) = max

{

d(x, y), D(T x, x), D(T y, y),
1

2
(D(T x, y) +D(T y, x))

}

.

Also suppose that T x �2 T (T x) for all x ∈ X and that {x0} �2 T x0 for some
x0 ∈ X . If the condition (4.3) holds, then T has a fixed point.

If T is a single-valued mapping in Corollary 4.6, then we have the following
consequence:

Corollary 4.7. Let (X , d,�) be a complete ordered metric space and let Y =
sup{ d(x, y) : x, y ∈ X }. Set N = Y if Y = ∞, and N > Y if Y < ∞. Suppose
that T : X → X be a mapping such that

f(d(T x, T y)) ≤ ψ(f(M(x, y)))

for all comparable x, y ∈ X , where f ∈ F , ψ ∈ Ψ and

M(x, y) = max

{

d(x, y), d(T x, x), d(T y, y),
1

2
(d(T x, y) + d(T y, x))

}

.

Also suppose that T x � T (T x) for all x ∈ X . If the condition (4.3) holds, then T
has a fixed point.
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