Fixed Points of Set-Valued Mappings under Generalized Contractive Conditions in Ordered Metric Spaces

Hemant Kumar Nashine ${ }^{\dagger}$ and Zoran Kadelburg ${ }^{\ddagger}{ }^{\ddagger} 1$
${ }^{\dagger}$ Department of Mathematics, Disha Institute of Management and Technology, Satya Vihar, Vidhansabha-Chandrakhuri Marg
Mandir Hasaud, Raipur-492101 (Chhattisgarh), India
e-mail : drhknashine@gmail.com
\ddagger University of Belgrade, Faculty of Mathematics Studentski trg 16, 11000 Beograd, Serbia
e-mail: kadelbur@matf.bg.ac.rs

Abstract

In the present work we establish some new fixed point theorems for a set-valued operator satisfying generalized contractive condition in a partially ordered complete metric space. Thereafter we present common fixed point results for a pair of weakly isotone increasing set-valued mappings. Finally, some examples are given to illustrate the usability of our results, also showing that the use of order can be crucial.

Keywords : common fixed point; Hausdorff distance; set-valued mapping; control function; weakly isotone increasing mappings.
2010 Mathematics Subject Classification : 47H10; 54H25; 54H10.

1 Introduction

Fixed point theory for set-valued mappings was originally initiated by von Neumann in his study on Game Theory. Fixed point theorems for set-valued

[^0]mappings are quite useful in Control Theory and have been frequently used for solving problems in Economics and Game Theory.

The study of fixed points for set-valued contraction mappings was an active topic, as well. The development of geometric fixed point theory for multifunctions was initiated with the work of Nadler [1] in 1969. He used the concept of Hausdorff metric to establish the set-valued contraction principle containing the Banach contraction principle as a special case, as follows.

Theorem 1.1. Let (\mathcal{X}, d) be a complete metric space and let \mathcal{T} be a mapping from \mathcal{X} into $C B(\mathcal{X})$ such that for all $x, y \in \mathcal{X}$,

$$
H(\mathcal{T} x, \mathcal{T} y) \leq \lambda d(x, y)
$$

where, $0 \leq \lambda<1$. Then \mathcal{T} has a fixed point.
Since then, this discipline has been developed further, and many profound concepts and results have been established with considerable generality; see, for example, the work of Itoh and Takahashi [2], Mizoguchi and Takahashi [3, Rhoades 4], and the references cited therein. Very recently, results on common fixed points for a pair of set-valued operators have been obtained by applying various types of contractive conditions; we refer the reader to [5-13]. Shen and Hong [14] proved fixed point theorems for a pair of set-valued operators which satisfy generalized contractive condition and gave analogy of the results for single-valued operators of Zhang (15).

On the other hand, fixed point theory has developed rapidly in metric spaces endowed with a partial ordering. The first result in this direction was given by Ran and Reurings [16, Theorem 2.1] who presented its applications to matrix equations. Subsequently, Nieto and Rodríguez-López [17] extended the result of [16] for nondecreasing mappings and applied it to obtain a unique solution for a first order ordinary differential equation with periodic boundary conditions. Thereafter, several authors obtained many fixed point theorems in ordered metric spaces. Hong [6] proved new hybrid fixed point theorems involving set-valued operators which satisfy weakly generalized contractive conditions in a complete ordered metric space and presented application for hyperbolic differential inclusion. Beg and Butt [18-20] worked on set-valued mappings and proved common fixed point results for mappings satisfying implicit relation in partially ordered metric space. Recently, Choudhury and Metiya 21 also proved fixed point theorems for set-valued mappings in the framework of a partially ordered metric space.

In the present paper an attempt is made, first, to prove fixed point theorems for a set-valued operator which satisfies generalized contractive condition in a partially ordered complete metric space. Secondly, we extend these results for a pair of set-valued operators. We will do this using the concept of weakly isotone increasing mappings introduced by Dhage, O'Regan and Agarwal [22]. Our results are ordered version generalization of the results of Shen and Hong [14. They generalize Theorem 2.1-Theorem 2.5 of Choudhury and Metiya 21 by considering a more general contractive condition and a pair of set-valued mappings. Finally, some examples are given to illustrate the usability of our results.

2 Preliminaries

For more details on the following definitions, we refer the reader to [14, 21].
Recall that a function $\psi:[0, \infty) \rightarrow[0, \infty)$ is called an altering distance function if the following properties are satisfied:

1. ψ is increasing and continuous,
2. $\psi(t)=0$ if and only if $t=0$.

Weaker forms of the above conditions have also been used to establish fixed point results in a number of subsequent works, some of which are noted in [23-25] and the references cited therein.

Definition 2.1. Let $\mathcal{N} \in(0,+\infty]$. Denote by \mathcal{F} the set of functions $f:[0, \mathcal{N}) \rightarrow$ \mathbb{R} satisfying:
(i) $f(0)=0$ and $f(t)>0$ for each $t \in(0, \mathcal{N})$;
(ii) f is continuous;
(iii) f is nondecreasing on $[0, \mathcal{N})$;
(iv) $f\left(t_{1}+t_{2}\right) \leq f\left(t_{1}\right)+f\left(t_{2}\right)$, whenever $t_{1}, t_{2}, t_{1}+t_{2} \in(0, \mathcal{N})$.

Definition 2.2. Let $\mathcal{N} \in(0,+\infty]$. Denote by Ψ the set of functions $\psi:[0, \mathcal{N}) \rightarrow$ $[0,+\infty)$ satisfying:
(i) $\psi(t)<t$ for each $t \in(0, \mathcal{N})$;
(ii) for each $t \in(0, \mathcal{N}), \sum_{n=1}^{\infty} \psi^{n}(t)<\infty$.

If \mathcal{X} is a nonempty set, the set $2^{\mathcal{X}} \backslash\{\emptyset\}$ of nonempty subsets of \mathcal{X} will be denoted by $N(\mathcal{X})$.

Definition 2.3. For arbitrary nonempty subsets \mathcal{A}, \mathcal{B} of a metric space (\mathcal{X}, d), the expression

$$
H(\mathcal{A}, \mathcal{B})=\max \left\{\sup _{a \in \mathcal{A}} D(a, \mathcal{B}), \sup _{b \in \mathcal{B}} D(b, \mathcal{A})\right\}
$$

is called the Hausdorff distance of \mathcal{A} and \mathcal{B}, where $D(a, \mathcal{B})=D(\mathcal{B}, a)=\inf _{b \in \mathcal{B}} d(a, b)$.
Definition 2.4. A point $x^{*} \in \mathcal{X}$ is called a fixed point of a set-valued operator $\mathcal{T}: \mathcal{X} \rightarrow N(\mathcal{X})$ if $x^{*} \in \mathcal{T} x^{*}$.

Definition 2.5. A set $\mathcal{B} \subset \mathcal{X}$ is said to be an approximation if for each given $y \in \mathcal{X}$, there exists $z \in \mathcal{B}$ such that $D(\mathcal{B}, y)=d(z, y)$.

A set-valued operator \mathcal{T} is said to have approximate values in \mathcal{X} if $\mathcal{T} x$ is an approximation for each $x \in \mathcal{X}$.

Throughout this paper we always assume that all set-valued operators have approximate values.

Definition 2.6. Let \mathcal{X} be a nonempty set. Then $(\mathcal{X}, d, \preceq)$ is called an ordered metric space if:
(i) (\mathcal{X}, d) is a metric space,
(ii) (\mathcal{X}, \preceq) is a partially ordered set.

Let (\mathcal{X}, \preceq) be a partially ordered set. Then $x, y \in \mathcal{X}$ are called comparable if $x \preceq y$ or $y \preceq x$ holds.

Definition 2.7 ([6]). Let \mathcal{A} and \mathcal{B} be two nonempty subsets of a partially ordered set (\mathcal{X}, \preceq). The relation \preceq_{2} between two nonempty subsets \mathcal{A} and \mathcal{B} of \mathcal{X} is defined as follows:

$$
\mathcal{A} \preceq_{2} \mathcal{B} \text {, if } a \preceq b \text { for every } a \in \mathcal{A} \text { and every } b \in \mathcal{B} .
$$

3 Results for a Single Set-Valued Mapping

In this section, we prove fixed point theorems for a set-valued mapping in ordered complete metric space. The first result is the following

Theorem 3.1. Let $(\mathcal{X}, d, \preceq)$ be a complete ordered metric space and let $\mathcal{Y}=$ $\sup \{d(x, y): x, y \in \mathcal{X}\}$. Set $\mathcal{N}=\mathcal{Y}$ if $\mathcal{Y}=\infty$, and $\mathcal{N}>\mathcal{Y}$ if $\mathcal{Y}<\infty$. Suppose that $\mathcal{T}: \mathcal{X} \rightarrow N(\mathcal{X})$ is a set-valued mapping such that the following conditions are satisfied:
(i) there exists $x_{0} \in \mathcal{X}$ such that $\left\{x_{0}\right\} \preceq_{2} \mathcal{T} x_{0}$,
(ii) for $x, y \in \mathcal{X}, x \preceq y$ implies $\mathcal{T} x \preceq_{2} \mathcal{T} y$,
(iii) $f(H(\mathcal{T} x, \mathcal{T} y)) \leq \psi(f(M(x, y)))$ for all comparable $x, y \in \mathcal{X}$, where $f \in \mathcal{F}$, $\psi \in \Psi$ and

$$
\begin{equation*}
M(x, y)=\max \left\{d(x, y), D(\mathcal{T} x, x), D(\mathcal{T} y, y), \frac{1}{2}(D(\mathcal{T} x, y)+D(\mathcal{T} y, x))\right\} \tag{3.1}
\end{equation*}
$$

If the condition

$$
\left\{\begin{array}{l}
\text { if }\left\{x_{n}\right\} \subset \mathcal{X} \text { is an increasing sequence with } x_{n} \rightarrow z \text { in } \mathcal{X}, \tag{3.2}\\
\text { then } x_{n} \preceq z \text { for all } n
\end{array}\right.
$$

holds, then \mathcal{T} has a fixed point.
Proof. In view of the property of approximation, for $x_{0} \in \mathcal{X}$ (given by (i)), there exists $x_{1} \in \mathcal{T} x_{0}$ such that $D\left(\mathcal{T} x_{0}, x_{0}\right)=d\left(x_{1}, x_{0}\right)$. Property (i) implies that $x_{0} \preceq x_{1}$. Now, there exists $x_{2} \in \mathcal{T} x_{1}$ such that $D\left(\mathcal{T} x_{1}, x_{1}\right)=d\left(x_{2}, x_{1}\right)$ and, by (ii), $x_{1} \preceq x_{2}$. Continuing this process we construct a nondecreasing sequence $\left\{x_{n}\right\}$ in \mathcal{X} such that $x_{n+1} \in \mathcal{T} x_{n}$, for all $n \geq 0$,

$$
x_{0} \preceq x_{1} \preceq x_{2} \preceq \cdots \preceq x_{n} \preceq x_{n+1} \preceq \cdots,
$$

and $D\left(\mathcal{T} x_{n}, x_{n}\right)=d\left(x_{n+1}, x_{n}\right)$. If there exists a positive integer N such that $x_{N}=x_{N+1}$, then x_{N} is a fixed point of \mathcal{T}. Hence we shall assume that $x_{n} \neq x_{n+1}$, for all $n \geq 0$.

Using (3.1), we have for all $n \geq 0$,

$$
\begin{aligned}
M\left(x_{n}, x_{n+1}\right)= & \max \left\{d\left(x_{n}, x_{n+1}\right), D\left(\mathcal{T} x_{n}, x_{n}\right), D\left(\mathcal{T} x_{n+1}, x_{n+1}\right),\right. \\
& \left.\frac{1}{2}\left(D\left(\mathcal{T} x_{n}, x_{n+1}\right)+D\left(\mathcal{T} x_{n+1}, x_{n}\right)\right)\right\} \\
= & \max \left\{d\left(x_{n}, x_{n+1}\right), d\left(x_{n+1}, x_{n}\right), d\left(x_{n+2}, x_{n+1}\right)\right. \\
& \left.\frac{1}{2}\left(d\left(x_{n+1}, x_{n+1}\right)+d\left(x_{n+2}, x_{n}\right)\right)\right\} \\
= & \max \left\{d\left(x_{n}, x_{n+1}\right), d\left(x_{n+2}, x_{n+1}\right), \frac{1}{2} d\left(x_{n+2}, x_{n}\right)\right\} .
\end{aligned}
$$

Since $\frac{1}{2} d\left(x_{n}, x_{n+2}\right) \leq \max \left\{d\left(x_{n}, x_{n+1}\right), d\left(x_{n+1}, x_{n+2}\right)\right\}$, it follows that

$$
\begin{equation*}
M\left(x_{n}, x_{n+1}\right)=\max \left\{d\left(x_{n}, x_{n+1}\right), d\left(x_{n+2}, x_{n+1}\right)\right\} \tag{3.3}
\end{equation*}
$$

Suppose that $d\left(x_{n+2}, x_{n+1}\right) \geq d\left(x_{n}, x_{n+1}\right)$ for some positive integer n. Then from condition (iii), (3.3) and the properties of functions $f \in \mathcal{F}, \psi \in \Psi$, we have

$$
\begin{aligned}
f\left(d\left(x_{n+2}, x_{n+1}\right)\right) & =f\left(D\left(\mathcal{T} x_{n+1}, x_{n+1}\right)\right) \\
& \leq f\left(H\left(\mathcal{T} x_{n}, \mathcal{T} x_{n+1}\right)\right) \leq \psi\left(f\left(M\left(x_{n}, x_{n+1}\right)\right)\right) \\
& <f\left(M\left(x_{n}, x_{n+1}\right)\right)=f\left(d\left(x_{n+2}, x_{n+1}\right)\right)
\end{aligned}
$$

a contradiction. So we have $d\left(x_{n+2}, x_{n+1}\right)<d\left(x_{n}, x_{n+1}\right)$. This yields

$$
\begin{aligned}
f\left(d\left(x_{n+2}, x_{n+1}\right)\right) & =f\left(D\left(\mathcal{T} x_{n+1}, x_{n+1}\right)\right) \leq f\left(H\left(\mathcal{T} x_{n}, \mathcal{T} x_{n+1}\right)\right) \\
& \leq \psi\left(f\left(M\left(x_{n}, x_{n+1}\right)\right)\right)=\psi\left(f\left(d\left(x_{n+1}, x_{n}\right)\right)\right)
\end{aligned}
$$

Using the obtained inequality several times, we get

$$
f\left(d\left(x_{n+1}, x_{n}\right)\right) \leq \psi\left(f\left(d\left(x_{n}, x_{n-1}\right)\right)\right) \leq \cdots \leq \psi^{n}\left(f\left(d\left(x_{1}, x_{0}\right)\right)\right)
$$

Let $m, n \in N, n>m$; then in virtue of the triangular inequality, we have

$$
d\left(x_{n}, x_{m}\right) \leq \sum_{i=m}^{n-1} d\left(x_{i}, x_{i+1}\right)
$$

This implies, by the properties of $f \in \mathcal{F}$,

$$
\begin{aligned}
f\left(d\left(x_{n}, x_{m}\right)\right) & \leq f\left(d\left(x_{n}, x_{n-1}\right)+d\left(x_{n-1}, x_{n-2}\right)+\cdots+d\left(x_{m+1}, x_{m}\right)\right) \\
& \leq \sum_{i=m}^{n-1} \psi^{i}\left(f\left(d\left(x_{1}, x_{0}\right)\right)\right)
\end{aligned}
$$

Let $m, n \rightarrow \infty$; by the above inequality, using the condition of $\sum_{i=m}^{\infty} \psi^{n}(t)<\infty$ of $\psi \in \Psi$, it follows that $\left\{x_{n}\right\}$ is a Cauchy sequence.

From the completeness of \mathcal{X}, there exists a $z \in \mathcal{X}$ such that

$$
x_{n} \longrightarrow z \text { as } n \longrightarrow \infty .
$$

By the assumption (3.2), $x_{n} \preceq z$, for all n.
Now we prove $D(\mathcal{T} z, z)=0$. Suppose that this is not true; then $D(\mathcal{T} z, z)>0$. For large enough n, using (3.1) for $x=z$ and $y=x_{2 n+1}$, we claim that

$$
\begin{aligned}
M\left(z, x_{2 n+1}\right)= & \max \left\{d\left(z, x_{2 n+1}\right), D(\mathcal{T} z, z), D\left(\mathcal{T} x_{2 n+1}, x_{2 n+1}\right)\right. \\
& \left.\frac{1}{2}\left(D\left(\mathcal{T} z, x_{2 n+1}\right)+D\left(\mathcal{T} x_{2 n+1}, z\right)\right)\right\} \\
= & D(\mathcal{T} z, z)
\end{aligned}
$$

Indeed, since $\lim _{n \rightarrow \infty} d\left(z, x_{2 n+1}\right)=0$ and $\lim _{n \rightarrow \infty} D\left(\mathcal{T} x_{2 n+1}, x_{2 n+1}\right)=0$, it follows that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} & \frac{1}{2}\left(D\left(\mathcal{T} z, x_{2 n+1}\right)+D\left(\mathcal{T} x_{2 n+1}, z\right)\right) \\
\quad \leq & \lim _{n \rightarrow \infty} \frac{1}{2}\left(D(\mathcal{T} z, z)+d\left(z, x_{2 n+1}\right)+D\left(\mathcal{T} x_{2 n+1}, x_{2 n+1}\right)+d\left(x_{2 n+1}, z\right)\right) \\
\quad= & \frac{1}{2} D(\mathcal{T} z, z)
\end{aligned}
$$

Therefore, there exists n_{1} such that $M\left(z, x_{2 n+1}\right)=D(\mathcal{T} z, z)$ for all $n>n_{1}$. Note that

$$
f\left(D\left(\mathcal{T} z, x_{2 n+2}\right)\right) \leq f\left(H\left(\mathcal{T} z, \mathcal{T} x_{2 n+1}\right)\right) \leq \psi\left(f\left(M\left(z, x_{2 n+1}\right)\right)\right)
$$

Letting $n \rightarrow \infty$ and applying (i) of Definition 2.2, we get

$$
f(D(\mathcal{T} z, z)) \leq \psi(f(D(\mathcal{T} z, z)))<f(D(\mathcal{T} z, z))
$$

a contradiction. Hence $D(\mathcal{T} z, z)=0$; in virtue of the approximation property of $\mathcal{T} z$, we have $z \in \mathcal{T} z$. This completes the proof of the theorem.

We illustrate Theorem 3.1 by the following example. It also shows that the use of order is crucial.

Example 3.2. Let $\mathcal{X}=\{A, B, C\}$, where $A=(0,0), B=(1,1), C=(2,0) \in$ \mathbb{R}^{2}. Metric d is defined as $d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\max \left\{\left|x_{1}-x_{2}\right|,\left|y_{1}-y_{2}\right|\right\}$ so that $d(A, B)=1, d(A, C)=2$ and $d(B, C)=1$. Order \preceq is introduced by $\left(x_{1}, y_{1}\right) \preceq\left(x_{2}, y_{2}\right)$ iff $x_{1} \leq x_{2}$ and $y_{1} \leq y_{2}$, so that $A \preceq B$ and $A \preceq C$, while B and C are incomparable.

Consider the mapping $\mathcal{T}: \mathcal{X} \rightarrow N(\mathcal{X})$ given by

$$
\mathcal{T}=\left(\begin{array}{ccc}
A & B & C \\
\{A\} & \{A\} & \{A, B\}
\end{array}\right)
$$

and functions $f \in \mathcal{F}, \psi \in \Psi$ given by $f(t)=\frac{1}{2} t, \psi(t)=\frac{2}{3} t$. Conditions (i) and (ii), as well as (3.2) of Theorem 3.1 are satisfied. To prove that (iii) holds, it is
enough to check that it is satisfied for $x=A, y=B$ and for $x=A, y=C$ (in the case when $x=y$, (iii) is trivially satisfied).

If $x=A, y=B$, then $\mathcal{T} x=\mathcal{T} y=\{A\}$ and $H(\mathcal{T} x, \mathcal{T} y)=0$, so (iii) holds. If $x=A, y=C$, then

$$
H(\mathcal{T} x, \mathcal{T} y)=\max \{D(A,\{A, B\}), \max \{D(A,\{A\}), D(B,\{A\})\}\}=d(A, B)=1,
$$

and

$$
\begin{aligned}
M(x, y) & =\max \left\{d(A, C), D(A,\{A\}), D(C,\{A, B\}), \frac{1}{2}(D(A,\{A, B\})+D(C,\{A\}))\right\} \\
& =\max \left\{2,0,1, \frac{1}{2}(0+2)\right\}=2 .
\end{aligned}
$$

Hence, $f(H(\mathcal{T} x, \mathcal{T} y))=\frac{1}{2}<\frac{2}{3}=\psi(f(M(x, y))$. All the conditions of Theorem 3.1 are fulfilled and \mathcal{T} has a fixed point A.

Note that for (incomparable) points $x=B, y=C$ condition (iii) is not satisfied, and so Theorem 1 of [14] (with $T=S$) cannot be applied to reach the conclusion. Indeed, in this case, $\mathcal{T} x=\{A\}, \mathcal{T} y=\{A, B\}$,

$$
H(\mathcal{T} x, \mathcal{T} y)=d(A, B)=1, \quad M(x, y)=\max \left\{1,1,1, \frac{1}{2}(0+2)\right\}=1,
$$

and $f(H(\mathcal{T} x, \mathcal{T} y))=\frac{1}{2}>\frac{1}{3} \psi(f(M(x, y))$.
The following corollary is a special case of Theorem 3.1 when \mathcal{T} is a singlevalued mapping.

Corollary 3.3. Let $(\mathcal{X}, d, \preceq)$ be a complete ordered metric space and let $\mathcal{Y}=$ $\sup \{d(x, y): x, y \in \mathcal{X}\}$. Set $\mathcal{N}=\mathcal{Y}$ if $\mathcal{Y}=\infty$, and $\mathcal{N}>\mathcal{Y}$ if $\mathcal{Y}<\infty$. Suppose that a mapping $\mathcal{T}: \mathcal{X} \rightarrow \mathcal{X}$ satisfies the following conditions:

1. there exists $x_{0} \in \mathcal{X}$ such that $x_{0} \preceq \mathcal{T} x_{0}$,
2. for $x, y \in \mathcal{X}, x \preceq y$ implies $\mathcal{T} x \preceq \mathcal{T} y$,
3. $f(d(\mathcal{T} x, \mathcal{T} y)) \leq \psi(f(M(x, y)))$ for all comparable $x, y \in \mathcal{X}$, where $f \in \mathcal{F}$, $\psi \in \Psi$ and

$$
M(x, y)=\max \left\{d(x, y), d(\mathcal{T} x, x), d(\mathcal{T} y, y), \frac{1}{2}(d(\mathcal{T} x, y)+d(\mathcal{T} y, x))\right\} .
$$

If the condition (3.2) holds, then \mathcal{T} has a fixed point.
In the following theorem we replace condition (3.2) of the above corollary by requiring \mathcal{T} to be continuous.

Theorem 3.4. Let $(\mathcal{X}, d, \preceq)$ be a complete ordered metric space and let $\mathcal{Y}=$ $\sup \{d(x, y): x, y \in \mathcal{X}\}$. Set $\mathcal{N}=\mathcal{Y}$ if $\mathcal{Y}=\infty$, and $\mathcal{N}>\mathcal{Y}$ if $\mathcal{Y}<\infty$. Suppose that a continuous mapping $\mathcal{T}: \mathcal{X} \rightarrow \mathcal{X}$ satisfies the following conditions:

1. there exists $x_{0} \in \mathcal{X}$ such that $x_{0} \preceq \mathcal{T} x_{0}$,
2. for $x, y \in \mathcal{X}, x \preceq y$ implies $\mathcal{T} x \preceq \mathcal{T} y$,
3. $f(d(\mathcal{T} x, \mathcal{T} y)) \leq \psi(f(M(x, y)))$ for all comparable $x, y \in \mathcal{X}$, where $f \in \mathcal{F}$, $\psi \in \Psi$, and

$$
M(x, y)=\max \left\{d(x, y), d(\mathcal{T} x, x), d(\mathcal{T} y, y), \frac{1}{2}(d(\mathcal{T} x, y)+d(\mathcal{T} y, x))\right\} .
$$

Then \mathcal{T} has a fixed point.
Proof. Consider \mathcal{T} as a set-valued mapping for which $\mathcal{T} x$ is a singleton set for every $x \in \mathcal{X}$. Then we consider the same sequence $\left\{x_{n}\right\}$ as in the proof of Theorem 3.1] and following the line of its proof, we have that $\left\{x_{n}\right\}$ is a Cauchy sequence and

$$
\lim _{n \rightarrow \infty} x_{n}=z .
$$

Then, if \mathcal{T} is continuous, we have

$$
z=\lim _{n \rightarrow \infty} x_{n+1}=\lim _{n \rightarrow \infty} \mathcal{T} x_{n}=\mathcal{T} z
$$

and this proves that z is a fixed point of \mathcal{T} and we have the result.
Recall that a subset \mathcal{K} of a partially ordered set \mathcal{X} is said to be totally ordered if every two elements of \mathcal{K} are comparable.

Theorem 3.5. Under the assumptions of Corollary 3.3 or Theorem 3.4, the set $F(\mathcal{T})$ of fixed points of \mathcal{T} is a singleton if and only if it is totally ordered.

Proof. Suppose that the set of fixed points of \mathcal{T} is totally ordered. We claim that the fixed point of \mathcal{T} is unique. Assume to the contrary, that $u \in \mathcal{T} u$ and $v \in \mathcal{T} v$ but $u \neq v$, and hence $d(u, v)>0$. By supposition, we can replace x by u and y by v in condition (3) of Corollary 3.3 or Theorem 3.4 to obtain

$$
f(d(u, v)) \leq f(d(\mathcal{T} u, \mathcal{T} v) \leq \psi(f(M(u, v)))
$$

where

$$
\begin{aligned}
M(u, v) & =\max \left\{d(u, v), d(\mathcal{T} u, v), d(\mathcal{T} v, v), \frac{1}{2}(d(\mathcal{T} u, v)+d(\mathcal{T} v, u))\right\} \\
& \leq \max \left\{d(u, v), d(u, v), 0, \frac{1}{2}(d(u, v)+d(v, u))\right\}=d(u, v)
\end{aligned}
$$

and

$$
f(d(u, v) \leq \psi(f(d(u, v)))<f(d(u, v)),
$$

a contradiction. Hence $d(u, v)=0$, that is, $u=v$. The converse is trivial.

4 Results for a Pair of Set-valued Mappings

Next we prove common fixed point theorems for a pair of set-valued mappings in a complete ordered metric space. To complete the result, we extend to setvalued mappings the notion of weakly isotone increasing mappings given by Dhage, O'Regan and Agarwal [22].

Definition 4.1. Let (\mathcal{X}, \preceq) be a partially ordered set. Two maps $\mathcal{S}, \mathcal{T}: \mathcal{X} \rightarrow$ $N(\mathcal{X})$ are said to be weakly isotone increasing if for any $x \in \mathcal{X}$ we have $\mathcal{S} x \preceq_{2} \mathcal{T} y$ for all $y \in \mathcal{S} x$ and $\mathcal{T} x \preceq_{2} \mathcal{S} y$ for all $y \in \mathcal{T} x$.

Note that, in particular, single-valued mappings $\mathcal{T}, \mathcal{S}: \mathcal{X} \rightarrow \mathcal{X}$ are weakly isotone increasing [22] if $\mathcal{S} x \preceq \mathcal{T} \mathcal{S} x$ and $\mathcal{T} x \preceq \mathcal{S T} x$ hold for each $x \in \mathcal{X}$.

Theorem 4.2. Let $(\mathcal{X}, d, \preceq)$ be a complete ordered metric space and let $\mathcal{Y}=$ $\sup \{d(x, y): x, y \in \mathcal{X}\}$. Set $\mathcal{N}=\mathcal{Y}$ if $\mathcal{Y}=\infty$, and $\mathcal{N}>\mathcal{Y}$ if $\mathcal{Y}<\infty$. Suppose that $\mathcal{T}, \mathcal{S}: \mathcal{X} \rightarrow N(\mathcal{X})$ are two set-valued mappings such that the following condition is satisfied:

$$
\begin{equation*}
f(H(\mathcal{T} x, \mathcal{S} y)) \leq \psi(f(M(x, y))) \tag{4.1}
\end{equation*}
$$

for all comparable $x, y \in \mathcal{X}$, where $f \in \mathcal{F}, \psi \in \Psi$ and

$$
\begin{equation*}
M(x, y)=\max \left\{d(x, y), D(\mathcal{T} x, x), D(\mathcal{S} y, y), \frac{1}{2}(D(\mathcal{T} x, y)+D(\mathcal{S} y, x))\right\} \tag{4.2}
\end{equation*}
$$

Also suppose that \mathcal{S} and \mathcal{T} are weakly isotone increasing and there exists an $x_{0} \in \mathcal{X}$ such that $\left\{x_{0}\right\} \preceq_{2} \mathcal{T} x_{0}$. If the condition

$$
\left\{\begin{array}{l}
\text { if }\left\{x_{n}\right\} \subset \mathcal{X} \text { is a non-decreasing sequence with } x_{n} \rightarrow z \text { in } \mathcal{X}, \tag{4.3}\\
\text { then } x_{n} \preceq z \text { for all } n
\end{array}\right.
$$

holds, then \mathcal{S} and \mathcal{T} have a common fixed point.
Proof. First of all we show that, if \mathcal{S} or \mathcal{T} has a fixed point, then it is a common fixed point of \mathcal{S} and \mathcal{T}. Indeed, let z be a fixed point of \mathcal{T}, that is $z \in \mathcal{T} z$, but $z \notin \mathcal{S} z$. Since $\mathcal{S} z$ is an approximation, $D(\mathcal{S} z, z)>0$. If we use the inequality (4.2), for $x=y=z$, we have
$M(z, z)=\max \left\{d(z, z), D(\mathcal{T} z, z), D(\mathcal{S} z, z), \frac{1}{2}(D(\mathcal{T} z, z)+D(\mathcal{S} z, z))\right\}=D(\mathcal{S} z, z)$,
and it follows that

$$
\begin{aligned}
f(D(\mathcal{S} z, z)) & \leq f(\mathcal{H}(\mathcal{T} z, \mathcal{S} z)) \leq \psi(f(M(z, z))) \\
& =\psi(f(D(\mathcal{S} z, z)))<f(D(\mathcal{S} z, z))
\end{aligned}
$$

This is a contradiction, so $z \in \mathcal{S} z$. Analogously, one can observe that if $z \in \mathcal{S} z$, then $z \in \mathcal{T} z$.

Let us start with the given x_{0}. In view of the property of approximation, we can define a sequence $\left\{x_{n}\right\} \subset \mathcal{X}$ as follows

$$
\left\{\begin{array}{l}
x_{2 n+1} \in \mathcal{T} x_{2 n}, D\left(\mathcal{T} x_{2 n}, x_{2 n}\right)=d\left(x_{2 n+1}, x_{2 n}\right), \\
x_{2 n+2} \in \mathcal{S} x_{2 n+1}, D\left(\mathcal{S} x_{2 n+1}, x_{2 n+1}\right)=d\left(x_{2 n+2}, x_{2 n+1}\right), \text { for } n \in\{0,1, \ldots\} .
\end{array}\right.
$$

If $x_{n_{0}} \in \mathcal{S} x_{n_{0}}$ or $x_{n_{0}} \in \mathcal{T} x_{n_{0}}$ for some n_{0}, then the proof is finished. So assume $x_{n} \neq x_{n+1}$ for all n.

Now we use that \mathcal{S} and \mathcal{T} are weakly isotone increasing. Note that $x_{1} \in \mathcal{T} x_{0}$, so that $x_{0} \preceq x_{1}$ and since $\mathcal{T} x_{0} \preceq_{2} \mathcal{S} y$ for all $y \in \mathcal{T} x_{0}$ we have $\mathcal{T} x_{0} \preceq_{2} \mathcal{S} x_{1}$. In particular, $x_{1} \preceq x_{2}$. Continuing this process we construct a sequence $\left\{x_{n}\right\}$ in \mathcal{X} such that

$$
x_{1} \preceq x_{2} \preceq \cdots \preceq x_{n} \preceq x_{n+1} \preceq \cdots
$$

Now we claim that

$$
d\left(x_{n+1}, x_{n}\right)<d\left(x_{n}, x_{n-1}\right)
$$

Setting $x=x_{2 n}$ and $y=x_{2 n+1}$ in (4.2), we have for all $n \geq 0$,

$$
\begin{aligned}
M\left(x_{2 n}, x_{2 n+1}\right)= & \max \left\{d\left(x_{2 n}, x_{2 n+1}\right), D\left(\mathcal{T} x_{2 n}, x_{2 n}\right), D\left(\mathcal{S} x_{2 n+1}, x_{2 n+1}\right),\right. \\
& \left.\frac{1}{2}\left(D\left(\mathcal{T} x_{2 n}, x_{2 n+1}\right)+D\left(\mathcal{S} x_{2 n+1}, x_{2 n}\right)\right)\right\} \\
= & \max \left\{d\left(x_{2 n}, x_{2 n+1}\right), d\left(x_{2 n+1}, x_{2 n}\right), d\left(x_{2 n+2}, x_{2 n+1}\right)\right. \\
& \left.\frac{1}{2}\left(d\left(x_{2 n+1}, x_{2 n+1}\right)+d\left(x_{2 n+2}, x_{2 n}\right)\right)\right\} \\
= & \max \left\{d\left(x_{2 n}, x_{2 n+1}\right), d\left(x_{2 n+2}, x_{2 n+1}\right), \frac{1}{2} d\left(x_{2 n+2}, x_{2 n}\right)\right\} .
\end{aligned}
$$

Since $\frac{1}{2} d\left(x_{n}, x_{n+2}\right) \leq \max \left\{d\left(x_{n}, x_{n+1}\right), d\left(x_{n+1}, x_{n+2}\right)\right\}$, it follows that

$$
\begin{equation*}
M\left(x_{2 n}, x_{2 n+1}\right)=\max \left\{d\left(x_{2 n}, x_{2 n+1}\right), d\left(x_{2 n+2}, x_{2 n+1}\right)\right\} \tag{4.4}
\end{equation*}
$$

Suppose that $d\left(x_{2 n+2}, x_{2 n+1}\right) \geq d\left(x_{2 n}, x_{2 n+1}\right)$ for some positive integer n. Then from (4.4), we have

$$
\begin{aligned}
f\left(d\left(x_{2 n+2}, x_{2 n+1}\right)\right) & =f\left(D\left(\mathcal{S} x_{2 n+1}, x_{2 n+1}\right)\right) \\
& \leq f\left(H\left(\mathcal{T} x_{2 n}, \mathcal{S} x_{2 n+1}\right)\right) \leq \psi\left(f\left(M\left(x_{2 n}, x_{2 n+1}\right)\right)\right) \\
& <f\left(M\left(x_{2 n}, x_{2 n+1}\right)\right)=f\left(d\left(x_{2 n+2}, x_{2 n+1}\right)\right)
\end{aligned}
$$

a contradiction. So we have $d\left(x_{2 n+2}, x_{2 n+1}\right)<d\left(x_{2 n}, x_{2 n+1}\right)$. This yields

$$
\begin{aligned}
f\left(d\left(x_{2 n+2}, x_{2 n+1}\right)\right) & =f\left(D\left(\mathcal{T} x_{2 n+1}, x_{2 n+1}\right)\right) \leq f\left(H\left(\mathcal{T} x_{2 n}, \mathcal{T} x_{2 n+1}\right)\right) \\
& \leq \psi\left(f\left(M\left(x_{2 n}, x_{2 n+1}\right)\right)\right)=\psi\left(f\left(d\left(x_{2 n+1}, x_{2 n}\right)\right)\right)
\end{aligned}
$$

Proceeding in the same way, we have

$$
d\left(x_{2 n+1}, x_{2 n}\right)<d\left(x_{2 n}, x_{2 n-1}\right)
$$

and

$$
\begin{aligned}
f\left(d\left(x_{2 n+1}, x_{2 n}\right)\right) & =f\left(D\left(\mathcal{T} x_{2 n}, x_{2 n}\right)\right) \leq f\left(H\left(\mathcal{T} x_{2 n}, \mathcal{S} x_{2 n-1}\right)\right) \\
& \leq f\left(M\left(x_{2 n}, x_{2 n-1}\right)\right)=\psi\left(f\left(d\left(x_{2 n}, x_{2 n-1}\right)\right)\right)
\end{aligned}
$$

So for each n, we have

$$
f\left(d\left(x_{n+1}, x_{n}\right)\right) \leq \psi\left(f\left(d\left(x_{n}, x_{n-1}\right)\right)\right) .
$$

Using the obtained inequality several times, we get

$$
f\left(d\left(x_{n+1}, x_{n}\right)\right) \leq \psi\left(f\left(d\left(x_{n}, x_{n-1}\right)\right)\right) \leq \cdots \leq \psi^{n}\left(f\left(d\left(x_{1}, x_{0}\right)\right)\right) .
$$

Let $m, n \in N, n>m$. Then in virtue of the triangular inequality, we have

$$
d\left(x_{n}, x_{m}\right) \leq \sum_{i=m}^{n-1} d\left(x_{i}, x_{i+1}\right) .
$$

This implies, using properties of $f \in \mathcal{F}$,

$$
\begin{aligned}
f\left(d\left(x_{n}, x_{m}\right)\right) & \leq f\left(d\left(x_{n}, x_{n-1}\right)+d\left(x_{n-1}, x_{n-2}\right)+\cdots+d\left(x_{m+1}, x_{m}\right)\right) \\
& \leq \sum_{i=m}^{n-1} \psi^{i}\left(f\left(d\left(x_{1}, x_{0}\right)\right)\right) .
\end{aligned}
$$

Letting $m, n \rightarrow \infty$, by the above inequality, using the condition $\sum_{i=m}^{\infty} \psi^{n}(t)<\infty$, it follows that $\left\{x_{n}\right\}$ is a Cauchy sequence.

From the completeness of \mathcal{X}, there exists a $z \in \mathcal{X}$ such that

$$
x_{n} \longrightarrow z \text { as } n \longrightarrow \infty .
$$

By the assumption (4.3), $x_{n} \preceq z$, for all n.
Now we prove $D(\mathcal{T} z, z)=0$. Suppose that this is not true, i.e., $D(\mathcal{T} z, z)>0$. For large enough n, we use that the condition (4.1) holds for $x=z$ and $y=x_{2 n+1}$, where

$$
\begin{aligned}
M\left(z, x_{2 n+1}\right)= & \max \left\{d\left(z, x_{2 n+1}\right), D(\mathcal{T} z, z), D\left(\mathcal{S} x_{2 n+1}, x_{2 n+1}\right),\right. \\
& \left.\frac{1}{2}\left(D\left(\mathcal{T} z, x_{2 n+1}\right)+D\left(\mathcal{S} x_{2 n+1}, z\right)\right)\right\} \\
= & D(\mathcal{T} z, z) .
\end{aligned}
$$

Indeed, since $\lim _{n \rightarrow \infty} d\left(z, x_{2 n+1}\right)=0$ and $\lim _{n \rightarrow \infty} D\left(\mathcal{S} x_{2 n+1}, x_{2 n+1}\right)=0$, it follows that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} & \frac{1}{2}\left(D\left(\mathcal{T} z, x_{2 n+1}\right)+D\left(\mathcal{S} x_{2 n+1}, z\right)\right) \\
\quad & \lim _{n \rightarrow \infty} \frac{1}{2}\left(D(\mathcal{T} z, z)+d\left(z, x_{2 n+1}\right)+D\left(\mathcal{S} x_{2 n+1}, x_{2 n+1}\right)+d\left(x_{2 n+1}, z\right)\right) \\
\quad & \frac{1}{2} D(\mathcal{T} z, z)
\end{aligned}
$$

Therefore, there exists n_{1} such that $M\left(z, x_{2 n+1}\right)=D(\mathcal{T} z, z)$ for all $n>n_{1}$. Note that

$$
f\left(D\left(\mathcal{T} z, x_{2 n+2}\right)\right) \leq f\left(H\left(\mathcal{T} z, \mathcal{S} x_{2 n+1}\right)\right) \leq \psi\left(f\left(M\left(z, x_{2 n+1}\right)\right)\right)
$$

Letting $n \rightarrow \infty$ and applying (i) of Definition [2.2, we get

$$
f(D(\mathcal{T} z, z)) \leq \psi(f(D(\mathcal{T} z, z)))<f(D(\mathcal{T} z, z)),
$$

a contradiction. Hence $D(\mathcal{T} z, z)=0$, and in virtue of the approximation of $\mathcal{T} z$, we have $z \in \mathcal{T} z$. Using the conclusion from the beginning of the proof, we get that z is a common fixed point of \mathcal{T} and \mathcal{S}. This completes the proof of the theorem.

Example 4.3. Consider the space $\mathcal{X}=C[a, b]$ of continuous real functions with the standard metric $d(x, y)=\max _{t \in[a, b]}|x(t)-y(t)|$ and the order \preceq defined by

$$
x \preceq y \Longleftrightarrow x(t) \geq y(t) \text { for all } t \in[a, b]
$$

(note the reverse ordering). Let $f \in \mathcal{F}$ and $\psi \in \Psi$ be given by $f(t)=\frac{2}{3} t$ and $\psi(t)=\frac{1}{2} t$. Consider the following mappings $\mathcal{T}, \mathcal{S}: \mathcal{X} \rightarrow \mathcal{X}$:

$$
\begin{aligned}
& \mathcal{T} x=\left[\frac{1}{4} x, \frac{1}{3} x\right]=\left\{z \in \mathcal{X}: \frac{1}{4} x(t) \leq z(t) \leq \frac{1}{3} x(t), t \in[a, b]\right\} \\
& \mathcal{S} x=\left[\frac{1}{5} x, \frac{3}{10} x\right]=\left\{z \in \mathcal{X}: \frac{1}{5} x(t) \leq z(t) \leq \frac{3}{10} x(t), t \in[a, b]\right\} .
\end{aligned}
$$

Check first that \mathcal{T} and \mathcal{S} are weakly isotone increasing. Suppose that $y \in \mathcal{S} x=$ $\left[\frac{1}{5} x, \frac{3}{10} x\right]$ and $z \in \mathcal{S} x=\left[\frac{1}{5} x, \frac{3}{10} x\right]$. Then $u \in \mathcal{T} y=\left[\frac{1}{4} y, \frac{1}{3} y\right]$ implies that $u(t) \leq$ $\frac{1}{3} \cdot \frac{3}{10} x(t)=\frac{1}{10} x(t)<\frac{1}{5} x(t) \leq z(t)$ for $t \in[a, b]$ and so $z \preceq u$. This means that for any $x \in \mathcal{X}$ we have $\mathcal{S} x \preceq_{2} \mathcal{T} y$ for all $y \in \mathcal{S} x$. Similarly, one can prove that for each $x \in \mathcal{X}$ we have $\mathcal{T} x \preceq_{2} \mathcal{S} y$ for all $y \in \mathcal{T} x$.

Take now arbitrary compatible functions $x, y \in \mathcal{X}$. Then, for each $t \in[a, b]$,

$$
\begin{aligned}
f(H(\mathcal{T} x, S y)) & \leq \frac{2}{3} \max \left\{\frac{1}{3} x(t), \frac{3}{10} x(t)\right\} \leq \frac{1}{3} \max \left\{\frac{2}{3} x(t), \frac{7}{10} x(t)\right\} \\
& \leq \frac{1}{3} \max \{D(x, T x), D(y, S y)\}=\frac{1}{3} M(x, y)=\psi(f(M(x, y)))
\end{aligned}
$$

Hence, condition (4.1) of Theorem 4.2 is fulfilled. The other conditions of this theorem are easy to check, and so there is a fixed point z of \mathcal{T} and \mathcal{S} (which is $z=0$).

In Theorem 4.2 if \mathcal{T}, \mathcal{S} are single-valued mappings and condition (4.3) is replaced by requiring that one of \mathcal{T}, \mathcal{S} is continuous, then we have the following result.

Theorem 4.4. Let $(\mathcal{X}, d, \preceq)$ be a complete ordered metric space and let $\mathcal{Y}=$ $\sup \{d(x, y): x, y \in \mathcal{X}\}$. Set $\mathcal{N}=\mathcal{Y}$ if $\mathcal{Y}=\infty$, and $\mathcal{N}>\mathcal{Y}$ if $\mathcal{Y}<\infty$. Suppose that $\mathcal{T}, \mathcal{S}: \mathcal{X} \rightarrow \mathcal{X}$ are single-valued operators satisfying

$$
\begin{equation*}
f(d(\mathcal{T} x, \mathcal{S} y)) \leq \psi(f(M(x, y))) \tag{4.5}
\end{equation*}
$$

for all comparable $x, y \in \mathcal{X}$, where $f \in \mathcal{F}, \psi \in \Psi$ and

$$
M(x, y)=\max \left\{d(x, y), d(\mathcal{T} x, x), d(\mathcal{S} y, y), \frac{1}{2}(d(\mathcal{T} x, y)+d(\mathcal{S} y, x))\right\}
$$

Also suppose that \mathcal{S} and \mathcal{T} are weakly isotone increasing and there exists an $x_{0} \in \mathcal{X}$ such that $x_{0} \preceq \mathcal{T} x_{0}$. If one of \mathcal{S} and \mathcal{T} is continuous, then \mathcal{S} and \mathcal{T} have a common fixed point.

Proof. Consider \mathcal{T} and \mathcal{S} as set-valued mappings for which $\mathcal{T} x$ and $\mathcal{S} x$ are singletons for every $x \in \mathcal{X}$. Then we consider the same sequence $\left\{x_{n}\right\}$ as in the proof of Theorem 4.2 and following the line of its proof, we have that $\left\{x_{n}\right\}$ is a Cauchy sequence and

$$
\lim _{n \rightarrow \infty} x_{n}=z
$$

Then, if \mathcal{T} is continuous, we have

$$
z=\lim _{n \rightarrow \infty} x_{n+1}=\lim _{n \rightarrow \infty} \mathcal{T} x_{n}=\mathcal{T} z
$$

and this proves that z is a fixed point of \mathcal{T} and so z is also a fixed point of \mathcal{S}. Similarly, if \mathcal{S} is continuous, we have the result. Thus it is immediate to conclude that \mathcal{T} and \mathcal{S} have a common fixed point.

Theorem 4.5. Under the assumptions of Theorem 4.4, the set of common fixed points of \mathcal{T} and \mathcal{S} is totally ordered if and only if \mathcal{T} and \mathcal{S} have one and only one common fixed point.

Proof. Suppose that the set of common fixed points of \mathcal{T} and \mathcal{S} is totally ordered. We claim that the common fixed point of \mathcal{T} and \mathcal{S} is unique. Assume to the contrary that $u \in \mathcal{S} u, u \in \mathcal{T} u$ and $v \in \mathcal{S} v, v \in \mathcal{T} v$ but $u \neq v$, then $d(u, v)>0$. By supposition, we can replace x by u and y by v in (4.5) to obtain

$$
f(d(u, v)) \leq f(d(\mathcal{T} u, \mathcal{S} v)) \leq \psi(f(M(u, v)))
$$

where

$$
\begin{aligned}
M(u, v) & =\max \left\{d(u, v), d(\mathcal{T} u, v), d(\mathcal{S} v, v), \frac{1}{2}(d(\mathcal{T} u, v)+d(\mathcal{S} v, u))\right\} \\
& \leq \max \left\{d(u, v), d(u, v), 0, \frac{1}{2}(d(u, v)+d(v, u))\right\}=d(u, v)
\end{aligned}
$$

and

$$
f(d(u, v) \leq \psi(f(d(u, v)))<f(d(u, v))
$$

a contradiction. Hence $d(u, v)=0$, that is, $u=v$. Conversely, if \mathcal{T} and \mathcal{S} have only one common fixed point then the set of common fixed point of \mathcal{T} and \mathcal{S}, being singleton, is totally ordered.

Putting $\mathcal{S}=\mathcal{T}$ in Theorem 4.2, we obtain the following

Corollary 4.6. Let $(\mathcal{X}, d, \preceq)$ be a complete ordered metric space and let $\mathcal{Y}=$ $\sup \{d(x, y): x, y \in \mathcal{X}\}$. Set $\mathcal{N}=\mathcal{Y}$ if $\mathcal{Y}=\infty$, and $\mathcal{N}>\mathcal{Y}$ if $\mathcal{Y}<\infty$. Suppose that $\mathcal{T}: \mathcal{X} \rightarrow N(\mathcal{X})$ is a set-valued mapping such that

$$
f(H(\mathcal{T} x, \mathcal{T} y)) \leq \psi(f(M(x, y)))
$$

for all comparable $x, y \in \mathcal{X}$, where $f \in \mathcal{F}, \psi \in \Psi$, and

$$
M(x, y)=\max \left\{d(x, y), D(\mathcal{T} x, x), D(\mathcal{T} y, y), \frac{1}{2}(D(\mathcal{T} x, y)+D(\mathcal{T} y, x))\right\}
$$

Also suppose that $\mathcal{T} x \preceq_{2} \mathcal{T}(\mathcal{T} x)$ for all $x \in \mathcal{X}$ and that $\left\{x_{0}\right\} \preceq_{2} \mathcal{T} x_{0}$ for some $x_{0} \in \mathcal{X}$. If the condition (4.3) holds, then \mathcal{T} has a fixed point.

If \mathcal{T} is a single-valued mapping in Corollary 4.6, then we have the following consequence:

Corollary 4.7. Let $(\mathcal{X}, d, \preceq)$ be a complete ordered metric space and let $\mathcal{Y}=$ $\sup \{d(x, y): x, y \in \mathcal{X}\}$. Set $\mathcal{N}=\mathcal{Y}$ if $\mathcal{Y}=\infty$, and $\mathcal{N}>\mathcal{Y}$ if $\mathcal{Y}<\infty$. Suppose that $\mathcal{T}: \mathcal{X} \rightarrow \mathcal{X}$ be a mapping such that

$$
f(d(\mathcal{T} x, \mathcal{T} y)) \leq \psi(f(M(x, y)))
$$

for all comparable $x, y \in \mathcal{X}$, where $f \in \mathcal{F}, \psi \in \Psi$ and

$$
M(x, y)=\max \left\{d(x, y), d(\mathcal{T} x, x), d(\mathcal{T} y, y), \frac{1}{2}(d(\mathcal{T} x, y)+d(\mathcal{T} y, x))\right\}
$$

Also suppose that $\mathcal{T} x \preceq \mathcal{T}(\mathcal{T} x)$ for all $x \in \mathcal{X}$. If the condition (4.3) holds, then \mathcal{T} has a fixed point.

Acknowledgement : The authors are indebted to the referees for careful reading of the text and suggestions that helped them to improve it.

References

[1] S.B. Nadler Jr., Multivalued contraction mappings, Pacific J. Math. 30 (1969) 475-488.
[2] S. Itoh, W. Takahashi, Single-valued mappings, multivalued mappings and fixed point theorems, J. Math. Anal. Appl. 59 (1977) 514-521.
[3] N. Mizoguchi, W. Takahashi, Fixed point theorem for multivalued mappings on complete metric spaces, J. Math. Anal. Appl. 141 (1989) 177-188.
[4] B.E. Rhoades, Two fixed point theorems for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci. 63 (2003) 4007-4013.
[5] S.H. Hong, Fixed points for mixed monotone multivalued operators in Banach spaces with applications, J. Math. Anal. Appl. 337 (2008) 333-342.
[6] S.H. Hong, Fixed points of multivalued operators in ordered metric spaces with applications, Nonlinear Anal. 72 (2010) 3929-3942.
[7] S.H. Hong, D. Guan, L. Wang, Hybrid fixed points of multivalued operators in metric spaces with applications, Nonlinear Anal. 70 (2009) 4106-4117.
[8] H.K. Nashine, Z. Kadelburg, Common fixed point theorems for a pair of multivalued mappings under weak contractive conditions in ordered metric spaces, Bul. Belg. Math. Soc. Simon Stevin 19 (2012) 577-596.
[9] W. Sintunavarat, P. Kumam, Coincidence and common fixed points for hybrid strict contractions without weakly commuting condition, Appl. Math. Lett. 22 (2009) 1877-1881.
[10] W. Sintunavarat, P. Kumam, Weak condition for generalized multi-valued (f, α, β)-weak contraction mappings, Appl. Math. Lett. 24 (2011) 460-465.
[11] W. Sintunavarat, P. Kumam, Coincidence and common fixed points for generalized contraction multi-valued mappings, J. Comput. Anal. Appl. 13 (2011) 362-367.
[12] W. Sintunavarat, P. Kumam, Gregus type fixed points for a tangential multivalued mappings satisfying contractive conditions of integral type, J. Ineq. Appl. 2011 (3) (2013).
[13] W. Sintunavarat, P. Kumam, Common fixed point theorems for hybrid generalized multi-valued contraction mappings, Appl. Math. Lett. 25 (2012) 52-57.
[14] M. Shen, S. Hong, Common fixed points for generalized contractive multivalued operators in complete metric spaces, Appl. Math. Lett. 22 (2009) 1864-1869.
[15] X. Zhang, Common fixed point theorems for some new generalized contractive type mappings, J. Math. Anal. Appl. 333 (2007) 780-786.
[16] A.C.M. Ran, M.C.B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132 (2004) 1435-1443.
[17] J.J. Nieto, R. Rodríguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order 22 (2005) 223-239.
[18] I. Beg, A.R. Butt, Fixed points for weakly compatible mappings satisfying an implicit relation in partially ordered metric spaces, Carpathian J. Math. 25 (2009) 1-12.
[19] I. Beg, A.R. Butt, Fixed point for set-valued mappings satisfying an implicit relation in partially ordered metric spaces, Nonlinear Anal. 71 (2009) 36993704.
[20] I. Beg, A.R. Butt, Common fixed point for generalized set valued contractions satisfying an implicit relation in partially ordered metric spaces, Math. Commun. 15 (2010) 65-76.
[21] B.S. Choudhury, N. Metiya, Multivalued and singlevalued fixed point results in partially ordered metric spaces, Arab J. Math. Sci. 17 (2011) 135-151.
[22] B.C. Dhage, D. O'Regan, R.P. Agarwal, Common fixed point theorems for a pair of countably condensing mappings in ordered Banach spaces, J. Appl. Math. Stochastic Anal. 16 (2003) 243-248.
[23] L.B. Ćirić, N. Cakić, M. Rajović, J.S. Ume, Monotone generalized nonlinear contractions in partially ordered metric spaces, Fixed Point Theory Appl., Vol. 2008 (2008), Article ID 131294 (2008), 11 pages.
[24] M.S. Khan, M. Swaleh, S. Sessa, Fixed points theorems by altering distances between the points, Bull. Austral. Math. Soc. 30 (1984) 1-9.
[25] H.K. Nashine, New fixed point theorems for mappings satisfying generalized weakly contractive condition with weaker control functions, Ann. Polonici Math. 104 (2012) 109-119.
(Received 11 September 2012)
(Accepted 8 February 2013)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

[^0]: The second author is thankful to the Ministry of Education, Science and Technological Development of Serbia.
 ${ }^{1}$ Corresponding author.
 Copyright © 2017 by the Mathematical Association of Thailand. All rights reserved.

