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The presence of fixed points in a frequency response of vi-

brating systems can greatly complicate the vibration reduc-

tion if these points are not recognized.

In this paper, the fixed points of two-degree of freedom

systems are studied. The frequencies at which fixed points

occur and their amplitudes are determined analytically.

1. Introduction

In general, vibrations are undesirable. Their effects

on mechanical systems are injurious and can cause

costly failures. Therefore, vibrations and their effects

need to be suppressed.

A phenomenon which can strongly complicate vi-

bration reduction is the occurrence of fixed points in a

frequency response. These points are only recognized

if the system parameters are varied. There are three

types of fixed points: damping, mass, and stiffness.

Fixed points, which occur in a frequency response

during a parametric variation of damping, are called

damping fixed points. At the frequencies where these

points occur, the vibration amplitudes remain constant

regardless of the damping values.

Mass and stiffness fixed points are defined in a simi-

lar manner. These points occur perfectly in a frequency

response only in the absence of damping. Therefore, an

undamped system is assumed by their determination.

Damping fixed points were treated by Den Har-

tog [2], Klotter [5], and Dimarogonas and Haddad [3]

in connection with vibration isolation and vibration ab-

sorption of systems with a single degree of freedom.

In vibration isolation, one fixed point occurs at the fre-

quency ω =
√
ωn, where ωn is the natural frequency

Fig. 1. Two-degree of freedom system.

of the system. In vibration absorption, two fixed points
occur in the frequency response of the primary mass
and three fixed points occur in the frequency response
of the absorber. Also, Bogy and Paslay [1] and Henny
and Raney [4] have used the damping fixed points to
obtain optimal damping. To our knowledge, however,
mass and stiffness fixed points have not been explored
previously.

In this paper, a linear system with two degrees of
freedom, as shown in Fig. 1, is presented. It is excited
by a harmonic force F (t) = F0 cosωt, that acts on a
mass, m2. All fixed points, which occur in this system
in the frequency responses of the vibrating masses m1

and m2, and the frequency response of the force trans-
mitted to the base will be discussed in this paper. The
frequencies at which these fixed points occur and their
amplitudes will be determined analytically. Also, their
effect on vibration reduction will be discussed.

2. Equations of motion

The equations of motion of the system shown in
Fig. 1 are:

m1ÿ1 + c1ẏ1 + c2(ẏ1 − ẏ2)

+k1y1 + k2(y1 − y2) = 0, (1)

m2ÿ2 + c2(ẏ2 − ẏ1) + k2(y2 − y1) = F0 cosωt. (2)
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Substituting the steady-state solution

yi(t) = Yi cos(ωt− φi), i = 1, 2 (3)

into Eqs (1) and (2), and solving for the amplitudes Yi,
yields

Y1 =
F0

∆

√

k2
2 + (c2ω)2, (4)

Y2 =
F0

∆

√

(k1 + k2 −m1ω2)2 + (c1 + c2)2ω2, (5)

where

∆ =
[{

m1m2ω
4 − [k1m2 + k2(m1 +m2) + c1c2]ω2

+ k1k2

}2
+
{

(k1c2 + k2c1)ω

− [m1c2 +m2(c1 + c2)]ω3
}2]1/2

, (6)

Y1 and Y2 are the vibration amplitudes of the masses

m1 and m2, respectively. The force transmitted FTr to

the base is determined by

FTr = c1ẏ + k1y1 = FT cos(ωt− ψ), (7)

where the amplitude of the force transmitted is given

by

FT =
F0

∆

((

k1k2 − c1c2ω
2
)2

+ [(k1c2 + k2c1)ω]2
)1/2

.

(8)

3. Mass fixed points

By varying the values of m1 while all other pa-

rameters of the undapmed system remain constant, all

curves of the amplitudesY1 andFT pass through a mass

fixed point, independent of the values ofm1. This fixed

point is determined by equating Y1 or FT to two dif-

ferent values of m1. Equating Y1 for the values m1 =0

and m1 = 1 yields that this fixed point occurs at the

frequency

ωm,1 =
√

k2/m2, (9)

where the values of Y1 and FT at the aforementioned

frequency are obtained from Eqs (4) and (8), respec-

tively, as:

Y1(ωm,1) = F0/k2, (10)

FT(ωm,1) = (k1/k2)F0. (11)

Since these values are independent ofm1, then by their

determination values of m1, which simplify Eqs (4)

and (8) are selected. Usually, the values 0 and/or∞ are

selected. The control of the amplitudes Y1 and FT at

the working frequencies close to ωm,1 can not be suc-

ceeded by varying the value of m1.

On the other hand, by varying the values of m2, all

curves of the amplitudesY1 andFT pass through a mass

fixed point, independent of the values ofm2. This fixed

point can be determined as previously described and is

located at the frequency

ωm,2 =
√

(k1 + k2)/m1, (12)

where the amplitudes Y1 and FT at this frequency are

determined from Eqs (4) and (8), respectively, as:

Y1(ωm,2) = F0/k2, (13)

FT(ωm,2) = (k1/k2)F0. (14)

These amplitudes, which are independent of m2, can-

not be controlled by varying the values of m2.

The frequency response of the mass m2 does not

possess mass fixed points neither by varying the val-

ues of m1 nor the values of m2. However, all curves

of the amplitude Y2 become zero at the absorber fre-

quency ωa =
√

(k1 + k2)/m1, regardless of the values

of m2.

4. Stiffness fixed points

By varying the values of k1 of the undamped system,

the following outcomes are achieved:

1. The curves of Y1 possess a stiffness fixed point at

the frequency

ωk,1 =
√

k2/m2, (15)

where the amplitude Y1 at this frequency is ob-

tained from Eq. (4) as:

Y1(ωk,1) = F0/k2. (16)
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2. The curves of FT possess a stiffness fixed point

at the frequency

ωk,2 =

√

k2(m1 +m2)

m1m2

, (17)

where the amplitude FT at this frequency is ob-

tained from Eq. (8) as:

FT(ωk,2) = (m1/m2)F0. (18)

3. The reduction of Y1(ωk,1) and FT(ωk,2) will not

succeed by varying the values of k1, since these

amplitudes are independent of the values of k1.

4. The curves of the amplitude Y2 possess no fixed

points.

On the other hand, by varying the values of k2 of the

undamped system, the curves of all three amplitudes,

namely, Y1, Y2, and FT possess the same stiffness fixed

point. This fixed point occurs at the frequency

ωk,3 =
√

k1/m1, (19)

where the amplitudes Y1, Y2, and FT at this frequency

are obtained from Eqs (4), (5), and (8), respectively, as:

Y1(ωk,3) =
m1

k1m2

F0, (20)

Y2(ωk,3) =
m1

k1m2

F0, (21)

FT(ωk,3) =
m1

m2

F0. (22)

These amplitudes cannot be reduced by varying the

values of k2.

5. Damping fixed points

By varying the values of c1 in the absence of c2, the

following outcomes are achieved:

1. The curves of Y1 possess only one damping fixed

point, which occurs at the frequency

ωc,1 =
√

k2/m2, (23)

where Y1 at this frequency is obtained from

Eq. (4) as:

Y1(ωc,1) = F0/k2. (24)

2. The curves of Y2 possess two damping fixed

points which are located at the frequencies

ωc,2,3 =
1

√
2m1m2

[

k1m2 + k2(m1 +m2)

∓
(

(k1m2 − k2m1)2
+m2

2k2(2k1 + k2)
)1/2]1/2

,

(25)

where Y2 at these frequencies is obtained from

Eq. (5) as:

Y2(ωc,i) =
F0

k2 −m2ω2
c,i

, i = 2, 3. (26)

3. The curves of FT possess three damping fixed

points. These points are located at the frequen-

cies

ωc,4,5 =
1

√
2m1m2

[

2k1m2 + k2(m1 +m2)

∓
(

[2k1m2 + k2(m1 +m2)]2

− 8k1k2m1m2

)1/2]1/2
, (27)

ωc,6 =

√

k2(m1 +m2)

m1m2

, (28)

where FT at these frequencies is obtained from

Eq. (8) as:

FT(ωc,i) =
F0k2

k2 −m2ω2
c,i

, i = 4, 5, 6. (29)

By varying the values of c2 in the absence of c1yields

that the curves of Y1, Y2, and FT possess three damping

fixed points. The fixed points of Y1 and FT are located

at the frequencies

ωc,7,8 =
1

√
2m1m2

[

k1m2 + 2k2(m1 +m2)

∓
(

[k1m2 + 2k2(m1 +m2)]2

− 8k1k2m1m2

)1/2]1/2
, (30)

ωc,9 =
√

k1/m1, (31)

where Y1 and FT at these frequencies are determined

by using Eqs (4) and (8), respectively, as:
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Fig. 2. Frequency response for different values of µ1 = m1/(80 kg): (a) damped, (b) undamped.

Fig. 3. Frequency response for different values of µ2 = m2/(160 kg): (a) damped, (b) undamped.

Y1(ωc,i) =
F0

k1 − (m1 +m2)ω2
c,i

, i = 7, 8, 9, (32)

FT(ωc,i) =
k1F0

k1 − (m1 +m2)ω2
c,i

, i = 7, 8, 9. (33)

The fixed points of Y2 are located at the frequencies

ωc,10,11 =
1

√

m2
1 + 2m1m2

[

(k1 + k2)(m1 +m2)

∓
(

[(k1 + k2)(m1 +m2)]2

−
(

2k1k2 + k2
1

)(

m2
1 + 2m1m2

))1/2]1/2
, (34)

ωc,12 =
√

k1/m1, (35)
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Fig. 4. Frequency response for different values of κ1 = k1/(320 kN/m): (a) damped, (b) undamped.

Fig. 5. Frequency response for different values of κ2 = k2/(200 kN/m): (a) damped, (b) undamped.

where Y2 at these frequencies is obtained from Eq. (5)

as:

Y2(ωc,i) =
F0

k1 − (m1 +m2)ω2
c,i

, i = 10, 11, 12. (36)

When the working frequencies are near damping fixed

points, the vibration amplitudes can only be slightly in-

fluenced by varying the values of ci (i = 1, 2). In this

case, isolators and/or absorbers can be used for vibra-

tion reduction.

6. Numerical example

To verify the above model, a numerical example will

be presented. It is based on the following data: m1 =
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Fig. 6. Frequency response for different values of ζ1 = c1/(11314 N s/m).

Fig. 7. Frequency response for different values of ζ2 = c2/(10119 N s/m).

160 kg,m2 = 80 kg, k1 = 200 kN/m, k2 = 320 kN/m,

c1 = 1131 N s/m, c2 = 1012 N s/m, F0 = 100 N.

For convenience, the following nondimensional pa-

rameters are used: µ1 = m1/m2, µ2 = m2/m1,

κ1 = k1/k2, κ2 = k2/k1, ζ1 = c1/2
√
k1m1, ζ2 =

c2/2
√
k2m2.

Representatively, only the frequency responses of

m1 will be discussed. On the other hand, the frequency

responses of m2 and the force transmitted will not be

presented due to the similarity in the discussion.

Figures 2–5 present the frequency responses for the

damped (i.e., ζ1 = ζ2 = 0.1), and the undamped (i.e.,

ζ1 = ζ2 = 0) systems. Figures 2 and 3 present fre-

quency responses for different values of µ1 and µ2, re-

spectively. While Figs 4 and 5 present frequency re-

sponses for different values of κ1 and κ2, respectively.
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The frequency responses of the undamped systems en-

able us to determine the fixed points precisely. How-

ever, these points can only be estimated from the fre-

quency responses of the damped systems.

Figures 6 and 7 show the frequency responses for

different values of ζ1 and ζ2, respectively. In order to

make the fixed points of Fig. 7 clear, the regions of

these points are plotted in zoom-windows.

From the previous analysis it is obtained for Y1:

a) Mass fixed points:

fm,1 =
ωm,1

2π
= 10.07 Hz,

Y1(fm,1) = 0.313 mm,

fm,2 = 9.07 Hz, Y1(fm,2) = 0.313 mm.

b) Stiffness fixed points:

fk,1 = 10.07 Hz, Y1(fk,1) = 0.313 mm,

fk,3 = 5.63 Hz, Y1(fk,3) = 1 mm.

c) Damping fixed points:

fc,1 = 10.07 Hz, Y1(fc,1) = 0.313 mm,

fc,7 = 4.51 Hz, Y1(fc,7) = 13.95 mm,

fc,8 = 17.76 Hz, Y1(fc,8) = 0.036 mm,

fc,9 = 5.63 Hz, Y1(fc,9) = 1 mm.

Comparison of these values with the plots (i.e.,

Figs 2–7) yields that they coincide with each other.

7. Conclusions

In this paper, different types of fixed points, which

can occur for a two-degree of freedom system, are pre-

sented. The frequencies at which fixed points occur and

their amplitudes are determined analytically. The fol-

lowing can be concluded:

– The presence of fixed points may complicate the

reduction of vibrations.

– The presence of fixed points cannot be recognized

unless a parametric study is performed.

– When the operating frequency is near a mass fixed

point, the amplitudes of vibration cannot be effec-

tively reduced by varying the values of masses.

– When the operating frequency is near a stiffness

fixed point, the amplitudes of vibration cannot be

effectively reduced by varying the stiffness val-

ues.

– When the operating frequency is near a damping

fixed point, the amplitudes of vibrations cannot be

effectively reduced by varying the damping val-

ues.

References

[1] D.B. Bogy and P.R. Paslay, An evaluation of the fixed point

method of vibration analysis for a particular system with ini-

tial damping, J. Engineering for Industry, Trans. ASME 85B(3)

(1963), 233–236.

[2] J.P. Den Hartog, Mechanical Vibrations, McGraw-Hill, New

York, 1956.

[3] A.D. Dimarogonas and S. Haddad, Vibration for Engineers,

Prentice Hall, New Jersey, 1992.

[4] A. Henney and J.P. Raney, The optimization of damping of four

configuration of vibrating uniform beam, J. Engineering for In-

dustry, Trans. ASME 85B(3) (1963), 259–264.

[5] K. Klotter, Technische Schwingungslehre, Zweiter Band,

Schwinger von mehreren Freiheitsgraden, 2nd edn, Springer-

Verlag, Berlin/New York, 1981.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014
Hindawi Publishing Corporation 

http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at

http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in

OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


