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ABSTRACT 

This paper considers the problem of fixed priority 
scheduling of periodic tasks with arbitrary deadlines. 
A general criterion for the schedulability of such a task 
set is given. Worst case bounds are given which gen- 
eralize the Liu and Layland bound. The results are 
shown to provide a basis for developing predictable 
distributed real-time systems. 

1 Introduction 
The problem of scheduling periodic tasks with hard 
deadlines on a uniprocessor was first studied by Liu 
and Layland [5] in 1973. Their paper gave a worst case 
performance analysis of the rate monotonic scheduling 
algorithm for their scheduling problem, the optimal 
fixed priority scheduling algorithm. The rate mono- 
tonic theory has been greatly generalized since the 
original Liu and Layland paper. It now addresses prac- 
tical issues such as the mixture of periodic and aperi- 
odic tasks, task synchronization, stochastic execution 
time and processing important tasks in cases of tran- 
sient overload, see [9, lo]. With few exceptions (see for 
example [2, 4,  6, l l ] ) ,  results for the rate monotonic 
scheduling algorithm have been developed assuming 
task deadlines are equal to task periods. Indeed, only 
[ll] allows deadlines to exceed the task periods, and 
it addresses only the optimality of a modification of 
the rate monotonic algorithm. Consequently, there is 
a need to  extend the theory to cover this case. 

In spite of this generality obtained for fixed prior- 
ity scheduling in the uniprocessor case, only a limited 
amount of work has been done in the distributed sys- 
tem case. In the distributed case, periodic tasks re- 
quire a sequence of resources, and the task deadline is 
in the form of an end-to-end deadline. For example, a 
periodic process may involve data capture and compu- 
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tation on processor 1, sending the results over a net- 
work to processor 2, additional computation followed 
by display on processor 2. The process is periodic, and 
the allowable latency time between data capture and 
display must be no greater than some deadline. There 
has been some work in the distributed or multi-stage 
case including the work of Bettati and Liu [l], the work 
on cycle stealing by Rajkumar, Sha and Lehoczky [8, 
101 and the work on multiprocessor task synchroniza- 
tion by Rajkumar [7], but much work needs to be done 
on developing a fixed priority scheduling theory for the 
distributed case. In particular, we would like to  be 
able to solve the distributed scheduling problem with- 
out resorting to a handcrafted timeline schedule with 
all its drawbacks (see for example [9]). Such a theory 
would begin with periodic distributed tasks, each re- 
quiring a sequence of resources and associated amounts 
of processing time on each resource and an end-to-end 
deadline. The theory would allow one to determine 
analytically whether a scheduling algorithm such as 
the rate monotonic algorithm can meet the deadlines 
of a set of periodic distributed tasks. One might also 
develop worst case scheduling bounds. 

In the uniprocessor case, the Liu and Layland bound 
is log, 2 = .693, meaning that if periodic utilization is 
kept below this level, the optimal fixed priority algo- 
rithm will meet all deadlines under all task phasings. 
The worst case value of .693 is respectably large, and 
the average case value is often nearly .90 [3]. On the 
other hand, in the distributed case the worst case uti- 
lization levels can be extremely low if the task set is 
not restricted in some fashion. Consider the following 
example. 
Example 1 
Suppose we have two periodic tasks, both of which 
first use resource 1 followed by resource 2. Let task 1 
have period T and computation requirement C1 and 
C2 respectively on these two resources. Suppose task 
2 also has period T .  If Cl + C2 = T ,  then task 1 
cannot be interrupted or it will miss its deadline. If 
these two tasks have the same phasing, then if task 
2 has an arbitrarily small processing requirement on 
each resource, either task 1 or task 2 must miss its 
deadline. The utilization on resource 1 can be made 
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arbitrarily close to Ci/T for i = 1,2. These utilization 
sum to 1, thus the worst case total  utilization on the 
two resources is 1. The minimum of the two resources 
utilizations is at most .5. Similar examples show that 
this quantity drops to 1/3 if we consider 3 resources 
and becomes 1 / ~  for P resources. 0 

The above example shows that the worst case uti- 
lization is too low to be useful, and one must modify 
the scheduling problem in some way, for example by 
restricting task utilizations or phasing. A more useful 
approach is to recognize that if a task requires the use 
of multiple resources and it must contend for access to 
each resource, then more than one period should be 
available for the total task processing. For example, 
if three resources are needed, we might allow a task 
with period T initiated at time 0 to have a deadline of 
3T. Note that deadline postponement does not prevent 
new jobs of that task from being initiated. If the first 
job finished just before 3T, two other jobs (initiated at 
T and 2T) would already be in progress. 

While deadline postponement is a sensible approach, 
the ability to postpone a deadline depends on the max- 
imum task latency allowed by the application. If a 
task corresponds to monitoring a control system and 
responding to a critical condition, then there is a 
maximum allowable response time, hence a maximum 
deadline postponement. One simple approach to dis- 
tributed scheduling is to take the end-to-end deadline 
and create artificial intermediate deadlines for the pro- 
cessing at each resource. In this way, the distributed 
problem is decomposed into a set of independent single 
resource scheduling problems. To do this decomposi- 
tion in the optimal way, one may wish to use a rela- 
tively long artificial deadline for a heavily used resource 
and a relatively short artificial deadline for a lightly 
used resource. This means that the resulting single re- 
source scheduling problems will have tasks with dead- 
lines which are different from task periods, a problem 
not studied by Liu and Layland. Some partial results 
in this direction were obtained by Leung and White- 
head [4], Lehoczky and Sha [2] and Peng and Shin [6] .  
To carry out this approach to distributed scheduling, 
we must have an exact understanding of the tradeoffs 
between schedulability and deadline postponement in 
the uniprocessor case, and that is the topic of this pa- 
per. 

This paper is organized as follows. In Section 2 we 
introduce the scheduling problem and derive an ex- 
act schedulability criterion for an arbitrary fixed prior- 
ity scheduling algorithm. Section 3 derives worst case 
bounds, and Section 4 offers a summary and conclud- 
ing remarks. 

2 Scheduling Periodic Tasks 
with Modified Deadlines 

We consider a set of n periodic tasks, T I , .  ..,rn. 
Each task is characterized by four components, 
( c n  , Tn , Dn , In) where 

Ci = deterministic computation requirement of 
each job of r;. 

T; = period of ri. 

D, = deadline of 7;. 

Ii = phasing of r; relative to some fixed time ori- 
gin. 

The j th  job of r; is ready at time Ii + ( j  - l ) z ,  and 
the Ci units of computation required have a deadline of 
I i+(j-  1)z+ Di. We consider fixed priority scheduling 
algorithms and seek a criterion to determine whether 
the scheduling algorithm is able to meet all the dead- 
lines of all the jobs in the task set. Throughout this 
paper we assume the scheduling algorithms are pre- 
emptive and ignore all preemption overhead. 

To determine if a scheduling algorithm can meet all 
the task deadlines, it is useful to identify the task phas- 
ing which results in the longest response time for any 
job of a particular task ri. We introduce an arbitrary 
fixed priority scheduling algorithm and assume the pri- 
ority ordering TI < ...  < rn where r1 is highest pri- 
ority and rn is lowest. If 2-1 5 TZ 5 ... 5 T,, then 
this corresponds to rate monotonic scheduling, while 
if D1 5 Dz 5 . . .  5 D, this corresponds to deadline 
monotonic scheduling. Nevertheless, the results in this 
section are general for fixed priority scheduling. 

To determine the worst case response time for a task 
with priority level i, we introduce the concept of a 
level-i busy period. 
Definition 

A level-i busy period is a time interval [a,b] within 
which jobs of priority i or higher are processed 
throughout [a,b] but no jobs of level i or higher are 
processed in ( U  - E ,  U )  or ( b ,  b + 6) for sufficiently small 
€ > 0. 

All response times of the jobs of task i are a part 
of some level-i busy period, thus we need only identify 
the phasing of rl,. . . , ri which creates the longest task i 
response time. For rate monotonic scheduling, Liu and 
Layland proved that the longest response time for r; 
occurs when the task phasing creates a critical instant, 
i.e., 11 = . . . = In = 0, and the longest response time 
for ri is associated with the first job, thus only the 
deadline of the first job needs to be checked to infer 
that all deadlines of rj are met. This result remains 
true when Di 5 T;; however, more care is required if 
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Di > Ti. Consider the following example due to Ye 
Ding. 
Example 2 

Let n = 2 with C1 = 52,Tl = 100,Dl = 110 
and C2 = 52,T2 = 140,Dz = 154. Here D1/T1 = 
D2/T2 = 1.1, so both the rate monotonic and deadline 
monotonic scheduling algorithms accord highest prior- 
ity to r l .  With this priority assignment, the task set 
is not schedulable. Task 1 will be processed during 
[0,52], [loo, 1521 and [200,252]. The first job of task 2 
will be completed at time 156 and misses its deadline 
at 154. If one were to  accord the highest priority to r2, 
then it would be processed during [0,52], [140,192] and 
[280,332]. This means the first job of will finish at 
104, the second at 208 and the third at 260 completing 
the busy period. The three task 1 response times are 
104, 108 and 60 respectively. Each meets its deadline, 
thus the task set can be scheduled with this priority 
assignment. It should also be pointed out that the re- 
sponse time of the second job is longer than for the 
first, thus the deadlines of all the jobs in the busy pe- 
riod must be checked. If one considered only the first 
job of task 1, one would draw the erroneous conclusion 
that D1 = 104 would be sufficient for the task set to 
be schedulable with this priority ordering. 0 
Example 3 

Consider the case of n = 2 ,  C1 = 26, TI = 70,  C2 = 
62, T2 = 100, U = .9914. Let r1 have highest priority 
in accordance with the rate monotonic algorithm. We 
ignore the deadlines for the moment. Assuming that 
both tasks are initiated at time 0, one can find the 
level-2 busy period to be [0,696]. The table below 
gives the response times of 7 2  jobs during this busy 
period. 

Arrival of 7 2  job Completion Time Response Time 
0 114 114 

100 202 102 
200 316 116 
300 404 104 
400 518 118 
500 606 106 
600 696 96 

Task r1 will meet all of its deadlines provided D1 2 26 
or A1 = D1/T1 2 .371. The longest response time 
for r2 occurs for the fifth job of 7 2  during the busy 
period. Consequently, all deadlines of 7 2  will be met 
provided D2 2 118 or A2 = D2/T2 2 1.18. The non- 
monotonic behavior of the response times of task 2 
illustrates that all response times must be checked for 
all jobs processed during the busy period. U 

Theorem 1 
The longest response time for a job of ri occurs dur- 

ing a level-i busy period initiated by a critical instant, 
Il = . . . = I .  - 0. 
Proof 

Let [0, b] be a level-i busy period, and suppose Id > 0. 
Only tasks having higher priority than ri are processed 
during [ O , & ) ,  thus if Ii were changed to any value in 
[0, I i ) ,  each job of ri in [0, b] would finish at the same 
time, thus increasing each of the ri response times. 
The maximum response occurs when Ii is as small as 
possible, namely Ii = 0. If Ij > 0 for some j < i ,  then 
reducing Ij serves to  increase (or leave unchanged) the 
processing requirements of rj during [O,t] for every 
t c  [0, b), thus increasing (or leaving unchanged) the re- 
sponse time of i-,. jobs. The longest response time is 
achieved by setting Ij to  their smallest values, that is, 
Il =...  = I,. = 0. 0 

Throughout the rest of this paper we assume the 
worst case phasing. Under this assumption, it is simple 
to  write an exact criterion for the schedulability of a 
periodic task set 71,. . . , T, with tasks listed in fixed 
priority order. For checking r,, we define 

a -  

The quantity E ~ = ~ ' c j [ k l  + C, gives the total cu- 
mulative processor demands made by all jobs of 
71,. . . , r,-1 and the first job of r, during [O,t]. Jobs 
associated with task r,+l,. . . , r, can be ignored, be- 
cause these jobs have lower priority than rm and can 
be preempted. The first job of r, will meet its dead- 
line if and only if this quantity is less than or equal to t 
for some t 5 D,, because at such a time the processor 
will have completed all of C, and all required higher 
priority work. Indeed, the smallest value o f t  for which 
Cy=;' Cj +C, = t is the time at which this job is 
completed. In addition, the level-m busy period which 
started at time 0 will end with the completion of the 
first job of r, if there is no more processing at level m 
or higher to  be done. 

These two conditions can be reexpressed as 
W,(l, D,) 5 1 for deadline fulfillment of the first job 
of r, and W,(l,T,) 5 1 for the end of the level-m 
busy period. If W,(l,D,) 5 1 but W,(l,T,) > 1, 
then the first job of r, meets its deadline, but the 
busy period continues beyond T,, because there is 
additional work at level m from later jobs of r, yet 
to  be done. One must now consider the second job 
of 7,. This can be done by replacing r, by r,!,, 
having computation requirement 2C, and deadline 
T, + D,. Thus the second deadline is satisfied if and 
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only if Wm(2,T, + Dm) I 1. If Wm(2,2Tm) > 1, 
additional jobs of rm must be checked. If we define 
Nm = min{k I Wm(k,kT,) 5 l}, then exactly N ,  
task rm jobs are part of the level-m busy period. Note 
that N ,  is finite, because the total processor utiliza- 
tion is less than 1. Schedulability of rm is determined 
by 

One must check that each of the tasks in the task set 
is schedulable, thus we require (2.1) to hold for each 
m, 1 5 m 5 n, that is 

The criterion (2.2) holds for all fixed priority 
scheduling algorithms assuming the worst case task 
phasing. Lui and Layland proved that if Ti = D; , i 5 
i 5 n, then the rate monotonic priority ordering is op- 
timal among all fixed priority orderings in the sense 
that if a task set can be scheduled by some fixed 
priority algorithm it can also be scheduled by the 
rate monotonic algorithm. Leung and Whitehead [4] 
proved the inverse deadline (deadline monotonic) or- 
dering is optimal when Di < Ti. As shown by the 
earlier example, the optimality of the deadline or rate 
monotonic ordering fails when Di > Ti. Shih, Liu 
and Liu [ll] introduced the modified rate monotonic 
algorithm for the case of Di > Ti and proved some 
optimality results. In the next section, we will de- 
velop results for the rate monotonic algorithm. This 
will correspond to the deadline monotonic algorithm 
when Di = ATi , i.e., when all deadlines are the same 
constant fraction or multiple of the task periods. 

3 Worst Case Utilization Bounds 
The criterion given by equation (2.2) to determine if a 
periodic task set with general deadlines can be sched- 
uled by any particular fixed priority scheduling algo- 
rithm. It can be used to  create worst case scheduling 
bounds for the rate monotonic scheduling algorithm for 
the special case with Di = ATi , 1 5 i 5 n. We assume 
TI < T2 < . . . < Tn and assign ri higher priority than 
rj if and only if Ti < Tj. We first find ful l  utilization 
task sets. These are task sets which meet all deadlines 
under rate monotonic scheduling, but if the computa- 
tion requirement of any of the tasks is increased, one 
of the jobs of the task set will miss its deadline. We 
then seek the full utilization task set having minimal 
utilization, Cy=lCi/Ti = U:. If the utilization of any 
arbitrary task set consisting of n tasks is kept below 

U;, then all the deadlines of all the tasks will be met 
under all task phasings. If the utilization is above U,, 
then equation (2.2) must be used to  determine task set 
schedulability. 

To find the worst case utilization bounds for rate 
monotonic scheduling for a task set of size n having 
a common deadline postponement factor A, we first 
simplify by considering task sets which fully utilizes 
[O,ATn] under the worst case phasing. Thus the task 
set will be considered if the first job of r, meets its 
deadline but any increase in any of the computation 
requirements would cause this deadline to be missed. 
We will next find the minimum utilization task set 
from this collection. Finally, we will verify that all 
the deadlines of all tasks are met during the level-n 
busy period for this worst case task set. Example 3 
gave a task set for which the first response time was 
not the longest. It turns out that such task sets have 
relatively high utilization levels. Recall that for Ex- 
ample 3 the task set consisted of two tasks with C1 = 

Consider the modified task set with the periods un- 
changed and C1 = 48, C2 = 22, U = .9057, A = 1.18. 
Here, the interval [0,118] is fully utilized by a task set 
with smaller utilization. One can reduce the total uti- 
lization further by setting C1 = 41, TI = 77, C2 = 
36, T2 = 100, U = 3925, A = 1.18. The latter task 
set also fully utilizes [0,118] and all deadlines are met 
throughout the busy period. Indeed, the first job of 
r2 is completed at time 77 before its period of 100. 
If one were instead to let A = 1.14, corresponding 
to the response time of the first job of r2 in the task 
set of Example 3, one could modify this task set to 

3799, A = 1.14 and achieve a full utilization task set 
with far lower utilization. 

Liu and Layland found the worst case utilization 
bounds for A = 1 and our analysis follows the same 
basic pattern as their derivation. The first step is to 
restrict the period ratios, T,/Tl. Liu and Layland 
proved that attention can be restricted to Tn/T1 < 2 
for A = 1. This result remains true when A > 1. 
If Tn/T1 2 2, then one can replace q by r: with 
Ci = 2C1, Ti = 2T1 leaving utilization unchanged. 
The modified task set fully utilizes the processor during 
[O,AT,] and some other processing might have to be 
reduced to guarantee all deadlines are still met. Con- 
sequently, attention can be restricted to Tn/T1 < 2. 
When A > 1, we want to impose tighter restrictions 
on Tn/T1. Suppose AT, = qT1 + r  with q = [ATn/TIJ 
and 0 5 r < TI. If -&TI 5 T,, and we re- 
place (C1,Tl) by (* C1, + TI), the modified task 
set utilization is unchangeif- The modified task set 
also fully utilizes [O, ATn], and some deadline might 

26, TI = 70, Cz = 62, Tz = 100, U = .9914, A = 1.18. 

C1 = 38.5, Ti = 75.5, C2 37, T2 = 100, U = 
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now be missed because the total processing for task 
1 requested in [O,ATn] changes from ( q  + 1)Cl to 

It is not obvious that the modified task set fully uti- 
lizes [O,ATn]. We illustrate why this is true with an 
example. Suppose Tn = 1, $ < TI < $ and A = 2, 
let S = Cr=zCj. The modified task set consists of 
T: with Ci = gC1 and Ti = !TI. The original task 
set filled [0, CI] , [TI , TI + Cl],  TI, 2T1 + Cl] and 
[3T1, 3T1 + C,] with task 1 processing. Moreover, 
[0,2S + 3C1] is busy with processing from the first 
three jobs of 71 and the first two of r2,. . . , rn. Conse- 
quently, [2S + 3c1, 3T1] is busy from the third jobs of 
7 2 , .  . . ,rn. Therefore, [S + qC1, :TI] would be busy 
with the second jobs of rz, . . . ,rn. 

The total demand for processing is at least as great 
for the modified task set as for the original task set 
once ST1 is reached. The only interval in question is 

This argument can be extended to A > 2. 
If 5 TI 5 T,, then the task set can be modified. 

Consequently we can restrict attention to task sets sat- 
isfying Tn/T1 < q / ( q  - 1). This reduces to the condi- 
tion Tn/T1 < 9 for A an integer and Tn/T1 < & 
for non-integer A > 1. 

We will find the following lemma to be useful in cal- 
culating the worst case utilization. It first appeared as 
Lemma 4.3 in [12]. 
Lemma 2 

Let 3: > 0 ,  y > 1 and Ri > 0 ,  1 5 i 5 n. De- 
fine R = (&, . . . ,  Rn) and let H ( R )  = CrzlRi + 
3:/ n:==, Ri-(n+l)  and S, = {R I R, 2 1,  nZ1 Ri 5 
y}. Then defining 3:nl(n+1) = 2, 

q& c1 > ( q  + 1)Cl. 

[S + zC1, 3 ;TI], and this has been shown to be busy. 

and 

lim minH(R) = { log,3: i f x s y  
n+oo R E S ,  log, y + (3: - Y)/Y if 3: > Y .  

3.1 

Let us first consider the case in which A is an in- 
teger, TI , .  . . ,rn fully utilizes [0, ATn] and Tn/T1 < 
(A + l ) / A .  Following Liu and Layland Theorem 4 
exactly, the worst case task set is given by 

The Case of Integer Values of A 

with corresponding utilization 

n-1 

i=l  
R , + ( A + 1 ) /  n R i - n - ( A - l )  

where R, = q + l / z .  
One can minimize this using Lemma 2 with 3: = 

A + 1 and y = (A + l ) /A.  If A = 1, then 3: = y and 
dn-')ln < y. If A 2 2, then y < x ( ~ - ' ) / " ,  so we have 
the worst case bound given by 

n ((A + i)1/" - 1) = 72 (211" - 1) , A = 1, 

A ( ( n - 1 )  (( - ' ) "("-') - 1)) , A = 2,3, . . . (3.1) 

Letting n -+ ca we derive the asymptotic worst case 
bound 

I t  is easily checked that all deadlines are met through- 
out the level-n busy period for this task set. Note that 
T k  = (y)(k-l)'(n-l) , consequently cn = 0 and all 
the deadlines of rn are met. 

This bound is graphed on Figure 1. One can see that 
if A = 2, the case in which tasks are given an extra 
period within which to complete processing, the worst 
case bound increases from .693 to 311. Increasing A 
to 3 raises the worst case bound to .863. Simulation 
studies on the breakdown utilization for periodic task 
sets on a uniprocessor allowing deadline postponement 
show the average case schedulability to be at least 95%, 
often 100% with A = 2. Consequently, it should rarely 
be necessary to require A > 2. 

3.2 The Case of Noninteger Values of A 
The analysis for noninteger values of A is surprisingly 
messy. One would hope that the formula given in (3.2) 
would apply for non-integer A as well as for integer 
values of A. Unfortunately, this is not correct. Some 
fragmentary results are known. In particular, if 0 5 
A 5 1, then Lehoczky and Sha [2] and Peng and Shin 
[6] derived 

(3.3) 
i f O < A < g  

um(A) = { tg,(2A) + 1 - A if 4 5 A < 1 

We present the analysis for arbitrary A only in the 
case of a large number of tasks. Let LAJ = k, as- 
sume Tn/T1 < (k + l) /k,  set Tn = 1 and define C( t )  
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= total processing requirements of all tasks with pe- 
riods 5 t .  C(t) is a nondecreasing right-continuous 
function. For finite values of n, C(t) is a step function 
having jumps at the task periods and jump heights 
equal to the processing requirements of the various 
tasks. Letting n 4 CO allows us to consider continuous 
functions C(t) having a processing requirement den- 
sity function C’(t), discrete processing requirements 
and mixtures of these two cases. The cumulative pro- 
cessing requirement function C( t )  is similar to a cumu- 
lative distribution function used to describe a proba- 
bility distribution, except C(1) need not equal 1. Let 

D = C(1)- t-i  . This is positive if and only if there 
is a discrete processing requirement for the task with 
longest period 1. From earlier results we know that the 
worst case task set has periods lying between & and 
1, and C(&) = 0. Let C(1) = S, the total processing 
requirement of the task set. The task set utilization is 
given by 

lim C ( t )  

(3.4) 

where the integral is an ordinary Stieltjes integral. 
Condition (2.1) and (2.2) can be rewritten using the 

function C(t). Since we are considering only the first 
deadline of the lowest priority task, the relevant con- 
dition (2.1) becomes 

J.1- 1 

[‘I dC(s)  + D 2 t , 0 5 t 5 A (3.5) 
/ k / k + l  

with equality for some 0 5 t 5 A.  We wish to find a cu- 
mulative processing function C ( t )  which minimizes U 
given by (3.4) among all C( t )  satisfying the constraint 
(3.5). If all deadlines are met for this cumulative pro- 
cessing function, its corresponding utilization will pro- 
vide the required worst case bound. Since the goal is 
to minimize (3.4), one wants to choose C(t )  as small as 
possible. The solution to this minimization problem is 
very messy, so we first consider a special case, namely 
1 < A 5 3/2. Let C(1) 2 1/2  be given. It follows that 
(3.5) is satisfied for 0 5 t 5 C(1). This observation 
allows us to set C(t) = 0 ,  0 5 t 5 C(1). This makes 
(3.5) an equality for t = C(1). For t > C ( l ) ,  C(t)  
must grow at least at rate 1 to satisfy (3.5). If, how- 
ever, one sets C’(t) = 2,  then the left-hand side of 
(3.5) will increase at rate 2. Furthermore, if C’(t) = 2 
for C(1) 5 t 5 e, this will create a fully utilized 
processor during [2C(1), A]. Setting C’(t) = 0 for 
A < t 5 A - C(1) bring (3.5) back to an equality 
condition when t = A - C( 1). 

To satisfy (3.5) during [A-C(1) , l), we set C’(t) = 
1. The cumulative processing function constructed 

2 -  

thus far satisfies 

2 i f C ( l ) < t < + ,  
1 
0 otherwise 

(3.6) if A - C(1) 5 t < 1,  

Consequently 

= 1 -C(1) (3.7) 

In addition 
r l -  

therefore 
D = 2C(1) - 1. (3.9) 

We summarize the worst case cumulative processing 
requirement function 

0 
2(t - ~ ( 1 ) )  
A - 2C(1) 
t - C(1) 

if t 5 C( 1) 
if ~ ( 1 )  5 t 5 4) 
if 4) 5 t 5 A - C(1) 
if A - C(1) 5 t < 1 
i f A = l .  I (3.10) 

This task set distribution corresponds to uniform task 
periods over [C( 1) , 41 with processing requirement of 
rate 2, uniform periods over [A - C(l) ,  1) with p r e  
cessing requirement of rate 1 and a lowest priority task 
with period 1 and processing requirement 2C(1) - 1. 
The task set utilization is given by 

C(t)  = 

(3.11) 
dt. 2C(1)- 1 

1 

1 
= log, (&) + log, ( A  - C(1)) + 2c(1) - ’’ 

(3.12) 
Finally one can optimize over C(1) ,  ?j 5 C(1) 5 1, to 
find the minimum value in (3.12). The optimum choice 
of C( 1) is the smallest root of the quadratic equation 

(3.13) 
3 
2 

s2 - (A + -)s+ A = 0. 

It remains to check that all deadlines are met. All 
processing on the first jobs of all of the tasks is done 
by t = C(1), all processing on the second jobs is com- 
pleted by 2C(1) and the busy period ends at t = A. 
Consequently, all deadlines are easily met, although 
any increase in C( t )  will cause a deadline to be missed. 

The case of general A is similar in spirit but even 
more complicated. We sketch the broad outlines of the 
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derivation. We again introduce a task set processing 
requirement function specified by C(t) as before. Here, 
our earlier discussion shows that C(t )  = 0 if t 5 & 
where A E [k, k + 13. We let S = C(1) and note that S 
must satisfy & 5 S 5 &. The minimal processing 
requirement is determined by applying the full utiliza- 
tion conditions (2.1) and (2.2) first t o t  E [ (k+l )S ,  A] 
and then to t E [ k S ,  (IC + 1)S]. Finally, C(t)  is com- 
pletely specified by putting sufficient weight on tasks 
with period equal to 1 achieve a total processing re- 
quirement equal to S.  

To enforce full utilization over [(k + l ) S ,  A], we re- 
quire 

i 

( k + l ) S + L m  dC(u) 2 t for (k + 1)s 5 t 5 A 

(3.14) 

To minimize C(t), we set 

A 
k + l  

C ’ ( t ) = k + l  S 5 t 5 -  (3.16) 

Using (3.16) in a full utilization equation for t E 
[ k S ,  (k + 1)S] we find 

k S + ( k + l ) ( & - S )  

+ f‘k dC(t) 2 t , k S  5 t 5 (k + 1 ) s  (3.17) 
A k+1 

This condition breaks into two distinct candidates for 
the minimum utilization task set: 
Case 1: S 5 A - k 

The minimum utilization task set is: 

and (k + 2 ) s  - A units of processing at period 1. The 
corresponding utilization is given by 

(X: + l)loge(A/S(k + 1)) + (k + 2 ) s  - A. (3.19) 

Equation (3.19) is minimized by setting S = f$ which 
is feasible if A > k + 1 - l/(k + 2). 

Case2: A - k l S  

The minimum utilization task set is given by 

(3.20) 
k + l  t E [ S , & l  

c‘ (t) = IC t E p p J 1  

and (k + 1)s - k units of processing at period 1. The 
corresponding utilization is given by 

A k 
(k+l) loge (s(k+is) +k loge (m) +(k+l)s-k. 

(3.21) 
Equation (3.21) is minimized by setting S equal to 

the smallest root of 

S2 - (A + (2k + 1)/(k + 1 ) ) s  + A = 0. (3.22) 

Again this task set must be checked to ensure that all 
deadlines are satisfied. The deadlines of the first jobs 
are all met by t = S.  The processor begins to have idle 
capacity at t -A,  but any increase in the C(t) function 
will cause the deadline at A to  be missed. 

We summarize the worst case utilization bounds as- 
sociated with task sets T I ,  .. . , r n  with Dk = ATk 
for n -+ 03. Let A E [k,k + 11, k = 0,1,2 ,... . If 
k 5 A 5 k + 1 - l/(k + 2), then 

+(k + 1)s + k  (3.23) 

If k + 1 - 1/(k + 2) 5 A 5 k + 1, then 

U 2  = (k + 1) loge((k + 2)A/(k + 1)’) + (k + 1) - A 
(3.24) 

where S is the smallest root of 

S2 - S[A + (2k + l)/(k + l)] + A = 0. 

For example 

A if A E [0,3] 
10ge(2A) + 1 - A if A E [Q, 11 

if A E [l, {] 
2log(jA) + 2 - A  if A E [5,2] 

(3.25) { H(A)  
U& = 

where H(A)  = 210ge(A/2S) - log,(A - S )  + 2 s  - 1 
and S is the smallest root of S2 - (A + 4)s + A = 0 .  

A graph of the worst case utilization bound is given 
in Figure 2 for A E [0,5]. A blown up version is given 
for A E [4,2] in Figure 3. I t  is interesting to observe 
the irregular behavior between the integer arguments. 
The “S-Shape” behavior suggest that the most signif- 
icant increases in worst case utilization come in the 
middle of an interval [k, k. + 11 rather at the integer 
values themselves where the curve is flat. 
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4 Summary 
In this paper, we have developed an exact schedulabil- 
ity criterion for the fixed priority scheduling of peri- 
odic tasks with arbitrary deadlines. In the case of rate 
monotonic scheduling, we developed worst case bounds 
generalizing the original bounds of Liu and Layland in 
that the tasks are allowed to have deadlines D, = AT, 
for any A > 0. The bounds show that when one ad- 
ditional period (A = 2) is given to tasks to complete 
their computation requirement, the worst case schedu- 
lable utilization increases from .693 to .811. Simulation 
studies show that the average schedulable utilization 
increases from .88 to over .95 and often reaches 1.00. 

These worst case bounds are useful in developing 
a fixed priority scheduling theory for distributed real- 
time systems. If a distributed task has a sequence of 
resource requirements and an end-to-end deadline, one 
can decompose the task into a set of tasks using a single 
resource and having an artificial intermediate deadline. 
The standard rate monotonic theory can be applied to 
determine the schedulability of each resource. More- 
over, using the results in this paper, one can adjust 
the intermediate deadlines and still check schedulabil- 
ity. This adjustment process can lead to better overall 
schedulability. While this is quite simple and certainly 
not as powerful as a true understanding of the dis- 
tributed scheduling problem, it will serve as a good 
first step to the construction of predictable distributed 
systems. 
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