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SYMBOLS

direct operating cost (DOC), dollars/trip
constant cost component of DOC, dollars

fuel-independent component of DOC, dollars

drag coefficient

zero-1ift drag coefficient

unit cost of fuel, cents/kg

1ift coefficient

cost per unit flight time, dollars/hr
drag, N

total energy, m

energy rate, m/sec

fuel consumed, kg

normalized fuel flow function, kg/hr
normalized thrust force function, N
acceleration of gravity, m/sec2
altitude, km

integrand

integral performance index
induced drag factor

1ift curve intercept

slope of the 1lift curve

1lift, N

Mach number

integrand performance index

iii
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D atmospheric pressure, N/m?

po standard sea level atmospheric pressure, N/m2
a dynamic pressure, N/m?

R. range, km

Rdn total descent range, km

Rup «total climb range, km

Rndn fraction of descent range

Rnup fraction of climb range

S wing reference area, m?

T total time of travel, min; temperature, °K
TF thrust force, N

t time, min

v airspeed, m/sec

W mass, kg

W fuel flow, tonnes/hr

o angle of attack, deg

Y path angle, deg; air specific heat ratio

AE energy increment, m

At time increment, min

a(M,Cr,) Mach number and 1ift coefficient correction to drag coefficient
6 incremental variation or pressure factor

] temperature factor

A cruise efficiency, kg/km

A minimum value of the cruise efficiency, kg/km
il actual power setting, kilo rpm

P air density, kg/m3

iv



o fuel tradeoff coefficient

T atmospheric temperature, °K
To standard sea level atmospheric temperature, °K
Subscripts

e cruise, corrected, or climb
dn descent

f final

i initial

in inlet

max maximum

min minimum

opt optimum

up climb

Superscripts

(") time derivative

(7) limiting value from below



FIXED-RANGE OPTIMUM TRAJECTORIES FOR SHORT-HAUL AIRCRAFT
Heinz Erzberger, John D. McLean, and John F. Barman¥

Ames Research Center

SUMMARY

An algorithm, based on the energy-state method, is derived for caleculat-
ing optimum trajectories with a range constraint. The basis of the algorithm
is the assumption that optimum trajectories consist of, at most, three seg-
ments: an increasing energy segment (climb); a constant energy segment
(cruise); and a decreasing energy segment (descent). This assumption allows
energy to be used as the independent variable in the increasing and decreasing
energy segments, thereby eliminating the integration of a separate adjoint
differential equation and simplifying the calculus of variations problem to
one requiring only pointwise extremization of algebraic functions. The algo-
rithm is used to compute minimum fuel, minimum time, and minimum direct-
operating-cost trajectories, with range as a parameter, for an in-service CTOL
aircraft and for an advanced STOL aircraft. For the CTOL aircraft and the
minimum-fuel performance function, the optimum controls, consisting of air-
speed and engine power setting, are continuous functions of the energy in both
climb and descent as well as near the maximum or cruise energy. This is also
true for the STOL aircraft except in the descent where at one energy level a
nearly constant energy dive segment occurs, ylelding a discontinuity in the
alrspeed at that energy. The reason for this segment appears to be the rela-
tively high fuel flow at idle power of the engines used by this STOL aircraft.>
Use of a simplified trajectory which eliminates the dive increases the fuel
consumption of the total descent trajectory by about 10 percent and the time
to fly the descent by about 19 percent compared to the optimum.

INTRODUCTION

Sharply escalating fuel prices and the threat of future fuel shortages
have generated strong interest in finding methods of reducing aviation fuel
consumption that do not seriously affect the level of airline service. One
such method, flight-path optimization, has the potential for saving signifi-
cant guantities of fuel. Although there is a long history of flight-path
optimization studies for all types of aircraft, modern approaches based on the
variational calculus have been applied more frequently to supersonic military
rather than subsonic civil aircraft missions.

Subsonic aircraft missions can be roughly divided into long haul and
short haul. 1In long-haul missions, which are characterized by long periods of
cruise flight, the central problem in flight planning is optimizing the ground
track and the altitude profile during cruise so as to use wind, temperature,

¥NRC Research Associate at Ames Research Center.



and other atmospheric conditions to the greatest advantage. For flying the
climbout and descent segments, long-haul operators use procedures supplied by
the aircraft manufacturers. Such procedures are generally not optimum, in
that they do not minimize a performance index such as time or fuel used and,
because they affect only a small portion of the total flight path, they have a
limited impact on long-haul flight performance,

These priorities are essentially reversed in short-haul missions (800 km
or less). For these missions, the cruise segment is relatively short and
therefore the climbout and descent segments play the dominant role in flight-
path optimization. Moreover, the short range of these missions can yield a
high degree of interdependence of the climbout, descent, and cruise optimiza-
tion problems, suggesting that range should enter explicitly as a boundary

value.

This report describes a conceptionally and computationally simple algo-
rithm for calculating optimum flight paths with a range constraint. The algo-
rithm is applied to flight profile optimization of two types of short-haul
aircraft: a currently in-service CTOL jet and a future-design jet STOL air-
craft (an augmentor wing with a supercritical airfoil). Minimum fuel and
time-flight paths are computed for each aircraft. Furthermore, assuming that
the relative costs of time and fuel are known, a procedure is given for
selecting minimum direct-operating-cost (DOC) flight paths.

DEFINITION OF PERFORMANCE INDEX

For a fixed aircraft configuration and a specified origin and destina-
tion, the primary factor that influences aircraft performance is operating
procedure. For an airline, the performance goal is geherally minimization of
the direct operating cost (DOC) which consists of fuel cost, crew cost, main-
tenance cost, depreciation, and insurance. It is therefore of interest to
determine a relationship specifying the dependence of DOC on flying time and
fuel consumed, Relating DOC to fuel consumed is straightforward, but relating
the other components of DOC to flying time is more difficult. A reasonable
approach for the purpose of developing optimum flight procedures is to param-
eterize the cost of the DOC components, other than fuel, by the relation

Cp = Cq + CgT (1)

where C, 1is a cost component which is independent of time over the time
scale of the mission, Cp is the cost per unit flight time, and T 1is the
total flight time (ref. 1). Thus, the factor Cp should reflect the monetary
value of flight time, exclusive of fuel cost. The total cost of the flight
can therefore be written as

C = CFF + CT + Cg (2)

T

or in integral form as
T

C = XO (CWy + Cplat + C_ (3)



where Cp is the unit cost of fuel and Wp is the fuel flow rate. Since min-
imization of equation (3) depends only on the ratio Cp/Cp and not on Cy» an
equivalent performance index, which is more convenient for performance
optimization, is

J = jg [ wp + (1 - o)lat ; 0<o<1 (4)
where
Cp/Crp
T >

The two extreme values of o give the two important special cases of minimum
time (0 = 0) and minimum fuel (o = 1) performance indices.

DERIVATION OF OPTIMIZATION ALGORITHM

The approach to flight-path optimization taken here follows the trend in
the recent literature (refs. 2 and 3) of using the energy state formulation as
the basis for computing the optimum flight paths. The rate of change of
energy along the flight path is given by

dE

3t = [Tp(T,h,V) - D(L,h,V)] %- (6)

where

and Tp 1s the thrust, D the drag, L the 1lift, W the weight of the air-
craft, h the altitude, V the airspeed, and g the acceleration of gravity.
The controls which determine the flight path are taken as the power setting,
I, and airspeed V. 1In accordance with the energy-state method, it will be
assumed that 1ift is equal to weight in computing the drag. The flight path
is also constrained to cover a specified range, R, which makes it necessary to
introduce an additional state equation:

Rev (7)

In equation (7) it is assumed that, except at isolated time instants, the
flight-path angle, vy, is small - allowing the small-angle approximation,

cos vy £ 1, to be made - and that the wind speed relative to the airspeed is
negligible. The latter assumption is not necessary for the development that
follows, but the effect of winds on the optimum flight path is not considered
in this report. Finally, the energy and range are specified at the beginning
and end of the flight path:
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E; and R = R; at

(8)

E T

Minimization of equation (4) subject to the constraints of equations (6)
and (7) and the boundary conditions of equation (8) is a frequently studied
problem in optimum control. However, solutions published in the literature
apply mostly to military supersonic aircraft missions. The most recent
results in the field have generalized the energy-state method to include
flight with turns, again for military aircraft applications. References 2, 3,
and ‘& provide a brief list of recent papers on this subject.

Application of the maximum principle results in a fourth-order, two-point
boundary value problem consisting of the two state equations (6) and (7), the
associated adjoint equations, and the boundary conditions (8). Numerical solu~
tion of two-point boundary value problems of this type has proven to be diffi-
cult. Zagalski (ref. U4) described a procedure for simplifying the two-point
boundary value problem in the energy-state formulation. In this report, an
assumption about the structure of the optimum flight paths is similarly used
to eliminate the need for the adjoint equation. The assumption is as follows:

Optimum flight paths for the problem defined here consist of three seg-
ments at most; in the first, energy increases monotonically, in the second it
is constant along with the velocity, and in the third it decreases monotoni-
cally with time. The resulting flight paths may not be optimum for the prob-
lem as originally stated but should be very nearly so for most problems of
interest.

To show how the assumption simplifies the computation of optimum flight
paths, equation (4) is written as the sum of costs of the three segments:

T
up
J = (P)e.

& T ) + (P)e _dt (9)

dn” “up E<0
dn

Sodt + (P)E=O(T

where P = oWp + (1-0), Tup ig the time at the end of the increasing eunergy

segment, and Tg, 1is the time at the start of the decreasing energy segment.
The rate of change of energy, £, is given by equation (6). Since airspeed is
constant in cruise, the middle term corresponding to the cruise cost can be
expressed as

( ) = AR (10)

(P) Tdn B Tup c

E=0

In equation (10), R, is the distance spent in cruise and X, defined as the
cruise efficiency, is evaluated at the cruise energy using the relationship

L




x = (P/Vo)g g (11)

where V, is the cruise airspeed. The cruise distance R, 1is given by

R, =R - Rup - Ryp (12)
where
Tup T
Rup = vat , Ry = vat (13)
(o] ) Tdn

and R, must satisfy the inequality R, > O. Since by the assumption of the
preceding paragraph, energy changes monotonically in the first and last terms-
of equation (9), energy can replace time as the independent varisble in equa-
tions (9) and (13). After applying the transformation dt = dE/E +to these
equations and substituting the appropriate integration limits, they become

-E E
max ) max P
J = = dE + AR + —— ax (14)
JE, E/ise E El/#<0
i f
E
”Emax v max v
R = -} a, i = —)  aE (15)
R E/is0 E Bl %<0
_;i Y f <

Here, Epgy refers to the maximum energy (cruise takes place at Eyyy). Note
from equation (1L4) that since R, > 0, the cruise efficiency A should be
chosen as small as possible in the process of minimizing J described below.
Equations (12), (14), and (15) can be combined into a single equation:

E E
max max
J = BAY) 4 M) 4p 4 R (16)
g, Elisg E Blico
1 f
If we assume for the moment that 4 1s known, then equation (16) can
be minimized by performing three independent algebraic minimizations. The
first optimizes cruise conditions and consists of minimizing X at En as

noted above. The remaining two problems are the minimization of the two inte-~
gral cost terms in equation (16). They are minimized by choosing power set-
tings and airspeeds as functions of E so that each of the two integrands is
minimized at all values of the independent variable E throughout its inte-
gration interval. The minimization of each integrand must obey different con-
straints on the controls, namely, 1T and V must be such that £ > 0 for the
increasing energy segment and £ < O for the decreasing one. In addition,
there are constraints on the power setting and airspeed which depend on the



energy. These minimizations, defined below, ensure that J is minimum for
each choice of E :

max
) = min (17)
opt ' max n,v ( -0
E
max
P - Xontv
IuD(E’Emax) - ?13 ——.‘};#'—_ (18)
i E>0
F fixed
P - Aoptv
an®Fnd = T\ )
? E<O
B fixed

The last step in minimizing J involves finding the optimum E, . for
the specified range. A necessary condition for J to be minimum at some
Epax 1s for the derivative of J with respect to Epgy to vanish at FEpgx.
This is done as follows. We compute the derivative of J for an increasing
sequence of Ep.., starting with Ej ., = maX{Ei,Ef}. As Ep.x 1s increased
for fixed R, R, decreases and two cases can occur:

(1) 8J = 0 for some Ep,, such that O < R, < Ror 6J > 0 as R, »~ O.

(2) 8 < 0 as R, ~ O.

We shall discuss case (1) in more detail than case (2) since case (1) applies
to both aircraft models studied in the following sections of this report.

Case (1)

For this case, the derivative of J with respect to can be com—
puted from equation (14) using Leibnitz's rule and equations ?12 (15),

(17) through (19):

dJ dkopt
= + +
dE Iup(Emax’Emax) Idn(Emax’Emax) Rc dE (20)
max E=E
max
The quantities I and I, are limiting values of I__ and I. as E » E
up dn up dn max

from below. In general, the limits must be evaluated for this case since both
the numerators and denominators of the bracketed quantities in equations (18)

and (19) can approach zero simultaneously as E - B oxt

For the two types of aircraft studied in this report, the functions Iap,
Ian, and Aopt have special characteristics that have been observed in

6



computations and have also been verified analytically using polynomial repre-
sentations for the aerodynamic and engine models given in the next section.
The derivation of some of these characteristics is given in the appendix.
First, the function A__,(E ) has the general shape shown in figure 1.

opt Tmax
Second, the functions I;p and Ian obey the relationship
Iup(Emax ax Yy + 1T (EmaX,EmaX) =0 (21a)

Thus the values of the limit func-
tions are equal in magnitude and

opposite in sign. Moreover, at
Emax the optimum controls satisfy
the relationships:
1
opt = Arg. min %
Vopt .V g:gmax
P - tV
! = Arg. min  1lim _OP
1
' — . P - __V
Fopte Emax = Arg. min 1im ——CR%
n,v E~ E .
Figure 1.- Typical relationship ’ Fnax I<0
between cruise efficiency and
cruise energy; subsonic aircraft.
(21v)

This relationship is illustrated by figure 2 in which is plotted the locus of
optimum controls obtained from equations (18) and (19) as a function of BE.

A
CONTOURS OF 22V
{E)g>o
"MAX T 7/////// /2
POWER 7 E>0 E(n,V.E,_,)=0
SETTING Z E<o %
OR 7
THRUST é Z
7.
g (Emax')\) ------- g ................ P(m,V, Emax) -AV=0
% z PERMlSSIBLE
and NTROL
//////////// ,//////////////// RECION
V. {E___2)
V c max’ V
MIN AIRSPEED MAX

LOCI OF OPTIMUM CONTROLS COMVERGE AT
E FOR AIRCRAFT STUDIED

max

Figure 2.~ Typical locus of optimum controls as a function of E.



It is seen that the two branches of the locus converge to the. controls
obtained from equation (17) for cruise at Ep,y. Furthermore, it can be shown
by analysis of the polynomial representation that the bracketed quantities in
equations (18) and (19) have a local minimum at (N,,V,) with respect to admis-
sible control variations. However, the continuity of the optimum controls at
Epax depends on the aerodynamic characteristics and especially on the rela-
tionship between thrust and fuel flow as derived in the appendix. In particu-
lar, it is not generally true for the linear dependence often assumed in
earlier work (refs., 3 and L).

Substituting equation (21) into (20) yields the simplified form

di
4 -y OBt = 0 (22)
c dE
max E=E

It follows immediately from equation (22) that a nonzero cruise distance can
be optimum only if Ep,, yields the minimum of Ay (E), which is designated
as A¥ in figure 1. This result is consistent with the results of other
workers, for example, Schultz and Zagalsky (ref. 3). If the range is less
than some minimum value, the maximum energy of the flight path will fall below
the optimum cruise energy. In that case, equation (22) requires zero cruise
distance (R, = 0). This fact simplifies computing the relationship between R
and Ep,y. For each choice of E ., one first computes Ao t(Emax) and then
Ryp and Rgn using relations (15).  In performing the range integrations, the
optimum controls obtained from equations (18) and (19) must be used. The
range-energy relationship is then

+
max Rup Rdn ® Emax < Eoptc

o
=
[}

(23)

Brax = Eoptc

=]
=
Il
[2o]
+
[2v]
+
o]

v

By integrating equations (18) and (19) for each choice of Ep.., the relation-
ship between optimum cost and Epgy can also be obtained:

( ? ) ( 'y
Opt max up max dn max max OptC ( max)

i £ (2k)
Case (2)

In this case the quantity AL,y loses its previous interpretation as a
measure of cruise efficiency and instead becomes an adjoint variable ), whose
value must be chosen iteratively to achieve a specified range R. The condi-
tion which determines the maximum energy for a trial value of A can be
obtained by application of the maximum principle to equations (1L4) and (15)
with Ry set to zero (ref. 5). The condition is found to be

8



P-av P2V

min - + min =0
I,V . 5 .
, E Jio 1,v \JE| b<o
=Emax E=Emax

For this case the optimum controls will generally not be continuous at the
maximum energy point of the trajectory.

An essential requirement for implementing the algorithm on a computer is
a routine for minimizing a function of two variables., Results presented in
the next sections were obtained using an algorithm known, in the literature of
nonlinear programming, as the method of local variations (ref. 6). This opti-
mization algorithm does not require derivative calculations. The minimization
over power setting can be eliminated a priori only for the minimum time per-
formance index, o = 0, since in that case the power setting is a bang-bang
function of energy. Special provisions must also be made for computing Iy
and Igp as E approaches B,y where the optimum controls yields values of £
near zero. A satisfactory approach is to decrease the integration step size
as E = Ep,y and to stop when i) < Epin. A value of 0.33 m/sec for Epin
was used in the results described in the following section.

AFRODYNAMIC AND PROPULSION MODELS

The algorithm was used to study optimum trajectories for two types of
aircraft: +the CTOL aircraft, a 180-passenger tri-jet currently in short-haul
service; and the STOL aircraft, a future-design, four-engine, 150-passenger,
TO0-m field length jet aircraft using augmentor flaps to achieve STOL perfor-
mance, and a swept, supercritical airfoil to achieve a Mach 0.8 cruise speed.
The design of the STOL was carried out in a recent NASA study (ref. T).

Aerodynamic forces for both types of aircraft are described by the
following equations:

L = C;8q (1ift force) (25)
D = CDSq (drag force) (26)
.Cp = ko + Ko (lift coefficient) (27)

\
where Cp 1is the drag coefficient, S +the wing reference area, and q the

dynamic pressure; g = (1/2)p(h)V2. The air density p, as a function of alti-
tude h, was obtained from the 1962 Standard Atmosphere. The drag coeffi-
cients for the two aircraft are parameterized as follows:



‘p

Cp, (M) + K()(Cp, - 0.1)2 (CTOL aircraft) (28)

Cp = 0.019 + 0.061C; + A(M,C)  (STOL aircraft) (29)

]

D
where M 1is Mach number.
The constants in equation (27) and the Mach number corrections in equa~

tions (28) and (29) together with the masses and wing reference areas for the
two aircraft are given in tables 1 and 2.

TABLE 1.- AERODYNAMIC DATA AND WEIGHT FOR CTOL ATRCRAFT

M [0 lo.76 Jo0.76 [0.80 0.8 ’YEBH"”F?fgg_“beggﬁ_“?f87_7‘%ﬂ§§””“718§“1

o (M) | 0.0173 0.6173 6;017h 0.0177 | 0.0179 | 0.0182| 0.0186} 0,0189| 0.0195| 0.0203| 0.0218
[e]
K (M) 0.086% | 0.0864 | 0.0932 [0.103 |0.113 | 0.128 | 0.141 | 0,169 | 0.184 [ 0.211 | 0.2M1

Note: k, = 0, k; = 0.1, S = 145 m?, and W = 68,200 kg.

TABLE 2.- AERODYNAMIC DATA AND MASS FOR STOL ATIRCRAFT

T

....... o m s e o — ——

C1, 0]0.62 0.6L 0.66 0.68 0.70 0.72
Mach number and 1lift coefficient correction to drag co

0 0} 0.0001} 0.0002 | 0.0005| 0.00075} 0.0010} 0.0013

.20 .0001| .0002| .0005| .00075| .001O| 0.0013

.25 .0001 | .0002{ .000S .0009} 0,0012

.30 .0001| ,0003 .0007} 0,0010

.35 .0001| .0003 .0007 | 0,0011

) ,0001| .0003 .0007| 0.0011
Note: kg = -0.1, k; = 0,075, S = 255 m?, and W = 90,909 kg.

The aircraft propulsion systems are modeled using corrected engine
parameters (ref. 8) as follows:

TF .

—5 = (1//6,1) (30)
wF
— = r_(n/V/8,M) (31)
Y

where Tp and Wy are the thrust and fuel flow rate, respectively. The quan-
tities ¢ and 8 are pressure and temperature factors given by
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/(y-1)
§ = Péh) (1 + Yél M2)Y Y (32)
(o]

o = Tih) (x+ Yo u?) (33)
@]

where t(h)/t, and p(h)/p, are atmospheric temperature and atmospheric pres-
sure ratios obtained from the 1962 Standard Atmosphere and vy = 1.4 is the air
specific heat ratio. The quantity 1 1is the power setting, which for the CTOL
alrcraft 1s actual rotor revolution per minute and for the STOL aircraft is
defined as

I =T, /8 (34)

where T, 1is the actual turbine inlet temperature. The corrected thrust and
fuel flow curves per engine for the CTOL and STOL aircraft are given in fig-
ures 3 and 4, respectively. (In figure 4, and in subsequent discussions of
STOL trajectories, I 1is referred to as T,, the corrected turbine inlet
temperature. )

Fixed-Range Optimum Flight Paths: CTOL Aircraft

The first step in the implementation of the algorithm is the computation
of cruise efficiency as a function of maximum energy (eq. (17)) for different
values of o. The results of this computation for a fixed mass of 68,200 kg
are plotted in figure 5 in cruise-fuel-efficiency (kg/km) and cruise-airspeed
(m/sec) coordinates. The solid heavy line gives the envelope of optimum
cruise conditions as o ranges from zero to 1. Points A and B define the
fuel efficiencies and airspeeds for minimum fuel and minimum time, respec-
tively. Minimum-fuel cruise occurs at an altitude of 10 km, which is about
1 km below the ceiling, whereas minimum-time cruise (maximum airspeed) occurs
at an altitude of 5.5 km. Figure 5 also shows the loci of fuel efficiency and
airspeed for o = 0,5 as the maximum energy is allowed to vary over its pos-
sible range. It was shown earlier that no cruise can tske place in the opti-
mum trajectories except at the absolute optimum cruise represented by points
on the solid line. Point C on the o = 0.5 cruise locus achieves this optimum
value denoted by A¥, Any other point on the o = 0.5 cruise locus corresponds
to a Aopt value greater than )¥ and therefore corresponds to a range less
than the smallest range containing a nonzero cruise distance.

In computing the cruise efficiency, the actual rotor revolutions per
minute were restricted to maximum cruise power setting of the engine which is
modeled as:

I 7.48 + 0.18(h/3 - 1.5) , h < 7.62 km
max. = (35)
cruise 7.66 otherwise

11
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Figure 3.- CTOL aircraft: thrust and fuel flow rate corrections
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Figure 5.~ Cruise operating cost efficiency, CTOL aircraft.
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In computing the optimum climb and descent strategies, dynamic pressure
g is limited to 35 N/m?, the altitude is constrained to be larger than zero,
and the actual engine power setting is bounded from below by 3.95 krpm, For
0.2 < g £ 1, the power setting is limited to maximum climb which is modeled as

1 T.70 + 0,02Th , h > 7.62 km
max, = (36)
climb T.90 otherwise

For 0 £ ¢ £ 0.2, which corresponds to near minimum-time missions, the power
setting is limited to maximum cruise during the entire flight profile. This
limitation will exclude prolonged operation of the engine at maximum allowable
power setting which, from the point of view of cost of maintenance, might be
undesirable,

The climb and descent range, time, and fuel are calculated by integrating
equations (15) and the following two equations using the trapezoidal rule:

'Emax 1 Emax 7
Tup = = & , T, 0= —] JdE (37)
“E, &/ 850 E, Bl/ %0
'Emax WF Emax WF
Fup = — dE , Fg = — dE (38)
“E, & /850 E B k<0
i f

It was shown earlier that as E » Ej,,, the optimum power setting and
optimum velocity approach the cruise values corresponding to Aop (E?ax)5 that
is, E approaches zero causing the integrands of equations (15), %37 , and (38)
to diverge. To circumvent this problem, a decreasing step size for AE is
employed as E - Epgx. The criterion used for cbtaining an appropriate inte-
gration step size is given by

At = AE < 30 sec (39)

E

where At 1s the time increment. The integration process is stopped when
|| < 0.3 m/sec. The sensitivity of the minimum-fuel trajectories with
respect to At was studied. If At is restricted to be less than 15 sec,
rather than 30 sec, then the total time and fuel of the mission for a fixed
range are changed by only 0.3 percent,

Figure 6 shows optimum climb and descent trajectories in altitude-velocity
coordinates for minimum fuel (o = 1), minimum time (o = 0), and an intermediate
value of ¢ = 0.5. For each of the three values of o, optimum trajectories
corresponding to different total ranges are plotted, with the range indicated
on each trajectory. For each value of o, the trajectory with the largest
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Figure 6.- Speed-altitude profiles,
CTOL aircraft.
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Figure T.- Altitude-range profiles,
CTOL airecraft.

value of Epgx 1is the optimum
trajectory corresponding to the
smallest range with a nonzero
cruise segment. The only pos-—
sible cruise points are also
shown in figure 6, Note that
the velocity altitude profile
at Epgx 1s continuous for
each optimum trajectory.

Figure 7 plots altitude
versus range of several opti-
mum trajectories, each for a
different o wvalue., All tra-
jectories cover a range of 800
km., As o approaches zero,
the optimum cruise altitude
decreases while the range
covered in the climb trajectory
increases.

Normalized throttle vari-
ations versus normalized range
are plotted in figure 8 where
I is the actual rotor revolu-
tions in krpm; T 31e = 3.95

krpm is the idle throttle set-

tings I is maximum climb

throttle setting for 0.2 < ¢ =

1 and is the maximum cruise

throttle setting for

0 <o < 0.2; R is the dis-
nup

tance from the maximum energy
point divided by Rup and Rndn

is the equivalent fraction of
Rgn. The intersection of these
curves with the throttle set-
ting axis corresponds to the
cruise throttle setting. It

igs seen that as o > 0 the
fraction of the climb range
covered at maximum throttle
setting increases and the frac-
tion of descent range covered
at idle throttle setting
decreases. This is expected

as time is weighed more and
fuel less in the performance
index. The portion of the
optimum trajectories
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Figure 8.~ Percent throttle setting versus percent climb or
descent range covered with an 800-km fixed range; CTOL
aircraft.

corresponding to intermediate values of throttle setting lies between points
P; and P,. The same notation is used to indicate the corresponding points on
two of the trajectories in figure 6.

Simplification of Minimum Fuel Profiles

The minimum fuel trajectories consist of acceleration at level flight to
a speed which is nearly independent of the range, climb at maximum power set-
ting, a segment during which the power setting is reduced from maximum to
idle, and a descent at idle (see figs. 6 through 8), 1In addition, if the
range to be covered is larger than 457 km, a cruise segment at Vo = 226 m/sec
and He = 10 km will be present.

It has been found that irrespective of a given range, the minimum-fuel
flight profiles can be replaced by approximating trajectories that consist of
only two segments: (1) a climb at maximum climb power setting and 152.5 m/sec
equivalent airspeed (EAS) and (2) a descent portion at idle and 128 m/sec
(EAS). The change from the climb to the descent portion is made at an energy
level which gives the desired range. The total fuel consumption associated
with the approximating trajectories is about 1.5 percent higher than that of
the minimum-fuel flight profiles,

Minimum Time Profiles

Minimum time trajectories, which correspond to o = 0, are shown in fig-
ures 6, T, and 8 along with trajectories for the other o values. For this
case, figure 8 shows that power is either at idle or at maximum, The switch
from maximum to idle occurs in the decreasing energy regimen when the airspeed
has decreased to VEmax’ the airspeed at the maximum energy point. During a

part of the descent the airspeed follows the design dive flight placard of an
EAS of 238 m/sec,
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The structure of minimum time flight profiles can alsoc be derived from
the observation that the function to be minimized at each energy level is
[1 - (V/VEmax)]/,V(T—D)I where Vg = 1/X is the velocity associated with

the maximum energy of the particular trajectory. During descent, if V < vEmax

the minimizing value of the power setting is at idle; on the other hand, if
vV > VEmax’ the minimizing value is the maximum power setting.

Minimum DOC Profiles

By letting distance be a parameter, a spectrum of optimum trajectories
from minimum time to minimum fuel may be obtained as o is varied from zero
to 1. The time-fuel tradeoff generated by this spectrum is plotted in figure
9 for several distances. It is characteristic that these tradeoff curves
approach a horizontal slope near o¢ = 1 and a vertical slope near o = O,
Given the relative dollar costs of time and fuel, one can use figure 9 to cal-
culate the time-fuel tradeoff that minimizes the DOC for a given range. As an
example, assume $132/tonne fuel cost and $5/min time cost, typical costs for
operating this particular aircraft. This yields a cost ratio between fuel and
time of Cp/Cp = 5/132 = 0.038 tonne/min. The minimum DOC operating point is
then obtained where the line with slope -0,038 tonne/min is tangent to the

fuel-time tradeoff curve for the

7F desired range. For a range of

400 km, this is point A in figure 9
and is seen to require only about
3 percent more fuel than the minimum-
fuel performance point.

It is also possible to relate
the parameter ¢ to the cost ratio
using equation (5), but then care
must be exercised that the same units
for mass and time are used in equa-
tions (4) and (5) and that no scale
factors are later introduced in the
algorithms for minimizing equation (4).
oL  SLOPE=-0.038 fonne Such scale factors were used in the

min calculation and therefore the inter-
mediate values of ¢ shown in fig-
ure 9 as well as those in earlier
figures should not be correlated
with CT/CF using equation (5).

H
T

FUEL , tonne
W
T

RANGE = 200 km

S SV SR W S | | 1 ] ]
0 20 40 60 80
TIME, min

Figure 9.~ Time-fuel tradeoff for fixed
ranges; CTOL aircraft.
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Fixed-Range Optimum Flight Paths: STOL Alrcraft

Except for minor variations, the same methods were used for the STOL air-
craft as for the CTOL., Because the STOL model used is the result of a prelim-
inary design study, it is important to note that the actual numerieal values
presented might be subject to considerable revision in the future. Neverthe-
less, the results serve to illustrate the effects which are peculiar to an
aircraft equipped for the use of powered 1lift,

The method of keeping the thrust setting within the allowable limits dif-
fered somewhat from the case of the CTOL aircraft. The turbine inlet tempera-
ture Tip was limited in the optimization to 1000°K < T3y < 1L50°K and the
corrected turbine temperature, Te = Tijpn/0, was limited as shown by the '"max
To" boundary in figure L(a). Regardless of which constraint is governing, the
lower limit will be referred to as "flight-idle" and the upper limit as
"maximum thrust."

The optimization for this aircraft over most of the descent portion
(except when o = 0) was complicated by the existence of two local minima in
the integrand of equation (19). These local minima varied, from being widely
separated to nearly coincident, depending on the energy level. The function
minimization routine located both local minima, and then chose the controls
corresponding to the smallest of the two as the optimum controls.

Figure 10 shows the contours of cruise fuel efficlency versus true air-
speed for different values of altitude using an aircraft weight of 90,700 kg.
The minimum fuel cruise condition occurs at an altitude of 11 km and a speed
of 200 m/sec. As in the case of the CTOL aircraft, this point is below the
ceiling; however, the difference is only about 100 m in this case. The minimum
time cruise condition occurs near
an altitude of 6 km and an airspeed
of 230 m/sec. A tradeoff between

20
time and fuel can be obtained by
MINIMUM TIME . . .
8 . selecting different operating
MINIMUM TIME +5% CONTOUR - .
£ points along any of the altitude
~ .
206 MINIMUM contours. At-all altitudes, the. )
= FUEL +1% curves are quite flat near the mini-
S 4L mum fuel point, and & speed change
é MINIMUM TIME of about T percent is required to
22k produce a l-percent change in fuel,
z _OPTIMUM CRUISE The fuel consumption near the mini-~
3'0__ ENVELOPE mum time curve increases more
w -9.0 rapidly with speed, and an increase
L g L MINIMUM FUEL o "o of 5 percent in time produces about
CONTOUR MINIMUM FUEL an 8 percent reduction in fuel,
el 1 1. 1 L4 except at the highest altitudes.
120 160 200 240 Also, along the minimum-time curve
TRUE AIRSPEED, m/sec the fuel consumption increases

rapidly with decreasing altitude
while corresponding changes in

Figure 10.- Cruise fuel efficiency; speed are small

STOL aircraft.
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A series of minimum—fuel and minimum-time trajectories was calculated for
various values of Epg,yx up to and including the minimum-fuel and minimum~time
cruise energies, The initial and final energies were 1.5 km in all cases, and
a lower altitude limit of 150 m was imposed. The results for intermediate
values of o were not determined for this aircraft.

Minimum Fuel Profiles

Figure 11 gives the altitude-range profiles for three minimum-fuel tra-
jectories having no cruise section. The maximum energy for the longest trajec-
tory is the minimum-fuel cruise energy. Note that all of the trajectories fol-
low the same ascent path until maximum energy is reached. The flight-path
angle appears to be discontinuous between ascent and descent at the scale used
in the figure, but the use of sufficiently small increments in energy shows
that this is not the case. For short ranges, most of the distance is covered
during the descent portion, but as the range, and hence the maximum energy
increases, a greater portion of the distance is covered during ascent. This is
because the energy rate and the corresponding flight-path angle approach zero

"slowly near the minimum-fuel cruise energy. The final portion of each trajec-—

tory consists of a steep descent followed by a short section of level flight
at the low altitude limit,

The speed-altitude profiles in figure 12 are for the minimum-fuel trajec—
tories Jjust discussed and two minimum—-time trajectories. In the minimum-fuel
case, the ascent and higher altitude portion of the descent segments are quite
similar to the results presented earlier for the CTOL aircraft. In this
region, maximum thrust is used for climb, and flight-idle is used for descent,
except near the maximum energy, where a gradual transition is made to or from
the cruise thrust. 1In the lower portion of the descent, the airspeeds become

CRUISE ~——— OPTIMUM
12 POINT ——— INDICATED
AIRSPEED
MINIMUM CONSTRAINT
10 - E, km
l2r RANGE, km _ a5
764 €8 —— 4.0
0 = RANGE, km ~ T~ %(5)
€ uf 1064 . .
= 8 S et CRUISE POINT
] E
§6 E MINIMUM
5 <4
g 4 =7
2 b
2 ¥/
4
1 1 ! 1 ' 1 = Q i = =1
0 100 200 300 400 500 600 700 800 120 140 160 180 200 220 240 260
RANGE, km TRUE AIRSPEED, m/sec

Figure 11.,- Altitude-range profiles, Figure 12,.,- Speed-altitude profiles,
STOL aircraft. STOL aircraft.
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very high and thrust settings greater than flight-idle are used to help attain
the high speed, after which the thrust is again reduced.

As the aircraft approaches the maximum speed on the descent trajectory
(fig. 12), the magnitude of the flight-path angle and the magnitude of the |
acceleration become very large. For example, consider the case of the trajec- {
tory for the longest range (764 km). A 500-m reduction in energy between i
points A and B occurs in 24 sec and is accompanied by a speed increase of U3 5
m/sec and an altitude change of nearly 1.6 km, During this interval the ﬂ
flight-path angle reaches -37°. Although the diving segments become shallower i
at lower values of Epgy, the trajectories appear to approach the constant
energy transitions encountered in other studies (ref. 2).

The steeply diving portions are probably caused by the high values of
flight-idle thrust, and hence fuel flow to the engines providing powered 1ift
for this STOL aircraft. At low altitudes, where the fuel consumption is high,
fuel usage is minimized by descending at high speed and then decelerating to
the final energy as rapidly as possible,

The high speeds at low altitudes and the large decelerations and flight-
path angles encountered in the descent are unacceptable for passenger aircraft.
One possible constraint, which provides an acceptable suboptimum trajectory
for approximating the minimum-fuel case, is illustrated by the dashed lines in
figure 12, For ascent, the indicated alrspeed was restricted to a maximum of
130 m/sec (250 knots) and for descent the 1imit was chosen to fit the envelope
of the upper portions of the descent segments. This limit provides fairly
smooth transitions between the constrained and unconstrained portions.

Minimum Time Profiles

The minimum-time profiles in figure 12 are similar to those shown for the
CTOL aircraft. The longest range trajectory (1064 km) just reaches the mini-
mum time-cruise energy., The horizontal portions result from constraining the
altitude to be at least 150 m; the initial and final energy levels were 1.5 km,
Maximum thrust is required almost during the entire trajectory, except during
the final horizontal segment for V < V. when it must be at flight-idle. The
maximum speed during descent is limited by the drag increase with Mach number
rather than by a control constraint. The magnitude of the flight-path angle
never exceeds L°,

Fuel and Time Tradeoff of Trajectories

The fuel and time used for various ranges for the minimum-time, minimum-
fuel, and constrained-trajectories are plotted in figure 13, with the ranges
indicated on the curves. The curves for intermediate o values were not
obtained for the STOL aircraft. The effects of constraining airspeed in the
minimum-fuel case are shown by the dashed line in figure 13, The constraint
increases the cost in both fuel and time at each range. The increased costs
occur almost entirely during descent and are attributed to the elimination of
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the high-speed segment during descent.

RANGE, km
16 1000 A less severe speed constraint for
MINIMUM TIME descent (e.g., the one used for ascent)
14 would provide a cost nearer the optimum
MINIMUM FUEL if a satisfactory transition could be
l2r CONSTRAINED made to the optimu.m.
élo B MINIMUM FUEL
5 J}% RANGE, km Since the ascent portions of the
“ 8k s00 /,‘w,\>&§$O optimum and constrained trajectories
g 400 A —~—— 700 are almost identical, it is desirable
T el ,ﬁt © =600 to compare costs only during the
7500 descent portion. The lower airspeeds
4r- itgggo in the constrained trajectory resulted
200 in lower magnitudes of flight-path
2% &~ | 10 angle and energy rate, which in turn

(0] 20 40 60 80 100
TIME, min

produced a larger range and longer
flight time for descent from a given

maximum energy. For the case of the
maximum energy equal to the optimum
cruise energy, the ranges were equal-
ized to 891 km by adding an appropriate
cruise section to the optimum trajec-
tory. In this case, the constrained
descent required about 10 percent more fuel and 19 percent more time than the
minimum-fuel cruise and descent covering the same range.

Figure 13.- Fuel and time require-
ments for fixed ranges, STOL
aircraft.

CONCLUSTIONS

By using the aircraft's total energy (kinetic plus potential) as the inde-
pendent variable in the climb and descent segments, an efficient algorithm has
been developed for computing fixed-range optimum trajectories for short-haul
aircraft. The good computational efficiency of the algorithm makes it attrac-
tive for parametric studies as well as for possible on-board implementation.

In this report, fuel cost and flight range were selected as parameters and used
to compute optimum time~fuel tradeoff curves for the in-service CTOL aircraft.
Such curves can help an airline in determining the best operating strategy in
periods of fluctuating fuel prices, The optimum trajectories for both the CTOL
and STOL aircraft are characterized by the absence of a cruise segment unless
the range of the mission exceeds a minimum value., For the CTOL airecraft, the
optimum controls, consisting of airspeed and engine power setting, were smooth

. functions of the energy, thereby yielding flyable, though nonstandard, trajec-

tories. However, additional work is required to define the on-board displays,
computers, and autopilot navigation system interfaces required for the pilot
to be able to fly the optimum trajectories, For the STOL aircraft, the air-
speed was nearly discontinuous with respect to energy at one energy level dur-
ing the minimum fuel descent. Under the worst conditions, elimination of the
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steep dive, required to fly such a descent, increased fuel consumption by 10
percent and the time to fly by 19 percent compared to the optimum descent
trajectory.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif.,, 94035, June 3, 1975
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APPENDIX
PROPERTIES OF THE OPTIMUM CONTROLS NEAR MAXTIMUM ENERGY

In this appendix, we study the properties of the two functions (18) and
(19) to be minimized at the maximum energy Epaxe This will lead to conditions
under which equations (21a) and (21b) hold. In the discussion that follows,
thrust T, rather than throttle setting N, and velocity V are chosen as
controls. The region of allowable controls at E = Ej, . is denoted by Q.
The cruise controls {Tc, Vc} obtained from equation (17§ lie in the interior
of Q except for values of 0 near zero, where thrust or airspeed or both
are at their maximum allowable values. In this analysis, we only consider the
case where {Tcs Vc} are in the interior of Q. Standard subscript notation is
used to identify partial derivation with respect ‘to the controls T and V.

As illustrated in figure 2, it can be shown that the gradients with
respect to the controls of the functions P - Xoptv and V(T-D) are parallel at

the cruise point, denoted by Q. This is expressed as

D Py = ~Py + Aopt (A1)

Defining the quantities inside the minimization operators of equations (18)
and (19) as g:

L P - xopt(EmaX)v

E

Near Q, the function g can be represented approximately by a second-order
Taylor series expression in the controls:

1 2 1 2)
PT(dT - DVdV) + 3 PTTdT + PTVdT av + 5 PVVdV
g(T,V,EmaX) S L E - . (a2)
_ _ = 2
(Vc + dV)(dT av - 5 DAV )

where equation (Al) was used. The quantities 4T and dV denote small incre-
ments in the controls at the cruise condition.

Local Properties of g(T,V,EmaX) Near the Cruise Point
Equation (A2) can now be used to study properties of g(T,V,Ep,y) as we
approach the cruise point Q along any linear direction given by

aT = B 4V (A3)
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or along the direction given by

av = 0 (k)

Using L'HBpital's rule with equation (A2), we obtain

PT/Vc if B # DV
gy = lim {g(T,V,EmaX)} = ) (A5)
dT=R av —(PTTB +2PTVB+PVV)/VCDVV if 8=0D,

av-0

The direction in the control space defined by B8 = Dy must be excluded since
it is the direction of the line through Q that separates the control space
into the two regions, & > 0 and E < 0.

By considering g(T,V,Ep 4) ~ gq, it can be checked that Q is a local
minimum of g(T,V,EmaX) in the climb (i.e., if we approach Q with T > D)
and that it is also a local minimum of -g(T,V,E;,.) in the descent (i.e., if
we approach Q with T < D) along any direction given by equations (A3) or (Ab)

with B8 # Dy, if and only if

A 2
A = PpV B° + 2(p

T +chVV)] >0 for all g (A6)

TVVC—PT)B + [VCPVV+PT(2DV

Equation (A6) can be equivalently expressed as

P_ >0
T (A7)

(P v, - P + PT(2DV + VCDVV)] <0

2
TV )% - PTTVC[VQP

T Vv

Moreover, the minimum of g(T,V,E . ) is Pr/V..

As a consequence, if equation (A7) is satisfied, then in a small region
near Q

min{g(T,V,E )} + min{g(T,V,E )} =c—-=F==0 (A8)
T>D max T<D max VC Vc

thus verifying equation (21a).
If it had been assumed that P(T,V,Ep.y) = Wp = CgpcT, where Cgpgo 1is
the specific fuel consumption, as in some earlier work (refs., 2 and 3 » then

equation (A7) is not satisfied. In fact, in this case the thrust values that
minimize the two integrands for any E # E .. are T ax 20& T . , respectively.
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Global Properties of g(T’V’Emax)

We will now give additional conditions under which Q will be the global
minimum of g(T,V,Ep,y) during the climb and be the global minimum of
-g(T,V,Engx) during the descent,

If we assume that all the third and higher partials of P and D with
respect to T and V are globally (in the control region of interest) negli-
gible, then equation (A2) can be used to study global properties of g (this
assumption was found to be reasonable for the CTOL aircraft considered in this
report),

By considering g - Pp/V, 1t can be checked that in general g - Pp/V,
has a second local minimum corresponding to the velocity increment given by

| av = -A/fTDVV (A9)
The corresponding thrust increment is given by

ar = —AB/fTDVV (A10)

where A 1is given by equation (A6).

For PT/Vc to be the global minimum of g in Q@ requires that this
second minimum be outside Q. A sufficient condition for this to hold is that

2
(PTVVC - PT) - PTTVC[VCPVV + PT(2DV + xDVV)] <0 (A11)
where
Xx =V .
min
if
PTDVV > 0

(this is the case for the CTOL aircraft) or

if
PTDVV <0
The conditions shown in equations (A7) and (All) were verified for sev-
eral cruise conditions for the CTOL aircraft using the analytical expressions
for the propulsion and aerodynamic systems of the aircraft described in the
body of this report.
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