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 This study has clarified the fixed scattering section length with variable 
scattering section dispersion based optical fibers for polarization mode 
dispersion penalties at high data rates. The max signal power/min. noise 
power is simulated against time after fiber length of 500 km with various 

scattering section dispersion. The overall total light power is simulated after 
fiber length of 500 km with various scattering section dispersion. In addition 
to the overall total electrical power is clarified through APD receiver at fiber 
length of 500 km with various scattering section dispersion. Eye diagram 
analyzer for signal quality is also simulated through APD receiver at fiber 
length of 500 km with various scattering section dispersion. The max Q 
factor, electrical signal power after APD receiver variations against 
scattering section dispersion variations for various data rates. 
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1. INTRODUCTION 

Polarization mode dispersion (PMD) in optical channels has been a critical factor limiting high-

speed data transmission over long distances in optical networks. PMD is a source of inter symbol interference 

(ISI) and its impact increases with the transmission data rate [1-5]. Since economical adaptive compensation 

schemes are currently unavailable, it is essential to characterize this impairment to completely understand its 
impact and develop effective countermeasures [6-10]. 

Optical fiber impairments are critical factors limiting high-speed data transmission over long 

distances in optical communication networks. Impairments in the channel caused by chromatic dispersion 

and transmission loss have a direct impact on the reach of a network or the quality of transmission at higher 

bit rates and narrowly spaced channels/the presence of PMD in optical fibers is one of the main factors 

limiting the capability of a channel to transport high-speed data [11-16]. PMD reduces the reach of networks, 

and the increased regeneration requirements of optical signals result in expensive network designs [17-22]. 

To compensate for the degradation in the optical signal caused by these effects the signal may 

require reconstruction and regeneration over the length of transmission [23-25]. The receiver section detects 

the optical signal, and the modulated information is recovered. The performance of such a typical optical 

network configuration is primarily a function of the system components and the transmission media [26-35]. 
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2. MODEL DESCRIPTION AND RESEARCH METHOD 
Figure 1 clarifies the data bit stream sequences can be encoded with the return to zero coding which 

represent the first input electrical encoded signal for the electro optic LiNbO3 modulators. The second input 

to the modulators is from the continuous wave laser. The third input is the encoded RZ scheme for the bit 

stream sequence. The laser frequency is 195 THz, laser power is 5 dBm. The modulated signal reaches to the 

optical fiber medium. 

 

 

 
 

Figure 1. Model simulation description for the study 

 

 

The optical fiber has a length of 500 km, mean scattering section length of 10000 m, average 

scattering section dispersion of 50 m, attenuation of 0.2 dB/km. The optical power versus spectral frequency 

and time domain are measured. The overall total light power is also measured by optical power meter. The 
light signal can be converted to the electrical signal by avalanche photodiode (APD) receiver. All the 

unwanted high frequency signals and ripples can be eliminated by low pass bessel filter. The max Q factor 

and min. BER can be evaluated and measured by eye diagram analyzers. 

 

 

3. PERFORMANCE ANALYSIS WITH DISCUSSIONS 
 The overall total light power is simulated after fiber length of 500 km with various scattering 

section dispersion. In addition to the overall total electrical power is clarified through APD receiver at fiber 

length of 500 km with various scattering section dispersion. Eye diagram analyzer for signal quality is also 

simulated through APD receiver at fiber length of 500 km with various scattering section dispersion. The 

max Q Factor, electrical signal power after APD receiver variations against scattering section dispersion 

variations for various data rates. Figures 2-4 clarify the max signal power/min. noise power against time after 
fiber length of 500 km with various scattering section dispersion. Figure 2 shows the max signal power/min. 

noise power against time after fiber length (500 km) with scattering section dispersion of 10 m. Where the 

max signal power is 0.0012824 W, min. noise power is -6.1 x 10-5 W. Figure 3 indicates the max signal 

power/min. noise power against time after fiber length (500 km) with scattering section dispersion of 50 m. 

Where the max signal power is 0.0012663 W, min. noise power is -6.0298 x 10-5 W. Figure 4 clarifies the 

max signal power/min. noise power against time after fiber length (500 km) with scattering section dispersion 

of 100 m. Where the max signal power is 0.0012532 W, min. noise power is -5.9674 x 10-5 W. It is indicated 

that the increase of scattering section dispersion, this results in the decrease of the max signal power. 

Figure 5 show the max signal power/min. noise power against spectral wavelength after fiber length 

(500 km) with scattering section dispersion of 10 m, 50 m, 100 m. The study emphasized the max signal 

power is -6.55966 dBm and min. noise power is -90.254 dBm at all values of scattering section dispersion. 
So the max signal power/min. noise power are the same values at all values of scattering section dispersion. 

Figure 6 illustrates the overall total light power after fiber length (500 km) with scattering section dispersion 

of 10 m, 50 m, 100 m. The optical power is 296.172 μW or -5.285 dBm at all values of scattering section 

dispersion. So the optical power is the same values at all values of scattering section dispersion. 

Figure 7 demonstrates the overall total electrical power through APD receiver at fiber length (500 

km) with scattering section dispersion of 10 m, 50 m, 100 m. The electrical power is 2.356 μW or -26.279 
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dBm at all values of scattering section dispersion. So the electrical power is the same values at all values of 

scattering section dispersion. 

 

 

 
 
Figure 2. Max signal power/min noise power against time after fiber length (500 km) with scattering section 

dispersion of 10 m 

 

 

 
 

Figure 3. Max signal power/min noise power against time after fiber length (500 km) with scattering section 

dispersion of 50 m 

 

 

 
 

Figure 4. Max signal power/min. noise power against time after fiber length (500 km) with scattering section 

dispersion of 100 m 
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Figure 5. Max signal power/min noise power against spectral wavelength after fiber length (500 km) with 

scattering section dispersion of 10 m, 50 m, 100 m 
 
 

 
 

Figure 6. Overall total light power after fiber length 

(500 km) with scattering section dispersion of 10 m, 

50 m, 100 m 

 
 

Figure 7. Overall total electrical power through APD 

receiver at fiber length (500 km) with scattering 

section dispersion of 10 m, 50 m, 100 m 

 
 

Figures 8-10 illustrate the eye diagram analyzer for signal quality through APD receiver at fiber 

length (500 km) with various scattering section dispersion. Figure 8 clarifies the eye diagram analyzer for 

signal quality through APD receiver at fiber length (500 km) with scattering section dispersion of 10 m. 

Where the max Q Factor is 279.592, min. bit error rate tends to zero. Figure 9 indicates the eye diagram 

analyzer for signal quality through APD receiver at fiber length (500 km) with scattering section dispersion 

of 50 m. Where the max Q Factor is 282.513, min bit error rate tends to zero. In addition to Figure 10 

demonstrates the eye diagram analyzer for signal quality through APD receiver at fiber length (500 km) with 

scattering section dispersion of 100 m. Where the max Q Factor is 284.682, min bit error rate tends to zero. 
The max Q factor is upgraded with the increase of the scattering section dispersion. This is the reason that 

with the higher the scattering section dispersion, the lower bit rate and consequently the higher signal quality 

factor. 
 
 

 
 

Figure 8. Eye diagram analyzer for signal quality through APD receiver at fiber length (500 km) with 

scattering section dispersion of 10 m 
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Figure 9. Eye diagram analyzer for signal quality through APD receiver at fiber length (500 km) with 

scattering section dispersion of 50 m 

 

 

 
 

Figure 10. Eye diagram analyzer for signal quality through APD receiver at fiber length (500 km) with 

scattering section dispersion of 100 m 

 
 

Figure 11 shows the max Q Factor variations versus scattering section dispersion variations for 

various data rates. The max Q factor is 279.5, 165, 106, 76, 15.39 at 10 Gb/s, 40 Gb/s, 100 Gb/s, 160 Gb/s, 

250 Gb/s respectively at 10 m scattering section dispersion. The max Q factor is 282.5, 168, 109, 78, 17.22 at 

10 Gb/s, 40 Gb/s, 100 Gb/s, 160 Gb/s, 250 Gb/s respectively at 50 m scattering section dispersion. While the 

max Q factor is 284.65, 171, 112, 80, 19.87 at 10 Gb/s, 40 Gb/s, 100 Gb/s, 160 Gb/s, 250 Gb/s respectively at 

100 m scattering section dispersion. The max Q factor is 287, 174, 115, 82, 21.2 at 10 Gb/s, 40 Gb/s, 100 

Gb/s, 160 Gb/s, 250 Gb/s respectively at 150 m scattering section dispersion. Moreover the max Q factor is 

290, 177, 118, 84, 23.7 at 10 Gb/s, 40 Gb/s, 100 Gb/s, 160 Gb/s, 250 Gb/s respectively at 200 m scattering 

section dispersion. The max Q factor is 292.85, 180, 121, 87, 25.767 at 10 Gb/s, 40 Gb/s, 100 Gb/s, 160 

Gb/s, 250 Gb/s respectively at 250 m scattering section dispersion. The results emphasized that the higher the 
scattering section dispersion the high the max Q factor. 

Figure 12 demonstrates the electrical signal power after APD receiver variations versus scattering 

section dispersion variations for various data rates. The electrical power is 2.356 μW, 1.5 μW, 1.365 μW, 

1.186 μW, 1 μW at 10 Gb/s, 40 Gb/s, 100 Gb/s, 160 Gb/s, 250 Gb/s respectively at 10 m scattering section 

dispersion. The electrical power is 2.354 μW, 1.427 μW, 1.341 μW, 1.1 μW, 0.965 μW at 10 Gb/s, 40 Gb/s, 

100 Gb/s, 160 Gb/s, 250 Gb/s respectively at 50 m scattering section dispersion. While the electrical power is 

2.352 μW, 1.367 μW, 1.322 μW, 1.0765 μW, 0.654 μW at 10 Gb/s, 40 Gb/s, 100 Gb/s, 160 Gb/s, 250 Gb/s 

respectively at 100 m scattering section dispersion. The electrical power is 2.35 μW, 1.315 μW, 1.297 μW, 

1.0113 μW, 0.527 μW at 10 Gb/s, 40 Gb/s, 100 Gb/s, 160 Gb/s, 250 Gb/s respectively at 150 m scattering 

section dispersion. Moreover the electrical power is 2.348 μW, 1.286 μW, 1.278167 μW, 0.956583 μW, 
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0.354 μW at 10 Gb/s, 40 Gb/s, 100 Gb/s, 160 Gb/s, 250 Gb/s respectively at 200 m scattering section 

dispersion. The electrical power is 2.346 μW, 1.282 μW, 1.256667 μW, 0.901833 μW, 0.181 μW at 10 Gb/s, 

40 Gb/s, 100 Gb/s, 160 Gb/s, 250 Gb/s respectively at 250 m scattering section dispersion. The results 

emphasized that the higher the scattering section dispersion the slightly lower the electrical signal power at 

APD receiver. 
 
 

 
 

Figure 11. Max Q Factor variations versus scattering section dispersion variations for various data rates 
 

 

 
 

Figure 12. Electrical signal power after APD receiver variations versus scattering section dispersion 

variations for various data rates 

 

 

4. CONCLUSION 
The fixed scattering section length with variable scattering section dispersion have been simulated 

based optical fibers for polarization mode dispersion penalties at high data rates. The max Q factor, electrical 

power variations for various scattering section dispersion and data transmission rates have been clarified. The 

higher the scattering section dispersion the slightly lower the electrical signal power at APD receiver. It is 
emphasized that the higher the scattering section dispersion the high the max Q factor can be achieved. The 

max signal power/min noise power against time has been simulated after fiber length of 500 km with various 

scattering section dispersion. The higher the scattering section dispersion, the lower max signal power. So it 

is recommended to operate at 10 m scattering section dispersion with transmission rate of 40 Gbps. 
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