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shown stable behavior, and it proved easy to apply.
Although the test problems have been ofmodest size (d < 6),
the model should be applicable to considerably larger
problems (d z 40).
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Fixed Structure Automata in a
Multi-Teacher Environment

DANIEL E. KODITSCHEK AND KUMPATI S. NARENDRA, SENIOR MEMBER, IEEE

Abstract-The concept of an automaton operating in a multi-
teacher environment is introduced, and several interesting questions
that arise in this context are examined. In particular, we concentrate
on the consequences of adding a new teacher to an existing n-teacher
set as it affects the choice of a switching strategy. The effect of this
choice on expediency and speed of convergence is presented for a
specific automaton structure.

I. INTRODUCTION

THE THEORY of learning automata was introduced in
1961 by Tsetlin [1], and is now studied quite extensively

in both the Soviet Union and the United States. Learning, in
this field, is investigated through the formal paradigm of an
automaton interacting with a generalized environment. The
automaton, finding its behavior repertoire confronted by a

set of environmental consequences which it preferentially
orders, learns to choose a behavior which produces the most
favorable response. Narendra and Thathachar survey this
theory and review some fundamental questions in [2]. The

Manuscript received September 27, 1976; revised February 28, 1977.
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Grant ENG75-08616.
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Science, Yale University, New Haven, CT 06520.

power and versatility of automata schemes is being slowly
recognized, and several applications have recently been
suggested which involve learning in complex situations [2],
[3].

In spite of these advances, almost all schemes developed
have dealt with a single automaton operating in a single
environment. Yet much of what we generally call learning
takes place outside this context. While some of our actions
are better than others, it is often impossible to compare them
linearly. Students are exposed to a variety of teachers;
businesses are confronted with conflicting expertise; babies
(usually) learn from two parents. In all cases learning seems
to be effected in spite of the vector character of the teachers'
responses. This paper is concerned with further generalizing
the concept of environment to include these common situa-
tions. More formally, we shall undertake to modify the
theory of learning automata as it currently exists by replac-
ing a totally ordered input set to the automaton with a
partially ordered set and study the effects upon optimal
learning strategies. The modification will be accomplished
by exposing automata to several single-teacher
environments.
There is an ambiguity in learning automata theory be-
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tween the notion of a teacher and an environment. While
this has been unimportant in the past, it becomes crucial in
the context of the problem discussed in this paper. We will
distinguish between an environment which rewards or
penalizes the automaton directly and a teacher which
conveys information about an implicit environment by
approving or disapproving the automaton's behavior. This
distinction arises naturally when we address the question
whether "learning" is manifested by the capacity to gain
approval from conflicting judges or by the tendency to
perform one "correctl" action more often than others. Our
interest lies primarily in the latter situation: we postulate the
existence of an underlying environment within which there
exists a correct behavior pattern which is inaccessible to the
automaton. A set of teachers which attempts to describe this
environment forms the "multi-teacher environment" with
which the automaton interacts. The objective ofthe automa-
ton then is to interrogate the teachers and determine
the particular behavior pattern that the underlying environ-
ment treats as the best. To make the problem meaningful we
postulate, regardless of other differences, that the teachers
"agree" with the underlying environment on the ordering of
the automaton's actions.
For a more complete understanding of the problems that

may arise in multiple-teacher environments, it is necessary
to introduce some distinctions between teachers who satisfy
the postulate stated above. For discussion purposes we
distinguish between benign, harsh, and good teachers. While
the first two are defined only qualitatively, the last concept
will be defined as a relation over the set of all teachers. Using
these, an investigation of the nature of "improvement" in a
multi-teacher environment is undertaken in the body of the
paper.
We shall first formulate the problem a little more precisely

in Section II and then address the following questions in the
succeeding sections. It seems intuitively clear that two good
teachers must provide more information than one. Is it true
that two teachers are better than either one alone, or that
n + 1 teachers are better than any n of them? If more
teachers improve the automaton's accuracy, do they neces-
sarily decrease the rate of the learning process? Is it
sometimes preferable to ignore a new teacher's response?
Are there different effective learning strategies in the multi-
teacher environment, or is the automaton limited to one
optimal strategy?

It will be shown in this paper that the switching strategy
chosen almost completely affects the answers to the fore-
going questions. There exists a strategy by which we can
always assure that n + 1 teachers are "better" than any n of
them. However, such a strategy affects the speed of learning
adversely and may consequently not be of great practical
interest. If convergence rate is an important consideration,
then the automaton may do better to choose strategies
whose responses are worsened by the addition of the new
teacher. Whether a new teacher is to be ignored or included
depends on the performance criterion as well as the old
strategy used and the information that is available regarding
the new teacher.

Fig. 1. P-model learning automaton.

II. THE PROBLEM
The multi-teacher environment considered in this paper

will be confined to the context of a fixed structure automa-
ton. We describe the P-model learning automaton briefly in
this section. For a fuller discussion of this topic and for
further information regarding other learning models, the
reader is referred to [4].
A learning automaton is an automaton-teacher pair

(sI,Ei) as shown in Fig. 1. The automaton ,c is described by
the triple {A,B,F}, where A is an action set {,}, B is the input
set {0,1}, and F: A x B -+ A is the switching strategy. The
teacher is defined by the set of probabilities {ci,c4i, where
ci= Pr {3I#II} and ci= Pr {,B= 1 Ia(note: #E B). The
automaton performs one of the actions a or x, receives a
reward (/ = 0) or penalty (3 = 1) from the teacher, and uses
the information in its updating strategy to determine a new
action. At any time t, the automaton will perform a with
total probability r(t) and a with total probability it(t), where
the total probability vector

7(t)-= 7(t)1
[ie(t) s

is a Markov sequence. An expedient strategy is defined as [4]

lim M(t) = E[/3(t) nr(t)] = it + c1it<
t oo

Cl + Cl
2

Expedience results in the expected penalty being less than
chance. It also corresponds to the better action being chosen
with higher probability than the worse action (i.e., it > i).
The single-teacher environment Tsetlin automaton dis-

cussed above will be denoted rl(1). To facilitate discussion
of higher order environments, we introduce the measure
space associated with 1(1), {B,ti'(B),pj}, where B is the
quotient set {0,1}/A and pi is the measure on .8(B) assigning
{0}/-41- c; { 1}/ -+c; {0}1/ b 1-Ci;{ 1}/ Ci.

Fig. 2 presents the general n-teacher environment cV(n).
This is the pair (V1, {Ei}, i = 1, 2, ..., n) where {Ej} represents
a set of n teachers. The input set to the automaton is now the
set of all n-tuples of zeros and ones and is denoted Bn where

Bn =I1{HA}li
i-1
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r~~~~~[D E n ILn Cnf D- I

II

P
-

- E - {= A D

a = {A, B, F}~

A = {a,} where F: B x A-j-A

Fig. 2. n-teacher environment.

The measure space (Bn, A(Bn),Pn) corresponds to the envi-
ronment d/(n), where Pn is the measure on Y9(Bn) induced by
the Cartesian product of the individual teacher's probabili-
ties making the assignments:

n

(0, 0, **)/(y (-I)
i =1

n
_- 1

n

(O,OO,Ol )/a1 (i-HCi)
i-1

n

(1, 1 ... , 1)/m +l ci.
i(=1

The distinction between a multi-teacher environment and
a joint exposure to many environments may now be
clarified. In the former case we postulate an underlying
envirpnment E, which is inaccessible to 4/ and has c = 1,
= 0. Thus E defines a as the "correct" behavior. It is this

information that a? must learn from the multi-teacher
environment. As stated in the introduction, we postulate
that all teachers "agree" with E, i.e., all of the teachers agree
that a is the correct behavior so that ci > ji. The set D of
acceptable teachers is defined by

(1)
and is shown in Fig. 3. Qualitatively, if ci is small we will call
Ei "benign," and if ji is large we will call the teacher "harsh."
A benign teacher will tend to call both actions good, while a
harsh teacher will tend to call both actions bad most of the
time.

In the case of the n-teacher environment, the former
simple situation no longer prevails. The set B' is unordered,
and an output cannot be classified as a reward or a penalty in
a straightforward manner. Intuitively, a response (1, 1, * , 1)
must be a penalty and (0, 0, -., 0) must be a reward. But

(0,1)

(0,0) (1,0)
J C

Fig. 3. Characteristics of teachers.

there are 2n - 2 other actions which must be categorized
before a switching strategy can be developed. In this context
it no longer makes sense to talk about the minimum
expected penalty, since penalty is undefined. Consequently,
the obvious interpretation that the expectation of a 1 in the
input should be minimized is not meaningful. The automa-
ton's primary objective in this case is to maximize the final
probability of choosing the correct action a, and the outputs
of the environments are interpreted as rewards or penalties
to aid in achieving this objective. Hence, we will define
expedience by the condition

(2)

and if 41 and S2 evolve total probabilities it, and 1t2, we
shall say s?1 is more expedient than SI2 if and only if
i1 > 7t2. Thus expedience has been redefined as a total
ordering over the set of all automata.
A natural comparison of teachers would determine which

produces the most expedient a if it acts alone. Given two
teachers Ei and Ej we find that itj 2 ii if and only if

>C. (3)
Ci. Cj

Hence, we define a "good teacher" Ej as one whose ratio
Cj lCj is low, and we say that it is "better" than Ei ifcondition
(3) holds. By this definition, "goodness" is a total ordering
over the set D of all teachers.

III. THE TWO-TEACHER ENVIRONMENT
The two-teacher environment d1(2) is a prototype of all

higher order environments. Strategies and solutions in a?(n)
are motivated by results and considerations in a?(2). In
particular, the interesting questions regarding strategic
adjustment from a?(n) to V/(n + 1) are addressed in the
passage from d(1) to this case.

A. A Simple Strategy
Given (A,{E1,E2D) as shown in Fig. 2, the probabilities

assigned to B2 by P2 are the following.
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/3 P2(/3/c) P2(f3bx)

(1,1) Cl C2 c1 C2
(0,1) (1- (1 - c)c2
(1,0) C(1 -C2) cl(1 -c2)
(0,0) (1 - C)( - C2) (1 - cl)(1 -2)

The automaton's response to these inputs will completely
determine the behavior of the overall system. Intuitively, a?
should switch actions on (1,1) and treat (0,0) as a reward.
The appropriate response to (0,1) and (1,0) is less obvious.
Recalling from [2] that reward-inaction is an absolutely
expedient strategy, one may consider the use of an inaction
strategy for {(0,1),(1,0)}. However, for a fixed structure
single-memory-level automaton, inaction is the reward
strategy, i.e., in 41l) the reward transition matrix

Fo=[I 0]
H s ar y l to

Hence such a strategy will lead to

F(° °) = F0,"1) = F(l,03 = 1 0
1]-

P(l,1)- 0 1l- L1 o]
yielding the stochastic Markov matrix

[1-c1c2 c1c2
C1 C2 1-C1C2

The eigenvector of P21 corresponding to the eigenvalue
= 1 is

ClC2 + ClC2
7t21=

Cl C2 .

C1C2 + C1C2

This is clearly expedient since C1 c2C2-l2. The more

interesting subsequent question is whether a?(2) is more
expedient under this strategy than was d(1), i.e., is
U1 < 21?
The inequalities

C< ClC2
C1 +U1 clc2 +Ulj2

C2 C1 C2or <
C2 +U2 clc2 + U1l 2

are equivalent to

c 1 U1[2 - U21 2 0 or C2U2[C1-cl] 2 0,
hence, they are always true (since ci > ji by (1); agreement).

The Measure Space M21 : In the above discussion, if we
define c*-clc2 and '- cl c-2, then c* and e* become the
"penalty probabilities" corresponding to the actions a and a
of a composite teacher {E1,E2}. This intuitive realization
may be derived more formally as follows. The partition on
the input set B2 imposed by the switching strategy results in
a "reward" subset which allows its elements to contain one
penalty component. These subsets

G21 {(0,0),(0,1),(1,0)} and G1 4{(1j1)j

generate a new measure spaceM 21 imposed by the switching
strategy. M21 is defined by the triple

M241(B,-&2 1,P2)

where B2 is the entire input space,

,/21-A{f0G2,,Gc ,B2},~~~21~~~

and the new measure function P2 is the old P2 summed over
the elements of &21:

P2(G)j dP2.

By this formal reasoning we see that the switching strategy
has "coarsened" the measure set from the power set of B2 to
21 so that p2(Gc1) = c1 c2 is the penalty probability of a
new composite teacher. We will refer to this strategy in V(2)
as defining the automaton (and overall environment) Sf21.
The expedient strategy in a?(1) will be denoted 9l.

Other Strategies: The automaton 21 described above
has two teachers and interprets any input with at most one
penalty (the second subscript) as a "reward." According to
this definition, the automaton 20 with measure space
M20- (B2,&20,p2) would allow into the "reward" subset
only inputs with no penalty component. Under this strategy
the final total probability vector is

C*720 = 20 + E*0
C20

LC2*0 + E*20

=C, + C2- CC2 + C1 +C2- C1C2

Cl + C2 - C1C2

C1 + C2 -C1C2 + C1 + C2 -CiC2
Since *20 < c*0 we know that 9'20 is expedient. However,
the inequality 7121 > 7f20 holds if and only if

Cl C2 C1+ C2-C1 C2

C1C2 +c1c2 C1 + C2-clC2 +j1 +± 2- 1j2

or

Cii(C2- j2) + C2 2(C1 - U) > 0,

which is always true by the "agreement" postulate (1).
Hence, we have the result that, independent ofthe character-
istics of the two teachers, '520 is always less expedient than
Y21. Further, the two teachers are not necessarily better
than either one taken separately since t20 > f 10 if and only
if

C2 cA(I - c1)

C2 C1(1 - ) (4)
which is not always true.
We may briefly comment on the only remaining viable

deterministic switching strategies in d(2), which ignore one
or the other of the two teachers, respectively. For example, if
the automaton switches on receiving the inputs (1,1) and
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(0,1), then clearly the first teacher E1 is being disregarded.
Similarly if it switches on (1,1), (1,0), the second teacher is
being disregarded. In Section Ill-B we discuss the conditions
under which this policy becomes attractive.
The preceding discussion has demonstrated that the

strategy used by an automaton determines whether or not
two teachers as a composite entity are going to be uncondi-
tionally better than any one teacher. We know ,-i2 1is more
expedient than the strategy in V(l) using either El or E2.
The composite teacher is better than either one used singly.
However, J20 does not enjoy such properties even though it
is also expedient; the characteristics of one of the teachers
may actually result in a deterioration of the overall
performance.

B. Rate of Convergence and Choice of Strategy

It is clear from the previous section that '21 iS the most
expedient strategy in d(2). Why, then, should we even
mention any others? Unfortunately expedience may be
bought at cost of speed: rate of convergence to steady-state
behavior is an equally important attribute. The automaton
'21 does not switch actions unless the outputs of both
teachers are penalties. The less frequent this occurrence the
fewer -the automaton's "experiments" with alternative
behaviors. While the convergence problem in §(2) does not
necessarily preclude 'f 21, a large number of teachers will
mar the desirability of its higher order analogues precisely
because the automaton may continue to perform the same
action for long periods of time. In this section we briefly
consider the different strategies in a two-teacher environ-
ment with regard to convergence rate criteria.
A measure of the convergence rate of an automaton [4] is

the distance from unity of the second eigenvalue of the
probability transition matrix P. Let rm = Ic*m -C*m
denote this distance for strategy Ynm in the n-environment
case. By inspection, in the two-environment case, we have
c21 +(1 < c1 + ci < c*0 + *0allofwhichvaluesincrease
monotonically between 0 and 2 as some function of
(ci,c2,c2c-2) J: depicted in Fig. 4. Four regions are con-

structed in the figure illustrating where the sum of the
penalties using the various strategies are greater than unity.
In region l it is clear that r21 is lower than either r or r20. In
this region E1 and E2 are both harsh enough to bring
c21 + *1 > 1. Hence, strategy 'J°2i is both more expedient
and converges more rapidly than either i'f20 or 'Y1 (with
either E1 or E2). Outside of this small region, however, we

are faced with the choice between speed and accuracy (i.e.,
between convergence rate and expedience).

Disregarding 9'-21, we are left to choose between 20and
i0 1(i) (i= 1, or 2), the latter notation denoting the case
where either teacher E2 or El is ignored, respectively. If the
strategy "Y20 is chosen, the reward set includes only the
element (0,0). While this strategy is expedient, it is more or
less expedient than Yrl(l) (ignoring the second teacher)
depending on whether (4) is true or not, i.e.,

C2 c1(l -L1)

C2 C1(I -C,)

11 (c1,c2,El,E2) 11
Fig. 4. Convergence relations.

In other words, condition (4) determines when E2 "im-
proves" E1 in strategy -520. Hence, we have defined a new
strict partial ordering on the set of all teachers yielding
properties:

i) El can never improve itself,
ii) Ei and Ei may be found such that neither improves the

other.

Fig. 5 illustrates an occurrence of ii).
Fig. 6 magnifies region 2 of Fig. 4, where the inequalities

cl ± c-1 > 1 and c*1 + *21 < 1 are satisfied. We consider
2a,2b,2c defined by g, where r21 = d, - rl, and h, where
21= d2 = r20, as depicted. In region 2a, y21 is not only
more expedient but also faster than the other strategies (as in
region 1). In 2c the teachers yield r1 < r20 < r2 1, while in 2b,
r1 < r21 < r20. Consequently, we must choose a perfor-
mance criterion when the teachers have characteristics of
these latter two subregions. This choice entails the following
considerations. If speed of convergence is more desirable,
then we must ignore the second teacher. If a compromise
between speed and accuracy is desired, then we must

determine whether E2 improves (4) El. If there is no

improvement, the choice of 9l(1) is again immediate. If the
second teacher does improve the first, then we will choose
'20 in 2c, and f21 in 2b.
A similar discussion holds in region 3 of Fig. 4, where r I is

always smaller than r2l. Again, the choice of strategy
depends on the performance criterion and the specific
character of E2. In region 4, Y20 is always faster than both
Sf1 and 5>21- We note again that in all four regions
expedience is entirely independent of the convergence rate:

1) Y2 1 is the most expedient strategy; 2) E2 may or may not

improve E1, regardless of the region in question; 3) hence,
speed and accuracy must be evaluated separately.
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(0,1)

(0,0)
Fig 5Imroemntrenc
Fig. 5. Improvement relation.

there are many situations where estimates ofthese probabili-
ties are available based on past performance. In such cases
the estimates rather than the true values of ciji are used in
the decision process described above.

IV. THE n-TEACHER ENVIRONMENT

As in the previous section, a central concern of this
discussion is the formulation of optimal strategies with
respect to the different performance criteria which may arise
in the context of varying degrees of information about an
n-teacher environment. There are a greater number and
variety of choices in a?(n) than in d(2), but the situation is
essentially the same. Mathematical proofs of many state-
ments made in the section are lengthy, and have been
relegated to the Appendix of the paper.1 We intend in this
section merely to highlight the salient results of that more
formal mathematical investigation.(1,0)

11 (c1,---,C ) 11

Fig. 6. Magnification of one convergence region.

In summary, it is clear that the choice of strategy in an

environment with two teachers depends upon a higher level
decision regarding performance criterion. If expedience is
the sole criterion, f21 is unquestionably optimal. Ifconver-
gence rate is the sole criterion, then we must have more

information regarding the characteristics of E1 and E2. In
region 1 the optimal strategy is always 21 and in region 4 it
iS $"20 In regions 2 and 3 it is necessary to know the values of
C1,1l,c2,C2 before a strategy is chosen. In these regions if E2
does not improve E1 and convergence rate is the sole
criterion, then E2 should be ignored.
A final observation may motivate our introduction of

further requisite knowledge regarding the environment.
Clearly, if C1,C2,U1,C2 are all known, then ji < ci implies a is
the better action, and there is nothing to be learned.
However, in practice, even if the actual ej,ej are unknown,

A. t9 Strategies and Their Measure Spaces
As described in Section II, the response ofn teachers to an

input is an n-dimensional vector of ones and zeros. °nm
denotes the strategy whose reward subset Gnm contains all
vectors with no more than m penalty components (i.e.,
nonzero entries). In other words, the automaton switches
only when at least n-m teachers disapprove of an action. As
in Section III, the measure space associated with this
strategy is Mnm = (B',-'nm,Pn). Mnm is proven to be a true
probability space in P. 1. All such strategies are shown to be
expedient in P.2 using the monotonicity of Pn(Gnm) when
considered as a function of {cj,jjq= 1.

B. Central Results of the Analysis
Interesting questions arise when we know nothing about

the n teachers and are interested in the relative expedience of
two strategies. In P.3 the central result of this paper, that Ytnk
is more expedient than Y if and only if I + 1 < k, is proved
(of course, k < n). That this seemingly intuitive result re-
quires a relatively complicated proof may be motivated by
the following considerations. Allowing the automaton to
consider an input vector with more penalty components as a
member of the "reward" subset naturally (tautologously)
decreases the incidence of what the automaton regards as a
"penalty." But this decrease obtains for a and a together.
Our definition of expedience (2) reflects the characterization
of learning (established in the introduction) as a process of
distinguishing between the relative values of two actions.
Hence the fact that both yield more "rewards" does not aid
the learning process. But the proposition is true. The new
composite teacher is not only more benign but is also better:
the probability of choosing the correct action increases.
A consequence of this result concerns the effect ofadding a

new teacher to an n-teacher set. In P.4 it is shown that Yn+ 1 k
is more expedient than YSifl (for any combination of n
teachers out of the n + 1) if and only if k > 1 + 1 (again

' The facts, propositions and their corollaries in the Appendix are
numbered separately. Hence, e.g., P.4, which denotes the result proven as
"Proposition 4" occurs before C.1, "Corollary 1."
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k < n). In other words, increasing the number of teachers by
one results in a more expedient automaton if the strategy is
modified to include an extra penalty component in its
reward set.

It follows immediately that the most expedient strategy
for an n-teacher environment is one where input vector (1, 1,
* , 1) is the sole element ofthe penalty set. A more expedient
automaton can only result from the addition of an extra
teacher.

C. Convergence Rate in d1(n)

The extended discussion of convergence rate in Section
Ill-B carries over to d(n) with n functions {rn,}7 - defining
n + 1 regions as they cross unity. Corresponding to region 1
of Fig. 4, if the teachers are very harsh, then the relative
frequency of (1, 1, l, 1,l) will be sufficient to make - 1
the fastest strategy. On the other extreme, corresponding to
region 4 of that figure, if the teachers are very benign, then
penalty components will be very rare in the input vectors,
and switching will be too infrequent unless ynO iS used. In
between these extremes are the regions corresponding to 2
and 3 where we require more knowledge of teachers' values
and a predetermined performance criterion as described for
a?(2). We mention again that in practice this "extra" knowl-
edge will obtain from estimates of {ci,ci}j L based on
previous and accumulating experience.

D. W Strategies

An alternative class of strategies in a?(n) is suggested by
the argument used to develop f2i in the transition from
.1(1) to dl(2). As has been described in Section III, using an
gn1 m strategy in sl(n - 1) actually produces a composite
teacher {Ej7.i , with penalty probabilities {pn- 1(Gc 1,m
Pn- l(GCn- 1 ,m a)}. In this light we may view the addition ofthe
extra teacher E. to the n - 1 teacher set as forming dl(2) out
of (-d, {{Ei}7l1, En}) rather than d(n) out of (..1, {E,}7 = ),
that is, we will treat {E }>i- ' and En as two separate teachers
rather than simply adjoining En into the n - 1 teacher set. A
possible strategy would be to switch actions only when the
new teacher responds with a 1 and the n - 1 teacher input
vector falls into the penalty subset Gc 1 ,m (i.e., has fewer
than n - 1 - m zeros). We will refer to such strategies as

re,m+1 denoting an 5°21 construction of En and {E }nij
(with 5n- 1,m). Similarly, r40 will denote an S"20 construc-
tion of En and {EJ}i'- (with yn- 1 m): the automaton will
switch strategies unless the new teacher responds with a zero
and the n - 1 teacher input vector falls into the reward
subset Gn_ 1,m (i.e., has fewer than m ones). We note that °6'nm
is more expedient thanyn- 1 m in &(n - 1) if and only if En
improves {Ei}j- (under the 9n 1 m strategy). Further, the
reader should realize that Ynn 1= 6n'nandfnO= n'O

E. Transition from sV(n - 1) to sl(n)
It turns out that expedience comparisons between 1' and

5° strategies provide useful tests of the value of an extra
teacher. The interpretation of C. 1-C.3 is as follows. We start
with an n - 1 teacher set and employ an 5°n- 1,m strategy
(m < n - 3). We are allowed the use of a new teacher E,.

Should it be ignored; or, if not, what strategy should be used
in s(n)? En does not improve the n- I teacher set if we
know 5°n- 1m+ 1 (ignoring En) is more expedient than either
5nmm+ 1 or W' m+ (using En). If En does improve the ii - I
teacher set, then 5nim + 1 is more expedient than -/1 m
(ignoring EJ); moreover t1m+ yields a more expedient
automaton than 51n,m + 1 even though both are using En. Of
course, if m = n - 2, a more expedient strategy in V(11 - 1)
does not exist, and we shall always use the new teacher with a
n,m1 = 'n n1 = Y,nn strategy.
Since r 1rmn+ 1 is always smaller than rnim+ 1, and very

likely (if En is benign enough) smaller than the rate function
associated with 81,m + 1, ignoring En and increasing the size of
the reward set in V(n - 1) will yield a slower strategy unless
rn1m+ 1 is closer to unity than the other two functions.
Hence, if no performance cost is placed on an additional
teacher, we may use it whether or not the n -1 teacher set is
improved: the difference in accuracy will be made up by
speed.
The importance of a performance criterion should be

clear from the foregoing discussion. More obviously, all of
the comparisons described in this section will require vary-
ing degrees of information regarding the teachers.

V. STOCHASTIC STRATEGIES AND MEMORY

Up to this point we have discussed two-state deterministic
automata. It is reasonable to suspect that stochastic
strategies, allowing a more flexible (than binary) switching
choice, will thereby make more effective use of the different
"strengths" of approval accorded by an n-teacher set. This,
however, is not the case. From [4] we know that memory
capacity enhances the automaton's expedience. The multi-
teacher environment will augment this effect.

A. Stochastic 95 Strategies

A stochastic strategy in d(1) is characterized by state
transition matrices

F'=

and

F° _ 0do l-o
-[l-4 do

where Xi E [0,1]. Thus a given input causes a switching
response with probability I - j. While 0 = 1 is necessary
for expedience, 4 l does not effect expedience at all and may
increase or decrease convergence rate depending upon
whether cl + c1 > t [4]. This uncompelling result may
prepare us for equally lackluster consequences in 11(n).
The obvious extension of stochastic capability in d/(n) is

characterized by transition matrices

F_ 1-

where the n components of / yield
n

E j= i.
j=1
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The {J}n 1 express the automaton's interpretation of the
"degree" ofdisapproval implied by an input which contains i
penalties. By a stochastic 9nm strategy we denote the
situation where E [0,1] (i < m) and Q - 0 (m < i < n): the
automaton will switch actions when the input is an element
ofGm and will consider elements ofGnm as rewards only with
probability 1- (i is the number of component penalties).
The result of P.5 demonstrates that every deterministic ynm
strategy is just as expedient or more expedient than its
stochastic cousins. The most expedient stochastic strategy,
°n,n- 1 with Qi = 1 (i < n) and ,n E [0,1] (i.e., never switches
when input is in Gn n-l switches with probability 1-n
when input is all ones), is slower than nnn-1 unless
rn,n- 1 > 1, which as mentioned in Sections Ill-B and IV-C,
happens extremely rarely.

B. Stochastic 6 Strategies

Alternatively, we might implement a stochastic strategy
that switches actions with probability 1 - if the nth
component of the input vector is a penalty, and if the first
n - 1 components fall into Gc 1 while considering every-
thing else as a reward. This is a stochastic r7,m + 1 strategy. It
is no more expedient than the deterministic 6nm+ 1, and will
be slower unless the associated r (rate) function is greater
than unity.

C. Memory

Allowing the automaton extra states provides the
possibility ofschemes with memory. In a?(1) it is well known
[4] that a Tsetlin m-memory level automaton is e-optimal if
c1 < , and a Krinskiy model becomes e-optimal as memory
depth approaches infinity. Placing the automaton in a
higher order environment employing the reward-penalty
partitions discussed in this report amounts to substituting a
particular composite teacher for the single teacher in aV(1).
Hence, if the composite teacher is better, the automaton
must be more expedient. Since we know when a higher order
environment becomes a better teacher, we know how to
improve the performance of these established memory
schemes. But, substituting a better teacher does not affect the
essential characteristics of memory management. No
switching strategies discussed in this report can make a
Krinskiy or Tsetlin automaton e-optimal (unless, of course,
in the latter case, C*m < 2, where l > 2 previously).

However, the input sets from a multi-teacher environment
suggest many new memory schemes which may very
possibly induce stronger expedience characteristics than yet
seen in deterministic fixed structure automata. Unfor-
tunately, these schemes entail nonsparse 2m x 2m (where m
is the memory depth) algebraic matrices whose solutions are
rather complicated. Those solutions are now being
developed.

VI. CONCLUSION
We have replaced a single environment with a set of

environments, and, positing some a priori correct behavior,
have investigated fixed structure automata learning schemes
that increase the probability of its being performed. By

emphasizing the importance of learning a "correct" behav-
ior, we have turned away from the problem ofminimizing an
an expected incidence of penalties, establishing a distinction
between teachers and environments, and thereby motivating
a strong initial postulate that all teachers agree (as to the
correct behavior).

Initial analysis indicates that the relative success of a
particular strategy depends upon how it partitions an
unordered input set into reward and penalty subsets. Some-
what surprisingly, the maximally expedient partitions evince
a single element penalty subset containing the vector with no
reward components. Since the incidence of one out of 2n
inputs decreases drastically as n increases, these maximally
expedient strategies will usually be very slow. Exact deci-
sions regarding speed and accuracy may be analytically
determined, but require further knowledge of the
environment.

Future study of the n-teacher environment might fruit-
fully consider variable structure or sample mean automata.
An investigation of the expected penalty minimization
problem would also be interesting.

APPENDIX
We only present the proofs for the two central proposi-

tions of the paper, and simply list all other results (which
have been proven in [5]).
We establish the following notational conventions:

n

Bn- {0,1}i
i =1

is the set of n-dimensional vectors with zero or one entries.

Gnp-jfBEBn E1 i <P}
is the set ofsuch vectors containing p or fewer ones. J1 is the
a-algebra on Bn generated by the nested sequence {GJ7}7 1.

Pn n R bypn(G) dPn

(where Pn is the probability induced by the Cartesian
product of teachers H Ei) is a measure on d1n.
fnm Pn(Gnm ax) is the p-measure of the set ofvectors with no
more than m penalty components, and hence, the reward
probability for ftnm q1npq - Pn(Gn -Gnq a) = - fnq is the
p-measure of those vectors with exactly p penalty
components.

Finally, let x E [0,1]n. Thenfnm(x), qnpq(X) will denote the
appropriate mappings from [0,1]n _+ [0,1] formed by evalu-
ating Pn(Gnm a) when ci = xi (i = 1,n), andfnm(y), fnpq(Y) will
denote those mappings formed by evaluating Pn(Gnm )
when ci = yi (i = 1,n). For any vector u E [0,1]n, the n - 1
dimensional vector ujwill denote (u1,,uj 1, Uj+ 1' , Un)

Proposition 1: (Bn&n9Pn) is a probability space.
Proposition 2: For all n,m, and x E [0,1]n, the reward

probability function fnm(x) is monotonically decreasing in
each xi.

Proposition 3: Given the automaton-environment pair
sl(n), strategy 9',, is more expedient than 1nq independent
of teacher characteristics if and only if n > p > q > 0.
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Proof: The hypothesis is equivalent to the condition
f7np > tfnq, which, in turn, is equivalent to the inequality:

(H*) < 7nnq
qlnnp 7lnnq

It will suffice to prove this for p = q + 1, which is done by
induction on n.

i) True for n = 2: We need only consider the case
p= 1 = q + 1: (*) may be rewritten

11f21 1-fi20
1-f2l 1-f20

which is equivalent to c1j1(C2 - C2) + C2 2(C1 - C1) > 0.
This is true by the agreement postulate.

ii) True for n implies truefor n + 1: We must show,
for y,x E [0,1]n + I

fn+ l,n+ 1,qg+ 1(Y) <f11+ 1,n+ l,q(Y)
win + 1,n + 1,q + I (X) 'ln + 1,n + l,q(X)

This may be recursively expanded and simplified, for each
n + 1, as

(x1x)(' - Yi)['lnnq + I (Xj)flnnq(Yj) - ?1nnq + 1 (Yj)flnnq(xi)]
+ Xjyj[qnnq(xj)innq-1 (Yi) - 7lnnq-1 (Xj)llnnq(Yj)]

+ xj(1 Yj)[rlnnq(Xj)jnnq(Yj) -7nnq - 1 (Xj)innq + 1 (Yj)]
- yj(1 Xi)[qnnq(Xj)qinnqCYj) ?lnnq-1 (Yj)'lnnq + I (Xj)] > 0.

By inductive hypothesis, there is some j for which the first
and second terms are positive. Note that ifq = 0, the second
is, nevertheless, positive since 1nnk > 1lnnk by P.2. It requires a
separate proof by induction to show that the third term is
positive. Finally, it can be shown that the third term is larger
than the fourth since xj(1- yj) > yJ{1 - xj) and
tlnnq - 1 lnnq+ 1 - lnnq 1 lflnnq + 1 > 0 by inductive hypothesis.
Hence the inequality is true.

Proposition 4: Given the automaton-environment pair
.d(n) and an extra teacher En+ , strategy n+ 1,p is more
expedient than ynq independent of teacher characteristics if
and only if n > p > q.

Proof: The hypothesis is equivalent to i,n+ 1p> itnq
which is true if and only if

11n + 1,n + 1,p< lnnq

1n + 1,n + 1,p 7nnq

By recursively expanding the left-hand side, and simplifying,
this yields the inequality

1
(*) y < _lnnq11np,p-1 x + - #nnqnnnp - r1nnq #nnpi

t1nnqlnpp- 1 rlnnqllnpp- 1

Define D' = {(x,y) E [0,1]2 (*) holds}. By the agreement
postulate on teachers we must have (ci,,c) E D=
{(x,y) E [0,1]2 x > y}.

i) Sufficiency: Assume p . q + 1 - show D c D'.
By P.3 we know 1nnqfnnp-1 < ?nnq nnp- which may be
rewritten as tinnq(1npp- 1 + Ffnnp) < innq(?npp- 1 + ?lnnp), and
this is equivalent to qnnqjnpp- 1 - 1nnqtnpp- 1 < lnnq1lnnp -

tlnnqfnnp Since the inequality is made strict by multiplying
the left-hand side by x < 1, we have, rearranging,

X < 1nnq fnpp - 1X +
7lnnq lnpp- 1

1

7lnnq lnpp- 1
[iinnq tlnnp - lnnq qnnp]

But if (x,y) E D, then x > y, hence (x,y) E D'.
ii) Necessity: Assume p < q: show D $ D'. If p < q

choose £ > 0 such that fnnq lnnp = q1nnq Tnnp 2e Choose

E- D.
(innq 1npp-1 2?lnnqijnpp- 1

This is not an element of D'. If p = q choose

(X, nnqq'npp- 1 ) ED.
q7nnlnnpp- 1

This is not an element of D'.
Corollary 1: A necessary and sufficient condition for

°n+1 ,k in (1,j{Ej}j!+Z1) to be more expedient than ynk in
(s1,{EJ}J=1=) where {Ej}J 1 c {Ej}j + l is

1n+ 1 lfnnk(cl, jcn)nkkc- 1(cl, . cu)

Cn+ I tlnnk(Cl1, Cn)q1nkk- 1(Cl , Cn)

The next two corollaries are consequences of the
definitions of the W strategies and the inequalities in P.4.

Corollary 2: If 5 n+ 1,k iS more expedient than (6 + 1 ,k in
(s1,{Ej},_ 1) then ynk in (sl,{Ej}% 1) is more expedient than
ann+1,k-

Corollary 3: If tn+ 1,k in (s1,{jE}j+ 1) is more expedient
than s"nk in (s1,{Ej}j%), then I6l+1 k+1 is more expedient
than n±+ 1,k+l in ( it=,{Ei}_ 1).
The reader is reminded that a more complete exposition

of stochastic strategies as well as the proof of the final
proposition are to be found in [5].

Proposition 5: For all n, °nm is as expedient as any
stochastic strategy of its type.
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