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Abstract—This paper proposes two alternatives of a direct
model predictive control (MPC) scheme for a three-phase two-
level grid-connected converter with an LCL filter. Although both
approaches are implemented as direct control methods, i.e., they
combine control and modulation in one computational stage,
they operate the converter at a constant switching frequency and
generate a discrete grid current harmonic spectrum. To achieve
this, the first method allows for one switching transition per phase
and sampling interval, implying that a fixed modulation cycle
akin to pulse width modulation (PWM) results. Moreover, by
appropriately designing the objective function of the optimization
problem underlying MPC, grid current distortions similar to
those of space vector modulation (SVM) are produced. As for
the second approach, two phases are allowed to switch per
sampling interval, emulating the behavior of discontinuous PWM.
Consequently, thanks to the introduced formulations, harmonic
limitations imposed by relevant grid codes can be met with
the proposed methods. Furthermore, owing to the multiple-
input multiple-output (MIMO) nature of both approaches, all
output variables of the system can be simultaneously controlled.
Finally, the inherent full-state information of MPC renders an
additional active damping loop unnecessary, further simplifying
the controller design. The presented performance assessment
highlights the potential benefits of both proposed MPC-based
algorithms.

Index Terms—Model predictive control (MPC), optimal con-
trol, converter control, pulse width modulation (PWM), har-
monics, MIMO control, active damping, grid-connected power
converters.

I. INTRODUCTION

C
ONTROL schemes based on model predictive control

(MPC) [1] were introduced in the power electronics

community as early as in the 1980s, see, e.g., [2]. Nonetheless,

MPC has not gained much attention before early 2000s. With

the aid of ever-increasing computational power, however, this

changed and a renewed interest was developed towards MPC.

As a result, several MPC-based concepts, tailored to the

needs of power electronic systems, have been introduced since

then [3]. The published methods clearly highlight some of the
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inherent characteristics of MPC, such as, system constraint

satisfaction (owing to the underlying constrained optimization

problem) as well as its ability to handle multiple-input and

multiple-output (MIMO) systems with complex, nonlinear

dynamics, and integer manipulated variables.

MPC can be implemented as indirect or direct controller. In-

direct MPC—according to which the control input is translated

into the switching signals via a modulator—is most commonly

implemented in its explicit MPC variant [4]–[7]. However,

explicit MPC is computationally feasible only for systems with

a low-dimensional state where the memory requirements are

not significant. Moreover, it is ill suited to systems with time-

varying references and parameters. Because of the above, ex-

plicit MPC is not favored in the power electronics community.

The most utilized MPC strategy—at least in the academic

community—is direct MPC, also referred to as finite control

set MPC (FCS-MPC) [3]. FCS-MPC, being a direct control

strategy, i.e., the converter switches are directly manipu-

lated [8], can achieve fast transients. Furthermore, it inherits

the ease of implementation of direct controllers, such as direct

torque/power control (DTC/DPC). On the other hand, FCS-

MPC suffers from two main drawbacks, namely, the pro-

nounced computational complexity, and the variable switching

frequency.

Regarding the former, since the optimization variable, i.e.,

the switch position, is modeled as an integer, the formulated

optimization problem is a (mixed) integer program [9]. This

means that its computational complexity increases exponen-

tially with the number of candidate solutions, i.e., the se-

quences of switch positions. Although there exist some algo-

rithms that decrease its average computational load [10], [11],

the problem is typically solved by exhaustively enumerating

the possible switching sequences [12], [13]. Moreover, given

that the direct MPC problem has to be solved in real time

within a matter of a few tens of microseconds, it can become

computationally intractable.

As for the second disadvantage of direct MPC, a variable

switching frequency leads to a non-discrete harmonic cur-

rent/voltage spectrum [14]. For machine-connected converters

such a spectrum is not relevant, thus direct MPC is a good

choice. Grid-tied converters, however, have to meet harmonic

grid codes at the point of common coupling (PCC) which

impose stringent limits on even and non-integer harmonics.



Therefore, direct MPC is, in general, not suitable for such

applications [8, Section 11.2.5], [15, Section VIII].

Motivated by the above, some methods have been presented

that deal with the issues of variable switching frequency and/or

non-deterministic harmonic spectra. For example, deadbeat-

based controllers were introduced in [16], [17], according

to which the reference signals are fed into a modulator. By

doing so, the switching frequency is kept constant and the

output current harmonic spectrum is discrete. The presence of

a modulator, however, slows down the fast transient responses

inherent to direct control schemes. Moreover, such approaches

are not applicable to MIMO systems. An alternative was pro-

posed in [18]. Therein, MPC was augmented with a band-stop

filter with the aim of harmonic spectrum shaping. Although

the energy in undesired harmonics is reduced, a variable

switching frequency—and thus non-deterministic switching

power losses—results.

In a different direction, but with the same objectives as those

aforementioned, works like [19]–[28] propose direct MPC

schemes that allow the switch position to change not only at

the discrete time instants, but also at any time instant within

the sampling interval. To this aim, the notion of “duty cycle”

is adopted, i.e., MPC computes the time instant within the

sampling interval the new switch position should be applied

to the converter. However, methods such as [20], [22]–[25],

[27], are prone to suboptimality since the optimization problem

is solved in two steps, i.e., the optimal switch positions are

computed in the first optimization step, while the second

step derives the “duty cycles”. Furthermore, although the

MPC algorithms in [19], [23], [26], [27] guarantee a constant

switching frequency, they do not generate symmetrical switch-

ing patterns, resulting in non-discrete harmonic spectra. As

for [21], [28], although optimality is ensured, a fixed switching

frequency is not.

To tackle both problems of pronounced computational com-

plexity and variable switching frequency, the notion of pre-

computed switching sequences [29]–[32] was utilized by direct

MPC. The advantage of this is that the optimization variable

is the switching instants of the switching sequence, which

renders the optimization problem computationally tractable.

However, these methods are either limited only to simple,

single-output systems, such as dc-dc converters [32], or the op-

timization problem can be formulated only as an unconstrained

one with respect to time [29]–[31]. As a result, the generated

switching sequences are not necessarily symmetrical, and,

consequently, the harmonic spectra are non-discrete.

To address the shortcomings of the methods discussed

above, a direct MPC scheme for a variable speed drive system

was proposed in [33]. This method manages to operate the

converter at a fixed switching frequency as well as to produce

discrete stator current harmonic spectrum. This is achieved

by forcing each phase leg to switch once per sampling

interval in a specific chronological order. This implies that a

fixed modulation cycle is adopted akin to carrier-based pulse

width modulation (CB-PWM) or space vector modulation

(SVM) [34].

This paper employs the method introduced in [33] to control

a three-phase two-level converter connected to the grid via

an intermediate LCL filter. The algorithm is refined and

implemented as a MIMO approach to meet the multiple

control objectives. To this aim, a linear approximation of

the references of the controlled variables, a longer prediction

horizon and a heavier penalization of the output error at the

discrete time steps are implemented to improve the system

performance. As a result, the grid current harmonics meet the

limits specified by the IEEE 519 grid standard [35]. Moreover,

although the controller operates the converter at a (fixed)

switching frequency of almost twice the resonance frequency,

an outer damping loop—which is most often necessary with

conventional control techniques [36]—is not required thanks

to the full-state control nature of MPC.

In addition, to further reduce the switching frequency while

not violating the harmonic limitations and exciting the reso-

nance frequency, a second formulation of the MPC problem

is proposed that emulates the behavior of 120◦ discontinuous

PWM (DPWM) [34]. More specifically, the presented MPC

algorithm—while utilizing the same refinements mentioned

above—generates switching sequences similar to that of 120◦

DPWM (also known as DPWMMIN) by clamping each phase

leg to the lower dc rail for 1/3 of the fundamental period. As

a consequence, the controller can operate the converter at a

switching frequency that is 33% lower than that of the MPC

that emulates SVM. Finally, both MPC approaches, owing to

their direct MPC nature, exhibit fast transient responses when

changes in the power references occur.

This paper is structured as follows. Section II introduces the

mathematical model of the case study used in this paper. The

proposed MPC strategies that emulate SVM and DPWMMIN

are presented and analyzed in Sections III and IV, respectively.

In Section V, the performance of the two algorithms is

assessed. Conclusions are drawn in Section VI.

Throughout the paper, unless otherwise stated, the quantities

are normalized and presented in the per unit (p.u.) system. The

modeling of the system and the formulation of the control

problem is done in the orthogonal αβ reference frame. Thus,

any variable ξabc = [ξa ξb ξc]
T in the three-phase (abc) system

is transformed into a two-dimensional variable ξαβ = [ξα ξβ ]
T

in the stationary (αβ) reference frame using the operation

ξαβ = Kξabc, where K is the Clarke transformation matrix

K =
2

3

[
1 − 1

2 − 1
2

0
√
3
2 −

√
3
2

]
. (1)

Finally, variables in the abc-plane are denoted with the cor-

responding subscript. For convenience, the subscript of the

variables in the αβ-plane is omitted.

II. MATHEMATICAL MODEL OF THE SYSTEM

The examined system, consisting of a three-phase two-level

grid-connected converter with an LCL filter, is shown in

Fig. 1. The dc-link voltage is assumed to be constant and

equal to its nominal value Vdc. Furthermore, as it is common

with grid-tied converters, an LCL filter is chosen due to

its stronger attenuation of harmonics beyond the resonance

frequency, as compared, e.g., to an L filter. In the following,

the discrete-time state-space model of the system is derived
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Fig. 1: Two-level grid-connected converter with an LCL filter.
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Fig. 2: Equivalent circuit of the grid-connected converter with an LCL filter
in the stationary (αβ) frame.

that will serve as the internal prediction model for the proposed

MPC methods.

Firstly, the converter model is derived. This can be seen as

a gain. Specifically, each phase leg of the converter in phase

x ∈ {a, b, c} can assume two states ux ∈ U = {−1, 1}.

Consequently, the converter can produce two discrete voltage

levels −Vdc

2 and Vdc

2 , respectively [37]. Thus, the converter

output voltage vconv is given by

vconv =
Vdc

2
Kuabc , (2)

with

uabc =
[
ua ub uc

]T
∈ U3 . (3)

In a next step, the state-space model of the system is derived

based on the differential equations that describe its dynamics.

To this end, the equivalent circuit of the system, depicted in

Fig. 2, is utilized. Moreover, as state variables are chosen the

converter current iconv, grid current ig, capacitor voltage vc,

and grid voltage vg. Thus, it follows that

diconv

dt
=

1

Xlc

(
vc − (Rlc +Rc)iconv +Rcig − vconv

)
(4a)

dig

dt
=

1

Xgr

(
vg − (Rgr +Rc)ig +Rciconv − vc

)
(4b)

dvc

dt
=

1

Xc

(ig − iconv) (4c)

dvg

dt
= ωg

[
0 −1

1 0

]
vg , (4d)

where Rlc and Xlc are the converter-side filter resistance

and reactance, respectively. Rgr and Xgr are the grid-side

equivalent resistance and reactance, respectively, equal to

Rgr = Rlg+Rg and Xgr = Xlg+Xg, with Rlg (Xlg) and Rg

(Xg) being the grid-side filter and grid resistance (reactance),

respectively. Moreover, Xc and Rc are the reactance and

internal resistance of the filter capacitor, respectively. Finally,

ωg is the angular grid frequency.

Based on (4) the continuous-time state-space model is

written as

dx(t)

dt
= Fx(t) +GKuabc(t) (5a)

y(t) = Cx(t) , (5b)

where, as mentioned above, the state vector is

x =
[
iTconv iTg vT

c vT
g

]T
∈ R

8 . (6)

The control input is the three-phase switch position uabc

as defined by (3). Moreover, the converter and grid current

along with the capacitor voltage are the output variables,

i.e., y = [iTconv iTg vT
c ]

T ∈ R
6. The dynamics F , input G and

output matrices C are

F =




−Rlc+Rc

Xlc
I2

Rc

Xlc
I2

1
Xlc

I2 02×2

Rc

Xgr
I2 −

Rgr+Rc

Xgr
I2 − 1

Xgr
I2

1
Xgr

I2

− 1
Xc

I2
1
Xc

I2 02×2 02×2

02×2 02×2 02×2 ωg

[
0 −1

1 0

]




G = −
Vdc

2Xlc

[
I2 02×6

]T
, and C =

[
I6 06×2

]
,

where I and 0 are identity and zeros matrices, respectively,

the dimensions of which are denoted by the corresponding

subscripts.

Using exact discretization, the discrete-time state-space

model is derived based on (5). This yields

x(k + 1) = Ax(k) +BKuabc(k) (7a)

y(k) = Cx(k) , (7b)

with A = e
FTs and B = −F−1(I8 −A)G, where e is the

matrix exponential, Ts the sampling interval, and k ∈ N.

III. DIRECT MPC WITH FIXED SWITCHING FREQUENCY

FOR CONTINUOUS MODULATION

The proposed MPC strategy is a direct control method, thus

the converter switches are directly manipulated. In the sequel,

however, it is shown that despite the lack of a modulation

stage, a fixed switching frequency can be achieved.



A. Control Problem

The control objective of the controller is twofold. First,

the controlled (i.e., output) variables need to be regulated

along their reference values with as little deviation as possible.

Second, the controller has to operate the converter at a constant

switching frequency.

The first objective can be interpreted as minimizing the

ripple of the output variables. This means that the weighted

(squared) rms output error can be taken into account. There-

fore, the objective function that captures this can be of the

form1

J =
1

Ts




Ts∫

0

(
yref(t)− y(t)

)T
Q
(
yref(t)− y(t)

)
dt




=
1

Ts




Ts∫

0

‖yref(t)− y(t)‖2Q dt


 ,

(8)

with yref being the output reference vector, i.e.,

yref = [iTconv,ref i
T
g,ref v

T
c,ref]

T ∈ R
6, and Q ≻ 0 ∈ R

6×6

is a diagonal positive definite matrix, the entries of which

prioritize the tracking accuracy among the different controlled

variables. Note that, according to Parseval’s theorem,

minimization of (8) implies minimization of the (squared)

total demand distortion (TDD) of the controlled variables y

over one sampling interval Ts.

To meet the second objective, thus ensuring a fixed switch-

ing frequency, each phase is forced to switch once per sam-

pling interval Ts. To this end, we introduce the switching time

instants t1, t2 and t3, within a sampling interval such that

0 < t1 < t2 < t3 < Ts. At each of these time instants, a

new switch position is applied to the converter. Specifically,

let uabc(t0) being the three-phase switch position applied at

t0 ≡ 0. This switch position is assumed to be the same as

the one applied to the converter at the end of the previous

sampling interval, i.e., uabc(t0) = uabc(t
−
0 ). At time instant

t1, the switch position uabc(t1) is applied which results in one

commutation in one of the three phases. The switch position

changes to uabc(t2) at t2 to alter the state in one of the two

yet inactive phases. Finally, at t3, the switch position uabc(t3)
is applied which forces the third—thus far inactive—phase to

switch. To better understand this, the following example is

given.

Example 1. Consider the grid-connected system in Fig. 1.

Assume that the switch position applied at the end of the

previous sampling interval was uabc(t
−
0 ) = [−1 −1 −1]T , as

shown in Fig. 3(a). This means that at the beginning of

the current sampling interval (t0 ≡ 0), the same switch

position, i.e., uabc(t0) = uabc(t
−
0 ), is applied. Within the

sampling interval the switch positions uabc(t1) = [1 −1 −1]T ,

uabc(t2) = [1 −1 1]T and uabc(t3) = [1 1 1]T are applied

at time instants t1, t2, and t3, with 0 < t1 < t2 < t3 < Ts,

respectively, see Fig. 3(a). As a result, the phases a, c, and b
switch (once) consecutively within Ts.

1The squared norm weighted with the positive (semi)definite matrix W is
given by ‖ξ‖2

W
= ξTWξ.

t0 ≡ 0

1

1

1

0

0

0

−1

−1

−1

ua

ub

uc

t1 t2 t3 Ts

t

(a) Three-phase switch position

yi

yi,ref

t0 ≡ 0 t1 t2 t3 Ts

t

m(t0)|yi
m(t1)|yi

m(t2)|yi

m(t3)|yi

(b) Output variable yi

Fig. 3: Example of the evolution of an (arbitrary) controlled variable yi within
one Ts by applying the depicted switching sequence U , assuming uabc(t0) =
uabc(t

−

0
) = [−1 −1 −1]T and the phase sequence a → c → b.

Based on the above, the vector of switch positions U ,

i.e., the switching sequence, and the vector of switching time

instants are defined as

U =
[
uT
abc(t0) uT

abc(t1) uT
abc(t2) uT

abc(t3)
]T

, (9a)

t =
[
t1 t2 t3

]T
. (9b)

The three switching instants divide the switching inter-

val [0, Ts) into four subintervals [0, t1), [t1, t2), [t2, t3) and

[t3, Ts). The three phases can switch in six different chrono-

logical orders, e.g., assuming phase a switches first, either

phase b has to switch next, followed by phase c, or vice versa.

Considering the different combinations with which all three

phases can switch within on Ts, we conclude that six possible

switching sequences U exist for a given uabc(t0).

B. Control Method

In a next step, function (8) needs to be minimized for the six

admissible switching sequences U as defined in (9a) to yield

the corresponding vectors of switching time instants t (9b). To

do so, the evolution of the output y within the four subintervals

needs to be computed for each U . To simplify this task, and

given that Ts ≪ T1, where T1 is the fundamental period, the

assumption that the output variables evolve linearly within Ts

is made. Hence, the evolution of the output variables within



the four subintervals can be described by their corresponding

(constant) gradients m(t) = dy(t)
dt

∈ R
6, i.e.,

m(ti) =
dy(ti)

dt
= C

dx(ti)

dt
= C

(
Fx(t0) +GKuabc(ti)

)
,

(10)

where i ∈ {0, 1, 2, 3}. It should be noted that in (10),

the gradients at t1, t2 and t3 depend on the state at time

instant t0, i.e., x(t0), (rather than on x(t1), x(t2), and x(t3),
respectively) because of the aforementioned assumption of

constant gradients within the sampling interval.

Example 2. Consider the switching sequence U depicted

in Fig. 3(a). By applying this sequence, the evolution of

the controlled variables changes, and it can thus be con-

trolled. Assuming piecewise affine output trajectories—and

thus a piecewise constant gradient m(t)—the continuous-

time evolution of one (arbitrary) controlled variable yi, with

i ∈ {1, 2, . . . , 6}, is shown, along with its corresponding

reference, in Fig. 3(b).

With (10), the objective function (8) is simplified. However,

the problem is nonconvex since (8) is a cubic function of

time. To turn the problem into a convex one, we choose to

further simplify (8) by penalizing—instead of the (weighted)

rms error—the deviation of the controlled variables from

their references at the switching instants and at the end of

sampling interval, see [33]. By doing so, the rms output error

is approximated in a coarse yet effective manner. Moreover, by

considering the error only at the switching instants and discrete

time steps, the computational complexity of the problem is

kept modest.

In light of the above approximation, function (8) becomes

J =

3∑

i=1

‖yref(ti)− y(ti)‖
2
Q + ‖yref(Ts)− y(Ts)‖

2
Q , (11)

However, (11) is further modified to improve the tracking

performance of the controller. Specifically, the aim of the

following refinements is to eliminate undesired harmonics

that violate the relevant grid codes, such as the IEEE 519

standard [35].

1) Longer Prediction Horizon: In [38], it is shown that

longer prediction horizons lead to better system performance

by predicting the system behavior further into the future. This

benefit becomes even more evident when considering higher

order MIMO systems, such as the examined case study.

In this work, a two-step prediction horizon is implemented.

Accordingly, the switching sequence and vector of switching

time instants are redefined as

U =
[
UT (k) UT (k + 1)

]T
, (12a)

t =
[
tT (k) tT (k + 1)

]T
. (12b)

where

U(ℓ) =
[
uT
abc

(
t0(ℓ)

)
uT
abc

(
t1(ℓ)

)
uT
abc

(
t2(ℓ)

)
uT
abc

(
t3(ℓ)

)]T
,

and

t(ℓ) =
[
t1(ℓ) t2(ℓ) t3(ℓ)

]T
,

TABLE I: Possible sequences for the single-phase switch transitions for a
two-step horizon

Phases to switch

1st sampling interval 2nd sampling interval

First Second Third First Second Third

a b c c b a

a c b b c a

b a c c a b

b c a a c b

c a b b a c

c b a a b c

1

1

1

0

0

0

−1

−1

−1

ua

ub

uc

t0 ≡ 0 t1(k) t2(k) t3(k) t1(k + 1) t2(k + 1) t3(k + 1) 2Ts

Ts

t

Fig. 4: Example of a prediction horizon over two sampling intervals with six
switching instants.

with ℓ = k, k + 1. As implied by (12a), the number

of possible switching sequences is squared, i.e., 62 = 36
switching sequences should be considered for a two-step

prediction horizon. To keep the computational complexity

at bay, we assume that the switching sequence in the sec-

ond sampling interval U(k + 1) mirrors that of the first

sampling interval U(k) with respect to Ts, akin, e.g., to

the SVM switching pattern. This means that U(k + 1) =
[uT

abc

(
t3(k)

)
uT
abc

(
t2(k)

)
uT
abc

(
t1(k)

)
uT
abc

(
t0(k)

)
]T , as de-

picted in Fig. 4. Consequently, the number of possible switch-

ing sequences remains equal to six. The possible switching

sequences for the single-phase switch transitions over a two-

step prediction horizon are given in Table I.

2) Linear Approximation of the References: Since the refer-

ences are sinusoidally varying quantities, the sample-and-hold

approach, i.e., the assumption of constant references at each

sampling interval, similar to SVM or asymmetric regularly

sampled CB-PWM, would result in tracking errors. A better

approximation is to linearly interpolate the references between

two consecutive discrete time steps, i.e., between k and k+1
as well as between k + 1 and k + 2. This yields

yref(t) = yref(ℓ) +mref(ℓ) t , (13)

where

mref(ℓ) =
yref(ℓ+ 1)− yref(ℓ)

Ts

, (14)

and ℓ = k, k + 1. This process is visualized in Fig. 5.

3) Heavier Penalization of the Discrete Time Steps: For

the sake of simplicity—but without loss of generality—a grid-

connected converter with an L filter serves as an example for
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Fig. 5: Linear approximation of the reference value of a (arbitrary) controlled
variable yi,ref over two sampling intervals (dash-dotted line). The sampled
(constant) reference is shown with a dashed line.

vconv vg

igXl Xg

Fig. 6: Equivalent circuit of the grid-connected converter with an L filter in
the stationary (αβ) frame.

analyzing this concept. Considering the equivalent circuit of

the system,2 as shown in Fig. 6, the differential equation

dig

dt
=

1

Xl +Xg

(vg − vconv). (15)

describes the dynamics of the grid current, where Xl denotes

the filter reactance.

The grid voltage in the stationary (αβ) reference frame is a

vector which rotates counterclockwise with the angular speed

ωg = 2πf1, with f1 being the fundamental frequency. Focus-

ing on one instant of the problem, the following assumptions

are made to enhance the clarity of the analysis that follows3:

• The grid voltage vg is located in the first sector (i.e.,

the triangle formed by v1, v2, and v0,7) of the hexagon

formed by the voltage vectors vconv that can be produced

by the converter (2), see Fig. 7(a).

• As implied by Figs. 3(a) and 4, at the beginning

of the sampling interval either the switch position

uabc(t0) = [−1 −1 −1]T (i.e., voltage vector v0), or

uabc = [1 1 1]T (i.e., voltage vector v7) is applied to the

converter. Assume that v0 is applied at t0.

• The phase sequence a → b → c is implemented. There-

fore, the consecutively applied switch positions within

Ts, uabc(t1), uabc(t2), and uabc(t3), correspond to the

voltage vectors v1, v2, and v7, respectively.

• The grid current ripple at t0 is zero, i.e., ig,rip(t0) = 0,

where ig,rip = ig − ig1, with ig1 being the fundamental

component of ig.

Based on the above, if the trajectories of the grid current

dig(vconv)/dt are approximated as linear, then the trajectory

of the grid current ripple ig,rip ideally will be as the one shown

in Fig. 7(b). Such a trajectory—which can be produced with,

2Note that due to their small values, the filter and grid resistances are
neglected in the analysis presented.

3Dropping these assumptions so as to generalize the analysis is straightfor-
ward.
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Fig. 7: Linearized trajectory of the grid current ripple over two consecutive
sampling intervals Ts assuming the depicted vector of the voltage grid vg .
The trajectories over the first and second Ts (modulation half-cycles) are
shown with solid and dashed lines, respectively.

e.g., SVM—indicates that the current error (i.e., ripple) is zero

at the discrete time steps k, k+1, k+2, . . .. With the proposed

MPC, nonetheless, a zero ripple at the discrete time steps is

not guaranteed since the rms of the output error is chosen to be

minimized instead. Consequently, a current ripple trajectory as

the one depicted in Fig. 7(c) is likely to result, which implies

that undesired low frequency harmonics appear due to the fact

that symmetry in the implemented switching sequences is not

enforced.

To overcome the aforementioned issue, and to thus ensure



=
~~

~~~
Minimization of the

objective function

Calculation of gradient vectors mz

and switching sequences U z

Dc-link

Xlc Xlg Xg

Xc

ig

(U∗, t∗)ig,ref

iconv,ref

vc,ref

vg

vc

iconv

uabc(t
−
0 ) u∗

abc(t3)
z−1

Fig. 8: Direct model predictive control with fixed switching frequency for a two-level grid-connected converter with an LCL filter.

that the grid current ripple trajectory returns to the origin of

the plane at the end of each sampling interval (see Fig. 7(b)), it

is proposed to heavily penalize the output error at the discrete

time steps. Therefore, when applying this approach to the

examined case study, i.e., grid-connected converter with an

LCL filter, see Fig. 2, the deviation of all controlled variables

y from their reference values is more heavily penalized at the

discrete time steps.

C. Objective Function

Taking into account all the assumptions and refinements

presented in Section III-B, the objective function is defined

as

J =

k+1∑

ℓ=k

(
3∑

i=1

∥∥yref

(
ti(ℓ)

)
− y

(
ti(ℓ)

)∥∥2
Q
+

+
∥∥∥Λ
(
yref

(
Ts(ℓ)

)
− y

(
Ts(ℓ)

))∥∥∥
2

Q

)
,

(16)

where the references values yref are computed based on (13).

Moreover, Λ ≻ 0 ∈ R
6×6 is a diagonal positive definite matrix

the entries of which assign higher priority to the tracking

accuracy at the discrete time steps. Therefore, its nonzero

entries are greater than one.

Utilizing (10), it is straightforward to show that the output

variables can be written as

y
(
ti(ℓ)

)
= y

(
ti−1(ℓ)

)
+m

(
ti−1(ℓ)

) (
ti(ℓ)− ti−1(ℓ)

)
, (17)

with ℓ = k, k + 1, i ∈ {1, 2, 3, 4} and t4 = Ts. As shown

in [33], (16), after some algebraic manipulations, and with the

aid of (17), can be written in vector form as

J = ‖r −Mt‖2
Q̃

, (18)

where the vector of switching instants t ∈ R
6, as given

by (12b), is the optimization (unknown) variable. Furthermore,

vector r ∈ R
48 and matrix M are time invariant and given in

the appendix. Finally, Q̃ = diag(Q, . . . ,Q).

Algorithm 1 Direct MPC with fixed switching frequency and

continuous modulation

Given uabc(t
−

0
), yref(t0) and x(t0)

0. Compute the corresponding gradient vectors mz , z ∈ {0, 1, . . . , 6}.

1. Enumerate the possible switching sequences Uz , z ∈ {1, 2, . . . , 6},

starting from uabc(t
−

0
).

2. For each Uz :

Solve the QP (20). This yields tz and Jz .

3. Solve the trivial optimization problem (21). This yields t∗ and U∗.

Return U∗(k) and t∗(k)

D. Control Algorithm

The block diagram of the proposed direct MPC scheme

is shown in Fig. 8. Moreover, the pseudocode of the control

method is summarized in Algorithm 1. In the sequel of this

section, the algorithm is explained in detail.

Before the control algorithm is executed, the possible gra-

dients that depend on the measured state vector x(t0) and the

possible switch positions uabc of the two-level converter are

computed. Hence, seven unique output vector gradients mz ,

with z ∈ {0, 1, . . . , 6}, need to be computed, since the eight

possible switch positions uabc of the converter yield seven

different voltage vectors in the αβ-plane, see Fig. 7(a). To

this end, (10) is written as

mz = C (Fx(t0) +Guz) , (19)

where uz refers to the seven different switch positions in the

αβ-plane, i.e., uz = Kuabc,z.

Having computed the output vector gradients (19), the

controller enumerates the possible three-phase switch positions

within the two sampling intervals based on the previously

applied switch position uabc(t
−
0 ) and in line with Table I.

This yields the six feasible switching sequences U z , z ∈
{1, 2, . . . , 6}.

In a second step, the optimization problem

minimize
t∈R6

‖r −Mt‖2
Q̃

subject to 0 < t1(k) < t2(k) < t3(k) < Ts <

< t1(k + 1) < t2(k + 1) < t3(k + 1) < 2Ts.
(20)



is solved for each one of the six sequences U z . Problem (20)

is a convex quadratic program (QP) [39]. Owing to its small

size (the optimization variable is six-dimensional), it can be

solved efficiently using online QP solvers that can solve such

MPC problems on embedded hardware even in a manner of

microseconds, see, e.g., [40]–[43]. The solution of each QP

is a triplet of switching instants tz (12b), switching sequence

U z (12a), and the associated value of the objective function

Jz (18), with z ∈ {1, 2, . . . , 6}.

In a last step, the algorithm decides which one of the six

triplets {tz,U z, Jz} has the minimal value of the objective

function. This is done by solving the following trivial opti-

mization problem

minimize
z∈{1,2,...,6}

Jz (21)

By doing so, the triplet that meets J(U ∗, t∗) = J∗ is the op-

timal one, i.e., {t∗,U∗, J∗}. Following, and according to the

receding horizon policy [1], only the elements corresponding

to the first sampling interval, i.e., U∗(k) and t∗(k), are taken

into account, while the rest are discarded. Thus, the first part of

the optimal switching sequence is applied with the appropriate

switching times to the converter, i.e.,

t∗(k)=
[
t∗1(k) t∗2(k) t∗3(k)

]T
(22a)

U∗(k)=
[
u∗T
abc

(
t0(k)

)
u∗T
abc

(
t∗1(k)

)
u∗T
abc

(
t∗2(k)

)
u∗T
abc

(
t∗3(k)

)]T
.

(22b)

At the next sampling interval, the algorithm is repeated based

on new measurements over a prediction horizon shifted by one

sampling interval.

IV. DIRECT MPC WITH FIXED SWITCHING FREQUENCY

FOR DISCONTINUOUS MODULATION

To reduce the converter switching losses and, consequently,

to improve the system efficiency, the switching frequency

needs to be kept low. To meet this goal, DPWM can be

employed to avoid switching in the vicinity of phase current

peaks [44]. The most straightforward approach to achieve this

is to force the three phases to consecutively refrain from

switching for one-third of the fundamental period, i.e., to

keep each phase leg clamped to the negative dc rail for

120◦ of the fundamental cycle. As a result, with DPWMMIN,

as the method is called, the switching frequency—and thus

the switching losses—are reduced by 33% compared with

continuous modulation techniques that use the same carrier

frequency. Nonetheless, this comes at the cost of unequal

distribution of the power losses between the upper and the

lower switches of the phase legs [34].

Motivated by the aforementioned attributes of discontinuous

modulation, the direct MPC strategy discussed in Section III

is modified in this section to emulate the switching pattern of

DPWMMIN.

A. Control Problem

Besides the control objectives defined in Section III-A, i.e.,

the minimization of the rms error of the controlled variables

y as well as the converter operation at a fixed switching

frequency, the additional task of the reduced switching fre-

quency is considered. The ultimate goal of the proposed

MPC algorithm is to operate the converter at the lowest

possible switching frequency while meeting the relevant grid

codes [35].

Considering the above, the control problem has similarities

with that discussed in Section III-A. Therefore, the control

principle and introduced concepts, such as the switching se-

quence U and instants t, remain in place. For MPC, however,

to emulate the switching pattern of DPWMMIN, one of the

three phases has to remain inactive, i.e., clamped to the nega-

tive dc rail, for the whole sampling interval. This implies that

only two different switch positions should be applied to the

converter at two consecutive switching instants within one Ts.

Consequently, for direct MPC with discontinuous modulation,

the switching sequence U(ℓ) and vector of switching instants

t(ℓ) in (12a) and (12b), respectively, are defined as

U(ℓ) =
[
uT
abc

(
t0(ℓ)

)
uT
abc

(
t1(ℓ)

)
uT
abc

(
t2(ℓ)

)]T
(23a)

t(ℓ) =
[
t1(ℓ) t2(ℓ)

]T
. (23b)

By doing so, it is ensured that only two phases switch within

one Ts. This, however, does not suffice to guarantee that one

phase remains inactive for one third of the fundamental period,

as it is the case with DPWMMIN. To address this, further

modifications are required, as explained in Section IV-B.

B. Control Method

DPWMMIN utilizes only one of the two zero voltage

vectors of a two-level converter (Fig. 9), i.e., the voltage vector

v0. Assume that the proposed MPC algorithm implements

the corresponding switch position at the beginning of the

sampling interval, i.e., uabc

(
t0(k)

)
= [−1 −1 −1]T . Then,

after applying two switch positions that activate as many

phases at instants t1(k) and t2(k), the single-phase switch

position of the third (inactive) phase will still be −1 by the

end of the interval, ux(Ts) = −1.

As can be understood from the above, the proposed algo-

rithm has not only to compute the appropriate switching time

instants and sequence, but also to identify which phase should

be kept inactive within the sampling interval. To achieve the

latter, a deadbeat approach is employed. More specifically,

the ideal converter output voltage vconv,ref(k) that drives the

converter current to its reference within one sampling interval

is computed. Using forward Euler discretization, (4a) can be

written as

iconv(k + 1)− iconv(k)

Ts

=
1

Xlc

(
vc(k)− (Rlc +Rc)iconv(k)+

+Rcig(k)− vconv(k)
)
.

(24)

Setting as a goal iconv(k + 1) = iconv,ref(k + 1), vconv,ref(k) is

given by

vconv,ref(k) = vc(k) +Rcig(k)−
Xlc

Ts

iconv,ref(k + 1)+

+

(
Xlc

Ts

− (Rlc +Rc)

)
iconv(k) .

(25)
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Fig. 9: Two-level converter voltage vector diagram and switching patterns per
sector according to DPWMMIN.

Following, the inactive phase is determined based on

the location of vconv,ref(k) in the αβ-plane, i.e., the angle

∠vconv,ref(k). Specifically, when vconv,ref(k) is located at sectors

1 or 2, see Fig. 9, phase leg c is clamped to the −1 (uc = −1).

Thereby, only phases a and b are allowed to switch. If, on the

other hand, vconv,ref(k) is at sectors 3 or 4, then ua = −1 and

phases b and c are active. Finally, for the last two sectors,

phases a and c switch, while ub = −1.

Having determined the phase clamped to the negative dc

rail, the possible switching sequences are generated. Therefore,

by excluding the inactive phase, the two remaining phases can

switch in two possible chronological orders. This means that

at any given instant, only two—in contrast to six, which is

the case with MPC with continuous modulation—switching

sequences U need to be examined. If, e.g., vconv,ref(k) is

located at the first sector, the two active phases switch such

that either phase a switches first and b follows, or vice versa.

The active phases, depending on the location of vconv,ref(k), as

well as the possible sequences over one Ts are summarized in

the first three columns of Table II.

Besides the above-mentioned modifications, the refinements

introduced in Section III-B are utilized with MPC with discon-

tinuous modulation. This means that the switching sequences

over a two-step horizon (Np = 2) are again mirrored with

respect to Ts; the resulting possible switching sequences are

shown in Table II. As seen in the table, the total number of

possible switching sequences remains the same as with MPC

with continuous modulation. However, as explained above,

only two are taken into account each time.

TABLE II: Possible sequences for the single-phase switch transitions for a
two-step horizon when emulating the switching pattern of DPWMMIN

Location of

vconv,ref(k)

Phases to switch

1st sampling interval 2nd sampling interval

First Second First Second

Sectors 1 or 2
a b b a

b a a b

Sectors 3 or 4
b c c b

c b b c

Sectors 5 or 6
a c c a

c a a c

Algorithm 2 Direct MPC with fixed switching frequency and

discontinuous modulation

Given uabc(t
−

0
), yref(t0) and x(t0)

0. Compute the corresponding gradient vectors mz , z ∈ {0, 1, . . . , 6}.

1a. Identify the sector of the desired converter output voltage vector
vconv,ref(k) based on ∠vconv,ref(k).

1b. Enumerate the possible switching sequences Uz , z ∈ {1, 2},

starting from uabc(t
−

0
).

2. For each Uz :

Solve the QP (27). This yields tz and Jz .

3. Solve the trivial optimization problem (21) for z ∈ {1, 2}. This yields
t∗ and U∗.

Return U∗(k) and t∗(k)

Given the above, the objective function is

J =

k+1∑

ℓ=k

(
2∑

i=1

∥∥yref

(
ti(ℓ)

)
− y

(
ti(ℓ)

)∥∥2
Q
+

+
∥∥∥Λ
(
yref

(
Ts(ℓ)

)
− y

(
Ts(ℓ)

))∥∥∥
2

Q

)
.

(26)

Finally, function (26) can be written in the same vector

form as in (18). However, the size of the optimization problem

underlying MPC is smaller. This is due to the fact that the

optimization variable, i.e., the switching instants t (23b), is a

four-dimensional vector. Moreover, r ∈ R
36, and matrix M

is of appropriate dimensions.

C. Control Algorithm

As in Section III-D, in a preprocessing step, the possible

output gradients mz , with z ∈ {0, 1, . . . , 6}, are computed

based on (19).

Subsequently, the location of the desired converter output

voltage (25) is identified, and the two candidate switching

sequences are determined according to Table II. Depending on

uabc(t
−
0 ), the controller enumerates the two feasible switching

sequences U z , with z ∈ {1, 2}.

Following, for each one of the two given switching sequence

the optimization problem

minimize
t∈R4

‖r −Mt‖2
Q̃

subject to 0 < t1(k) < t2(k) < Ts <

< t1(k + 1) < t2(k + 1) < 2Ts.

(27)

is solved. As before (see Section III-D), the solution of the

QP is a triplet {tz,U z, Jz}, with tz and U z given by (23).



TABLE III: Rated values of the system

Parameter Symbol SI Value

Voltage VR 400 V

Current IR 18A

Angular grid frequency ωgR 2π50 rad/s

Short-circuit ratio ksc 20

Grid impedance ratio kXR = X/R 7

TABLE IV: System parameters

Grid Reactance Xg 0.0490

Resistance Rg 0.0071

LCL filter Grid-side reactance Xlg 0.0735

Grid-side resistance Rlg 0.0055

Converter-side reactance Xlc 0.0808

Converter-side resistance Rlc 0.0078

Capacitance reactance Xc 0.0355

Capacitance resistance Rc 0.0623 · 10−3

Converter Dc-link Vdc 1.9902

Finally, a similar problem to (21) is solved, with the differ-

ence that the controller has to choose between two—instead of

six—values of the objective function to determine the minimal

one. In doing so, the optimal triplet {t∗z,U
∗
z, J

∗
z } is found,

and, in line with the receding horizon policy, u∗
abc(t

∗
1(k)) and

u∗
abc(t

∗
2(k)) are applied to the converter at the appropriate time

instants.

The pseudocode of the proposed direct MPC with discon-

tinuous modulation is presented in Algorithm 2. The block

diagram is similar to that shown in Fig. 8, with the difference

that the angle ∠vconv,ref(k) needs to be fed into the MPC block.

V. PERFORMANCE EVALUATION

In this section the performance of the proposed direct MPC

schemes is assessed on a simulation basis. The rated values

as well as the p.u. parameters of the chosen case study (see

Fig. 1) are given in Tables III and IV, respectively. The setup

is assumed to be ideal, i.e., second-order effects, such as

controller delays, deadtimes, measurement noise, parameter

variations, model imperfections, disturbances, etc., are ne-

glected. The chosen sampling interval is Ts = 175.43µs. The

weighting matrices for MPC with continuous and discontin-

uous modulation are chosen as Q = diag(1, 1, 9, 9, 0.9, 0.9)
and Q = diag(1, 1, 9, 9, 1.1, 1.1), respectively, both prior-

itizing the grid current error. Moreover, matrix Λ for the

two methods was chosen as Λ = diag(9.5, 9.5, 10, 10, 10, 10)
and Λ = diag(5.8, 5.8, 5.5, 5.5, 5.5, 5.5), respectively. In the

sequel, before presenting the performance evaluation, a brief

description of the filter characteristics and the IEEE 519 grid

standard is provided.

A. LCL Filter

The frequency response of the LCL filter considered in

this work is shown in Fig. 10. The filter has two resonance

frequencies; the dominant one is given by (in SI)

fres = fB
1√

Xc
Xlc(Xlg+Xg)
Xlc+Xlg+Xg

≈ 1203.3 Hz ,
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Fig. 10: Frequency response of the LCL filter.
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Fig. 11: Current harmonic limits at the PCC based on the IEEE 519 standard
for short circuit ratio ksc = 20.

where fB = 50Hz is the base (rated) frequency. As seen

in the figure, LCL filters—being third-order systems—can

attenuate the harmonics beyond their resonance frequency at

a rate of −60 dB/dec. Nonetheless, the harmonics around the

dominant resonance frequency are usually excited due to the

low impedance of the filter at the vicinity of fres. Thus, passive

and/or active damping techniques are often used to provide

sufficient damping of the filter resonance [45], [46].

B. IEEE 519 Grid Code

Grid codes are a set of regulations that define minimum

requirements for the interconnection of facilities to the grid

in order to ensure safe and secure operation of the system.

The IEEE 519 grid standard [35] imposes limits on the current

harmonics at the PCC. The latter is “usually taken as the point

in the power system closest to the user where the system owner

or operator could offer services to another user” [35] and is

shown in Fig. 1.

For systems rated between 120V and 69 kV, such as this

case study, the maximum current harmonic limits at PCC are

given in [35] as a percentage of the maximum fundamental

frequency component of the current. The limits vary for

different short-circuit ratios of the grid ksc. For ksc = 20
considered in this work, the limits are depicted in Fig. 11. As
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Fig. 12: Simulated waveforms produced by direct MPC with continuous modulation during steady-state operation and unity power factor (fsw = 2850 Hz).
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Fig. 13: Simulated waveforms produced by asymmetric regularly sampled CB-PWM with min/max common-mode signal injection (fsw = 2850 Hz).

can be seen, the limits on even and higher-order harmonics

are particularly stringent.

C. Direct MPC with Continuous Modulation

The closed-loop behavior of the system is examined while

being controlled with the proposed direct MPC scheme with

continuous modulation. With the chosen sampling interval of

Ts = 175.43µs a fixed switching frequency of fsw = 2850Hz

results. The steady-state system performance when operating

under unity power factor (pf), i.e., P = 1 p.u. and Q = 0 p.u.,

is shown in Fig. 12 for one fundamental period. The controlled

variables track their reference values accurately, as can be

seen in Figs. 12(a)–12(c), while operation under unity power

factor is achieved (see Figs. 12(d) and 12(e)). The grid current

TDD is as low as 0.69%, thanks to the effective attenuation

of the harmonics achieved by MPC with the chosen objective

function (16) and the LCL filter. Moreover, as can be seen

in Fig. 12(f), where the grid current harmonic spectrum is

shown, its harmonics appear at odd non-triplen multiples of

the fundamental frequency with the more pronounced being at

the vicinity of the switching frequency. Comparing with the

harmonic limitations imposed by the IEEE 519 standard (see

Fig. 11), it can be concluded that the produced grid current

does not violate them. Furthermore, it is observed, that the

harmonics in the vicinity of the resonance frequency are not

excited despite the absence of an active damping loop and the

low ratio fsw/fres, which is ≈ 2.37. Therefore, the proposed

method can operate the converter at relatively low switching

frequencies, and, thus, the switching losses can be reduced.

For comparison purposes, asymmetric regularly sampled

CB-PWM with min/max common-mode signal injection is

implemented. Note that this leads to equivalence between CB-

PWM and SVM [34, Section 6.3]. Such a method can be

interpreted as a closed-loop linear controller with a very low

bandwidth. As before, nonidealities and second-order effects

that appear in a real-world setting are neglected. Thus, the

steady-state performance of this benchmark case corresponds

to its theoretically best achievable performance. Moreover,

owing to the harmonic energy distribution of SVM, lower

harmonic distortion levels can be achieved while exploiting

an extended linear modulation range [34]. Finally, for a fair

and meaningful comparison, the carrier signal has the same
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Fig. 14: Power reference steps for direct MPC with continuous modulation.

frequency as the switching frequency of MPC, i.e., 2850Hz.

The three-phase modulating signal and the triangular carrier

waveform are shown in Fig. 13(a). Moreover, Figs. 13(b)

and 13(c) illustrate the harmonic spectrum of the converter

(differential-mode) output voltage and grid current, respec-

tively. As seen in Fig. 13(c), the grid current harmonics appear

at the same frequencies, but they are of different amplitudes

compared with those produced by MPC (see Fig. 12(f)). The

TDD of the grid current is 0.67%. Hence, the proposed direct

MPC achieves a grid current TDD which is almost equal to

that produced by SVM.

Finally, the transient behavior of the proposed direct MPC

with continuous modulation is examined during changes in

real and reactive power references. At t = 5ms, both real and

reactive power references are changed from the nominal op-

erating point (P = 1 and Q = 0 p.u.) to 0.5 p.u., and changed

back at t = 15ms to regain nominal operation. These steps

on the power references are translated into the corresponding

steady-state references of the controlled variables y, i.e., the

converter and grid currents, and capacitor voltage.

During power transients, there is an energy exchange be-

tween the converter, filter and grid. As a result, the magnitude

and phase of the converter and grid current are changed. The

same applies to the phase of the capacitor voltage. Despite all

these changes, the controlled variables, and consequently the

powers, track their references accurately with short settling

times, see Fig. 14. Since the proposed MPC algorithm is

implemented as a direct controller, it makes decisions such that

the deviation of the controlled variables from their references

is alleviated as quickly as possible. In effect, the dynamic

response of MPC is limited by the available voltage margin.

For example, due to the smaller voltage margin available when

operating under unity pf, the dynamics are slower during

the step-down—compared to the step-up—change in the real

power.

D. Direct MPC with Discontinuous Modulation

When direct MPC emulates DPWMMIN (see Section IV)

and the same sampling interval is used, i.e., Ts = 175.43µs,

then the resulting switching frequency is two-thirds of that in

Section V-C. Therefore, the switching frequency for MPC with

discontinuous modulation is fsw = 2
3 · 2850 = 1900Hz. The

steady-state performance of the system at the same operating

point as in Section V-C, i.e., P = 1 and Q = 0 p.u., is

examined. The results are shown in Fig. 15. As can be seen

in Figs. 15(d) and 15(e), operation under unity power factor is

achieved. This implies, that the controlled variables accurately

track their desired values (Figs. 15(a)–15(c)), albeit with

slightly higher ripple due to the lower switching frequency.

The increased ripples are also reflected in the grid current

harmonic spectrum, see Fig. 15(f). As expected, the grid

current TDD is slightly increased to 0.87%. As can be seen in

Fig. 15(f), harmonic energy is distributed not only among odd

non-triplen multiples of the fundamental frequency, but also

over even harmonics, since quarter- and half-wave symmetries

are compromised with discontinuous modulation. Notwith-

standing the foregoing, the produced grid current harmonics

abide by the limitations imposed by the IEEE 519 standard.

Furthermore, despite the ratio between the switching and

resonance frequency being ≈ 1.58, i.e., considerably low, the

harmonics around the resonance frequency are not excited.

Therefore, as can be seen, the proposed direct MPC, thanks

to the full-state information (see (5) or (7)) and the refine-

ments discussed in Section III-B (e.g., the long horizon [38]),

effectively mitigates the adverse effect of the filter resonance,

rendering an additional damping loop unnecessary. Thus, MPC

with discontinuous modulation can operate the converter at

even lower switching frequencies compared with MPC and
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Fig. 15: Simulated waveforms produced by direct MPC with discontinuous modulation during steady-state operation and unity power factor (fsw = 1900 Hz).
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Fig. 16: Simulated waveforms produced by asymmetric regularly sampled DPWMMIN (fsw = 1900 Hz).

continuous modulation. As a result, the switching power losses

can be further reduced.

As a benchmark, asymmetric regularly sampled DPWM-

MIN is implemented for operation at the same switching

frequency, i.e., fsw = 1900Hz. Fig. 16(a) illustrates the

three-phase modulating signal and the triangular carrier wave-

form, while Figs. 16(b) and 16(c) show the spectrum of the

converter (differential-mode) output voltage and grid current,

respectively. As can be seen in Fig. 16(c), the harmonics

produced by DPWMMIN are of the same order, but slightly

different amplitude, compared with those produced by direct

MPC. Despite these small differences, the grid current TDD

is 0.87%, i.e., equal to the one obtained with the proposed

method.

As a last performance assessment, the dynamic behavior

of the proposed scheme is examined during step changes in

the power references, see Fig. 17. While operating at nominal

operating conditions (pf = 1), the real and reactive power

references are changed to 0.5 p.u. at t = 5ms, and changed

back to their values that correspond to nominal operation at

t = 15ms. The controlled variables—and hence the powers—

follow their references accurately. Since only two—rather than

three—phases at a time are involved in switching, the tran-

sients are slightly slower compared with MPC with continuous

modulation, see Section V-C. Nevertheless, the settling times

are as short as possible, limited only by the available voltage

margin.

VI. CONCLUSIONS

This paper presents a direct MPC strategy for a three-

phase two-level grid-connected converter with an LCL filter.

In contrast to conventional direct MPC (FCS-MPC) algo-

rithms, where the harmonic spectra are non-deterministic,

with the harmonic energy spread over the whole range of

frequencies, the proposed controller produces a discrete grid

current harmonic spectrum. This is achieved by introducing

a fixed modulation cycle and symmetrical switching patterns

computed with the presented optimization problem underlying

direct MPC. In doing so, the grid standards—such as IEEE

519—can be met since the stringent limits on harmonics,

especially of even order and interharmonics, are adhered to,

while the grid current TDD is very close to that of asymmetric
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Fig. 17: Power reference steps for direct MPC with discontinuous modulation.

regularly sampled CB-PWM with min/max common-mode

signal injection (i.e., SVM). Moreover, by exploiting the

inherent full-state-control mechanism of MPC, an additional

active damping loop is redundant. Furthermore, owing to

the adopted MIMO approach, MPC manages to successfully

control all output variables not only at steady-state operating

conditions, but also during transients. As a result, the fast

transient responses that characterize direct control schemes,

as the proposed one, are still present.

In an attempt to further reduce the switching frequency of

the converter, the algorithm is modified to emulate the behav-

ior of 120◦ discontinuous PWM. By doing so, the switching

frequency is reduced by 33% compared with MPC with

continuous modulation. Moreover, albeit the lower switching

frequency, the grid current harmonics still adhere to the grid

codes, while the grid current TDD is the same as the one

achieved with asymmetric regularly sampled DPWMMIN.

Further, it is shown that even when a discontinuous switching

pattern is implemented by MPC the dynamic behavior of the

system does not deteriorate.

It can be concluded, that both of the proposed direct

MPC approaches can operate the system even when the ratio

between the switching frequency and the resonance frequency

is as small as two. This is thanks to the high bandwidth

of the controller(s), which is higher than that of indirect

control methods, such as vector control with SVM/DPWM.

Therefore, owing to the proposed direct MPC approach, one

can increase the efficiency of the converter by reducing the

switching frequency, and, consequently, the switching losses,

while the harmonic output spectrum meets the grid standards,

e.g., [35]. Alternatively, one can reduce the size of the LCL
filter by increasing the frequency of the filter resonance.

APPENDIX

Vector r and matrix M in (18) are given by

r =




yref(t0)− y(t0)

yref(t0)− y(t0)

yref(t0)− y(t0)

Λ
(
yref(Ts)− y(t0)−m(t3(k))Ts

)

yref(Ts)− y(t0)

yref(Ts)− y(t0)

yref(Ts)− y(t0)

Λ
(
yref(2Ts)− y(t0)−m(t3(k + 1)) 2Ts

)




,

and

M =




mt0 06 06 06 06 06

m0 mt1 06 06 06 06

m0 m1 mt2 06 06 06

Λm0 Λm1 Λm2 06 06 06

m0 m1 m2 m̃t0 06 06

m0 m1 m2 m̃0 m̃t1 06

m0 m1 m2 m̃0 m̃1 m̃t2

Λm0 Λm1 Λm2 Λm̃0 Λm̃1 Λm̃2




,

with

mti = m(ti(k))−mref(k) ,

m̃ti = m(ti(k + 1))−mref(k + 1) ,

mi = m(ti(k))−m(ti+1(k)) ,

m̃i = m(ti(k + 1))−m(ti+1(k + 1)) ,

where i ∈ {0, 1, 2}, and t0(k + 1) = Ts.
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