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Abstract

The chaotic support structures for offshore wind turbines are often subjected to a severe environment. A robust control 

scheme needs to be considered to maintain them in a safe operational limit. Robust sliding mode control (SMC) scheme 

can provide an excellent robust controller against this severe and challenging environment for these chaotic structures. This 

paper proposes a novel fixed-time adaptive sliding mode control scheme with a state observer to synchronize chaotic support 

structures for offshore wind turbines in the presence of matched parametric uncertainties. The proposed controller is a new 

integration of adaptive control concept, SMC method, fixed-time stability concept and a state observer. A fixed-time stabil-

ity concept is used to provide stability for the system within a presented time regardless of initial conditions. The adaptive 

concept is utilized to provide an online estimator of the uncertain upper bound. Also, a nonlinear observer is employed to 

provide an online estimator of an unmeasured state in the controller. Lyapunov stability theorem is used to analyze fixed-

time stability of the system based on SMC methodology. The simulation results demonstrate that the proposed controller is 

able to ensure fixed-time synchronization along with providing precise means to estimate the unmeasured state as well as 

uncertainty upper bound.

Keywords Sliding mode · Fixed-time · Chaotic · Observer · Adaptive · Synchronization

1 Introduction

In recent decades, synchronization of different systems has 

been investigated for a variety of control goals. This concept 

has been frequently used to control the renewable energy 

systems, particularly wind power systems. It has been also 

remarkably used for chaos control. A support structure sys-

tem for an offshore wind turbine is one of the chaotic renew-

able energy systems. The offshore wind turbines are sub-

jected to environmental loads including wave, wind, current 

and seismic excitations. These loads might cause some plat-

form vibrations that would lead to the ruin of foundations 

and chaotic behavior. Therefore, it is necessary to use these 

kinds of systems (like support structure systems) to maintain 

the offshore platform in the safe operating limit (Manikan-

dan & Saha, 2013; Prieto-Araujo & Gomis-Bellmunt, 2016).

Furthermore, the issue of applying robust control meth-

ods to foresee the aforementioned vibration of offshore 

structures has attracted great attention from researchers. A 

delayed robust nonfragile H∞ control approach has been 

proposed to diminish the amplitude of the vibrations for the 

offshore platform (Zhang et al. 2015). In (Aggarwal et al. 
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2014; Luo, 2012), a comprehensive study has been done 

on dynamic analysis and different control methods for the 

support structures of offshore wind turbines. In (Hall et al. 

2013), a genetic algorithm has been used to provide optimal 

control for these support structures. In (Yan et al. 2009), an 

effective scheme has been proposed to protect the support 

structure of offshore wind farms against corrosion.

The SMC approach is a robust and popular control 

method (Eaton et al. 2009). It is known because of its low 

sensitivity toward disturbances, and parametric uncertainties 

or variations in the system. In (Zribi et al. 2004), the robust 

SMC scheme has been employed for an offshore structure 

to diminish the internal oscillations. In (Abadi et al. 2018), 

two finite-time and robust control schemes based on SMC 

technique have been proposed for synchronization of smart 

grid chaotic system. In (Chen et al. 2018), a new sliding 

mode synchronization (SMS) has been employed to address 

chaos control in the presence of uncertain parameters and 

disturbances. In (Teimoori et al. 2012), an optimal SMC 

method has been presented to provide an attitude control in 

finite time for a miniature helicopter.

In practical applications, it is often necessary to ensure 

system stability in a finite time (Hosseinabadi et al. 2018). In 

(Mohammadpour & Binazadeh, 2018), a finite-time stability 

concept has been considered to synchronize two chaotic sys-

tems. In (Hosseinabadi et al. 2018), the finite-time stability 

has been ensured in a presented stability time by using a ter-

minal sliding mode control methodology for a hyperchaotic 

system. However, the presented stability time utilizing the 

finite-time stability concept is not independent of the initial 

conditions which can prohibit its practical application due 

to probable unknown system initial conditions. To solve this 

drawback, fixed-time stability has been introduced in 2012 

by Polyakov (2011) which can provide a bounded stabil-

ity time independent of initial conditions and speed up the 

convergence rate. In (Sergey Parsegov et al. 2012), a novel 

fixed-time stability protocol has been presented to ensure 

equidistant allocation on a segment where the stability time 

is estimated in advance. In (SE Parsegov et al. 2013), a novel 

fixed-time algorithm has been proposed to guarantee stabil-

ity in a prespecified time independently of the initial con-

ditions for multi-agent systems. In (Polyakov et al. 2015), 

the fixed-time and finite-time stability concepts have been 

studied for nonlinear systems. In (Ni et al. 2016), a robust 

SMC scheme has been integrated with a fixed-time stability 

concept for chaos control in the power system. Motivated by 

the aforementioned researches, a fixed-time stability concept 

is used in this study.

On the other hand, the knowledge of parametric uncer-

tainty bound for sliding mode controller design is required, 

which might be unknown in practice. The adaptive control 

concept provides an effective scheme to deal with these 

unknown parametric uncertainties (Ma et al. 2015; Mahdavi 

et al. 2015). It utilizes online estimators to provide informa-

tion on the uncertainty upper bounds (Krstic et al. 1995). 

Accordingly, the SMC scheme has been incorporated with 

an adaptive control concept to solve this issue by approxi-

mating the unknown parametric uncertainty bounds. In (Pai 

& Yau, 2011), an adaptive SMC (ASMC) scheme has been 

used for chaos control in horizontal platform systems where 

only asymptotic stability was ensured. In (Nourisola et al. 

2015), adaptive control concept has been combined with 

SMC scheme to control the offshore platforms. In (Vaseghi 

et al. 2017), a finite-time ASMC approach has been used for 

chaos synchronization of communication systems.

Furthermore, the knowledge of the state measurements 

for the controller design is often required, which might be 

unmeasurable physically by utilizing sensors in practice. 

State observers can be designed to approximate the value of 

these unmeasured states instead of measuring them physi-

cally. It should be noted that it can reduce the size, weight, 

cost and even noise of measuring them by physical sensors. 

In (Xu et al. 2017), a comprehensive study has been done 

on parameter and state estimation for state delay systems 

where stability analysis was not discussed. In (Yang & Zhu, 

2013), a sliding mode observer has been designed for syn-

chronization of chaotic systems and the asymptotic stability 

of the observer error dynamic system has been obtained. In 

(Daly & Wang, 2009), a sliding mode controller with a state 

observer has been designed for the control of a nonlinear 

plant in the presence of unknown disturbances. However, the 

controller and state observer have been designed individu-

ally. Therefore, the system stability needs to be guaranteed 

by considering the controller and state observer simultane-

ously, because the separation principle does not hold for the 

nonlinear systems (Abadi et al. 2020).

The above literature survey demonstrates that a notable 

fixed-time stability concept, SMC scheme, adaptive con-

trol approach, and state observer have been successfully 

designed and presented individually for different systems. 

To the best of our knowledge, the FASMC scheme with a 

state observer is yet to be developed where a stability proof 

is obtained by considering adaptive law and observer law 

and control law in one candidate Lyapunov function.

Motivated by abovementioned discussion, a novel 

FASMC scheme with a state observer is introduced for 

chaotic synchronization of two support structures for off-

shore wind turbines with matched parametric uncertainties. 

Indeed, the incorporation of some control methods is consid-

ered in this study to utilize their advantages and to overcome 

the deficiencies of using them individually. More impor-

tantly, the fixed-time stability proof is obtained by utilizing 

only one candidate Lyapunov function by using designed 

control law, observer law, and adaptive law, simultaneously. 

Also, the upper bound of stability time is presented using 

a fixed-time stability concept which is regardless of initial 



944 Journal of Control, Automation and Electrical Systems (2021) 32:942–955

1 3

conditions. The adaptive control concept is used to deal with 

unknown matched parametric uncertainties by estimating 

their upper bounds. It is assumed that the first state is meas-

urable and available, while the second state is unmeasured 

and needs to be estimated by the state observer. It is proven 

that the nonlinear observer and adaptive scheme can provide 

precise estimated data in the designed controller to control 

the system. Additionally, the proposed method is shown to 

be very robust against system parametric uncertainties.

The paper is structured as follows. Section 2 is dedicated 

to mathematical preliminaries including some lemmas and 

standard definitions. Section 3 is devoted to the system 

description of the chaotic support structure for an offshore 

wind turbine. In Sect. 4, the problem formulation is given. 

Section 5 is devoted to methodology and controller design 

using the FASMC scheme with a state observer. In Sect. 6, 

the numerical simulation results and discussion are pro-

vided. Finally, Sect. 7 comes with the conclusions.

2  Mathematical Preliminaries

Some lemmas and standard definitions are given here that 

are utilized throughout this paper. Note that throughout the 

paper the dot displays differential with respect to time and 

sign function denotes the signum function.

Definition 1 The definition of sign function (which denotes 

the signum function) is given as Eq. (1)

Also, the following relations are always true

where a, b ∈ ℝ and u is a differentiable function. Note that 

the sig(x) function has been defined in (Alinaghi Hossein-

abadi et al. 2020; Wu & Li, 2018) as siga(x) = |x|asign(x) , 

where a ∈ ℝ.

Definition 2 Consider a nonlinear system as Eq. (3)

(1)sign(a) =

⎧
⎪
⎨
⎪
⎩

1; a > 0

0; a = 0

−1; a < 0

(2)

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

sign(a) × sign(a) = 1;a ≠ 0

a × sign(a) = �a�
�a�bsign(a) = sigb(a)

a × sigb(a) = �a�b+1

d�u�
dt

= u̇ × sign(u);u ≠ 0;u̇ =
du

dt

�a × sign(b)� ≤ �a�

(3)ẋ = f (t, x); x(0) = x0

where x ∈ ℝ
n is the vector of the system states and f (t, x) is 

a nonlinear function. The origin of system (3) is globally 

finite-time stable if it is globally asymptotically stable and 

any solution x(x
0
) of (3) reaches the equilibria at some finite-

time moment, i.e., lim
t→T

x = 0 and x = 0 for t ≥ T  , where T  is 

called settling time function (Bhat & Bernstein, 2000; Orlov, 

2004).

Definition 3 The origin of system (3) is globally fixed-time 

stable if it is globally finite-time stable and the settling time 

function T  is bounded, i.e., ∃T > 0 ∶ T ≤ Tmax,∀x0 ∈ ℝ
n . 

Therefore, the settling time is always bounded regardless 

of system initial conditions in fixed-time control methods 

(Polyakov, 2011; Zuo, 2015).

Lemma 1 Consider a1, a2,… , a
n
∈ ℝ and 0 < � < 2, then 

we have (Yu et al. 2005).

Lemma 2 Consider a1, a2,… , a
n
≥ 0, 0 < b ≤ 1 and c > 1, 

then we have (Zuo & Tie, 2016).

Lemma 3 Assume there exist four real numbers as 

�1, �3 > 0, 0 < �2 < 1, and �
4
> 1 and a continuously dif-

ferentiable positive function V(x) ∶ ℝ
n
→ ℝ

≥0
 such that; 

V(x) = 0 for x(t) = 0. If any solution x(t) of Eq. (3) satisfies 

the inequality V̇(x) ≤ −�
1
V
�

2 − �
3
V
�

4, then the origin is 

globally fixed-time stable for the system of Eq. (3) and the 

settling time function is as T
(

x
0

)

≤
1

�
1(1−�2)

+
1

�
3(�4

−1)
 (SE 

Parsegov et al. 2013; Zuo & Tie, 2016).

Lemma 4 Consider a scalar system as Eq. (6)

It can be proved that the origin of Eq. (6) is fixed-time 

stable for �1, �3 > 0, �4 > 1, and 0 < �
4
< 1. Also, the set-

tling time T satisfies inequality T ≤
1

�
1(1−�2)

+
1

�
3(�4

−1)
 where 

�1 = �1(2)
(�2+1)∕2

, �3 = �3(2)
(�4+1)∕2

, �2 =
�2+1

2
,  a n d 

�
4
=

�
4
+1

2
.

Proof Consider a candidate Lyapunov function as Eq. (7), 

which satisfies the conditions of Lemma 3

By differentiating of Eq. (7) with respect to time, there 

comes

(4)||a1
||
�
+ ||a2

||
�
+⋯ + |

|an

|
|
�
≥
(
a

2

1
+ a

2

2
+⋯ + a

2

n

) �

2

(5)

n
∑

i=1

a
b

i
≥

(

n
∑

i=1

a
i

)b

,

n
∑

i=1

a
c

i
≥ n

1−c

(

n
∑

i=1

a
i

)c

(6)ẏ = −�1y
�2 − �3y

�4 , y(0) = 0

(7)V =

1

2
y2
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By substituting Eq. (6) into Eq. (8), one can obtain

From Eq. (7), we obtain

By substituting Eq. (10) into Eq. (9), there is

B y  c o n s i d e r i n g 

�1 = �1(2)
(�2+1)∕2

, �3 = �3(2)
(�4+1)∕2

, �2 =
�2+1

2
,  a n d 

�
4
=

�
4
+1

2
 , we have

According to Lemma 3, the origin of Eq. (6) is fixed-time 

stable if �1, �3 > 0 , 0 < �
2
< 1 , and �

4
> 1 . Thus, by choos-

ing �1, �3 > 0, �4 > 1, and 0 < �
4
< 1 the conditions of 

Lemma 3 are fulfilled and the origin of Eq. (6) is fixed-time 

stable. Also, with accordance to Lemma 3, the fixed-time 

stability can be presented as T ≤
1

�
1(1−�2)

+
1

�
3(�4

−1)
 . There-

fore, the proof of Lemma 4 is completed.□

3  System Description

The mathematical model of the nonlinear support structure 

system for offshore wind turbines has been presented in 

(Aggarwal et al. 2014; Li et al. 2006; Manikandan & Saha, 

2013) as Eq. (13)

where the dot denotes differential with respect to time; � 

and � are positive constants; � is damping coefficient; � is 

nonlinear coefficient; �
0
 is the natural frequency; and F and 

Ω are the amplitude and frequency of the external excitation, 

respectively. By considering x
1
= x and x

2
= ẋ in Eq. (13), 

the state-space form is as Eq. (14)

First, system (14) is investigated where the control sig-

nal is not yet applied to the system. Indeed, the uncon-

trolled response of system Eq. (14) is investigated. This 

system shows chaotic behavior without control signal 

for � = 5,� = 1, F = 40,� = 2,�0 = 1 and the initial 

(8)V̇ = yẏ

(9)
V̇ = y

(
−�

1
y�2 − �

3
y�4

)

⇒ V̇ = −�
1
|y|�2

+1
− �

3
|y|�4

+1

(10)|y| = (2V)1∕2

(11)V̇ = −�
1
(2)(�2

+1)∕2
V
(�

2
+1)∕2 − �

3
(2)(�4

+1)∕2
V
(�

4
+1)∕2

(12)V̇(x) ≤ −�
1
V
�

2 − �
3
V
�

4

(13)ẍ + 2�ẋ + �2

0
x + �x

3 = F cos (�t)

(14)

{

ẋ
1
= x

2

ẋ
2
= −2�x

2
− �2

0
x

1
− �x

3

1
+ F cos (�t)

conditions 
[

x1(0), x2(0)
]T

= [2, 1]T (see Fig. 1). It is obvi-

ous that this response is not desirable in offshore platforms. 

Hence, applying the controller is necessary. Figure 1 repre-

sents the uncontrolled simulation of system Eq. (14).

4  Problem Formulation

It is observed that the system has chaotic behavior with-

out a controller (see Fig. 1). In this section, a control input 

u is added to the second subsystem of Eq. (14). Also, a 

model of matched parametric uncertainties d is added 

to the second subsystem of Eq. (14); therefore, Eq. (15) 

would be obtained. Indeed, a control input u is added to 

Eq. (13) to provide a controller for this chaotic system. A 

model of parametric uncertainties, d , is added to Eq. (13) 

(due to existing d in practical applications); hence, we have 

ẍ + 2�ẋ + �2

0
x + �x

3 = F cos (�t) + u + d . Then, by con-

sidering x
1
= ẋ and x

2
= ẍ in this equation, the state-space 

model would be as Eq. (15) as follows

where f (x) is a nonlinear and smooth function (which means 

"sufficient differentiable function"). It is assumed that the 

first system state x
1
 is measured and the second system state 

x
2
 is unmeasured and needs to be estimated. Hence, the vec-

tor of the states and their estimations for the slave system are 

as x =
[

x1, x2

]T
, x̂ =

[

x1, x̂2

]T
, n = (1, 2).

In order to design the combined controller/observer, the 

following assumptions are used:

(15)

⎧
⎪
⎨
⎪
⎩

ẋ
1
= x

2

ẋ
2
= −2�x

2
− �2

0
x

1
− �x3

1

+F cos (�t) + u + d = f (x) + u + d

-4 -2 0 2 4
-10

-5

0

5

10
Chaotic system

x
1
(t)

x
2

)t(

Fig. 1  Uncontrolled response of system Eq. (14)
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Assumption 1 x
1
 as output feedback is measurable.

Assumption 2 The model of matched parametric uncertain-

ties d is bounded, but its upper bound is unavailable and 

needs to be estimated,

where h is the parametric uncertainty upper bound which 

is positive constant.

Assumption 3 f (x) and f
(

x̂
)

 fulfill 
|
|
|
f (x) − f

(
x̂
)|
|
|
≤ � , where 

� is positive constant.

Assumption 4 x
2
 fulfills ||x2

|
| ≤ � , where � is positive 

constant.

Remark 1 It should be noted that Assumptions 3 and 4 might 

be restrictive in some applications. However, � and � are 

arbitrary positive constants (i.e., bounded) that are adjusta-

ble based on the application. In this application, as shown in 

Fig.  1, this system is chaotic and the system states are 

bounded (i.e., we have ||x2
|
| ≤ � given in Assumption 4). 

Moreover, a required condition for designing a state observer 

is to be stable which is obviously considered in the observer 

design in this study (i.e., f
(

x̂
)

 is bounded). Therefore, we 

have 
|
|
|
f (x) − f

(
x̂
)|
|
|
≤ � given in Assumption 3. Also, the same 

assumptions and numerical values for � and � have been 

considered in (Abadi et al. 2020).

Remark 2 From practical point of view, the model of 

matched parametric uncertainties is bounded, but might 

be unavailable (which is given in Assumption 2). Also, the 

abovementioned assumptions can be found in some suc-

cessful applications in (Abadi et al. 2020; Daly & Wang, 

2009; Liu et al. 2016; Mohammadi et al. 2013; Nekoukar & 

Erfanian, 2011; Zhao et al. 2013).

Since the control goal of this study is to synchronize 

two chaotic support structures for offshore wind turbines, 

the master system and slave system should be defined. 

Therefore, Eq. (14) is used to define the master system 

as follows

The slave system is defined as Eq. (17) which is the 

same as the system (15),

(16)|d| ≤ h

(17)

⎧
⎪
⎨
⎪
⎩

ẋ
1m = x

2m

ẋ
2m = −2�x

2m − �2

0
x

1m − �x3

1m

+F cos (�t) + dm = fm(x) + dm

where d
m

 and d
s
 are the model of parametric uncertainties 

in Eqs. (17) and (18). To fulfill the synchronization goal for 

abovementioned master and slave systems, the synchroni-

zation error is defined as e
1
= x

1
− x

1m
 and e

2
= x

2
− x

2m
 . 

As a result, the synchronization error dynamics is given as 

follows

Let d = d
s
− d

m
 be the model of matched paramet-

ric uncertainties in Eq. (19), where we have |d| ≤ h [see 

Eq. (16)].

Remark 3 In most practical applications, measuring the 

states directly by using physical sensors might not be pos-

sible, and even if it is possible, the obtained data are easy to 

contaminate by noise. Also, utilizing lots of physical sensors 

makes the real system implementation more complex and 

more expensive (Benallegue et al. 2008). Hence, reducing 

the number of required physical sensors is preferable in prac-

tice which can decrease the size, weight, cost, and even noise 

of their direct measurements. That is why a state observer 

is designed and combined with a controller to estimate the 

unmeasured second state 2 and provide the estimated data 

in the designed controller.

5  Controller Design by Using FASMC 
Scheme with a State Observer

In this section, a robust fixed-time controller is designed 

based on the SMC technique to synchronize the master sys-

tem (17) and the slave system (18); i.e., synchronization 

error reaches zero in a fixed time. The estimation of the 

uncertainty upper bound is done by using an adaptive con-

cept and providing online data in the designed controller. A 

state observer is designed to estimate the unmeasured state 

(the second state) and provide online data in the controller. 

Before proceeding with designing the controller, let us have 

a short overview of SMC strategy.

Overview of SMC Methodology: SMC scheme is a robust 

nonlinear control approach. The SMC scheme provides a 

robust controller that can confirm maintaining stability 

and reliable performance against modeling inaccuracy and 

uncertainties. To design a controller using SMC methodol-

ogy, a sliding surface and a control law should be designed. 

(18)

⎧
⎪
⎨
⎪
⎩

ẋ
1
= x

2

ẋ
2
= −2�x

2
− �2

0
x

1
− �x3

1

+F cos (�t) + u + d = f (x) + u + ds

(19)

⎧
⎪
⎨
⎪
⎩

ė
1
= ẋ

1
− ẋ

1m = x
2
− x

2m = e
2

ė
2
= f (x) − fm(x) + u + ds − dm

= f (x) − fm(x) + u + d
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That is why, the following two steps are required for stability 

analysis: (1) a control law should be designed such that it 

guides the system to a sliding surface once it applied to the 

system (i.e., it should be proved by applying the designed 

control law to the system, the system will reach the sliding 

surface), (2) a sliding surface should be defined such that a 

desired behavior of the system should be ensured once the 

system reaches the sliding surface (i.e., the stability of the 

sliding surface s = 0 should be proved) (Alinaghi Hossein-

abadi et al. 2020; Utkin, 1977).

The sliding surface is chosen as Eq. (20)

where we have �1, �3 > 0, �4 > 1, 0 < �2 < 1 . Let A = �
1
e
�

2

1
 , 

and B = �
3
e
�

4

1
 for simplification. The adaptive law is given 

as Eq. (21)

where 0 < r < 1 and K > 1 . Also, the estimation error of the 

matched parametric uncertainties (using adaptive concept) 

is obtained as Eq. (22)

where h is the parametric uncertainty upper bound and ĥ is 

its estimate. As it is mentioned for Eq. (16), it is assumed 

there exists a positive constant h > 0 which is the upper 

bound of parametric uncertainties d (see Eq. 16; |d| ≤ h ). 

It is proved in Theorem 1  that there is a positive value ĥ 

which is the estimation of h; i.e., 
∼

h= 0 is proved by using 

|d| ≤ h ≤ ĥ [which can be proved based on (Abadi et al. 

2020)]. The proposed state observer is obtained as Eq. (23):

where � > 1 , cj > 0, j = (1, 2, 3, 4, 5, 6) , � > 0, and � > 0 . 

Also, the estimation error of the fixed-time state observer 

is defined as Eq. (24)

By using the FASMC scheme, the control law u (25) is 

designed to provide a fixed-time stability for system (19). It 

should be noted that in the proposed control law u (25), the 

(20)s = ė
1
+ �

1
e
�

2

1
+ �

3
e
�

4

1

(21)�̇h =

r

K
|s|

(22)
∼

h= ĥ − h

(23)

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

̇̂x
1
= −c

1
x̂

1
+ x̂

2
+ Qsign(

∼
x

1
)

̇̂x
2
= −c

2
x̂

2
+ u + f

�
x̂
�

Q = −��c1
x̂

1
�� − ��̂x2

�� − � − ��c2
x̂

2
�� − � − ĥ − 2�s��

+
2

K

⎛⎜⎜⎜⎝

−c
3

���
∼
x

1

���
1

2

− c
4
����̂x2

�� + ���
1

2

−c
5

���
∼
x

1

���
�+1

2

− c
6
����̂x2

�� + ���
�+1

2

⎞
⎟⎟⎟⎠

(24)

{

∼

x
1
= x̂

1
− x

1
∼

x
2
= x̂

2
− x

2

adaptive term ĥ and observer term f
(

x̂
)

 are utilized. Fur-

thermore, it will be proven that the estimation errors in Eqs. 

(22) and (24) reach zero in a fixed time once the proposed 

control law (25) is applied to the system (15). The designed 

control law is obtained as Eq. (25)

In the following, it is first proved the convergence of the 

error system (19) onto the sliding surface Eq. (20) (i.e., 

s = 0 ) by applying the designed control law Eq. (25) to 

system Eq. (15) within a presented fixed time T
1
 . Simul-

taneously, it is proved that 
∼

h= 0 and 
∼

x
1
= 0 and 

∼

x
2
= 0 is 

achieved for t > T
1
 by using one Lyapunov function (see 

Theorem 1). In Theorem 2, it is proved that the proposed 

sliding surface s = 0 is fixed-time stable. In other words, 

the synchronization error (that its convergence to the sliding 

surface Eq. (20) was proved in Theorem 1; i.e., s = 0 ) con-

verges to zero in a fixed time T
2
 . Therefore, the total settling 

time to fulfill synchronization goal in this study will be as 

T = T
1
+ T

2
 (which is presented in Remark 4).

Theorem 1 Consider the synchronization error dynamics 

Eq. (19) with Assumptions 1 to 4, the sliding surface Eq. 

(20), the adaptive law Eq. (21), the state observer Eq. (23), 

and the control law Eq. (25). If the designed control law Eq. 

(25) is applied to system Eq. (15), then the synchronization 

errors, described by system Eq. (19), will converge to the 

sliding surface Eq. (20) (i.e., s = 0) in a presented fixed time 

T
1
. Moreover, the estimation errors given in Eqs. (22) and 

(24) will reach zero. In other words, 
∼

h= 0, 
∼

x
1
= 0, 

∼

x
2
= 0, 

and s = 0 will be satisfied for t > T
1
, simultaneously. The 

upper bound of T
1
 is obtained as Eq. (26)

where the values of �
1
 , �

2
 , �

3
 , and �

4
 have been presented in 

the following proof.

Proof The candidate Lyapunov function Eq. (27) is chosen 

based on our control goal in this part (i.e., ensuring 
∼

h= 0, 
∼

x
1
= 0, 

∼

x
2
= 0 , and s = 0 , simultaneously in a fixed time) 

and the conditions given in Lemma 4, there comes.

By differentiating of this function with respect to time, 

there is

(25)
u = −f (x̂) + fm(x) − Ȧ − Ḃ

− ĥsign(s) − 2ĥ�+1sig�(s)

(26)T
1
≤

1

�
1

(

1 − �
2

) +
1

�
3

(

�
4
− 1

)

(27)V =
K

2
(s2 +

∼

h

2

+
|
|
|

∼
x

1

|
|
|
+ |

∼
x

2
|)

(28)

V̇ = K

(

sṡ+
∼

h �̇h +
1

2
(�̇x1 − ẋ1)sign

(

∼
x1

)

+
1

2
(�̇x2 − ẋ2)sign

(

∼
x2

))
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where 
∼̇

h =
�̇h and 

∼̇

x
i
= �̇x

i
− ẋ

i
, i = 1,2 [considering Eqs. (22) 

and (24), respectively]. Before proceeding further, let us 

rewrite Eq. (20) as s = e
2
+ A + B , where e

2
= ė

1
 [accord-

ing to Eq. (19)], A = �
1
e
�

2

1
 , and B = �

3
e
�

4

1
 . Subsequently, its 

time derivative is ṡ = ė
2
+ Ȧ + Ḃ . Then, by substituting the 

designed control law Eq. (25) into the synchronization error 

dynamics Eq. (19), and by placing ė
2
 from Eq. (19) into ṡ , 

there comes

By simplifying Eq. (29), we have

By placing Eqs. (21), (23) and (30) into Eq. (28), one 

can obtain

By placing ẋ
1
 and ẋ

2
 from Eq. (18) into Eq. (31). Also, by 

placing h instead of d [considering Eq. (16) in Assumption 

2, as d ≤ |d| ≤ h ], as well as placing � instead of f (x) − f
(

x̂
)

 

( c o n s i d e r i n g  A s s u m p t i o n  2  a s 

f (x) − f
(
x̂
)
≤
|
|
|
f (x) − f

(
x̂
)||
|
≤ � ), we have

(29)

ṡ = f (x) − fm(x) − f
(

x̂
)

+ fm(x) − Ȧ − Ḃ − ĥsign(s)

− 2ĥ�+1sig�(s) + d + Ȧ + Ḃ

(30)ṡ = f (x) − f
(

x̂
)

− ĥsign(s) − 2ĥ�+1sig�(s) + d

(31)

V̇ ≤ K
(

s(f (x) − f
(
x̂
)
− ĥsign(s) − 2ĥ�+1sig� (s) + d)

+
r

K
|s|

∼

h +
1

2
(−c1x̂1 + x̂2 + Qsign(

∼
x1) − ẋ1)sign

(
∼
x1

)

+
1

2
(−c2x̂2 + u + f

(
x̂
)
− ẋ2)sign

(
∼
x2

))

By using s ≤ |s| and considering the mathematical rules 

of Definition 1 given in Eqs. (1) and (2); Eq. (32) can be 

rewritten as below

By using |d| ≤ h placing Q from Eq. (23) into Eq. (33), 

there comes

By using |d| ≤ h ≤ ĥ we have h − ĥ ≤ 0 (which clearly 

can be neglected in the above inequality). Also, we have 
|
|
|
f (x) − f

(
x̂
)||
|
− � ≤ 0 , ||x2

|
| ≤ � (given in Assumptions 3 and 

4) and 
∼

h= ĥ − h [given in Eq. (22)] and simplifying Eq. (34), 

there is

By using 
∼

h= ĥ − h [given in Eq. (22)] and adding ±|s|
∼

h 

to Eq. (35), one can obtain

(32)

V̇ ≤ K
(

s(� − ĥsign(s) − 2ĥ�+1sig� (s) + h)

+
r

K
|s|

∼

h +
1

2
(−c1x̂1 + x̂2 + Qsign(

∼
x1) − x2)sign

(
∼
x1

)

+
1

2
(−c2x̂2 + u + f

(
x̂
)
− f (x) − u − d)sign

(
∼
x2

))

(33)

V̇ ≤ K
(
+�|s| − ĥ|s| − 2ĥ�+1|s|�+1 + h|s|

+
r

K
|s|

∼

h +
1

2
(||c1

x̂
1
|| + ||̂x2

|| + Q)

+
1

2

(
||c2

x̂
2
|| + ||x2

|| +
|||f (x) − f

(
x̂
)||| + |d|

))

(34)

V̇ ≤ K
(
+�|s| − ĥ|s| − 2ĥ�+1|s|

�+1

+ h|s| + r

K
|s|

∼

h

+
1

2
(||c1

x̂
1
|| + ||̂x2

|| − ||c1
x̂

1
|| − ||̂x2

|| − � − ||c2
x̂

2
||

−� − ĥ − 2|s|�) + 1

2

(
||c2

x̂
2
|| + ||x2

|| +
|||f (x) − f

(
x̂
)||| + h

))

− c
3

|||
∼
x

1

|||

1

2

− c
4
||||̂x2

|| + �||
1

2 − c
5

|||
∼
x

1

|||

�+1

2

− c
6
||||̂x2

|| + �||
�+1

2

(35)

V̇ ≤ K

(
+�|s| − ĥ|s| − 2ĥ

�+1|s|�+1 + h|s| + r

K
|s|h̃ +

1

2
(−� − � − 2|s|�) + 1

2
(� + �)

)
− c3

||x̃1
||

1

2 − c4
||||x̂2

|| + �||
1

2 − c5
||x̃1

||
�+1

2 − c6
||||x̂2

|| + �||
�+1

2

⇒ V̇ ≤ K

(
+�|s| − ĥ|s| − 2ĥ�+1|s|�+1

+h|s| + r

K
|s|h̃ − |s|�

)
− c3

||x̃1
||

1

2 − c4

|||
|||ĥ2

||| + �
|||

1

2
− c5

||x̃1
||
�+1

2 − c6
||||x̂2

|| + �||
�+1

2

(36)

V̇ ≤ −Kĥ|s| − 2Kĥ
�+1|s|�+1 + Kh|s| + r|s|h̃ ± |s|h̃ − c

3
||x̃1

||
1

2 − c
4
||||x̂2

|| + �||
1

2

− c
5
||x̃1

||
�+1

2 − c
6
||||x̂2

|| + �||
�+1

2 ⇒ V̇

≤ −K|s|
(
ĥ − h

)
− 2Kĥ

�+1|s|�+1 + r|s|h̃ ± |s|h̃ − c
3
||x̃1

||
1

2 − c
4
||||x̂2

|| + �||
1

2

− c
5
||x̃1

||
�+1

2 − c
6
||||x̂2

|| + �||
�+1

2 ⇒ V̇

≤ −(K − 1)|s|h̃ − h̃(|s| − r|s|) − 2Kĥ
�+1|s|�+1 − c

3
||x̃1

||
1

2 − c
4
||||x̂2

|| + �||
1

2

− c
5
||x̃1

||
�+1

2 − c
6
||||x̂2

|| + �||
�+1

2
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Since we have 
∼

h= ĥ − h [given in Eq.  (22)], where 

h > 0,�h > 0  ,  and  |d| ≤ h ≤ ĥ  .  Then ,  we  have , 
∼

h= ĥ − h ≤ ĥ + h ⇒

∼

h≤ ĥ + h ⇒ −
∼

h≥ −(ĥ + h) .  Subse-

quently, we have 
∼

h

�+1

≤

(

ĥ + h

)�+1

 . According to Lemma 

2 because � + 1 > 1 , [note that we have � > 1 given in 

E q .   ( 2 3 ) ] ,  t h e r e  c o m e s 

(2)
−�

∼

h

�+1

≤ ĥ
�+1 + h

�+1
⇒ −(2)

−�
∼

h

�+1

≥ −

(

ĥ
�+1 + h

�+1

)

 . 

Then, by adding ±Kh
�+1|s|�+1 to Eq. (36), one yields

Note that +K|s|�+1
(h�+1 − ĥ

�+1) can be neglected where 

+K|s|�+1
(h�+1 − ĥ

�+1) ≤ 0 because h ≤ ĥ ⇒ h
�+1 ≤ ĥ

�+1 . 

Then, by adding ±|s|�+1
∼

h

�+1

 to Eq. (37), we have

By  cons ide r ing  Lemma  1  and  u t i l i z i ng 

|̂x
2
− x

2
|
|≤ |̂x

2
|
| + |x

2
| , and our assumption ||̂x2

|
| ≤ � (given in 

Sect.  4), then, we have 
∼

x
2
= x̂

2
− x

2
≤ |̂x

2
− x

2
|
|≤ |̂x

2
|
|

+|x
2
| ≤ |

|̂x2
|
| + � ⇒

|
|
|

∼

x
2

|
|
|
≤ |
|̂x2

|
| + � , yields

Let us consider �1 = (K − 1)
∼

h,�2 = (K
(

2)
−�

− 1
)
∼

h

�+1

 , 

�3 = (|s| − r|s|), and �
4
= |s|�+1 . Then, we have

L e t  u s  c o n s i d e r  �
m1

= min
(

�1,�3,�4, c3, c4

)

 

a n d  �
m2

= min
(

�2,�5,�6, c5, c6

)

 ,  ( w h e r e 

�1,�2,�3,�4,�5,�6, c3, c4, c5 , and c
6
> 0 ), yielding

(37)

V̇ ≤ −(K − 1)|s|h̃ − h̃(|s| − r|s|) − Kĥ
�+1|s|�+1 − Kĥ

�+1|s|�+1 ± Kh
�+1|s|�+1

− c3
||x̃1

||
1

2 − c4
||||x̂2

|| + �||
1

2 − c5
||x̃1

||
�+1

2 − c6
||||x̂2

|| + �||
�+1

2 ⇒ V̇

≤ −(K − 1)|s|h̃ − h̃(|s| − r|s|) − K|s|�+1
(
ĥ
�+1 + h

�+1
)
+ K|s|�+1

(
h
�+1 − ĥ

�+1
)

− c3
||x̃1

||
1

2 − c4
||||x̂2

|| + �||
1

2 − c5
||x̃1

||
�+1

2 − c6
||||x̂2

|| + �||
�+1

2 ⇒ V̇

≤ −(K − 1)|s|h̃ − h̃(|s| − r|s|) − K|s|�+1
(
(2)−� h̃

�+1
)
+ K|s|�+1

(
h
�+1 − ĥ

�+1
)

− c3
||x̃1

||
1

2 − c4
||||x̂2

|| + �||
1

2 − c5
||x̃1

||
�+1

2 − c6
||||x̂2

|| + �||
�+1

2

(38)

V̇ ≤ −(K − 1)|s|h̃ − h̃(|s| − r|s|) − K(2)−� |s|�+1
h̃
�+1 ± |s|�+1

h̃
�+1

− c3
||x̃1

||
1

2 − c4
||||x̂2

|| + �||
1

2 − c5
||x̃1

||
�+1

2 − c6
||||x̂2

|| + �||
�+1

2 ⇒ V̇

≤ −(K − 1)|s|h̃ − h̃(|s| − r|s|) −
(
K2

−� − 1
)
|s|�+1

h̃
�+1 − |s|�+1

h̃
�+1

− c3
||x̃1

||
1

2 − c4
||||x̂2

|| + �||
1

2 − c5
||x̃1

||
�+1

2 − c6
||||x̂2

|| + �||
�+1

2

(39)

V̇ ≤ −(K − 1)
∼

h |s| − (K
(
2)−� − 1

)∼
h

�+1

|s|�+1 − (|s| − r|s|)
∼

h

− |s|�+1
∼

h

�+1

− c3

|||
∼
x

1

|||

1

2
− c4

|||
∼
x

2

|||

1

2
− c5

|||
∼
x

1

|||

�+1

2
− c6

|||
∼
x

2

|||

�+1

2

(40)

V̇ ≤ −�
1
|s| − �

2
|s|�+1

− �
3

∼

h −�
4

∼

h

�+1

− c
3

|
|
|

∼

x
1

|
|
|

1

2

− c
4

|
|
|

∼

x
2

|
|
|

1

2

− c
5

|
|
|

∼

x
1

|
|
|

�+1

2

− c
6

|
|
|

∼

x
2

|
|
|

�+1

2

By considering Lemma 1, there comes

According to our defined candidate Lyapunov function 

( 2 7 ) ,  V =
K

2
(s2 +

∼

h

2

+
|
|
|

∼
x

1

|
|
|
+ |

∼
x

2
|)  ,  w e  h a v e 

2

K
V = s2

+

∼

h

2

+
|
|
|

∼

x
1

|
|
|
+ |

∼

x
2
| . Note that according to Lemma 

2,  we have 
(

2

K
V

)�+1

=

(

s2
+

∼

h

2

+
|
|
|
∼

x
1

|||
+
|||
∼

x
2

|
|
|

)�+1

⇒

(4)
−�
(

2

K
V

)�+1

≤ |s|2(�+1) +
∼

h

2(�+1)

+
|||
∼
x

1

|||
�+1

+
|||
∼
x

2

|||
�+1

 , 

where � + 1 ≥ 1 . Accordingly, we have

L e t  u s  c o n s i d e r 

�1 = �
m1

�

2

K
, �2 =

1

2
, �3 = �

m2

√

(4)
−�
�

2

K

�
�+1

2

, and �
4
=

�+1

2
 , 

then we have

In accordance with Lemma 3, �1, �3 must be greater than 

zero, where we have �
m

1

√

2

K
> 0 and �

m
2

√

(4)
−�
�

2

K

�
�+1

2

> 0 . 

Also, �
2
 must be 0 < �

2
< 1 , which is true here. Moreover, 

�
4
 must be �

4
> 1 , where 

�+1

2
> 1 . That is why � > 1 is con-

sidered in our design. By considering Lemma 3, the stability 

time satisfies the following inequality as Eq. (45)

where �1 = �
m1

�

2

K
, �2 =

1

2
, �3 = �

m2

√

(4)
−�
�

2

K

�
�+1

2

, and 

�
4
=

�+1

2
. Therefore, by setting abovementioned values and 

utilizing Lemma 3, it is proved that our control goal (i.e., 

ensuring 
∼

h= 0 and 
∼

x
1
= 0 and 

∼

x
2
= 0 and s = 0 ) is satisfied 

within a fixed time t > T
1
 given in Eqs. (26) and (45). Con-

sequently, the proof of Theorem 1 is completed.

Theorem 2 Consider the defined sliding surface (20). The 

synchronization errors e
1
 and e

2
 [described in Eq. (19)] 

reach zero within a fixed time T
2
, once the system (19) 

(41)

V̇ ≤ −�
m

1

(
|s|+

∼

h +
|||
∼

x
1

|||

1

2

+
|||
∼

x
2

|||

1

2

)

− �
m

2

(
|s|�+1

+

∼

h

�+1

+
|||
∼

x
1

|||

�+1

2

+
|||
∼

x
2

|||

�+1

2

)

(42)

V̇ ≤ −�
m

1

(
|s|2 +

∼

h

2

+
|||
∼
x

1

||| +
|||
∼
x

2

|||

) 1

2

− �
m

2

(
|s|2(�+1) +

∼

h

2(�+1)

+
|||
∼
x

1

|||
�+1

+
|||
∼
x

2

|||
�+1

) 1

2

(43)V̇ ≤ −�
m

1

(

2

K
V

)

1

2

− �
m

2

(

(4)
−�
(

2

K
V

)�+1
)

1

2

(44)V̇(x) ≤ −�
1
V
�

2 − �
3
V
�

4

(45)T
1
≤

1

�
1

(

1 − �
2

) +
1

�
3

(

�
4
− 1

)
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reaches sliding surface s = 0. In other words, the sliding 

surface s = 0 is fixed-time stable. T
2
 satisfies the given ine-

quality as follows.

w h e r e  �1 = �1(2)
(�2+1)∕2

, �3 = �3(2)
(�4+1)∕2

, �2 =
�2+1

2
, 

and�
4
=

�
4
+1

2
 .  Also ,  we have�1, �3 > 0 ,  0 < �2 < 1, 

and�
4
> 1 . Accordingly, we have �1, �3 > 0, �4 > 1, 

and0 < �
4
< 1.

Proof It should be first noted that the sliding surface (20) 

is defined in this paper according to Lemma 4. Hence, the 

proof of Theorem 2 is similar to the proof of Lemma 4. Now 

let us proceed with the proof of Theorem 2 here.

By considering s = 0 , 
∼

h= 0 , 
∼

x
1
= 0 , and 

∼

x
2
= 0 (which is 

proved in Theorem 1), and sliding surface given in Eq. (20), 

for t > T
1
 we have

where we have �1, �3 > 0, �4 > 1, 0 < �2 < 1 . Let us con-

sider e
2
= ė

1
 from Eq. (19), then we obtain

For t > T
1
 we have s = 0 . Therefore, we have ṡ = 0 . Then, 

by differentiating Eq. (48) with respect to time, one yields

where we have A = �
1
e
�

2

1
 , and B = �

3
e
�

4

1
 . Subsequently, the 

error dynamics (19), for t > T
1
 will be as follows

Indeed, the fixed-time stability proof of Eq. (50) (i.e., the 

fixed-time stability proof of s = 0 ) is required to be obtained. 

According to our control goal in this part (which is to sat-

isfy e
1
= 0 and e

2
= 0 ) and considering Lemma 3 and 4, a 

candidate Lyapunov function given in Eq. (51) is chosen as 

follows

By differentiating of Eq. (51) with respect to time, we 

have

By substituting Eq. (47) into Eq. (52), one yields

(46)T
(

x
0

)

≤
1

�
1

(

1 − �
2

) +
1

�
3

(

�
4
− 1

)

(47)ė
1
= −�

1
e
�

2

1
− �

3
e
�

4

1

(48)e
2
= −�

1
e
�

2

1
− �

3
e
�

4

1

(49)ė
2
= −Ȧ − Ḃ

(50)

{

ė
1
= e

2

ė
2
= −Ȧ − Ḃ

(51)V =

1

2
e

2

1

(52)V̇ = e
1
ė

1

From Eq. (51), one can obtain

By substituting Eq. (54) into Eq. (53), there comes

Let us consider �1 = �1(2)
(�2+1)∕2

, �3 = �3(2)
(�4+1)∕2

,

�2 =
�2+1

2
, �4 =

�4+1

2
 , we have

where according to Lemmas 3 and 4, �1, �2, �3, and �
4
 should 

be selected such that they fulfill the following given condi-

tions as follows, �1, �3 > 0 , 0 < �2 < 1, and �
4
> 1 . That is 

why, �1, �3 > 0, �4 > 1, and 0 < �
2
< 1 are considered and 

given for Eq. (20).

Note that by choosing candidate Lyapunov function in 

Eq. (51), the convergence of e
1
 to zero is proved (i.e., e

1
= 0 ) 

in a fixed time presented in Eqs. (46) and (57). Consider-

ing Eq. (50), we have ė
1
= e

2
= 0 . Consequently, we have 

e
1
= 0 ⇒ ė

1
= 0 ⇒ ė

1
= e

2
= 0 ⇒ ė

2
= 0 . Hence, synchro-

nization errors, e
1
 and e2, given in Eq. (50) reach zero in a 

fixed time T
2
 which is presented as the following inequality

It is obvious that for the system given in Eq. (50), the 

fixed-time stability is ensured at T
2
 [given in Eqs. (46) and 

(57)]. Hence, the sliding surface s = 0 ensures a desired 

behavior of the system (i.e., the fixed-time stability of the 

sliding surface s = 0 is ensured). Also, all synchronization 

errors, observer errors, adaptive error, and sliding surface 

converge to zero for t > T
1
+ T

2
 . Therefore, the proof of 

Theorem 2 is completed.

Remark 4 By considering Theorems 1 and 2, the fixed-time 

synchronization for system (15) is fulfilled at T  . Indeed, the 

synchronization goal [i.e., e
1
= 0 and e

2
= 0 presented in 

Eq. (19)] simultaneously with other control goals in this 

study (i.e., 
∼

h= 0 , 
∼

x
1
= 0 , 

∼

x
2
= 0 , and s = 0 ) by using the 

FASMC scheme for the chaotic system given in Eq. (15) is 

achieved in a fixed time regardless of initial conditions as 

T = T
1
+ T

2
 , where T

1
 and T

2
 are presented in Eqs. (26) and 

(46), respectively.

Remark 5 According to (26) and (46), it can be seen that 

the upper bound of convergence time is only dependent 

(53)
V̇ = e

1

(
−�

1
e
�

2

1
− �

3
e
�

4

1

)
⇒ V̇

= −�
1
|
|e1

|
|
�

2
+1

− �
3
|
|e1

|
|
�

4
+1

(54)|
|e1

|
| = (2V)1∕2

(55)V̇ = −�
1
(2)(�2

+1)∕2
V
(�

2
+1)∕2 − �

3
(2)(�4

+1)∕2
V
(�

4
+1)∕2

(56)V̇(x) ≤ −�
1
V
�

2 − �
3
V
�

4

(57)T
2
≤

1

�
1

(

1 − �
2

) +
1

�
3

(

�
4
− 1

)
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on the design parameters. Hence, the proposed combined 

controller/observer allows one to arbitrarily select the con-

vergence rate, which makes it feasible for us to meet strict 

settling time requirements in practical applications. Also, the 

designed fixed-time method guarantees a fixed convergence 

time regardless of the initial conditions.

Remark 6 Sliding surface, control law, state observer, and 

adaptive law contain some optional design parameters 

including �1, �3 > 0, �4 =

p

q
> 1, 0 < �2 =

m

n
< 1, 0 < r < 1

,  K > 1,  � > 1,  � > 0,  � > 0,  and cj > 0; where 

j = (1, 2, 3, 4, 5, 6) . Note that p, q, n , and m must be odd 

numbers to avoid the singularity problem. Additionally, a 

proper adjustment of these design parameters (considering 

their required conditions) of the proposed controller/

observer is provided in this study for decreasing energy con-

sumption, reducing total fixed settling time, and improving 

tracking performance.

Note that the proposed control law (25) is designed based 

on measurability of the first state x
1
 (which is assumed to 

be available) and the unavailability of the second state, x̂
2
 , 

[which is estimated by the designed observer (23)] as well 

as the unavailability of the upper bound of parametric uncer-

tainties, ĥ [which is estimated by using the adaptive law 

(21)]. A schematic block diagram of the designed FASMC 

scheme with a state observer for synchronization of the 

chaotic support structures for offshore wind turbines in the 

presence of parametric uncertainties is illustrated in Fig. 2.

6  Simulation Results and Discussion

In this section, the designed controller by using the FASMC 

scheme with a state observer for the chaotic support structure 

for the offshore wind system [given in Eq. (15)] is simulated. 

Two systems, master system (17) and slave system (18), are 

considered, and the numerical simulation is performed to 

show the validity of the proposed control scheme to ful-

fill the chaotic synchronization in this study. The numeri-

cal simulation is done in Simulink/MATLAB. The design 

parameters in this simulation are considered as

The model of matched parametric uncertainty is consid-

ered as d = 0.001cos(0.1t) . The initial conditions for the 

(58)

�1 = �3 = 1, �2 =

99

101
, �4 =

103

101
, c1 = c2 = 0.0001,

c3 = c4 = c5 = c6 = 0.001,

� = � = 0.001, � =

103

101
, r = 0.5, K = 2

slave system are considered as 
[

x1(0), x2(0)
]T

= [−2,−3]T. 

and the initial conditions for the master system are con-

sidered as 
[

x1m
(0), x2m

(0)
]T

= [2,1]T . The initial con-

ditions for the state observer (23) are considered as 
[

x̂1(0), x̂2(0)
]T

= [0,0]T . Also, � = 5,� = 1, F = 40,� = 2, 

and �
0
= 1 are considered for the master system (17) and the 

slave system (18) (where they show chaotic behavior without 

control input, see Sect. 3).

Figures 3 and 4 represent the response of the controlled 

system, where the slave system (18) is synchronized to the 

master system (17); and meanwhile, the estimated states con-

verge to actual states of the slave system. Figure 5 shows 

the response of the controlled system by using the FASMC 

scheme with a state observer.

From Figs. 3 and 4, it can be observed that the estimated 

states x̂
1
 and x̂

2
 reach the actual states x

1
 and x

2
 of the slave 

system (18) within t ≈ 1(s) and 3(s) , respectively. Afterward, 

the states of the slave system x
1
 and x

2
 converge to the states 

of the master system x
1
 and x

2
 within t ≈ 4.5(s) and 5(s) , 

respectively. Therefore, the synchronization goal is fulfilled. 

It should be noted that the state observer provides the esti-

mated data before controlling the system which is necessary 

for the system control. The preciseness of the responses is 

also obvious in Figs. 3 and 4. It should be noted that in spite 

of considering the matched parametric uncertainties for the 

slave system in Eq. (18), the response is very accurate. Con-

sequently, the robustness of the proposed FASMC method 

is demonstrated in Figs. 3 and 4. From Fig. 5, it can be seen 

that the precise estimated data by state observer reach the 

actual data of the system (slave system) and then, the slave 

system is accurately synchronized to the master system.

Figures 6 and 7 display the synchronization errors e
1
 

and e
2
 [described in Eq. (19)] after applying the proposed 

controller. Indeed, the errors of synchronization control are 

Fig. 2  Schematic block diagram of the proposed FASMC scheme 

with a state observer for synchronization of the chaotic support struc-

tures for offshore wind turbines
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shown for the slave system (18) and the master system (17) 

using FASMC scheme with a state observer.

From Figs. 6 and 7, it can be observed that the synchro-

nization errors e
1
 and e

2
 reach zero precisely within t ≈ 4.5 

and 5(s) , respectively, after applying the proposed control-

ler. Indeed, Figs. 6 and 7 demonstrate that the proposed 

FASMC scheme with a state observer fulfills the synchro-

nization goal (i.e., e
1
= 0 and e

2
= 0 ) for the system (19) 

within a fixed time of t ≈ 4.5 and 5(s).

Figures 8 and 9 show the state observer errors 
∼

x
1
 and 

∼

x
2
 [described in Eq.  (24)] after applying the proposed 

observer (23). Indeed, the estimation errors of the fixed-

time state observer, 
∼

x
1
 and 

∼

x
2
 , are shown for the slave sys-

tem (18) using the designed FASMC scheme with a state 

observer.

From Figs. 8 and 9, it can be seen that the state observer 

errors 
∼

x
1
 and 

∼

x
2
 accurately converge to zero within t ≈ 1(s) 

and 3(s) , respectively, after applying the proposed observer 

(23). Indeed, Figs. 8 and 9 demonstrate that the proposed 

FASMC scheme with a state observer fulfill the state 

observer goal [i.e., 
∼

x
1
= 0 and 

∼

x
2
= 0 given in Eq. (24)] for 

the slave system (18) within a fixed time of t ≈ 1(s) and 3(s).

Figure  10 represents the control action due to the 

designed controller given in Eq. (25) using the FASMC 

scheme with a state observer. Figure 11 shows the estimation 

of the upper bound of the matched parametric uncertainties 

ĥ described in Eq. (21) using FASMC scheme with a state 

observer. Figure 12 displays the sliding surface s given in 

Eq. (20) after applying the proposed controller.

Fig. 3  Response of the controlled system for state x
1
 using FASMC 

scheme with a state observer

Fig. 4  Response of the controlled system for state x
2
 using FASMC 

scheme with a state observer

Fig. 5  Controlled response of the system using FASMC scheme with 

a state observer

Fig. 6  Synchronization errors e
1
 using FASMC scheme with a state 

observer
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From Fig. 10, it can be observed that the undesirable 

chattering phenomenon is reduced by choosing proper 

design parameters in this study [see Eq. (58)]. However, 

it is recommended to work on eliminating this unwanted 

phenomenon for future works. From Fig. 11, it can be seen 

that the estimation of the upper bound of the matched 

parametric uncertainties ĥ reaches a logical and expected 

positive constant. Indeed, the adaptive control concept is 

used to estimate the upper bound of parametric uncertain-

ties h (where |d| ≤ h ). Also, it is obvious from Fig. 11 that 

ĥ is greater than |d| (i.e., |d| ≤ h ≤ ĥ , where d is considered 

as d = 0.001 cos(0.1t) ). From Fig. 12, it can be observed 

that the fixed-time sliding surface s , defined in Eq. (20), 

reaches zero within t ≈ 2(s) and remains zero afterward 

(which is necessary for defining a sliding surface and using 

SMC scheme).

7  Conclusion

In this paper, the synchronization of two chaotic support 

structures for offshore wind turbines with considering 

matched parametric uncertainties is investigated where the 

only first state of the system is measured directly. A novel 

integration of fixed-time stability concept, adaptive concept, 

SMC scheme, and fixed-time state observer is used to intro-

duce a new FASMC scheme with a state observer. Fixed-time 

Fig. 7  Synchronization errors e
2
 using FASMC scheme with a state 

observer

Fig. 8  State observer error 
∼

x
1
 after applying the proposed state 

observer

Fig. 9  State observer error 
∼

x
2
 after applying the proposed state 

observer

Fig. 10  Control action due to the designed control law u using the 

FASMC scheme with a state observer
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control law, sliding surface, state observer, and adaptive law 

are designed and combined such that the convergence of the 

system to the sliding surface is ensured which is capable 

of ensuring a desired behavior of the system. Note that the 

estimated data of the states and the parametric uncertainties 

are used in the designed control law. It is proved that the 

estimated data using the adaptive concept and state observer 

accurately reach their actual values in a fixed time. The simu-

lation results demonstrate the validity and effectiveness of 

the proposed FASMC method with a state observer to fulfill 

the synchronization control in this study. For future works, 

using a predefined stability concept and optimizing the design 

parameters are recommended.
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