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1 Department of Control Science and Engineering, Harbin Institute of Technology, Harbin 150001, China  

2 School of Automation Science and Electrical Engineering, Beihang University, Beijing, 100191 China 
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Abstract: This paper investigates the fixed-time fault tolerant control problem of spacecraft rendezvous and 

docking with a freely tumbling target in the presence of external disturbance and thruster faults. More 

specifically, based on the attitude of the target spacecraft, a line-of-sight coordinate frame is defined first, and 

the dynamical equations relative to the tumbling target are derived to describe the relative position (not 6-DOF). 

Then two fixed-time position controllers are proposed to guarantee that the closed-loop system is stable in 

finite-time in the sense of a fixed-time concept, even in the presence of simultaneous external disturbance and 

thruster faults. Numerical simulations illustrate that the chaser spacecraft can successfully perform the 

rendezvous using the proposed controllers. 

Index Terms Spacecraft, fixed-time control, translation control, actuator faults, sliding mode control 

1. Introduction 

On-orbit servicing is a vital method to extend the lifetime and enhance the performance of spacecraft. 

Autonomous rendezvous and docking are the most important technology and have received attention from 

many researchers. However, there exist relatively few research results about approaching and docking with a 

(freely) tumbling target spacecraft. The classic examples are refueling a powerless spacecraft, repairing failed 

spacecraft, upgrading a flying satellite, removing space debris and so on. For example, when the Soviets lost 
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control of Salyut 7 and it drifted for months totally abandoned in 1985 [1]. The Soyuz T-13 carried the repair 

crew to rendezvous with the Salyut 7, and after two days they approached the Salyut. The cosmonauts 

discovered the station was in a slow roll (no more than three tenths of a degree per second) and its solar arrays 

pointed randomly. This is a practical example of a rendezvous with a tumbling target and there are many other 

similar cases. Such missions are desirable and significant for many expensive and important spacecraft, such as 

the Hubble Telescope and the International Space Station. 

Significant advances have been made to perform relative translation in the area of rendezvous and 

docking in recent years. The C-W (Clohessy Wiltshire) equations [2] have been widely used to describe the 

linear relative motion between the chaser and target spacecraft. But the C-W equations are derived on the 

assumption that the target spacecraft flies on a circular orbit, and first-order approximations are used, where 

second and higher order terms in the relative positions and velocities are neglected. Moreover, many other 

improved relative dynamics models have been derived, such as the fully nonlinear C-W equations [3], the T-H 

(Tschauner-Hempel) equations [4], the line of sight (LOS) based equations [5-7] and others [8,9]. In the 

terminal phase of rendezvous and docking (within several hundred meters), the relative distance and angles of 

line of sight (LOS) are the most direct and important measurement data for an autonomic and chaser spacecraft 

[10], especially when the target is non-cooperative. Hence LOS coordinate frame based dynamical equations for 

the relative motion are useful and some achievements have been made in recent years. For example, Yu [5] 

derived the LOS coordinate frame based dynamical equations of two spacecraft when their orbits are coplanar. 

Yu [6,7] gave more complete dynamical equations in the LOS coordinate frame. However, all of the existing 

research results for the LOS coordinate frame only consider a class of static attitude targets, whose body-fixed 

coordinate frame is completely still relatively to its orbit coordinate frame; these results are not suitable for a 

tumbling target spacecraft. 

With the development of advanced control theory, numerous advanced methods have been developed 
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to achieve the rendezvous control mission in recent years. For example, Gao et al. [11] investigated the problem 

of robust H  techniques for a class of spacecraft rendezvous systems. Adaptive sliding mode control has been 

used to solve the rendezvous and docking problem [12]. Considering the position measurement errors and 

uncertain mass properties, Singla et al. [13] proposed an output feedback structured model reference adaptive 

controller for spacecraft rendezvous and docking problems. Note that both of these references used the fully 

nonlinear C-W equations in the synthesis of their controllers. Feedback and adaptive controllers have been 

proposed to solve the control problem of relative motion in the presence of uncertainties in the thruster 

alignments and chaser spacecraft’s mass [14,15]. Zhang et al. [16] designed a guidance controller and used an 

artificial potential function guidance to ensure the target is approached safely. 

However, all of the dynamical equations and controllers in above references do not consider the 

situation when the target spacecraft is tumbling/rotating. In fact, there are only a few research results about the 

control of rendezvous and docking with a tumbling target. Lu et al. [17] studied the problem of approaching and 

docking with a freely tumbling target and the designed integrated controller can ensure the docking device of 

the chaser spacecraft is always pointing to the tumbling target. Di Cairano et al. [18] proposed a Model 

Predictive Control approach to solve the problem of rendezvous and proximity maneuvering with a tumbling in an 

orbital plane. Liang et al. [19] and Michael et al. [20] presented two attitude controllers to enable the chaser 

spacecraft to rotate at the same angular velocity as the tumbling target spacecraft in their rendezvous and docking. 

Note that none of the dynamical equations in the above control system is based on the target’s tumbling attitude. 

A tumbling target is difficult to model because both the position and attitude of the chaser and target spacecraft 

interact, and the controller design is also difficult because the dynamical and kinematic equations are highly 

nonlinear. As part contributions of our work, defining a coordinate frame based on the target’s attitude and 

deriving dynamical equations relative to the tumbling target are necessary for rapidly and accurately performing 

the rendezvous. 
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Although there have been many research achievements for rendezvous and docking with a cooperative 

or a non-cooperative target, none of the existing control schemes are based on finite-time control theory. 

Finite-time control, which has a fast convergence rate, high precision control performance, and good 

disturbance rejection properties, is a new theory that has received increased attention of scholars in the last ten 

years. To state clearly the definition of finite-time stability, take example for PID controller, it is noted that the 

states of the PID control system can converge toward but never reach the equilibrium in a finite time. Benefited 

from one more homogeneity power tuning parameters, the finite-time controller have a faster convergence rate 

than PID controller, and the system sates can reach he equilibrium in a finite time. The most common 

finite-time control methods can be broadly classified into two categories: the homogeneous domination 

approach [21-22] and the Lyapunov based approach [23]. Unfortunately, the proof of convergence for the 

homogeneous approach is invalid when the system includes disturbances and uncertainties. Furthermore, the 

homogeneous approach cannot estimate the settling time. Hence Lyapunov based approaches have attracted 

most researcher interest recently, and some achievements have been made to solve the finite-time problem of 

spacecraft motion [24]. Furthermore, to employ the nice features of sliding mode control(SMC), such as better 

disturbance rejection property and better robustness against uncertainties, many researchers combine the 

concept of finite-time stability with SMC, and use terminal sliding mode controller(TSMC) in the spacecraft 

control system[25-26]. However, the initial value of the system state must be known to estimate the settling 

time by the existing Lyapunov based finite-time approaches. In view of that, Polyakov et al. proposed the 

concept of fixed-time stability, which can estimate the upper bound of settling time without the knowledge of 

the initial conditions[27-28]. Then Levant studied the relationship between finite-time stability and fixed-time 

stability [29]. In the initial design of spacecraft control system, it is desirable to predict the settling time 

independently initial conditions. So far, to the best of authors' knowledge, there is no fixed-time control result 

for spacecraft motion, which is the main contribution of this paper. 
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In actual spacecraft control systems, some catastrophic faults may occur due to malfunctions of the 

thrusters and other components. If the translation controller does not have any fault tolerance capability, severe 

performance degradation and system instability would result in rendezvous mission failure. The fault-tolerant 

control (FTC) strategies can be classified into two categories: active FTC and passive FTC. The active FTC 

approach is to respond to the failure by reconfiguring the remaining (often redundant) system elements based on 

real-time information from a fault detection and diagnosis (FDD) scheme. Numerous active FTC strategies have 

been studied for spacecraft missions in the past decades, for instance, the work of Chen et al. [30] and Patton et 

al. [31] about the Mars Express mission, the work reported in Fonood et al. [32-33] and Henry et al. [34] about 

the Mars Sample Return (MSR) mission, and the work of Henry [35] about the Microscope satellite. In contrast 

to active FTC approach, neither an FDD scheme nor a controller reconfiguration mechanism is needed in the 

passive approach. The passive method utilizes a single robust controller to deal with a certain well defined fault 

sets, and there also have been a great deal of results in the literature on spacecraft control, such as the work of 

Qian et al. [36] about the spacecraft rendezvous system, the work reported in Marwaha et al. [37] about the 

Mars entry vehicle and the work of Hu et al. [38-39] about the spacecraft attitude control. Both of active FTC 

and passive FTC have their respective advantages and limitations Even though the control objective of their 

methods are the same, each approach have its own unique ways to achieve the objective. Interested readers shall 

refer to the systematic studies of active and passive FTC strategies in references [40] and [41], for good surveys. 

In comparison with an active FTC, the passive FTC is more difficult to achieve optimal performance under any 

design basis fault condition. However, the passive FTC has the advantage of avoiding time delay introduced by 

the online FDD and controller reconfiguration in active FTC. Motivated by the above, in this paper, under 

considering actuator faults and transient performance requirements, new passive fault-tolerant controllers will 

be designed to perform the challenging rendezvous mission, and these are the main research targets in this 

work. 
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Inspired by the fixed-time stabilization concept, this paper investigates the fault tolerant control 

problem in rendezvous and docking with a freely tumbling target spacecraft, and two fixed-time controllers are 

developed. The first ensures that all of the system states converge to zero in a fixed time without considering 

external disturbances and actuator faults. The second can guarantee fixed-time reachability of the system states 

into the small neighborhood of the designed fixed-time sliding mode in the presence of actuator faults and 

external disturbances. The rest of this paper is organized as follows. Section 2 defines a LOS coordinate frame 

based on the target’s attitude and derives dynamic equations for rendezvous and docking with a tumbling target. 

Section 3 describes the definition and lemmas that will be used for the relative motion controllers. In Sections 4 

and 5, the fixed-time based sliding mode and fixed-time controllers are designed. Simulation results that 

demonstrate various features of the proposed controllers are given in Section 5, followed by conclusions and 

future work. 

Notation: Throughout this paper, we use  for the Euclidean norm of vectors and the induced norm 

for matrices. For a given vector T 3
1 2 3 Rx x xx , define 

T

1 2 3x x xx ,

T
1 2 3sgn( ) sgn( ) sgn( ) sgn( )x x xx ,

T

1 1 2 2 3 3sgn sgn sgnsig x x x x x xx , where R ,

and sgn  denotes the sign function. 

2. Relative Equations of Kinematic 

2.1 A LOS Coordinate Frame based on the Attitude of the Target 

Before proposing the LOS coordinate frame, the following frequently used coordinate systems are 

defined. 

(1) The Earth-centered inertial coordinate system is denoted as I I IOx y z  and is fixed to the center of the 

Earth. The IOx  axis points toward the vernal equinox, the IOz  axis extends through the North Pole, 

the IOy  axis completes the triad. 

(2) The body-fixed coordinate frame of the target spacecraft is denoted as t t t tO x y z  and is fixed to the 
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center of target spacecraft. 

As shown in Fig. 1, tr  is the position vector from the Earth center to the target spacecraft, cr  is the 

position vector from the Earth center to the chaser spacecraft, and  is the relative position vector from the 

chaser spacecraft to the target. Define the relations trtr , c crr  and . The coordinate frame 

c t t tO x y z  is parallel to the target body-fixed coordinate frame t t t tO x y z . The relative position of the two 

spacecraft can be expressed as a set of spherical coordinates T[ , , ]  in the LOS coordinate frame 

c L L LO x y z , where c LO x  points to the target from the chaser spacecraft,  is the relative distance, and 

/ 2, / 2  and ,  are the rotational angles needed to align the c tO x  axis with the 

line-of-sight by consecutive rotations about the c tO y  axis and then the c LO z  axis, respectively. That is to say, 

with the rotation sequence , c t t tO x y z  can be transformed to the LOS coordinate frame c L L LO x y z .

Fig. 1 The relation between the LOS coordinate frame and the attitude of the target 

Remark 1. Compared with previous LOS coordinate frames[6-7, 14-16], the proposed LOS coordinate frame 

based on the attitude of the target is not only fixed to the center of the chaser spacecraft, but is also related 
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directly to the target’s attitude. Thus, the proposed LOS coordinate frame has the advantages that: (1) it can be 

applied to a tumbling target and arbitrary orbital forms, and (2) the chaser spacecraft approaches the docking 

axis (i.e. the –X axis of the body-fixed Coordinate Frame of the target t t t tO x y z ) of a tumbling target when the 

state variables in the LOS equations converge to the equilibrium point. 

2.2 Equations of Kinematic in the Proposed LOS Coordinate Frame 

In this section, the LOS based relative equation of kinematic between two spacecraft with spherical 

coordinates , ,  will be derived and discussed. By taking the second derivative of the relative position 

ctr r  between two spacecraft in the Earth-centered inertial coordinate system, one has 

2 2 32

2 2 2 3 3
c t

t c
t c

d d rd
dt dt dt r r

t
c d

r r
r r a a ,   c t wd J2 J2a a a a             (1) 

T2 2 2 3

2 5 2 2 2

3 5 5 53
2

e
i I

i i i i

R Z X Z Y ZJ X Y Z
r r r rJ2a    i c or t         (2) 

where  is the standard gravitational parameter and ca  denotes the chaser spacecraft’s control acceleration 

from thrust force. The derivative with a subscript “I” means that the derivative is in the inertial frame (I-frame). 

If the orbit is circular, iJ2a  denotes the earth non-spherical perturbation, for both vehicles ( cJ2a  for the chaser 

and tJ2a  for the target) caused by the Earth's oblateness, or equatorial bulge and J2 is the first zonal coefficient 

terms in the Legendre polynomial[42-43].The X, Y and Z in Eq.(2) denote the spacecraft's positon in the inertial 

frame. wa  is considered to be small acceleration due to the atmospheric drag, the gravity fields of other planet, 

solar pressure or venting which also perturbs the spacecraft's motion. The small accelerations are grouped 

together because they have slighter significant effect of spacecraft orbits than the earth non-spherical 

perturbation. 

From the cosine law, under the assumption 1
tr

, the distance between the chaser spacecraft and the 

center of the Earth can be approximated as 
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2 2 2 2 2 2
2

1/2

2

22 cos 2 1

21

c t t c t t t
t

c t
t

r r r O O O r r
r

r r
r

t
t

t

rr

r
                 (3) 

where the notation cos( O O O)c t  denotes the cosine of the angle cos( O O O)c t , and definition of  the 

angle cos( O O O)c t  can be find in the Fig. 1. 

Using the Maclaurin expansion 3/2 23 151 1
2 8

a a a ,

3 3 2

1 1 31
c t tr r r

tr                                       (4) 

Then, substituting Eq.(4) into Eq.(1) yields 

2

2 3 2 3 2

3 3
1t c c t c

t t t t

d
dt r r r r

t t
d d

r r
r r a a r a a               (5) 

Note that vectors  and tr  can be expressed as T 3[ , 0, 0] R  and T 3[ ,0, 0] Rt trLt tI IOr R R R  in the 

LOS coordinate frame, where 
cos cos sin cos sin
sin cos cos sin sin

sin 0 cos
LtR  is the coordinate transformation from 

the target body-fixed frame to the LOS frame, 2 T T
3I 2 2 [ ]I t0 t0q qt t t t t tR q q q q q  is the coordinate 

transformation from the Earth-centered inertial coordinate frame to the target body-fixed coordinate frame, and 

0 0

0 0 0 0

0 0

cos sin 0 1 0 0 cos( ) sin( ) 0
sin cos 0 0 cos sin sin( ) cos( ) 0

0 0 1 0 sin cos 0 0 1

f f
f f i i

i i
IOR  is the coordinate 

transformation from the orbital coordinate frame to the Earth-centered inertial coordinate frame. Note that, for 

any vector T
1 2 3[ , , ]a a aa , the notation a  is used to denote the skew-symmetric matrix 

3 2

3 1

2 1

0
0

0

a a
a a
a a

a . In addition, T T 4[ , ] Rt0q tq  is the attitude quaternion of the target spacecraft, and 0 ,

f , 0i  and  are the argument of perigee, the true anomaly, the orbit inclination, and the right ascension of 

the ascending node of the target spacecraft, respectively. Note that that all of the information relating to the 

target spacecraft’s attitude and orbit are required before rendezvous and docking. To this end, the Eq.(5) can be 
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re-written in the LOS frame as 

2

2 3 2

3
t c

t tL

d
dt r r

t
d

r
r a a                              (6) 

where 3R , 3Rca  and 3Rda are the vectors , ca  and da  expressed in the LOS frame, 

respectively. The derivative with a subscript “L” means that the derivative is in the LOS frame. 

If  and  are denoted as the first and second derivative of  in the LOS frame, one has 

L

d
dt L                                                  (7) 

2

2 2
L

d
dt L L L L                             (8) 

where
T 3sin cos RL Lt tR  denotes the angular velocity of the LOS frame with respect 

to the Earth-centered inertial frame expressed in the LOS frame, and 3Rt  denotes the body-fixed reference 

frame of the target spacecraft with respect to an Earth-centered inertial frame expressed in the body-fixed 

reference frame. Furthermore, the first derivative of L  in the LOS frame and t  in the body-fixed reference 

frame of the target spacecraft can be written as, respectively, 

T
sin cos cos sinL Lt t Lt tR R               (9) 

-1 -1 -1
t t t t t t t t tJ J J J d                                           (10) 

where T 3 3Rt tJ J denotes the positive definite inertia matrix of the target spacecraft, 3Rt denotes the 

vector of control torques commanded by the attitude controller of the target spacecraft in the body-fixed 

reference frame., and 3Rtd  denotes the target’s external disturbance torque vector induced from the 

environment, and includes environmental torques such as the gravitational torque and the torque arising from 

the aerodynamic drag, solar radiation, and magnetic effects, in the body-fixed reference frame. 

From Eqs. (6) and (8), one has 

3 2

3 2t c
t tr r

t
d L L L L

r r a a                (11) 

Again, substituting Eq.(9) and Eq.(10) into Eq.(11) and multiplying both side of Eq.(11) by the mass, cm , of 
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the chaser spacecraft yields 

-1
1 1 L cmL Lt t tA x B F d R J                              (12) 

-1
c cm mL Lt t t dd R J d a                                 (13) 

where -1
1 3 2

0
30 2

sin

c
c c c t

t t
c

mm m m
r r

m

t
L Lt t Lt t t t t L L

rB R R J J r ,

Tx , 1

1 0 0
0 0
0 0 cos

cmA , LF  is the control vector produced by the thrusters in the LOS 

coordinate frame, and Ld  is the orbital disturbance force of the two spacecraft. 

In practice the docking position is not at the center of the spacecraft, so the relative position of the two 

spacecraft, , should not tend to zero during rendezvous and docking. Let d  be the desired distance and 

e  be the relative position error, and e d . Then, with the assumption that d  is a constant with 

T0 0dd  in the LOS coordinate frame, Eq.(12) can be re-written as 

-1 -1
2 2 cmL L Lt t t t t e dA x B F d R J J d                         (14) 

with the new state vector T, ,ex , and the new matrices 2A and 2B are given as 

2

1 0 0
0 0
0 0 cos

c e d

e d

mA

T -1
2

3 2

0 0 sin 2

3
ec d c c

ec
c t

t t

m m m

mm
r r

L e Lt t Lt t t t t e d

d t
L L e d e d

B R R J J

r
r

The model of the spacecraft mass depends on the chosen thrusters. In this paper, electronic ION thrusters 

and chemical thrusters are considered. Assume there are n thrusters in the chaser spacecraft, and the i th thruster 

generates a force of SiF . Then the mass flow is governed by  

1

/
n

c ci sp
i

m F I g                                      (15) 
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where 2/ sg r  is the time varying gravitation constant and spI  is a characteristic of the chemical propellant 

used in the thruster[44]. 

Remark 2. Although the derivation above shares similar approximations with those in Ref. [15], the 

definition of the LOS coordinate frame are different in nature. In this work, the LOS based equations, (12) and 

(14), not only explicitly consider the target’s attitude, but also the external disturbance and the attitude control 

torque of the target spacecraft. Thus, the main research objective of this paper is to target a certain class of 

tumbling spacecraft. 

Remark 3. Equations (12) and (14) explicitly include the target’s control torque, t . If 0t , then Eqs. 

(12) and (14) can be applied to the rendezvous of a freely tumbling spacecraft. Furthermore, if the initial 

angular velocity and attitude quaternions of the target, and also the disturbance, are set to zero, i.e. (0) 0t ,

(0) 0tq  and 0L td d , then the equations are identical to those in Ref. [15]. In addition, if the target 

spacecraft is completely non-cooperative, which means t  and t  are unknown, then observers should be 

designed to estimate t  and t  of the target; this is beyond the scope of this paper. 

3. Definitions and Lemmas 

Consider the system 

( ) ( ( ))t tx f x , (0) 0x , ( )0 0f , R nx                        (16) 

where 0: R nUf  is continuous in an open neighborhood 0U  of the origin. Suppose that the system in 

Eq.(16) possesses a unique solution in forward time for all initial conditions. 

Definition 1 (Ref. [27]). The equilibrium 0x  of the system in Eq.(16) is fixed-time stable if it is 

globally finite-time stable and the settling-time function ( )T x  is bounded, i.e., existing positive constant maxT

such that max( ) ,T Tx for any R nx .

Lemma 1 (Ref. [27]). Consider the system in Eq.(16). Suppose there is a Lyapunov function ( )V x



 13

defined on a neighborhood R nU  of the origin, and ( ) ( ( ) ( ) )p g kV V Vx x x , where , , , , Rp g k ,

1pk  and 1gk . Then the origin of the system in Eq.(16) is fixed-time stable, and any ( )V x  that starts 

from U  can reach ( ) 0V x  in a fixed time. According to Definition 2, the settling time T  of a fixed-time 

stable system is bounded and its bound is independent of the initial value of system states. Thus, we can 

conservatively estimate T  as 

1 1
(1 ) ( 1)k kT

pk gk
                               (17) 

without any knowledge of the initial value 0( )V x .

Lemma 2 (Ref. [45]). Consider the nonlinear system in Eq.(16). Suppose that there exist a Lyapunov 

function ( )V x , scalars R , (0,1)p  and 0 , such that ( ) ( ) pV Vx x . Then, the trajectory 

of this system is practical finite-time stable. Moreover, the residual set of the solution of system (16) is given by 

1

lim ( )
1

p

t T
Vx x , where  is a scalar and satisfies 0 1 . And the time, T , needed to reach the 

residual set is bounded by 
1

0( )
(1 )

pV xT
p

, where 0( )V x  is the initial value of ( )V x .

Proposition 1. Consider the nonlinear system in Eq.(16). Suppose that there exist a Lyapunov function 

( )V x , scalars , , , , Rp q k , 1pk , 1gk  and 0 , such that ( ) ( ( ) ( ) )p g kV V Vx x x .

Then, the trajectory of this system is practical fixed-time stable. Moreover, the residual set of the solution of 

system (16) is given by 
1 1

1/ 1/lim ( ) min ,
1 1

kp kgp p
k kt T

Vx x , where  is a scalar and 

satisfies 0 1 . And the time, T , needed to reach the residual set is bounded by 

1 1
(1 ) ( 1)k k k kT

pk gk
.

Proof: the Proposition 1 can be easily proved based on Lemma 2, so we omit the proof here. 

Lemma 3 (Ref. [23]). Consider the system in Eq.(16). Suppose there is a Lyapunov function ( )V x ,
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scalars (0,1)p  and R , such that ( ) ( ) 0pV Vx x . Then the origin of Eq.(16) is finite-time stable, 

and the settling time is given by 1
0

1 ( )
(1 )

pV x
p

T , where ( )0V x  is the initial value of ( )V x .

Lemma 4 (Ref. [46]). For any Rnx  and Ra , we have 
1d

( 1)diag sig( )
d

a
aa

t
x

x x  and 

1dsig( ) ( 1)diag
d

a
aa

t
x x x .

Lemma 5 (Ref. [47]). For any Rix , 1, 2....,i n ,
1 1

v vn n
i ii i

x x , where v  is a real number 

and (0,1]v .

Lemma 6 (Ref. [48]). If v  is a real number and 1v , then for any Rx  and Ry , we have 

12v v v vx y x y .

Proposition 2. If v  is a real number and 1v , then for any , , Rx y z we have 

2 22v v v v vx y z x y z .

Proof: the Proposition 2 can be easily proved based on Lemma 6, so we omit the proof here. 

4. A New Fixed-time Sliding Mode Surface Design and Convergence Analysis 

In this section, a new fixed-time sliding mode (SM) surface will be proposed for the problem of 

spacecraft rendezvous. In terms of the spherical coordinate T[ , , ]ex , the new fixed-time SM is  

1
1 1( ) ( )

kp gsig sig sig1 1S x x x                             (18) 

where 1 1 1 1 1 1 1diag , diag , 1,2,3, , , , , 0i i i ii = p g k1 1 , 1 1 (0,1)p k  and 1 1 1g k  are the free 

design parameters chosen by the designer. Then the following statements can be concluded. 

Theorem 1. Consider the LOS-based equation of relative motion, Eq.(14), for the fixed-time SM, 

Eq.(18), satisfying S 0  under the Assumptions 1 and 2. Then x 0  and x 0  can be reached in 

fixed-time xT , even without requiring any knowledge of the initial and instantaneous values of the system 

states. The fixed-time xT  then satisfies 

1 1

min 1 1 1 min 1 1 1

1 1
(1 ) ( 1)x k kT

p k g k
                         (19) 
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Proof: If the sliding motion occurs for system (14), such that q  and  remain on the fixed-time SM 

for all time, then we have S 0 . Thus

1
1 1( ) ( )

kp gsig sig sig1 1x x x                                (20) 

Let the positive definite Lyapunov function be of the form i iV xx , where 1,2,3i  and T
1 2 3, ,x x xx .

Taking the derivative of iVx  along Eq.(20) yields 

11 1 1 1

11 11 11 1 1 1

1 1 1 1

1 1 1 1 1 1

sign( ) sign( ) ( ) ( ) sign( ( ) ( ) )

( ) ( )

kp g p g
i i i i i i i i i i i i

kk kp gp g p g
i i i i i i i i i i i i

V x x x sig x sig x sig x sig x

sig x sig x x x V V

x

x x

         (21) 

From Lemma 1, it can be concluded that the relative position errors , ,e  are stabilized in finite time xT ,

given by 
1 1

min 1 1 1 min 1 1 1

1 1
(1 ) ( 1)x k kT

p k g k
, where min ( )  represents the minimum eigenvalue of a 

given matrix. This shows that the bound of the convergence time xT  can be estimated even if we have no 

knowledge of the initial and instantaneous values of the system states. 

5. Fixed-time Controller Design for Rendezvous and Docking with a Freely Tumbling Target 

The problem of rendezvous and docking is studied for a non-cooperative target, which is out of control 

with no external disturbances (i.e. t  and td  in Eq.(14) equal zero), and is tumbling freely in space. The LOS 

based equation of relative motion in Eq.(14), incorporating thruster faults, can be combined to give 

2 2 Lc C Lc C LA x B R D I E F R EF dD                        (22) 

where 3 mRD  is the thruster configuration matrix, and m  is the number of thrusters. CF  denotes the 

desired control force produced by the thrusters in the body-fixed coordinate frame of the chaser spacecraft. I

represents the identity matrix with the appropriate dimensions. 1 2diag( , ... ) Rm m
mE E EE  and iE  is the 

failure indicator for the ith thruster pair. Note that the case 0iE  means that the ith thruster pair works 

normally; if 1iE , the ith thruster pair has failed completely; and (0,1)iE  corresponds the case in which the 

ith thruster pair has partially lost its effectiveness, but still works all of the time. Rm
CF represents a stuck fault 

for the thruster [49].
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The presented fault model in Eq.(22) can represent outage, loss of effectiveness, and stuck faults. 

Lc Lt tI IcR R R R  denotes the coordinate transformation from the body-fixed coordinate frame of the chaser 

spacecraft to the LOS frame, and IcR  represents the coordinate transformation from the body-fixed coordinate 

frame of the chaser spacecraft to the Earth-centered inertial frame, and obtained in a similar way to tIR  and is 

directly related to the attitude of the chaser spacecraft. 

To design the control scheme, the following reasonable assumption is required. 

Assumption 1. The NAV is assumed to be perfect and the state and output noises are not taken into 

consideration. 

Assumption 2. The target spacecraft is out of control with no external disturbances (i.e. t  and td  in 

Eq.(14) equal zero), and is tumbling freely in space. The external disturbance Ld , and the uncertain stuck fault 

CF  in Eq.(22) are unknown but bounded. Thus, there always exists positive but unknown constants distd  and 

stkF  such that 

distdLd , stkFCF  and c dist stkd F dL C LR EF d DD             (23) 

where the notation  denote the Euclidean norm of vectors and the induced norm for matrices. 

Assumption 3. The matrix D I E  is full-row rank, which implicitly means that the remaining active 

thrusters are able to produce a sufficient force for the chaser to perform the rendezvous mission. The thruster 

pairs can only partially lose its effectiveness, i.e., [0,1)iE , and the faulty thrusters are still controllable. 

The existence of Assumption 3 is to satisfy the fault compensability properties [50], then it is possible to 

design a passive fault-tolerant controller to insure the considered fault can be fully compensable. 

Remark 4. The docking axis of the chaser spacecraft should track the target as the two spacecraft move. 

However, this paper studies the relative position at the rendezvous phase and the design of the attitude 

controller is outside the scope of this work. The attitude controllers for rendezvous and docking with a tumbling 

target spacecraft have been presented in the references such as [19-20] and so on. 
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5.1 Fixed-time Controller Design with no External Disturbance or Thruster Faults 

For this case, because the thruster faults and external disturbance are not taken into account, the LOS 

based equation of relative motion (22) can be simplified to 

2 2 cL C1A x B R DF                                     (24) 

Then, following statements can be made. 

Theorem 2. For the LOS based equation of relative motion given by Eq.(24) under the Assumptions 1 

and 2, if the fixed-time SM is chosen as Eq.(18) and the fixed-time controller is chosen as 

2 2

1 1 11 1

1 1
2 2

1 1 11
2diag ( ) ( ) diag diag

p g
Lc Lc

k p gp g
Lc

sig sig

sig sig

C1 2 2

1 1 1 1

F D R A S S D R B

D R A x x x x x x
      (25) 

where 2 2, , ,p g2 2  are the controller parameters and satisfy 2diag i2a , 2diag i2 , 2 0i ,

2 0i , for 1,2,3i , 2 0,1p , and 2 1g .
1T TD D DD  denotes the pseudo-inverse of D  and D

should satisfy full-row rank. Then the states of the system converge to origin in a fixed-time T , whose bound 

is independent of the initial values of system states and can be conservatively estimated as 

1 1 21 1
min 2 2 min 2 2min 2 1 1 min 2 1 1

1 1 1 1
1 2 1(1 ) ( 1)x S k k gT T T

p gp k g k
  (26) 

Proof: The candidate Lyapunov function is defined as T
1VS S S . Taking the derivative of the 

fixed-time SM, Eq.(18), yields 

1 1 11 1
1 1 1diag ( ) ( ) diag diag

k p gp gsig sig1 1 1 1S x x x x x x x          (27) 

Taking the derivative of 1VS  and substituting for S , one has 

1 1 11 1

1 1 11 1

2

1 1 1T T
1

1 1 1T
2 2 2

T

2 2 diag ( ) ( ) diag diag

2 diag ( ) ( ) diag diag

2

k p gp g

k p gp g
c

p

V sig sig

sig sig

sig

S 1 1 1 1

L C1 1 1 1 1

2

S S S x x x x x x x

S A R DF A B x x x x x x

S S 2

2 2 2 2 2 21 1 1 1 1 1
2 2 2 2 2 22 2 2 2 2 2

min 1 2 3 min 1 2 32 2

g

p p p g g g

sig

S S S S S S

2

2 2

S
 (28)
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Using Lemma 5 and Proposition 2 gives 

2 22 2

2 2

1 11 1
2 2T T 2 22 2

1 min min min 1 min 12 2 2 2
p gp g

g g
S SV V VS 2 2 2 2S S S S    (29) 

From Lemma 1, the origin of the system in Eq.(24) is fixed-time stable, and all of the states arrive at the 

fixed-time SM, Eq.(18), in a fixed-time 1ST , which satisfies 

2
1 1

min 2 min 2

1 1
1 2 1S gT

p g2 2
.                         (30) 

Combining Eq.(30) and Eq.(19), the complete convergence time of rendezvous and docking can be expressed as 

1 1 21 1
min 2 2 min 2 2min 1 1 1 min 1 1 1

1 1 1 1
1 2 1(1 ) ( 1)x S k k gT T T

p gp k g k
. Thus, the bound 

of the convergence time T  can be conservatively estimated, even if we have no knowledge of the initial and 

instantaneous values of the system states. Hence, the proof of Theorem 2 is completed. 

5.2 Adaptive Fixed-time Controller Design with External Disturbance and Thruster Faults 

The controller in Eq.(25) is designed based on the assumption that there is no external disturbance and no 

fault or failure of the spacecraft system components will ever occur. However, this assumption is rarely 

satisfied in practice because the disturbance is unavoidable and some catastrophic faults may occur due to 

malfunctions, especially in the thrusters. In this section, we will use the dynamic model in Eq.(22) and 

investigate the fixed-time rendezvous and docking problem with external disturbance and thruster faults. To 

solve this problem, an adaptive fixed-time finite controller is designed to guarantee the fixed-time SM 

converges to the residual set 0S  in fixed time sense.  

Theorem 3. Consider the LOS based equation of relative motion in Eq.(14) for rendezvous and docking 

with thruster faults and external disturbance under Assumption 1 to 3. The adaptive fixed-time based controller 

is chosen as  
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3 3

1
1 1

1 1

1 1
2 3 3 2

11
2 1 1

1 1 1
1 1

ˆ ˆ

ˆ diag ( ) ( )

ˆˆdiag diag

p g
Lc c

kp g
c

p g
Lc

sig sig

sig sig

d

C L

L

F D I E R A S S D I E R B

D I E R A x x

Sx x x x D I E R
S

            (31) 

and updated by 

1
2

0 1 0 1

1ˆ ˆ
2

d d
c c

S A                                    (32) 

T T T 2

0 2 0 2

1ˆ ˆ
2cdiag

c cC LF D R S                               (33)

where the gains 1 2 0, andc c  satisfy the constraints 

1 1
1

1

2 1
2

c    2 2
2

2

2 1
2

c
2

0

1
2

0 1 0
p

   0 (0,1)                    (34) 

where 1 2 3 3 1 2 3 3, , , , , , ,p g  are the controller parameters and satisfy 1 2, 0 , 3 (0,1)p , 3 1g , 1
1
2

,

2
1
2

, 3 3 3 3 3 3diag , diag , 0, 0, for 1, 2,3i i i i ia . The adaptive terms d̂  and ˆ  are 

estimates of the unknown parameters d  and , and ˆ  satisfies ˆˆ diagC CEF F . Then the estimation 

errors ˆd d d  and ˆ  converge to a residual set. Moreover, we assume that there exists an 

unknown constant  and a compact set 1D  such that

T
1 , ,D d d                                    (35) 

Then the trajectory of the closed-loop system will converge to the region 2D  in a fixed time 2ST , where the 

region 2D  and the convergence time 2ST  are given by 

33 3

2

2 2
11 1

2
1 2

2lim ( ) min ,
1 1S

gp g

St T
D t VS                       (36) 

3 1

2
1 3 2 3

1 2
(1 ) ( 1)

g

ST
p g

                                (37) 

without any knowledge of the initial or instantaneous values of the system states, and where 

3

1
0 1 0 2

1
2 22

1 0 max 0 max
0 1 0 2

1 1: min ,

1 12 2 : min ,
g

if
c c

c c if
c c

, max 1 2 3max , ,c c c c , and 
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3 1
2 T1 1 1 2 2

1 0 02
2 2

p

d .

Proof: Consider the candidate Lyapunov function 2SV  given by 

T 2 T
2 0 1 0 2V c d cS S S                                    (38) 

where ˆd d d  and ˆ . Taking the derivative of this Lyapunov function we have 

1 1 11 1

1
1 1

T T
2 0 1 0 2

1 1 1T T
1 1 1 1 0 1 0 2

T
2 2 2 2

1
1

2 2 2

2 diag ( ) ( ) diag diag 2 2

2

diag ( ) ( )

k p gp g

c

kp g

V c dd c

sig sig c dd c

sig sig

S

L C

1

S S

S x x x x x x x

S A B A R D I E F A d F

x x

DE

1 11 1 T
1 1 0 1 0 2diag diag 2 2p g c dd cx x x x

(39)

Define the estimation error of the fault value as ˆE E E . Substituting this error into Eq.(39) yields 

1 1 11 1

T
2 2 2 2 2 2

1 1 1 T
1 1 1 1 0 1 0 2

ˆ2

diag ( ) ( ) diag diag 2 2

c

k p gp g

V

sig sig c dd c

S Ls C L C CS A B A R D I E F A R DEF A d F

x x x x x x

DE
   (40) 

Substituting the adaptive fixed-time controller, Eq.(31), into Eq.(40) gives 

3 3

3 3

3

3

T T
2 2 2 2 0 1 0 2

1 1
2T T T2 2

min 3 min 3 2 2

T
2 0 1 0 2

1
2T 2

min 3

ˆ2 2 2

ˆ2 2 2 2

2 2 2

2 2

p g
c

p g
g

c

p

V sig sig d c dd c

d diag

d c dd c

S 3 3 L C C

L C

SS S S A A R DEF A d F
S

S S S S S A S A R D F

S A

S S

DE

3

3

1
T 2

min 3 2

T T
2 0 1 0 2

2

ˆ ˆ2 2 2

g
g

c

d

diag c dd cL C

S S S A

S A R D F

 (41) 

Using the adaptive laws in Eq.(32) and Eq.(33), we have 

3 3

3

1 1
2T T T2 2

2 min 3 min 3 1 2
ˆ ˆ2 2

p g
gV ddS S S S S                    (42) 

For any 1
1
2

 and 2
1
2

, one has 

2 2 2 21 1 1 1
1 1 1 1

1

2 1ˆ
2 2 2

dd d d d d d c d d                         (43) 

T T T T T1 1 1 2
2 2 2 1

1

2 1ˆ
2 2 2

c                 (44) 

Then, further simplification of Eq.(42) gives 
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3 3 3

3 3 3

3

3 3 3 3

1 1 13 3 3
2 2 2

1 1 1
T 2 T2 2 2

2 min 3 0 1 0 2

1 1 1
2 T 2 T2 2 2

min 3 0 1 0 2

1 1 1 1
2 T 2 T2 2 2 2

0 1 0 2 0 1 0 2

2 T
0 1 0 2 0 1

2

2

1
p p p

p p p

g g g
g

p p g g

V c d c

c d c

c d c c d c

c d c c

S S S

S S

1 3
22 T 2 T1 1 1 2

0 21
2 2

p

d c d

     (45) 

Case 1: If 2
1 1c d , one has 

3 1
2 22

1 1 0
p

c d c d                                        (46) 

Case 2: If 2
1 1c d , then using the basic properties of powers,  

3 1
2 22

1 1 00
p

c d c d                                       (47) 

where
1/(1 )0

0 0/(1 )
0 0 0 0

pp pp p  and 0 3 1 / 2p p

Combining Eqs. (46) and (47) leads to 

3 1
2 22

1 1 0

p

c d c d                                        (48) 

Similarly, we can obtain the following inequality 

3 1
T T2

2 2 0

p

c c                                    (49) 

Note that 
2 1
2

0 01
p

 and define 1 min 3min 2 ,1 , 32
2 min 3min 2 ,1g . Then Eq.(45) can be 

written as 

3 3 3

3 3 3

1 13 33 3
2 2

2

1 1 1
T 2 T2 2 2

2 1 0 1 0 2

1 1 1
T 2 T2 2 2

2 0 1 0 2

1 1
2 T 2 T2 2

0 1 0 2 0 1 0 2

1
2 T1 1 1 2 2

0 0

1 1

2
2 2

p p

p p p

g g g

g g

p

V c d c

c d c

c d c c d c

d

S S S

S S

3 33

3 3

1 /2 1 /21
1 2 2 2 1

1 1
2 T 2 T2 2

0 1 0 2 0 1 0 2

2p gg
S S

g g

V V

c d c c d c

               (50) 

where Proposition 2 has been used and 
3 1

2 T1 1 1 2 2
1 0 02

2 2

p

d .

In addition, if Eq.(35) holds, the following two cases are considered: 
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Case 1: If 
0 1 0 2

1 1min ,
c c

, one has 

3 31 1
2 2 T T2 2

0 1 0 1 0 2 0 2, ,
g g

c d c d c c                  (51) 

Then, Eq.(50) can be simplified to give 

3 331 /2 1 /21
2 1 2 2 2 12p gg

S SV V VS                        (52) 

Case 2: If 
0 1 0 2

1 1min ,
c c

, we have 

3 3 31 1 1
2 T 2 T 2 22 2 2

0 1 0 2 0 1 0 2 0 max 0 max2 2
g g g

c d c c d c c c    (53) 

where max 1 2max ,c c c .

Then, Eq.(50) can be rewritten as 

3
3 33

1
1 /2 1 /21 2 22

2 1 2 2 2 1 0 max 0 max2 2 2
g

p gg
S SV V V c cS           (54) 

Combining Eqs. (52) and (54) leads to 

3 331 /2 1 /21
2 1 2 2 22p gg

S SV V VS                              (55) 

where
3

1
0 1 0 2

1
2 22

1 0 max 0 max
0 1 0 2

1 1: min ,

1 12 2 : min ,
g

if
c c

c c if
c c

Then, using Proposition 1, the trajectory of the system in Eq.(55) is practical fixed-time stable. The residual set 

2D  is calculated as  

33 3

2

2 2
11 1

2
1 2

2lim ( ) min ,
1 1S

gp g

St T
D t VS                      (56) 

and the settling time 2ST  is given by 

3 1

2
1 3 2 3

1 2
(1 ) ( 1)

g

ST
p g

                                 (57) 

without any knowledge of the initial or instantaneous values of the system states. In addition, if the exact value 

of 0( )V x  is known, the settling time 2ST  is explicitly given by 



 23

3
3 3 3 /2

1
1 /2 3 3 2

2 (0) 2(0)
1 3 3 3 3 3 1

2 1 11, , 21 ,
(1

F
)

g
p g p

S S S
p pT V V

p g p g p
          (58) 

where 0,1  and 2(0)SV  is the initial value of 2SV . Hence, the proof of Theorem 3 is completed. 

Remark 5. Equation (45) can be rewritten as 

3 33 33

3 3

3

1 11 11
2 T 2 T2 22 22

2 min 3 0 1 0 2 0 1 0 2

1 1
2 T 2 T1 1 2 22 2

0 1 0 2

1 /2
1 2 1

2 2

p pp pp
T

S

p p

p
S

V c d c c d c

c d c d

V

S S

   (59) 

According to Lemma 3, the trajectory of this system is practical finite-time stable. Moreover, the fixed-time SM 

and estimation errors will converge to the residual set  

3

3

2
1

1
3 2

1

lim , ,
1S

p

St T
D d VS                           (60) 

where 3ST  is the time needed to reach the residual set and expressed as 

31 /2
2(0)

3
1 3

2
(1 )

p
S

S

V
T

p
                                   (61) 

In conclusion, the estimation errors d  and  will converge to the residual set 3D  in finite time 3ST . Thus, 

the assumption in Eq.(35) is reasonable 

Remark 6. The above analysis shows that the parameters 1 , 2  and  are related to the band of 

attraction of the sliding surface. Hence, we can choose 1 , 2  small enough and 2 , 2  large enough to 

guarantee the motion along the sliding surface, i.e. 0S .

Remark 7. The preceding procedure for the selection of control parameters for the control strategy can 

summarized as follows: 

1) Step 1: Set the homogeneity powers 1 1i ip g k , for 1, 2,3i , first. Then select suitable gain 

parameters ,i i , 1,2,3i = , which mainly affect the convergence time of control system. 

2) Step 2: Select suitable homogeneity powers 1, ,i ip g k , for 1,2,3i , which mainly determine the 
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accuracy of control system.

3) Step 3: Select suitable gain parameters 1 2 1 2, , , , which mainly affect the fault tolerant capability, 

and robustness to external disturbances. 

6. Simulation Results and Comparison 

To verify the effectiveness of the proposed fixed-time sliding surface and controllers, the detailed 

simulations on a vehicle with six thruster pairs under various conditions are conducted using the model 

governed by Eq.(22) in conjunction with the proposed fixed-time controller in Eq.(25), and the adaptive 

fixed-time controller in Eq.(31). The numerical simulations are performed with MATLAB function ‘ode4’, and 

the fixed-step size is set as 0.1s. Each thruster pair contains two symmetric thrusters and the limited control 

force of each thruster is max, 10 Nc iF . The thruster configuration are illustrated in Fig.2, which cites from the 

Ref.[51] and is slightly different from it. The positions and directions of all the twelve thrusters with respect to 

the body-fixed reference frame are given in Table 1. 

Thruster pair 
Thruster 1 

Thruster 2 

Thruster pair 
Thruster 3 

Thruster 4 

Thruster pair 
Thruster 7 

Thruster 8 

Thruster pair 
Thruster 5 

Thruster 6 

Thruster pair 
Thruster 9 

Thruster 10 

Thruster pair 
Thruster 11 

Thruster 12 

y

z

o 1

2

3

4

5 6
7

8

9

10

11

12

Fig. 2 Distribution schematics of six thruster pairs and the thrust distribution matrix 

Table 1 Positions and direction of the thrusts in the body frame of the chaser satellite 

Thruster
pair 

Thruster 
number 

Thruster
position 

Thrust
direction 

Thruster
number 

Thruster
position 

Thrust
direction 

 1 [0 0 -0.8]T [1 0 0]T 2 [0 0 -0.8]T [-1 0 0]T

 3 [0 0 0.8]T [1 0 0]T 4 [0 0 0.8]T [-1 0 0]T

 5 [0.7 0 0]T [0 1 0]T 6 [0.7 0 0]T [0 -1 0]T
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 7 [-0.7 0 0]T [0 1 0]T 8 [-0.7 0 0]T [0 -1 0]T

 9 [0 0.7 0]T [0 0 1]T 10 [0 0.7 0]T [0 0 -1]T

 11 [0 -0.7 0]T [0 0 -1]T 12 [0 -0.7 0]T [0 0 -1]T

The mass of the chaser spacecraft without propellant is 700kg and the initial propellant mass (0)pm  is 300kg. 

According the mass flow in Eq.(15), the propellant mass pm  is obtained as  

VI
(0) I 0

( ) /
t

p p ci spi
m m F t I g dt                        (62) 

The other simulation parameters of the two spacecrafts are given in Table 2. 

Table 2 Simulation parameters 

Parameters name Parameters value Units 

tJ diag([1500,1800,2100]) 2kg m

0 0[ , , ]i [30, 45,10] deg

a 7200 km

e 0.005 

pt 0 s

53.980044 10 3 2km / s

t
T[ 0.75, 0.5, 0.75] deg/s

T
0t0q tq T[0.548, 0.6, 0.5, 0.3]

c(0)m 1000 kg

SPI 4500 sec 

Case A. Comparison without thruster faults or external disturbance 

In this case, the initial position of the chaser spacecraft in the LOS coordinate frame have been set to 

TT
0 0 0, , 100m, 0.6 180 / , 0.4 180 / , with no initial relative velocity. In an actual 

rendezvous and docking mission, the chaser spacecraft should approach the target spacecraft along a prescribed 

docking axis. This requirement can be easily met using the LOS based equation of relative motion (12), 

especially for a tumbling target. As described in Section 2, the -X axis of the target is chosen as the docking axis. 

The chaser spacecraft first approaches the -X axis of the target and then keeps the relative range as 60m and 

30m in turn for a fly-around. The total rendezvous process is completed in 1500s, and the distance between the 
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center of the target and the docking device is set to be 10m. Thus, the desired distance d  is defined as  

60m 0s
30m 500s
10m 1000s

d                                    (63) 

The control gains for the two controllers are given in Table 3 and selected by trial-and-error until a good 

tracking performance is obtained. 

Table 3 The parameters used in the simulation 

Controllers Control parameters 

Fixed-time based finite-time 

controller in Eq.(25) 

1 diag 0.1, 0.06, 0.05 , 1 diag 0.075, 0.05, 0.05

2 diag 0.06, 0.06, 0.06 , 2 diag 0.06, 0.06, 0.05

1 0.75p , 1 1.2g , 1 1.1k , 2 0.8p , 2 1.2g

Adaptive fixed-time based 

finite-time controller in 

Eq.(31)

1 diag 0.1, 0.06, 0.05 , 1 diag 0.075, 0.05, 0.05

3=diag 0.06, 0.06, 0.06 , 3 diag 0.06, 0.06, 0.05

1 0.75p , 1 1.2g , 1 1.1k , 2 0.8p , 2 1.2g

1 2 2 , 1 0.003 , 2 100 , ˆ(0) 1d , Tˆ (0) 0, 0, 0, 0,0,0

In addition, using the mathematical formula of convergence time in Eq.(26) and the parameters in Table 3, 

the upper bound of settling time can be estimated as follows 

1.1 1.1 1 1.2

1 1 1 1 450s
0.05 (1 0.75 1.1) 0.05 (1.2 1.1 1) 0.06 1 0.8 2 0.05 1.2 1

T    (64) 

which means the chaser spacecraft can rendezvous with target within the specified time limit(i.e. 500 sec, 

scheduled in Eq.(63)) The comparative simulations are conducted and the results are shown in Figs. 3 to 7. 

Figure 3 to 4 show that both of the two controllers have good performance and the adaptive fixed-time based 

finite time controller has better control precision. Both settling time for the relative position are identical, i.e. 

100s, which can be seen from Fig.5. Figure 6 shows that the actual control forces are within their maximum 
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allowable limit, i.e. 10N; both of the controllers are continuous, and chatter-free. Since thrusters 3 and 4, 

thrusters 7 and 8 and thrusters 11 and 12 have the same forces as the thrusters 1 and 2, thruster 5 and 6 and 

thrusters 9 and 10 respectively, their forces are not plotted. Figure 7 shows that the proposed adaptive 

fixed-time controller consumes less propellant mass than the one given by Eq.(25). 
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Fig. 3 Time response of the position states , ,  in polar coordinates without thruster faults or disturbance. 
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Fig. 6 Time response of the force of each thruster without thruster faults or disturbance: (a) the fixed-time based 
finite time controller in Eq.(25) (b) the adaptive fixed-time based finite time controller in Eq.(31). 

Fig.7 Propellant mass for the two controllers without thruster faults or disturbance. 

Case B. Comparison with thruster faults and disturbance 

In this case, severe thruster faults are considered, and the fault scenario is given by 

1 2 5 6

0 if 100
0.2 otherwise

t
E E E E , 3 4 7 8

0 if 500
0.5 otherwise

t
E E E E , 9 10 0.1E E , 11 12 0E E  (65) 
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3 4 5 6

0.5 f 500
0 otherwiseC C C C

i t
F F F F , 0 (i 1,2,7,8,9,10,11,12)CiF              (66) 

According to Eq.(1) and Eq.(13), Ld  has the following form

-1
c c t c c c wm m m mL Lt t t J2 J2d R J d a a a                        (67) 

where 510 Nmtd and T 5 23cos(0.2 ) 1 1.5sin(0.2 ) 3cos(0.2 ) 2 3sin(0.2 ) 3 10 m/st t t twa [42]. In 

addition, we also consider the uncertain mass of chaser spacecraft and the uncertain inertia of target spacecraft 

where the variation are less than 3%  and 8%  respectively. The control parameters remain those given in 

Table 2, and the results are shown in Figs. 8 to 12. Figures 8 and 9 show the macroscopic time responses for the 

two controllers, and it is clear that the adaptive fixed-time controller has better adaptability to the thruster faults 

and disturbance. Figure 10 shows that the fixed-time controller in Eq.(25) has the faster transient response and 

the adaptive fixed-time controller has the higher accuracy However, the proposed controller in Eq.(31) 

consumes less propellant mass, as shown in Figs. 11 and 12. The system performance of the controller in Eq.(25) 

is significantly degraded by thruster faults and disturbance. The results presented demonstrate the desirable 

features of the proposed adaptive fixed-time controller, such as finite-time convergence, fault tolerant capability, 

and robustness to external disturbances. 
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controller in Eq.(25) (b) the adaptive fixed-time controller in Eq.(31). 



 33

Fig.12 Propellant mass for the two controllers with thruster faults and disturbance. 

Case C. Comparison with thruster faults, disturbance , sensor noise and new initial conditions 

In this case, to further examine the adaptability of the two control schemes, new initial conditions 

TT
0 0 0, , 100m, 2 180 / , 0.8 180 /  and 

80m 0s
10m 500sd  have been considered. The control 

parameters remain those given in Table 3, and the thruster faults and disturbance remain the same as in Case B. 

Moreover, the sensor noise has been taken into consideration and drawn from the mixture of zero-mean 

Gaussian probability distributions, defined by the probability density function 

21 / 2 exp / / 2p , where  are the standard deviations of the individual Gaussian 

distributions. The standard deviation  is chosen according to the following Table 4[52].

Table 4. Rendezvous navigation sensor noise 

Measurement Standard deviation ( )

Rang ( ), m 21.518 10

Elevation ( ), deg 32.787 10

Azimuth ( ), deg 31.404 10
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Figures 13 to 17 show that high control precision and good performance are still obtained, and no 

significant amount of oscillations occurred even under severe faults for the proposed controller. Note especially 

that the settling time of the proposed controllers in Eq.(25) and Eq.(31) are nearly the same as that in Case B, 

which is to say both of the proposed fixed-time controllers have great robustness to different initial conditions. 

Severe oscillation are excited due to the existence of sensor noise, while both of the control accuracy of the two 

fixed-time controllers satisfy the rendezvous requirements well, i.e. 0.05m and 0.05 deg. In addition the 

controller in Eq.(31) is little better than controller in Eq.(25) in the control precision and the loss of propellant 

mass, shown in Fig. 13 and Fig.17. 
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Fig. 16 Time response of the force of each thruster pair with new initial conditions: (a) the fixed-time 
controller in Eq.(25) (b) the adaptive fixed-time controller in Eq.(31). 

Fig.17 Propellant mass for the two controllers with new initial conditions. 

Summarizing all of the cases, both the fixed-time controller in Eq.(25) and the adaptive fixed-time based 

finite time controller in Eq.(31) are able to successfully accomplish rendezvous and docking with high attitude 
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pointing accuracy and stability, when thruster faults and external disturbances are not present. However, the 

controller in Eq.(31) has much better adaptability in the presence of external disturbances, measurement noise, 

different initial conditions and thruster faults, both in theory and in simulation. In addition, some simulations 

were performed using different control parameters, disturbance inputs and even combination of thrusters faults. 

These results show that closed-loop system rendezvous control is accomplished in spite of these undesired 

effects in the system. Moreover, the flexibility in the choice of the control parameters can be utilized to obtain 

desirable performance while meeting constraints on the control magnitude. 

7. Conclusion 

In this paper, dynamic equations are derived for rendezvous and docking with a tumbling target. Novel 

fixed-time fault tolerant controllers are proposed to perform the challenging and complicated rendezvous 

mission with a non-cooperative spacecraft. In contrast to the existing finite-time control literature, the 

fixed-time controllers are independent of initial conditions and have more rapid convergence and higher 

accuracy. The performance of the proposed controllers is examined through numerical simulation. It is shown 

that the proposed adaptive fixed-time controller has faster convergence and better fault-tolerant capability with 

higher accuracy than the general fixed-time controller. This conclusion is valid with the assumption that the 

velocity of target is known, although an actual non-cooperative target’s speed would be unknown. The results 

presented in this paper are given for a particular numerical simulation; further experimental testing would be 

required to reach any conclusion about the efficacy of the control and adaptation laws for a real mission. 

ACKNOWLEDGMENTS 

This work was supported partially by National Natural Science Foundation of China (Project No.61273175, 

61522301), Program for New Century Excellent Talents in University (NCET-11-0801), Heilongjiang Province 

Science Foundation for Youths (QC2012C024), and Research Fund for Doctoral Program of Higher Education 

of China (20132302110028). The authors greatly appreciate the above financial support. The authors would also 



 38

like to thank the associate editor and reviewers for their valuable comments and constructive suggestions that 

helped to improve the paper significantly. 

References 

[1] Newkirk, D., “Repair of Salyut 7,” IEEE Aerospace and Electronic Systems Magazine, Vol. 3, No 9, 1988, pp. 

9-11. 

[2] Clohessy, W. H., and Wiltshire, R. S., “Terminal Guidance System For Satellite Rendezvous,” Journal of 

Aerospace Science, Vol. 27, No. 9, 1960, pp. 653-658. 

[3] Schaub, H., and Junkins, J. L., Analytical Mechanics of Space Systems, AIAA Education Series, AIAA, Reston, 

VA, 2003. 

[4] Tschauner, J., Hempel, P., “Rendezvous With A Target In An Elliptical Orbit,” Acta Astronautica, Vol. 11, No. 2, 

1965, pp. 104–109. 

[5] Yu, S., “Terminal Spacecraft Coplanar Rendezvous Control,” Journal of Guidance, Control, and Dynamics, Vol. 

18, No. 4, 1995, pp. 838-842. 

[6] Yu, S., “Autonomous Rendezvous In Elliptical Orbits,” Acta Astronautica, Vol. 41, No. 2, 1997, pp. 95-101. 

[7] Yu, S., “Control Schemes For Terminal Space Rendezvous,” Acta Astronautica, Vol. 43, No. 7, 1998, pp. 349-354. 

[8] Gim, D. W., Alfriend, K. T., “State Transition Matrix Of Relative Motion For The Perturbed Noncircular 

Reference Orbit,” Journal of Guidance, Control, and Dynamics, Vol. 26, No. 6 2003, pp. 956–971. 

[9] Ross, I. M., “Linearized Dynamic Equations For Spacecraft Subject To J2 Perturbations,” Journal of Guidance, 

Control, and Dynamics, Vol. 26, No. 4, 2003, pp. 57–659. 

[10] Mokuno, M., Kawano, I., and Suzuki, T., "In-Orbit Demonstration Of Rendezvous Laser Radar For Unmanned 

Autonomous Rendezvous Docking," IEEE Transactions on Aerospace and Electronic Systems, Vol. 40, No. 2, 2004, 

pp. 617-626. 

[11] Gao, H. J, Yang, X. B, and Shi, P., “Multi-Objective Robust H  Control Of Spacecraft Rendezvous,” IEEE 

Transactions on Control Systems Technology, Vol.17, No.4, 2009, pp.794-802. 

[12] Wu, S., Wu, Z., Radice, G., and Wang, R., “Adaptive Control For Spacecraft Relative Translation With 

Parametric Uncertainty,” Aerospace Science and Technology, Vol. 31, No. 1, 2013, pp. 53-58. 

[13] Singla, P., Subbarao, K., and Junkins, J. L., “Adaptive Output Feedback Control For Spacecraft Rendezvous And 

Docking Under Measurement Uncertainty,” Journal of Guidance, Control, and Dynamics, Vol. 29, No. 4, 2006, pp. 



 39

892-902. 

[14] Yoon, H., Agrawal, B., N., “Novel Expressions Of Equations Of Relative Motion And Control In Keplerian 

Orbits,” Journal of guidance, control, and dynamics, Vol. 32, No. 2, 2009, pp. 664-669. 

[15] Yoon, H., Eun, Y., Park, C.. “Adaptive Tracking Control Of Spacecraft Relative Motion With Mass And Thruster 

Uncertainties,” Aerospace Science and Technology, Vol. 34, No. 1, 2014, pp. 75-83. 

[16] Zhang, D. W., Song S M, Pei R. “Safe Guidance For Autonomous Rendezvous And Docking With A 

Non-Cooperative Target,” AIAA Guidance, Navigation, and Control Conference, 2010 pp. 1-19. 

[17] Lu, W., Geng, Y. H., Chen, X. Q., and Zhang, F., “Relative Position And Attitude Coupled Control For 

Autonomous Docking With A Tumbling Target,” International Journal of Control and Automation, Vol. 4, No. 4, 

2011, pp. 1-22. 

[18] Di Cairano, S., Park, H., Kolmanovsky, I., “Model Predictive Control Approach for Guidance of Spacecraft 

Rendezvous And Proximity Maneuvering,” International Journal of Robust and Nonlinear Control, Vol 22, No 12, 

2012, p 1398-1427. 

[19] Liang, J. X., and Ma, O., “Angular Velocity Tracking for Satellite Rendezvous And Docking,” Acta Astronautica,

Vol 69, No 11-12, 2011, pp. 1019-1028. 

[20] Michael, J., Chudej, K., Gerdts, M., and Pannek, J. “Optimal Rendezvous Path Planning to An Uncontrolled 

Tumbling Target,” 19th IFAC Symposium on Automatic Control in Aerospace, ACA 2013 - Proceedings, Vol 19, No 1, 

2013, pp. 347-352. 

[21] Bhat, S., and Bernstein, D., "Finite-Time Stability of Continuous Autonomous Systems," SIAM Journal on 

Control and Optimization, Vol. 38, No. 3, 2000, pp. 751-766. 

[22] Bhat, S. P., and Bernstein, D. S, "Geometric Homogeneity with Applications to Finite-Time Stability," 

Mathematics of Control, Signals, and Systems, Vol. 17, No. 2, 2005, pp. 101-127. 

[23]  Bhat, S. P., and Bernstein, D. S, "Continuous Finite-Time Stabilization of The Translational And Rotational 

Double Integrators," IEEE Transactions on Automatic Control, Vol. 43, No. 5, 1998, pp. 678-682. 

[24] Sun, H., Li, S. and Fei, S., "A Composite Control Scheme for 6DOF Spacecraft Formation Control," Acta 

Astronautica, Vol. 69, No. 7, 2011, pp. 595-611. 

[25] Hui, L. and Li, J., "Terminal Sliding Mode Control for Spacecraft Formation Flying." IEEE Transactions on 

Aerospace and Electronic Systems, Vol. 45, No. 3, 2009, pp. 835-846. 

[26] Lu, K. and Xia, Y., "Finite-Time Fault-Tolerant Control for Rigid Spacecraft with Actuator Saturations," IET 

Control Theory and Applications, Vol. 7, No. 11, 2013, pp. 1529-1539. 



 40

[27] Polyakov, A., "Nonlinear Feedback Design for Fixed-Time Stabilization of Linear Control Systems," IEEE 

Transactions on Automatic Control, Vol. 57, No. 8, 2012, pp. 2106-2110. 

[28] Polyakov, A., Efimov, D., and Perruqetti, W., "Finite-Time And Fixed-Time Stabilization: Implicit Lyapunov 

Function Approach" Automatica, Vol. 51, 2015, pp. 332-340. 

[29] Levant, A., "On Fixed And Finite Time Stability in Sliding Mode Control," 2013 IEEE 52nd Annual Conference 

on Decision and Control, pp. 4260-4265. 

[30] Chen, W. and Saif, M., "Observer-Based Fault Diagnosis of Satellite Systems Subject to Time-Varying Thruster 

Faults," Journal of Dynamic Systems Measurement and Control, Vol. 129, No. 3, 2007, pp. 352-356. 

[31] Patton, R., Uppal, F., Simani, S., and Polle, B., "Robust FDI Applied to Thruster Faults of A Satellite System," 

Control Engineering Practice, Vol. 18, No. 9, 2010, pp. 1093-1109. 

[32] Fonod, R., Henry, D., Charbonnel, C., and Bornschlegl, E., "Position And Attitude Model-Based Thruster Fault 

Diagnosis: A Comparison Study," Journal of Guidance Control and Dynamics, Vol. 38, No. 6, 2015, pp. 1012-1026. 

[ 33 ] Fonod, R., Henry, D., Bornschlegl, E., and Charbonnel, C., "Thruster Fault Detection, Isolation and 

Accommodation for An Autonomous Spacecraft," In 19th IFAC world congress Cap Town, South Africa, 2014, pp. 

10543-10548. 

[34] Henry, D., Olive, X., and Bornschlegl, E., "A Model-Based Solution for Fault Diagnosis of Thruster Faults: 

Application to The Rendezvous Phase of The Mars Sample Return Mission," In 4th European conference for 

aerospace sciences (EUCASS), Russian Federation: St. Petersburg, 2011. 

[35] Henry, D., "Fault Diagnosis of Microscope Satellite Thrusters using Hinf/H- Filters," Journal of Guidance, 

Control and Dynamics, Vol. 31, No. 3, pp. 699-711. 

[36] Qian, M., and Jie, C., "Robust Fault-Tolerant Control for A Class Of Spacecraft Rendezvous System: Actuator 

Fault Case," ICIC Express Letters, Part B: Applications, Vol. 1, No. 2, 2010, pp. 255-560.

[37] Marwaha, M., and Valasek, J., "Fault tolerant Control Allocation for Mars Entry Vehicle using Adaptive 

Control," International Journal of Adaptive Control and Signal Processing, 2011, Vol. 25, No. 2, pp.95-113. 

[38] Hu, Q., Li, B., Wang, D., and Kee Poh, E., "Velocity-Free Fault-Tolerant Control Allocation for Flexible 

Spacecraft with Redundant Thrusters," International Journal of Systems Science, Vol. 46, No. 6, 2015, pp. 976-992. 

[39] Hu, Q., and Xiao, B., "Adaptive Fault Tolerant Control Using Integral Sliding Mode Strategy With Application 

To Flexible Spacecraft," International Journal of Systems Science, Vol. 44, No. 12, 2013, pp. 2273-2286. 

[40] Zhang, Y., and Jiang, J., "Bibliographical Review On Reconfigurable Fault-Tolerant Control Systems," Annual 

Reviews in Control, Vol. 32, No. 2, 2008, pp. 229-252. 



 41

[41] Jiang, J., and Yu, X., "Fault-Tolerant Control Systems: A Comparative Study Between Active And Passive 

Approaches," Annual Reviews in Control, Vol. 36, No. 1, 2013, pp.60-72. 

[42] Okasha, M., and Newman, B., "Relative Motion Guidance, Navigation And Control For Autonomous Orbital 

Rendezvous," AIAA Guidance, Navigation, and Control Conference 2011, 2011. 

[43] Vallado, D. A., "Fundamentals of Astrodynamics and Applications", Microcosm Press, EI Segundo, 

California, 2nd Edition, 2001. 

[44] Xu, Y. J., Tatsch, A., and Fitz-Coy, N. G., “Chattering Free Sliding Mode Control for a 6 DOF Formation 

Flying Mission,” Collection of Technical Papers - AIAA Guidance, Navigation, and Control Conference, Vol 8, 

2005, pp. 6210-6219. 

[45] Z. Zhu, Y. Xia, and M. Fu, "Attitude Stabilization Of Rigid Spacecraft With Finite-Time Convergence," 

International Journal of Robust and Nonlinear Control, Vol. 21, No. 6, 2011, pp. 686-702.

[46] Yu, S., Yu, X., Shirinzadeh, B., and Man, Z, "Continuous Finite-Time Control For Robotic Manipulators With 

Terminal Sliding Mode," Automatica, Vol. 41, No. 11, 2005, pp. 1957-1964. 

[47] Qian, C., and Lin, W., "A Continuous Feedback Approach To Global Strong Stabilization Of Nonlinear 

Systems," IEEE Transactions on Automatic Control, Vol. 46, No. 7, 2001, pp. 1061-1079. 

[48] Li, J, Qian, C.J, and Frye, M.T., "A Dual-Observer Design For Global Output Feedback Stabilization Of 

Nonlinear Systems With Low-Order And High-Order Nonlinearities", International Journal of Robust and Nonlinear 

Control, Vol, 19, No. 15, 2009, pp. 1697-1720. 

[49] Hu, Q.L., and Xiao B., "Adaptive Fault Tolerant Control Using Integral Sliding Mode Strategy With Application 

to Flexible Spacecraft", International Journal of Systems Science, Vol.44, N0.12, 2013, pp. 2273-2286. 

[50] Cieslak, J., Henry, D., and Zolghadri, A., "Fault Tolerant Flight Control: From Theory To Piloted Flight 

Simulator Experiments," IET control theory & applications, Vol. 4, No. 8, 2010, pp. 1451-1464. 

[51] Cai, W. C., Liao, X. H., and Song, Y. D., "Indirect Robust Adaptive Fault-Tolerant Control For Attitude Tracking 

Of Spacecraft," Journal of Guidance, Control, and Dynamics, Vol. 31, No. 5, 2008, pp. 1456-1463. 

[52] Karlgaard, C. D., "Robust Rendezvous Navigation In Elliptical Orbit," Journal of Guidance, Control, and 

Dynamics, Vol. 29, No. 2, 2006, pp. 495-499. 


