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Abstract: This paper investigates the global fixed-time tracking control problem of nonlinear cascade
systems with unknown high powers. In the process of control design, a upper bound and a lower
bound of high powers are introduced to compensate the unknown system powers, and a state
feedback controller is designed under any initial system conditions. Based on the Lyapunov stability
analysis method and the fixed-time stability theory, it is verified that the proposed method can
regulate the output tracking error to a disc region of the origin within a fixed-time and all the closed-
loop signals are bounded. At last, the effectiveness of the proposed scheme is verified by some
simulation results.
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1. Introduction

As well known, the problem of output regulation is one of the most important issues in
the control field. Based on Lyapunov stability theory and backstepping approach, generous
results about output regulations have been achieved for various nonlinear systems. For a
class of nonlinear cascade systems with high powers, using adding a power integrator
technique [1–3], many scholars have given great efforts to design feedback controllers and
achieved massive results on output regulations, see [4–10], and references therein. Com-
paring with the asymptotic control performance, finite-time control has faster convergence
rate and higher accuracy. Therefore, many effective approaches have been developed to
finite-time stabilization and/or output tracking control of nonlinear cascade systems with
high powers in the past few years [11–13]. For example, Sun et al. established fast finite-
time control schemes for nonlinear cascade systems with different circumstances [14–16];
Wang et al. investigated finite-time tracking control problem based on event-triggered
mechanism [17]; Liu et al. investigated finite-time stabilization via switching adaptive
feedback controller [18].

It should be noted that the settling times of finite-time stability systems depend on the
initial states [19], which may lead to some limitations in the control process. As an extension
of finite-time stability, the performance of fixed-time stability is superior to finite-time one
in that the settling time has an upper bound being regardless of initial conditions. The
concept of fixed-time stability is proposed in [20], and is further studied in [21,22]. Due to
its advantages in the settling time, many researchers pay great attentions to the fixed-time
control and much interesting results have been obtained [23–27]. Up to now, there are some
fixed-time control results concerned with high-order nonlinear cascade systems. For ex-
ample, Chen et al.. achieved the fixed-time stabilisation [28]; Yu et al.. designed a new
fixed-time controller based on a serial of exponential functions and fractional power inte-
gration [29]. Ma et al.. achieved the tracking control performance for high-order nonlinear
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cascade systems within a fixed-time [30]. Despite the above efforts, in the previous results,
all the high powers of the nonlinear cascade systems are precisely known and limited to
odd integers and/or ratios of odd integers.

With the development of control technology, many scholars have investigated the
control problem of nonlinear cascade systems with time-varying high powers. The output
feedback stabilization is developed for nonlinear systems with time-varying high powers
in [31]. The global stabilization and practical tracking are achieved for unknown time-
varying powers in [32]. Wang et al. achieved adaptive stabilization by switching adaptive
controller for nonlinear systems with unknown powers [33]. Xie et al. achieved tracking
control of nonlinear systems with full-state constraints and unknown powers [34]. The least
of perfection is that these results are all about asymptotic stabilization or/and asymptotic
tracking control. To the authors’ knowledge, no results about fixed-time tracking control
have been reported for nonlinear cascade systems with unknown high powers.

Motivated by the above observations, this paper studies practical fixed-time tracking
control for nonlinear cascade systems with unknown high powers. The main contributions
of this article are summarized as follows:

• A state feedback fixed-time tracking controller is designed for a class of nonlinear
cascade systems with time-varying high powers. Using Lyapunov stability analysis
method and fixed-time stability theory, it is verified that the output tracking error can
be regulated to a disc region of the origin within a fixed-time by the proposed method,
and the settling time is regardless of initial conditions.

• In comparison with most existing results for high-order nonlinear systems, system
high powers in this work are relaxed to positive time-varying functions, which makes
the considered systems more generally. A upper bound and a lower bound of high
powers are introduced in the proposed controller, which are powerful to compensate
the time-varying powers.

The organization of this paper is as follows. Section 1 describes the problem formula-
tion and preliminaries of this work. Section 2 provides the control design and performances
analysis. Two simulation examples are given in Section 3. Some concluded remarks are
given in Section 4.

Notation 1. Rj: the set of all real j-dimensional vectors; R+: the set of all nonnegative real
numbers; daeq = sign(a)|a|q, sign(a) denotes its sign function; ℘j = [x1, · · · , xj]

T ∈ Rj.

For convenience, the functions are sometimes simplified, for instance, a function
Φ(x(t)) is simplified by Φ(x), Φ(·) or Φ. A basic block architecture of tracking control is
given in Figure 1.

Actuator - Plant
x(t)
- Sensor

?

yr(t)

?

Adaptive dynamic�Controller

6

u(t)

Figure 1. The fixed-time tracking control architecture.
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2. Problem Formulation and Preliminaries

Consider the following nonlinear cascade systems
ẋj = Ψj(℘j)dxj+1eqj(t) + Fj(℘j) + $j(t), j = 1, · · · , n− 1

ẋn = Ψn(℘n)dueqn(t) + Fn(℘n) + $n(t)

y = x1

(1)

where ℘j ∈ Rj is the system state; u ∈ R and y ∈ R are system input and system output,
respectively; The nonlinear functions Fj : Rj → R and Ψj : Rj → R are unknown but locally
Lipschitz in their arguments; $j : R+ → R denotes time-varying disturbance; The system
high powers qj : R+ → R+ are time-varying functions satisfying qj(t) ≥ 1, and there exists
at least one qj(t) > 1 in system (1).

Control Objective: Design a state-feedback controller for system (1) such that the
output tracking error can be regulated to a disc region of the origin within a fixed-time
regardless of initial conditions, and all the closed-loop signals are bounded.

The following assumptions are given to achieve the control objective.

Assumption 1. The reference signal rd(t) and its first derivative ṙd(t) are bounded, i.e., there holds

sup
t
(|rd(t)|+ |ṙd(t)|) ≤ κ,

where κ is an unknown positive constant.

Assumption 2. The disturbances $j(t), j = 1, · · · , n are bounded, i.e., there holds

sup
t

$j(t) ≤ κ1,

where κ1 is an unknown positive constant.

Assumption 3. For each Fj(℘j), j = 1, · · · , n, there holds

|Fj(℘j)| ≤ θFj(℘j),

where θ is an unknown positive constant, and Fj(℘j) is known positive smooth function.

Assumption 4. For each qj(t), j = 1, · · · , n, there holds q ≥ qj(t) with q being a known posi-
tive constant.

Assumption 5. The functions Ψj(℘j), j = 1, · · · , n are either strictly positive or strictly negative,
and there holds

ψ
j
(℘j) ≤ |Ψj(℘j)| ≤ ψj(℘j),

where ψ
j
(℘j) and ψj(℘j) are known positive smooth functions. In this work, we assume Ψj(℘j) > 0.

Remark 1. Assumptions 1, 2 and 5 can be widely found in the existing tracking control results.
Assumption 3 means that the growth conditions of nonlinearities are not needed, so the nonlinearities
Fj(℘j) in system (1) are more general than those in [3,5]. Assumption 4 indicates that time-varying
powers qj(t) have a known upper bound.

The following definitions and lemmas are given to facilitate the design of
tracking controller.
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Definition 1 ([21]). Consider the nonlinear system:

ω̇ = h̄(ω, u), ω(0) = ω0, (2)

where ω ∈ Rn is the system state, h̄ : R+ × Υ → Rn is a continuous function with Υ being an
open neighborhood of the origin ω = 0. System (2) is globally fixed-time stable if it is stable, and for
any ω(0) = ω0, there exists a function Ts(ω0) : Rn → R+ such that the solution ω(t, ω0) of
(2) satisfying limt→Ts(ω0)

ω(t, ω0) = 0 and ω(t, ω0) = 0, ∀t ≥ Ts(ω0). Moreover, there holds
Ts(ω0) ≤ Tmax, where Tmax is a positive constant.

Lemma 1 ([21,35]). Consider system (2). If there exists a positive definite function V(ω) and
some constants d1 > 0, d2 > 0, b1 > 1, 0 < b2 < 1 and 0 < ι < ∞ such that the time derivative
of V(ω) satisfies

V̇(ω) ≤ −d1Vb1(ω)− d2Vb2(ω) + ι,

then system (2) is practical fixed-time stable. Moreover, the residual set of the trajectory can be
described by {

lim
t→Ts

ω|V(ω) ≤ min
{
(

ι

(1− k)d1
)

1
b1 , (

ι

(1− k)d2
)

1
b2
}}

where 0 < k < 1, and the settling time is bounded by Ts ≤ Tmax = 1/kd1(b1− 1)+ 1/kd2(1− b2).

Lemma 2 ([31]). For any Ξ1, Ξ2 ∈ R and any continuous functions a1(t) > 0, a2(t) > 0 and
c > 0, there holds

|Ξ1|a1(t)|Ξ2|a2(t) ≤ c · a1(t)
a1(t) + a2(t)

|Ξ1|a1(t)+a2(t) + c
− a1(t)

a2(t) · a2(t)
a1(t) + a2(t)

|Ξ2|a1(t)+a2(t).

Lemma 3 ([31]). For any Ξj ∈ R and any continuous function a(t) > 0, there holds

n

∑
j=1
|Ξj|a(t) ≤

( n

∑
j=1
|Ξj|

)a(t) ≤ max{na(t)−1, 1}
n

∑
j=1
|Ξj|a(t).

Lemma 4 ([32]). For any Ξ1, Ξ2 ∈ R and any continuous function a(t) ≥ 1, there holds

|dΞ1ea(t) − dΞ2ea(t)| ≤ |Ξ1 − Ξ2|a(t) + a(t)|Ξ1 − Ξ2| · (|Ξ1|a(t)−1 + |Ξ2|a(t)−1).

Lemma 5 ([32]). For any υ ∈ R, If a continuous function a(t) satisfies 0 < a < a(t) < a,
there holds

|υ|a(t) ≤ |υ|a + |υ|a.

3. Main Results
3.1. Control Design

In this section, we will design a state feedback tracking controller for system (1).
Motivated by the control law designed in the related literature [4,32], the actual state

feedback controller is designed as

u = −(ψ−1
n

+ ψ
− 1

q
n

)(ξn + dξne
1

q2 )− φn(℘n, rd)(ξn + dξneq) (3)

with ξn being recursively introduced by{
ξ1 = y− rd,

ξ j = xj − vi−1(℘j−1, rd), j = 2, · · · , n,
(4)
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where vj(℘j, rd) is virtual control signal designed by

vj(℘j, rd) = −(ψ−1
j

+ ψ
− 1

q
j )(ξ j + dξ je

1
q2 )− φj(℘j, rd)(ξ j + dξ jeq), j = 1, · · · , n− 1, (5)

where φj(℘j, rd), j = 1, · · · , n− 1 are known positive functions to be designed later.
With suitable choice of φj(·), we can obtain the following property of the resulting

closed-loop system.

Proposition 1. Let ξ = [ξ1, · · · , ξn]T and define the Lyapunov function V(ξ) = 1
2 ∑n

j=1 ξ2
j .

For system (1) under Assumptions 1–5, the actual controller (3) along the trajectories of system (1)
can lead to

V̇ ≤ −
n

∑
j=1
|ξ j|

1+ 1
q −

n

∑
j=1
|ξ j|1+q + C, (6)

where C is an unknown positive constant.

Proof. Based on (1) and (4), the time derivative of V is

V̇ = −ṙdξ1 +
n

∑
j=1

(Fj + $j)ξ j −
n

∑
j=2

∂vj−1

∂rd
ṙdξ j

−
n

∑
j=2

j−1

∑
m=1

∂vj−1

∂xm

(
Ψmdxm+1eqm + Fm + $m

)
ξ j +

n

∑
j=1

Ψjdxj+1eqj ξ j (7)

with xn+1 = u.
Next, we give the appropriate estimations for the right side of (7) (remarked by

A1 − A5, respectively).
By Assumptions 1–3 and Lemma 2, one has

A1 = −ṙdξ1 ≤ κ|ξ1| ≤ M0|ξ1|1+q +
Θ1

L
, (8)

A2 =
n

∑
j=1

(Fj + $j)ξ j ≤
n

∑
j=1

(θFj + κ1)|ξ j| ≤
n

∑
j=1

M1j(℘j, rd)|ξ j|1+q +
Θ2

L
, (9)

A3 =
n

∑
j=2

∂vj−1

∂rd
ṙdξ j ≤

n

∑
j=2

κ
∣∣∂vj−1

∂rd

∣∣|ξ j| ≤
n

∑
j=2

M2j(℘j, rd)|ξ j|1+q +
Θ3

L
, (10)

where Θ1, Θ2 and Θ3 are unknown positive constants, L is the constant parameter to be
designed, M0, M1j(·) and M2j(·) are all known positive smooth functions. Particularly,
M0 and M1j(·) are independent of φ1, · · · , φn, M2j(·) depends on φ1, · · · , φj−1 but not on
φj, · · · , φn.

By Assumptions 1–4, and Lemmas 2 and 5, one has

A4 = −
n

∑
j=2

j−1

∑
m=1

∂vj−1

∂xm

(
Ψmdxm+1eqm + Fm + $m

)
ξ j

≤
n

∑
j=2

j−1

∑
m=1

∣∣∂vj−1

∂xm

∣∣(ψm|xm+1|qm + θFm + κ1
)
|ξ j| (11)

≤
n

∑
j=2

j−1

∑
m=1

∣∣∂vj−1

∂xm

∣∣(ψm(|xm+1|q + |xm+1|) + θFm + κ
)
|ξ j|

≤
n

∑
j=2

M3j(℘j, rd)|ξ j|1+q +
Θ4

L
,
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where Θ4 is an unknown positive constant, and M3j(·) is a known positive smooth function,
which depends on φ1, · · · , φj−1 but not on φj, · · · , φn.

From Assumptions 3 and 4, Lemmas 2, 4 and 5, we have

n−1

∑
j=1

Ψj
(
dxj+1eqj − dvjeqj

)
ξ j

=
n

∑
j=2

Ψj−1
(
dxjeqj−1 − dvj−1eqj−1

)
ξ j−1

≤
n

∑
j=2

ψj−1

(
|ξ j|qj−1 + qj−1|ξ j|(|xj|qj−1−1 + |vj−1|qj−1−1)

)
|ξ j−1| (12)

≤
n

∑
j=2

ψj−1

(
|ξ j|+ |ξ j|q + qj−1|ξ j|

(
(1 + |xj|2)q−1 + (1 + |vj−1|2)q−1))|ξ j−1|

≤
n

∑
j=2

M4j(℘j, rd)|ξ j|1+q +
n− 1

L
,

where M4j(·) is a known positive smooth function, which depends on φ1, · · · , φj−1 but not
on φj, · · · , φn.

It follows from (3) and (5) that

n−1

∑
j=1

Ψjdvjeqj ξ j = −
n−1

∑
j=1

Ψjφ
qj
j
⌈ψ−1

j
+ ψ

− 1
q

j

φj
(ξ j + dξ je

1
q2 ) + ξ j + dξ jeq

⌉qj ξ j,

Ψndueqn ξn = −Ψnφ
qn
n
⌈ψ−1

n
+ ψ

− 1
q

n
φn

(ξn + dξne
1

q2 ) + ξn + dξneq
⌉qn ξn.

(13)

By Assumption 5, Lemmas 3 and 5, there holds

⌈ψ−1
j

+ ψ
− 1

q
j

φj

(
ξ j + dξ je

1
q2 )+ ξ j + dξ jeq

⌉qj ξ j

=
(ψ−1

j
+ ψ

− 1
q

j

φj

(
|ξ j|+ |ξ j|

1
q2 )+ |ξ j|+ |ξ j|q

)qj
|ξ j| (14)

≥
ψ
−qj
j + ψ

−
qj
q

j

φ
qj
j

(
|ξ j|1+qj + |ξ j|

1+
qj
q2 )+ |ξ j|1+qj + |ξ j|1+qqj

≥
ψ
−qj
j + ψ

−
qj
q

j

φ
qj
j

|ξ j|
1+ 1

q + |ξ j|1+q,

Ψj
(
ψ
−qj
j + ψ

−
qj
q

j
)
≥ 1

ψ
qj−1
j

+ ψ
1−

qj
q

j ≥ 1, (15)

which, together with (13), yields

n−1

∑
j=1

Ψjdvjeqj ξ j + Ψndueqn ξn ≤ −
n

∑
j=1
|ξ j|

1+ 1
q −

n

∑
j=1

Ψjφ
qj
j |ξ j|1+q. (16)
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From (12) and (16), it follows that

A5 =
n−1

∑
j=1

Ψj
(
dxj+1eqj − dvjeqj

)
ξ j +

n−1

∑
j=1

Ψjdvjeqj ξ j + Ψndueqn ξn

≤ −
n

∑
j=1
|ξ j|

1+ 1
q −

n

∑
j=1

Ψjφ
qj
j |ξ j|1+q +

n

∑
j=2

M4j(℘j, rd)|ξ j|1+q +
n− 1

L
. (17)

Finally, substituting the estimations of A1 − A5 into (7), we have

V̇ ≤ −
n

∑
j=1
|ξ j|

1+ 1
q −

n

∑
j=1

Ψjφ
qj
j |ξ j|1+q + M0|ξ1|1+q

+
n

∑
j=1

M1j(℘j, rd)|ξ j|1+q +
n

∑
j=2

4

∑
i=2

Mij(℘j, rd)|ξ j|1+q + C (18)

with C = (n− 1 + ∑4
i=1 Θj)/L.

Next, we design the smooth functions φj(·), j = 1, · · · , n step-by-step. Firstly, we design

φ1(x1, rd) =
(
ψ−1

1
+ ψ

− 1
q

1
)
(1 + M0 + M11(x1, rd)). (19)

In turn, φj(·), j = 2, · · · , n are designed as

φj(℘j, rd) =
(
ψ−1

j
+ ψ

− 1
q

j
)(

1 +
4

∑
i=1

Mij(℘k, rd)
)
. (20)

By (15) and Lemma 3, there holds

Ψ1φ
q1
1 ≥ Ψ1

(
ψ−q1

1
+ ψ

− q1
q

1
)(

1 + M0 + M11(x1, rd)
)q1

≥ 1 + M0 + M11(x1, rd), (21)

Ψjφ
qj
j ≥ Ψj

(
ψ
−qj
j + ψ

−
qj
q

j
)(

1 +
4

∑
i=1

Mij(℘j, rd)
)qj

≥ 1 +
4

∑
i=1

Mij(℘j, rd), j = 2, · · · , n. (22)

Then, substituting (19) and (20) into (18), we directly obtain (6) .
The proof of Proposition 1 is completed.

3.2. Stablity Analysis

Theorem 1. Consider the nonlinear system (1). Under the Assumptions 1–5, the proposed state-
feedback controller (3) can guarantee that the output tracking error can be regulated to a disc region
of the origin within a fixed-time and all the closed-loop signals are bounded.

Proof. From (6) and Lemma 3, one has

V̇ ≤ −
n

∑
j=1
|ξ j|1+q −

n

∑
j=1
|ξ j|

1+ 1
q + C

≤ −d1
( n

∑
j=1

1
2

ξ2
j
)b1 − d2

( n

∑
j=1

1
2

ξ2
j
)b2 + C (23)

= −d1Vb1 − d2Vb2 + C
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with

d1 = n(
2
n
)

1+q
2 , d2 = 2

1+ 1
q

2 , b1 =
1 + q

2
, b2 =

1 + 1
q

2
.

Define the set

Ω1 =
{

ξ
∣∣Vb2(ξ) <

C
d2

}
. (24)

We can deduce from (23) that

V̇(ξ) < 0, ∀ξ ∈ Rn −Ω1. (25)

Thus, the signals ξ1, · · · , ξn enter Ω1 in a finite time and stay in Ω1 thereafter. There-
fore, ξ j, j = 1, · · · , n are bounded. Invoking (3) and (4), we can recursively conclude that the
system state xj and the actual input u are bounded by that of ξ j and rd, and the smoothness
of φj(·). Therefore, all the closed-loop signals are bounded.

According to Lemma 1 and the definition of V, it follows from (23) that

|ξ1(t)| ≤
√

2
( C
(1− k)d2

) 1
b2 , ∀t ≥ Tmax (26)

with
Tmax =

1
kd1(b1 − 1)

+
1

kd2(1− b2)
, (27)

which means that the output tracking error ξ1 converges into a region Ω2 =
{

ξ1 | |ξ1| ≤√
2(C/(1− k)d2)

1
b2
}

within a fixed-time.
This completes the proof.

Remark 2. This work concentrates on the tracking problem of nonlinear systems with parameter
unknowns and external disturbances, so the tracking error is regulated to an adjustable compact set
rather than zero within a fixed time. The radius of the region Ω2 is related to the constant C, where
C = (n− 1 + ∑4

j=1 Θj)/L, so we can choose large L to obtain smaller radius of Ω2. It means that
the tracking error can be rendered arbitrarily small by adjusting L large enough. Although the size of
the region can be reduced, the larger parameter L also result to larger control effort, thus the tradeoff
between tracking precision and control effort should be made according to the actual situation.

4. Simulation Results

Example 1. Consider the following high-order nonlinear cascade system
ẋ1 = dx2eq1(t) + θ1x2

1 + $1(t)

ẋ2 = dueq2(t) − θ2 cos(x1x2) + $2(t)

y = x1

(28)

where θ1 and θ2 are unknown constants, 1 ≤ qj(t) ≤ 2, $1(t) = cos t and $2(t) = 0.6 sin t
are disturbances. The desired trajectory rd = 0.5 sin t + cos t. Obviously, system (28) satisfies
Assumptions 1–5 with q = 2, κ = 1.5 and κ1 = 1.

In accordance with the control design in Section 3, we design v1(x1, rd) and u(℘2, rd)
as follows:
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v1(x1, rd) = −2

(
ξ1 + dξ1e

1
q2 + (1 + M0 + M11)(ξ1 + dξ1eq)

)
,

u(℘2, rd) = −2
(
ξ2 + dξ2e

1
q2 + (1 + M12 +

4

∑
i=2

Mi2)(ξ2 + dξ2eq)
) (29)

with

M0 = Lq,

M11(x1, rd) = LqF1+q
1 ,

M12(x1, x2, rd) = LqF1+q
2 ,

M22(x1, x2, rd) = Lq∣∣∂v1

∂rd

∣∣1+q,

M32(x1, x2, rd) = Lq∣∣ ∂v1

∂x1

∣∣1+q(1 + (|x2|q + |x2|)1+q + F1+q
1
)
,

M42(x1, x2, rd) = Lq(q|ξ1|(1 + (1 + v2
1)

q−1 + (1 + x2
2)

q−1)
)1+q

+ L
1
q |ξ1|

1+ 1
q

(30)

In the simulation, we select L = 5, θ1 = 2, θ2 = 6, q1 = 1.5, q2 = 1.8, and the initial
conditions as follows:

Case 1: x1(0) = 0.1, x2(0) = 0.1.
Case 2: x1(0) = 1, x2(0) = 1.
Figures 2–5 present the simulation results. Figure 2 displays the trajectories of output

y and reference signal rd under the two cases. Figure 3 displays the curve of the output
tracking error ξ1. The trajectories of the state x2 is displayed in Figure 4. Figure 5 presents
the control input u(t). From the simulation results, it can be observed that all the closed-
loop signals of the considered system are globally bounded, and the output tracking error
is regulated to a disc region within a fixed-time. This clearly clarify the effectiveness of the
proposed control approach.
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Figure 2. (a) The trajectories of y(t) and rd(t) under case 1. (b) The trajectories of y(t) and rd(t) under
case 2.
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Figure 3. (a) Tracking error ξ1 under case 1. (b) Tracking error ξ1 under case 2.
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Figure 4. (a) System state x2 under case 1. (b) System state x2 under case 2.
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Figure 5. (a) Control input u under case 1. (b) Control input u under case 2.
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Example 2. Consider the following high-order nonlinear cascade system
ẋ1 = Ψ1dx2eq1 + F1 + $1(t)

ẋ2 = Ψ2dx3eq2 + F2 + $2(t)

ẋ3 = dueq3 + F3 + $3(t)

y = x1

(31)

where Ψ1 = 1 + cos2 x1, Ψ2 = 1 + sin2 x2, F1 = 2x2
1, F2 = cos x2, F3 = cos x2 − 3x2

1,
1 ≤ qj ≤ 2, $1(t) = 2 cos t, $2(t) = 5 sin t, $6(t) = −6 sin t. The desired trajectory rd = sin 2t.
System (31) satisfies Assumptions 1–5 with q = 2, κ = 2, κ1 = 6, ψ

1
= 1, ψ1 = 2, ψ

2
= 1 and

ψ2 = 2.

In accordance with the process of design in Section 3, we design the smooth functions
v1(x1, rd), v2(℘2, rd) and u(℘3, rd) as follows:

v1(x1, rd) = −2
(
ξ1 + dξ1e

1
q2 )− φ1(ξ1 + dξ1eq)

v2(℘2, rd) = −2
(
ξ2 + dξ2e

1
q2 )− φ2(ξ2 + dξ2eq)

u(℘3, rd) = −2
(
ξ3 + dξ3e

1
q2 )− φ3(ξ3 + dξ3eq),

(32)

where

φ1 =
(
ψ−1

1
+ ψ

− 1
q

1
)(

1 + Lq + LqF1+q
1 )

φ2 =
(
ψ−1

2
+ ψ

− 1
q

2
)(

1 + LqF1+q
2 + Lq∣∣∂v1

∂rd

∣∣1+q
+ M32(·) + M42(·)

)
(33)

φ3 =
(
ψ−1

3
+ ψ

− 1
q

3
)(

1 + Lq∣∣∂v2

∂rd

∣∣1+q
+ M33(·) + M43(·)

)
with

M32(·) = Lq∣∣ ∂v1

∂x1

∣∣1+q(1 + (ψ1(|x2|q + |x2|))1+q + F1+q
1
)

M42(·) = Lq
(

q|ψ1ξ1|
(
1 + (1 + v2

1)
q−1 + (1 + x2

2)
q−1))1+q

+ L
1
q |ψ1ξ1|

1+ 1
q

M33(·) = Lq
2

∑
m=1

∣∣ ∂v2

∂xm

∣∣1+q(1 + (ψm(|xm+1|q + |xm+1|))1+q + F1+q
m
)

M43(·) = Lq
(

q|ψ2ξ2|
(
1 + (1 + v2

2)
q−1 + (1 + x2

3)
q−1))1+q

+ L
1
q |ψ2ξ2|1+

1
q .

In the simulation, we design parameter L = 5, select q1 = 1.5, q2 = 1.8, q3 = 1.95,
and x1(0) = 0.1, x2(0) = 0.1 and x3(0) = 0.15.

Figures 6–10 present the simulation results. It can be observed that all the closed-loop
signals are globally bounded, and the output tracking error is able to be regulated to a disc
region within a fixed-time.
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Figure 6. The trajectories of y and rd.
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Figure 7. Tracking error ξ1.
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Figure 8. System state x2.
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Figure 10. Control input u.

5. Conclusions

In this work, the fixed-time practical tracking control problem has been developed for
uncertain nonlinear cascade systems with unknown high powers. In the control design,
a upper bound and a lower bound of high powers are introduced to compensate the
unknown system powers, and a state feedback controller is designed for any initial system
conditions. According to the fixed-time control theory, it is verified that the output tracking
error can be regulated to a disc region of the origin within a fixed-time and all the closed-
loop signals are bounded. The above control scheme has been developed under the
requirement that the control directions are known a priori. Further studies will extend
the fixed-time tracking control to the systems with unknown control directions. In future,
the developed control scheme also can be extend to stochastic nonlinear systems [36,37],
high-order time-delay nonlinear systems and high-order switched nonlinear systems.
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