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A b s t r a c t .  The sequential procedure developed by Bhargava and Srivastava 
(1973, J. Roy. Statist. Soc. Set. B, 35, 147-152) to construct fixed-width con- 
fidence intervals for contrasts in the means is further analyzed. Second-order 
approximations for the first two moments of the stopping time and the cov- 
erage probability associated with the sequential procedure, are obtained. A 
lower bound for the number of "additional" observations after stopping is de- 
rived, which ensures the "exact" probability of coverage. Moreover, two-stage, 
three-stage and "modified" sequential procedures are proposed for the same 
estimation problem. Relative advantages and disadvantages of these sampling 
schemes are discussed and their properties are studied. 
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i. Introduction and preliminaries 

Let us consider a sequence {Xi = ( X i l , . . . ,  Xip) '} ,  i = 1, 2 . . . .  of i . i .d . r .v . ' s  
from a p-variate  normal popula t ion  Np(#,  E), where # = ( P l , . . . ,  Pv)'  is p×  1 mean 
vector  and E is p x p covariance matr ix  of intraclass correlat ion form E = a2[(1 - 
p)Ip+pee '] .  Here, Ip stands for a p × p  identi ty matr ix,  a E (0, ~ )  and p C ( - 1 ,  1). 
We denote  by R p - - t h e  p-dimensional Euclidean space. For the case when a is 
unknown but  p is known, Scheff~ (1959) and Miller (1966) developed fixed sample 
size procedures  to construct  Tukey's  confidence intervals for all contrasts  {b '#  : 
b E Rp, b 'e  = 0} having prescribed confidence coefficient a E (0, 1). Bhargava 
and Srivastava (1973) extended the results to the case when a and p bo th  are 
unknown. They  also proved the non-existence of fixed sample size procedures to 
construct  T~key's confidence intervals having "pre-assigned width and coverage 
probabil i ty" when a a n d / o r  p are unknown. To meet  these requirements,  they 
proposed a sequential procedure  which can be described as follows. 

Let  C { c :  c C Rp, c 'e  O, P = = E j = I  IcjI = 2}, c = ( c l , . . . , c p ) ' .  Given a 
r andom sample X 1 , . . .  ,X,~ of size n (> 2) and for specified d, a (d > 0, 0 < c~ < 1), 
suppose one wishes to construct  a confidence interval R,~(c) of width 2d for c/#, 
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such that P { c ' #  E R ,~(c )  for all c E C} > a. Let us define R,~(c )  -- (c 'XT~ - 
d,c'fX,~ + d) ,  where X,~ .... ,~-1 Y~'~-I Xs. When cr and p are known, the (fixed) 
sample size needed to achieve the goals is the smallest positive integer ~ _> no, 

2 2 2 2 a2(1 p ) , P ( R < q )  a ,  a n d R i s a r . v .  [ollowing where no = (q cr~,/d ), ~ ,  = - = 
the distribution of range of p independently distributed standard normal variates. 
However, in the absence of any knowledge about a and/or  p, no fixed sample size 
procedure can achieve the goals of "pre-assigned width and coverage probability" 
simultaneously and the following sequential procedure is proposed. 

Let us define, for 'n > 2, ~i. p-1 p 32 : E j = I "  i j ,  X . j  : n.--1 Ei___I x i J  , x , .  = 

(nP) -1 E,=~ ~ E j = t X i J  , p  . cry,(,,) = { ( p -  1 ) i n -  1)} -1 E~=I'~ Ej--I(P X,y - .:~. - X.j + 

X..) e. Start by taking an initial sample of size m (> 2). Then take observations 
one-by-one sequentially and stop sampling when sample size becomes N, where 
N = N ( d )  is defined by 

(1.1) N = inf{n _> m : . n  > (q/d) '2cr~,(n)} .  

When stop, construct R N ( C ) = ( C~ J f  N -- d, c~ X N + d) for c~#. 
Bhargava and Srivastava (1973) studied asymptotic (as d -~ 0) properties of 

the sequential procedure (1.1) and proved that "asymptotic efficiency and con- 
sistency" (see, Chow and Robbins (1965) for definitions) hold for it. They also 
derived upper bounds for the first two moments of the stopping time and along the 
lines of Simons (1968), they proved that if after stopping, an "additional" number 
of observations, say K, is taken, then P{I(CI .~2(N+K) -- c'tt)] < d} > a for all #, a 
and p. 

Wald (1947) pointed out that due to changing nature of sample space at each 
stage of sampling, the purely sequential procedure is complicated in nature to 
apply. However, this variability can be reduced by sampling in "bulks". The sam- 
pling scheme which requires only two stages has been proposed by Stein (1945) 
to construct fixed-width confidence interval for a normal mean when variance is 
unknown. Of course, Stein's two-stage procedure is easy to apply and achieves 
the exact probability of coverage (see, Ruben (1961)), it is "asymptotically ineffi- 
cient" and, in many situations, leads to considerable over sampling (see, Remark 
1). For estimating the mean of a univariate normal population, Hall (1981) de- 
veloped a three-stage procedure, in a later publication, Hall (1983) developed a 
sampling scheme in which the sampling stages required by purely sequential pro- 
cedure can be reduced by a pre-determined factor at the cost of only finite number 
of observations. Both the procedures were shown to be strongly competitive with 
purely sequential procedure. In fact, the sampling schemes developed by Hall 
(1981, 1983) combine the advantages of both the two-stage and purely sequential 
procedures. For multivariate extensions of Stein's and Hall's procedures, one may 
refer to Chatterjee (1959a, 1959b, 1960, 1962), Chaturvedi (1988a) and Singh and 
Chaturvedi (1988a). 

The purpose of this note is many-fold. In Section 2, improving the results 
obtained by Bhargava and Srivastava (1973), we obtain second-order approxima- 
tions for the first two moments of the stopping time and coverage probability of 
the sequential procedure (1.1). Moreover, a lower bound for the number of "ad- 
ditional" observations "K" is derived, which guarantees the exact probability of 
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coverage. In Section 3, a two-stage procedure is proposed and its properties are 
studied. In Sections 4 and 5, respectively, three-stage and "modified" sequential 
procedures are developed and their asymptotic properties are established. Finally, 
in Section 6, the moderate sample size performance of these procedures is studied 
to demonstrate their practical applicability. 

2. Second-order approximations and a lower bound for "K"  

The following theorem provides second-order approximations for the first two 
moments of the stopping time N, defined at (1.1). The second-order approxi- 
mations for E ( N  2) are obtained by using technique similar to that adopted by 
Chaturvedi (1988b). Since the asymptotic distribution of N is normal, these first 
two moments specify the asymptotic distribution of N completely. 

THEOREM 2.1. F o r a l l m >  l + 2 ( p - 1 )  -1, a s d ~ O ,  

(2.1) 
(2.2) 

E ( N )  = no + v - (p + 1)(p - 1) -1 q'- O(1), 

E ( N  2) = n2o + 2 n o [ ~ -  p ( p -  1) -1 ] + o(d -2 ) ,  

where ~ is specified. 

PROOF. Using the fact that (n 2 2 n - 1 ) a w ( n ) / ~ w  = ( P -  1) -1 Ej----1 rJ ~ S(n-1), 
2 the stopping rule (1.1) can be rewritten as say, with Yj ~ X(p-1), 

N = inf{n _> m :  S(n-1)  < ( n -  1 ) ( n / n o ) } .  

Let us define a new stopping variable N* by 

(2.3) N* = inf{n > m - 1: S~ _< n2(1 + r t - 1 ) f t o l } .  

Following the methods similar to those applied by Swanepoel and van Wyk (1982) 
in the proof of Lemma 1, it can be shown that  the stopping rules N and N* 
follow the same probability distribution. Comparing (2.3) with equation (1.1) of 
Woodroofe (1977), we obtain in his notations, c = no 1, a = 2,  ~ = 1, # = 1, 
7 -2 = 2(p - 1) -1, A = no, a = (p - 1)/2 a n d ,  given by equation (2.4) using these 
values of ~, #, a, ~_2 and S~. Hence, from Theorem 2.4 of Woodroofe (1977), we 
obtain for all m > 1 + 2(p - 1) -1 , as d ~ 0, 

E ( N * )  = no ÷ ~ - 1 - 2(p - 1) -1 + 0(1), 

and (2.1) follows. 
To prove (2.2), let us write 

(2.4) 2 E ( N  2) = n o + 2 n o E ( N  - no) + n o E { ( N  - no )2 /no} .  

It follows from a result of Bhattacharya and Mallik (1973) that the asymptotic 
distribution of ( N - n o ) / ( n o )  1/2 is N(0, 2(p-1)-1) .  Moreover, from Theorem 2.3 of 
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Woodroofe (1977), (N-no)2/ (no)  is uniformly integrable for all m > 1+2(p-1)  -1. 
Utilizing these results and (2.1), we obtain from (2.4), for all m > 1 + 2(p - 1) -1, 
as d ---~ 0, 

2 E ( N  ~) -- no + 2no{~ - (p + 1)(p - 1) -1 + o(1)} + 2(p - 1 ) -1no ,  

and (2.2) holds. 

The following theorem provides second-order approximations for the coverage 
probability associated with the sequential procedure (1.1). 

THEOREM 2.2. For all m > 1 + 2 ( p -  1) -1, as d -+ O, P{c ' t t  E RN(C) for all 
c E C} = a + n o l q 2 { ( u -  (p+ 1 ) ( p -  1)- l )G'(q 2) + q2(p_ 1)-1G,,(q2)} + o(d2), 

where G(x) = F(xl/2),  F(x)  = p f ~  ¢(y)[(I)(y) - O(y - x ) ]p - ldy  and O(') and 
• (.) denote, respectively, the p.d.f, and c.d.f, of a standard normal variate. 

PROOF. From equation (4.3) of Bhargava and Srivastava (1973), 

P{c '#  e RN(c) for all c e C} = E{F(q(X/no) l /2)}  

= E{a(q2no lN)} .  

Applying Taylor series expansion, we obtain for [q2 _ W] _< q21nolN - 1[, 

E{G(q2nolN)  } = G(q 2) + nolq2G'(q2)E(N - no) 

+ (1 /2)nolqnE{nol (N - no)2Gtt(W)}. 

Utilizing (2.1) and the fact that the asymptotic distribution of n o i ( N -  no)2 G" (W) 
is 2(p 1)-1 2 ,, 2 - ~((1)G (q ) ,  we obtain for all m > 1 + 2(p - 1) -1, as d ~ 0, 

E{a(q2no lN)}  = a + nolG'(q2){u - (p - 1)(p + 1) -1 + o(1)} 

+ ~ 1 ¢ ( p  _ 1)- lG, ,(q2),  

and the theorem follows. 

In the next theorem, we obtain a lower bound for "K". But, before proving 
the main theorem, we state a lemma, the proof of which can be obtained along the 
lines of that of Lemma 1 in Singh and Chaturvedi (1988a, 1988b) after necessary 
modifications at various places. We omit the details for brevity. 

LEMMA 2.1. Let M = [(q/d)2cr~(N)] + K,  where N is determined by the 
rule (1.1) and y denotes the smallest positive integer > y. Then, for all rn > 
1 + 2 ( p - 1 )  - 1  , asd-+O, 

E(M)  = (q/d)2a~ - (p + 1)(p - 1) -1 + K + o(1), 

Var(M) = 2(p - 1)-l(q/d)2a 2, + o(d -2) 
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and, for all r > O, E l M  - E(M)I ~ = O(d-") .  

THEOREM 2.3. For all #, cr 2, p and sufficiently small d, 

P{Ic'X(N+K) -- C't~l < d for all c • C}  > a, 

i l K  >_ ( p -  1 ) - l { ( p +  1) + (3/4)q2}. 

PROOF• For F(x)  and G(x) defined in Theorem 2.2, let f ( x )  = F'(x) .  We 
note that  

(2.5) 
G'(x) = (1/2x1/2)f(x1/2),  

G"(x) = ( 1 / 4 ) { x - l  f ' ( x  1/~) - x-3/a f (x1/2)} .  

Using Taylor series expansion, we obtain 

(2.6) P{IC'fi2(N+K) -- e'tt <_ d for all c E C} 

= E{G(d2M/cr~)}  

= G(q 2) + (r~,2d2G'(q2)E{M - (q/d)2a~} + (1/2)a~4d 4 

• G " ( q 2 ) E { M  - (q/d)2~r~} 2 + O(daEIM - E(M)I 3) 

= a + ( c ~ 2 d 2 / 2 q ) f ( q ) E { M  - (q/d)2a~} + (1/2)a~ada(4q) -1 

• f ( q ) { q - l f , ( q ) / f ( q )  - 1 } E { M - ( / ) q  d 2~2.}2 

+ O(d6EIM - E(M)[3). 

It has been shown in Bhargava and Srivastava (1973, p. 152) that  f ' ( q ) / f ( q )  > 
- q / 2 .  Utilizing this result and Lemma 2.1, we obtain from (2.6), 

P { I c ' ~ 2 ( N + K )  -- c '  ul <~ d for all c • c }  

> a ÷ ( ( r ~ 2 d 2 / 2 q ) f ( q ) { K  - (p + 1)(p - 1) -1 } - ( 3 / 1 6 q ) ( c ~ 4 d  4) 

• f ( q ) { 2 ( p  - 1 ) - l ( q / d ) 2 ~ 2 , }  ÷ o(d 2) 
= a + ( c r ~ 2 d 2 / 2 q ) f ( q ) { K  - (p - 1 ) - l ( ( p  + 1) + (3/4)q2)} + o(d2),  

and the theorem follows. 

3. The two-stage procedure 

Start with a sample of size m (_> 2). Then, the second stage sample size is 
given by 

(3.1) N max{m, 2 2 2 1}, = [ q ~ w ( m ) / d  ]+ 

where q~ is the upper 100(1 - a ) %  point of Studentized range on ~/= ( p -  1 ) ( m -  1) 
d.f. Construct R N ( C )  = ( C '  ff~2N --  d, c'~2N + d) for c'#. 

The properties of the two-stage procedure (3.1) are established in the following 
theorem. 
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(3.3) 
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lim E ( N / n o )  = (q~/q)2, 
d-*O 

P { d #  E RN(C) for  all c C C }  >_ a. 

PROOF. Taking expectation throughout, from the basic inequality 

(q,~/d)2a~(m) <_ N <_ (q,~/d)2a2(m) + m,  

we obtain 

(3.4) (q~/d)2a 2 <_ E ( N )  <_ (q~/d)2cr 2 + m, 

or, 

(q~/q)2 <_ E ( g / n o )  <_ (q~/q)2 + (re~no). 

Result (3.2) follows since limd--O no = oc. 
By the definition of N, N 1/2 >_ q~aw/d. Since F(x)  is monotonically increasing 

in x and 2 2 7 a ~ ( m ) / a w  ~ X~),  we obtain 

P { c ' #  E RN(c) for all c C C}  

= E { F ( d N 1 / 2 / ~ w ) }  > E{F(q,y)}  = a, 

and (3.3) follows. 

Remark 1. It can be verified from the table of percentage points of Studen- 
tized range that (q~/q) > 1. Thus, from (3.3), l imd-- .oE(N/no) > 1, implying 
that the two-stage procedure (3.1) is "asymptotically inefficient". Moreover, from 
(3.4), 

(q~ - q2)(aw/d)2 <_ E ( N )  - no <_ (q2 _ q2)(aw/d)2 + m.  

Thus, E ( N ) - n o  ~ oc as d --~ O, showing that the "cost of ignorance" (see, Simons 
(1968)) is unbounded for the two-stage procedure. These drawbacks are removed 
in the sampling schemes discussed in the next two sections. 

4. The three-stage procedure 

Let us choose and fix a number ~ E (0, 1). Take an initial sample X1 , . . . ,  Xk 
of size k (_> 2) and define M = max{k, [vq2a~(k)/d 2] + 1}. If M > k, take the 
additional observations to complete the sample X1 , . . . ,  X k , . . . ,  XM.  Let 

(4.1) N = max{M, [q2a2(M) /d  2] + 1}, 

and if N > M, we sample the difference to obtain X I , . . . ,  XM,.  •., XN. Construct 
RN(C) = ( c ' X N  -- d, e ' X N  + d). 
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Now we state a lemma, the proof of which can be obtained along the lines of 
that of Theorem 1 in Hall (1981). 

LEMMA 4.1. As d ~ O, 

E (N)  = no + 1/2 - 2?7 -1 + o(1), 

E[N - no[ 2 = 2~-1no + o(d-2), 

E I N -  no[ 3 -- o(d-4). 

The following theorem contains the main result of this section. 

THEOREM 4.1. As d---* O, 

P{e ' #  E RN(C) for all c E C} 

_> a + {(1/2 - 2?7 -1 )  - (3/4fi?-lq2}{f(q)/2q}(d/~r~) + o(d2).  

PROOF. P{c '#  C RN(C) for all c E C} -- E{G(d2N/a2)} .  Using the Taylor 
series expansion given at (2.6), the result that f ' (q ) / f (q )  > - q / 2  and applying 
Lemma 4.1, we obtain 

P{c '#  e R y ( c )  for all c e C} 

= a + (d/a2)(1/2q)f(q){1/2 - 277 -1 + o(1)} + (1 /8 ) (d2 /~ )  2 

. f ( q ) { q - 2 f t ( q ) / f ( q )  _ q - 1 } { 2 T l - l n o  + o ( d - 2 ) }  + o (d  2) 

_> a + (1/2 - 2~- l ){ f (q) /2q}(d/a~)  - (3/4)~-lq2{f(q)/2q} 

• ( d / a ~ )  + o(d2), 
and the theorem follows after some algebra. 

5. The modified sequential procedure 

Let ~ E (0, 1) and K E (0, oc) be specified. Take the observations sequentially 
with the stopping time N1 defined by 

(5.1a) N1 = inf{nl > m :  nl _> ~l(q/d)2a~(nl)}. 

Then we jump ahead by collecting N2 observations, where 

(5.15) N2 = [(q/d)2a~(gl) + K] + 1. 

Let N = max(N1, N2) and construct RN(C) = (C'XN -- d, C'XN + d) for c'tt. 
We first establish two lemmas. 

LEMMA 5.1. As d--~ O, 

(5.2) N1 ---- N2 = oc a.s. 

(5.3) (N/no) = 1 a.s. 

(5.4) O ? n o ) - l / 2 ( N 1  _ zIn° ) L N(0, 2(p - 1)-1). 
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For a l l m >  1 + 2 ( p - 1 )  -1 , 

(5.5) E(N~) : ~;.o + ~ - ( p +  1 ) ( ; -  1) -~ + o(1),  

where ~, "is same as that defined in Theorem 2.1. 

PROOF. Result (5.2) is an immediate consequence of the definitions of N1 
and N2. 

We notice the inequality 

~](q/d)2a2w(N1) <_ N1 < rl(q/d)2a2,(N1) 4- ( m , -  1) 

or~ 

{a2~,(N1)/~o} <- (N , /~no)  <_ {~2~(N~)/a~} 4- (m - 1)/(~no), 

2 which, on using (5.2) and the result l i m g ~ a ~ ( N 1 )  = a~ a.s., leads us to 
limd--~o(N1/~no) = 1 a.s. Similarly~ we can prove tha t  l imd~o(N2/no)  = 1 a.s. 
Result (5.3) now follows from the definition of N. 

Result (5.4) follows from Theorem 2 of Bhat tacharya  and Mallik (1973) and 
the proof of (5.5) is same as that  of (2.1). 

LEMMA 5.2. 

(5.6) 

(5.7) 

and, for r > O, 

(5.8) 

For all m > 1 + 2 ( p -  1) -1 , as d---~ O, 

E ( N )  = no + K -?.]-l(p 4. 1 ) ( p -  1) -1 + O(1), 

Var(N) = 2~- lno(p  - 1) -1 + o(d-2), 

EIN - n o l  ~ = O(d-~). 

PROOF. Consider the difference 

Rd = NI(N1 - 1)(~no) -1 - S(NI-1). 

The mean of the asymptotic distr ibution of Rd is ~. Let R~ = (7?no)(N1 - 1) - lRd  . 
By the definition of N1, (r~(N1 - 1) > ~- l (d /q)2(N1 - 1). Thus, 

(5.9) 0 <_ R* d = N1 - ~](q/d)2a~(N1) 

<_ N1 - ,7 (q /d)2{(p-  1)(N1 - 1)} -1 

N1-1 p 
- + 

i=1 j = l  

<_2, 

and hence, by dominated convergence theorem, E(R~) ~ ~ as d ~ O. Now, from 
(5.5) and (5.9), we obtain for all m > 1 + 2(p - 1) -1, as d ~ 0, 

E[(q /d )2~(N1)]  = ~- I{E(N1)  - ,}  

= ~ - 1 { ~ o  _ (p + 1 ) ( p -  1) -1  + o (1 ) } ,  
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and (5.6) follows. 
By the definition of N, Var(N) = r1-2 Var(N1). Let h(N1) = (~no)-1 /2(N1 - 

~no). It follows from Theorem 2.3 of Woodroofe (1977) that h2(N1) is uniformly 
integrable for all m > 1 + 2(p - 1) -1. Thus, 

Var(N) = ~1-2{2~17~o(p - 1)-1(1 + o(1))}, 

and (5.7) holds. 
The proof of (5.8) is same as that of result (2) in Hall (1983). 

Now we prove the main theorem. 

THEOREM 5.1. For all #, a 2. p and sufficiently small  d, say d <_ do, 

P{c '#  E R ~ ( e )  for  all e E C }  > c~, 

i f K  >_ ~l- l (p - 1 ) - l { ( p  q - 1) + (3/4)q2}. 

PROOF. It can be seen that 

P{c'u c RN(c) for  all c C }  = 

where N is determined by the rule (5.1a) (5.1b). Using Taylor series expansion 
(2.6), the result f '(z)/f(z) _> -z/2,  and applying Lemma 5.2, we obtain 

P{c~# E RN(c) for all c E C} 

= ~ + (d2/c~2,~){f(q)/2q}{K - , - ~ ( p  - 1)- l (p  + 1 )+  o(1)} 

+ (1 /8 ) (d2 / c r~ , )2 f (q ) {q -2 f t ( q ) / f ( q )  - q -1}{2~- l~ .o (p  - 1) -1 + o(1)} 

>_ a + ( d 2 / a ~ ) { f ( q ) / 2 q } { K  - y l - ~ ( p  - 1) - ' (p  + 1)} 
- ( d 2 / ~ r 2 ) { 3 f ( q ) / 8 q } ~ l - l ( p -  1)-1q 2 + o(d 2) 

= a + { f (q ) /2q}(d2 /aa~ , ) {K - 7/-~(p - 1)-1 ((p q- 1) + (3/4)q2)} + o(d'2), 

and the theorem follows. 

Remark  2, It is clearly reflected by the result of Theorem 5.1 that (for given 
p and q) smaller the value of ~l, larger we have to take "K"- - the  observations 
after stopping sequential sampling. Thus, as expected, making T/ smaller, that 
is, terminating sequential sampling at an earlier stage, increases the ASN of the 
procedure to achieve a given coverage probability. 

6. The moderate sample performance 

The Tables 1 3 present the results of Monte-Carlo experiment. We fix p = 2, 
c~ = 1, p = .5 and a = .95. For 6 values of d, we conducted 1000 trials. We 
computed expected sample sizes !q'. as well as, the coverage probabilities P that 
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t h e  conf idence  in t e rva l  covers  t h e  or ig in  for d i f fe ren t  e s t i m a t i o n  p r o c e d u r e s .  T h e  

p r o c e d u r e s  b e h a v e  q u i t e  sa t i s f ac to r i ly .  

Table 1. Results of 1000 Monte-Carlo trials for purely sequential procedure. 

d no N P 

.225 108.20 112 .9383 

.200 136.95 139 .9449 

.175 178.87 192 .9732 

.150 243.46 253 .9509 

.125 350.59 342 .9479 

.100 547.80 551 .9511 

Table 2. Results of 1000 Monte-Carlo trials for three-stage procedure. 

d ~o 

k = 5 ,  U = . 5  k = 8 ,  r ) = . 5  k = 1 0 , ~ ? = . 5  

P N P /~ P 

.225 108.20 111 .9505 120 .9554 131 .9561 

.200 136.95 139 .9533 143 .9548 152 .9567 

,175 178.87 182 .9541 197 .9591 209 .9566 

,150 243.46 253 .9512 267 .9531 265 .9555 

.125 350.59 361 .9507 372 .9551 385 .9571 

A00 547.80 559 .9553 570 .9570 591 .9572 

Table 3. Results of 1000 Monte-Carlo trials for modified sequential procedure. 

d no 

K = 5 , ~ = . 5  K = 8 , ~ ? = . 5  K =  10, 7/= .5 

R P -N P /~ P 

.225 108.20 110 .9494 117 .9553 130 .9572 

.200 136.95 137 .9499 138 .9511 144 .9565 

.175 178.87 181 .9509 194 .9585 200 .9552 

.150 243.46 248 .9508 262 .9502 255 .9531 

.125 350.59 358 .9499 365 .9541 377 .9567 

.100 547.80 552 .9517 566 .9587 588 .9566 

R e m a r k  3. I t  is c l ea r ly  re f l ec ted  f rom Tab le s  1-3  t h a t  b o t h  t h e  A S N  a n d  

cove rage  p r o b a b i l i t y  for t h e  p u r e l y  s equen t i a l  p r o c e d u r e  a r e  l eas t  a n d  m a x i m u m  

for t h e  t h r e e - s t a g e  p r o c e d u r e .  T h e  A S N  a n d  cove rage  p r o b a b i l i t y  for b o t h  t h e  

t h r e e - s t a g e  a n d  m o d i f i e d  s e q u e n t i a l  p r o c e d u r e  inc rease  w i t h  i n c r e a s i n g  va lues  of  k 

a n d  K .  T h e s e  r e su l t s  j u s t i f y  t h e  conc lus ions  d r a w n  by  Ha l l  (1981, 1983) t h a t  a t  

t h e  cos t  of  a f ini te  n u m b e r  of  obse rva t i on s ,  we can  r each  t h e  t a r g e t  va lue  of  t h e  

coverage  p r o b a b i l i t y .  
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