
Fixing the Domain and Range of Properties in Linked Data
by Context Disambiguation

Alberto Tonon
eXascale Infolab

University of Fribourg
Switzerland

alberto@exascale.info

Michele Catasta
EPFL

Lausanne
Switzerland

michele.catasta@epfl.ch

Gianluca Demartini
Information School

University of Sheffield
United Kingdom

g.demartini@sheffield.ac.uk

Philippe Cudré-Mauroux
eXascale Infolab

University of Fribourg
Switzerland

phil@exascale.info

ABSTRACT

The amount of Linked Open Data available on the Web is
rapidly growing. The quality of the provided data, however,
is generally-speaking not fundamentally improving, hamper-
ing its wide-scale deployment for many real-world applica-
tions. A key data quality aspect for Linked Open Data can
be expressed in terms of its adherence to an underlying well-
defined schema or ontology, which serves both as a docu-
mentation for the end-users as well as a fixed reference for
automated processing over the data. In this paper, we first
report on an analysis of the schema adherence of domains
and ranges for Linked Open Data. We then propose new
techniques to improve the correctness of domains and ranges
by i) identifying the cases in which a property is used in the
data with several different semantics, and ii) resolving them
by updating the underlying schema and/or by modifying the
data without compromising its retro-compatibility. We ex-
perimentally show the validity of our methods through an
empirical evaluation over DBpedia by creating expert judge-
ments of the proposed fixes over a sample of the data.

Categories and Subject Descriptors

H.4.m [Information Systems]: Miscellaneous

General Terms

Experimentation, Algorithms

Keywords

Linked Open Data, Schema adherence, Data quality

1. INTRODUCTION
Linked Open Data (LOD) is rapidly growing in terms of

the number of available datasets moving from 295 available
datasets in 2011 to 1’014 datasets in 20141. As we report in
Section 2, LOD quality has already been analyzed from dif-
ferent angles; one key LOD quality issue is the fact that the

1http://lod-cloud.net

Copyright is held by the author/owner(s).
WWW2015 Workshop: Linked Data on the Web (LDOW2015).

data does not always adhere to its corresponding schema, as
we discuss in more detail in Section 3. That is, factual state-
ments (i.e., RDF triples) do not always follow the definitions
given in the related RDF Schemas or ontologies. Having a
schema which the published data adheres to allows for bet-
ter parsing, automated processing, reasoning, or anomaly
detection over the data. Also, it serves as a de facto doc-
umentation for the end-users querying the LOD datasets,
fostering an easier deployment of Linked Data in practice.

To mitigate the issues related to the non-conformity of the
data, statistical methods for inducing the schema over the
data have been proposed. Voelker et al. [9], for example,
extract OWL-EL axioms from the data and use statistics to
compute confidence values on the axioms. Similar statistics
were also used in order to detect inconsistencies in the data
[8].

In this work, we focus on one particular issue of LOD
schema adherence: the proper definition of the properties’
domains and ranges in LOD. More precisely, we propose (see
Section 4) a new data-driven technique that amends both
the schema and the instance data in order to assign bet-
ter domains and ranges to properties; this goal is achieved
by detecting the cases through which a property is used for
different purposes (i.e., with different semantics) and by dis-
ambiguating its different uses by dynamically creating new
sub-properties extending the original property. Thus, our
approach modifies both the schema (new sub-properties are
created) and the data (occurrences of the original property
that were used with some given semantics are replaced with
the newly created sub-property). One of the interesting
properties of our approach is that the modified data is retro-
compatible, that is, a query made over the original version
of the data can be posed as is over the amended version.
We evaluate our methods in Section 5 by first comparing

how much data it can fix by adjusting different parameters,
and then by asking Semantic Web experts to judge the qual-
ity of the modifications suggested by our approach.

2. RELATED WORK
One of the most comprehensive piece of work describing

LOD is the article by Schmachtenberg et al. [7] in which the
adoption of best practices for various aspects, from creation

http://lod-cloud.net

to publication, of the 2014 LOD are analyzed. Such prac-
tices, ultimately, are meant to preserve the quality of a large
body of data as LOD—a task that is even more daunting,
considering the inherently distributed nature of LOD.

Data quality is a thoroughly-studied area in the context of
companies [6], because of its importance in economic terms.
Recently, LOD did also undergo a similar scrutiny: in [4],
the authors show that the Web of Data is by no means a
perfect world of consistent and valid facts. Linked Data has
multiple dimensions of shortcomings ranging from simple
syntactical errors over logical inconsistencies to complex se-
mantic errors and wrong facts. For instance, Töpper et al. [8]
statistically infer the domain and range of properties in or-
der to detect inconsistencies in DBpedia. Similarly, Bizer
et al. in [5] propose a data-driven approach that exploits
statistical distributions of properties and types for enhanc-
ing the quality of incomplete and noisy Linked Data sets,
specifically for adding missing type statements, and identi-
fying faulty statements. Differently from us, they leverage
the number of instances of a certain type appearing in the
property’s subject and object position in order to infer the
type of an entity, while we use data as evidence to detect
properties used with different semantics.

There is also a vast literature ([9, 3, 2, 1]) that introduces
statistical schema induction and enrichment (based on asso-
ciation rule mining, logic programming, etc.) as a means to
generate ontologies from RDF data. Such methods can for
example extract OWL axioms and then use probabilities to
come up with confidence scores, thus building what can be
considered a “probabilistic ontology” that can emerge from
the messiness and dynamicity of Linked Data. In this work,
we focus on the analysis of property usage with the goal of
fixing Linked Data and improve its quality.

3. MOTIVATION AND BASIC IDEAS
The motivation that led us to the research we are

presenting is summarized in Table 1. Its upper part reports
the top-5 properties in DBpedia2 and Freebase3 The table
reports on the number of times the properties appear with
a wrong domain, together with their Wrong Domain Rate
(WDR), that is, the ratio between the number of times the
property is used with a wrong domain to its total number
of uses. Analogously, the lower part of the table reports
on the top-5 properties by number of range violations and
their Wrong Range Rate (WRR).4 We observe that the
absolute number of occurrences of wrong domains/ranges
in Freebase is two orders of magnitude greater than that of
DBpedia. This cannot be explained only by the different
number of entities contained in the two knowledge bases
since the number of topics covered by Freebase is only
one order of magnitude greater than that of DBpedia
(approximately 47.43 and 4.58 million topics, respectively,
according to their Web-pages). We deduce that in Freebase
the data adheres to the schema less than in DBpedia. This

2We used the English version of DBpedia 2014 (http://
dbpedia.org/Downloads2014).
3 We used a dump downloaded on March 30th 2014 (http:
//freebase.com).
4When computing WDR and WRR we do take into account
the type hierarchy for computing the violation rate. That
is, if a property has ‘Actor’ as range and is used in a RDF
triple where the object is an ‘American Actor’ we consider
it as correct as ‘American Actor’ is a subtype of ‘Actor’.

is also suggested by the fact that the top-3 most frequent
properties defined in the DBpedia ontology, namely
dpo:birthPlace, dpo:birthYear, and birthDate, have
WDR and WRR smaller than 0.01, while the top-3 most
used property in Freebase, namely fb:type.object.type,
fb:type.type.instance, and fb:type.object.key, have
an average WDR of 0.30 and an average WRR of 0.87.
This disparity can in part be explained by the fact that
the Freebase ontology is a forest of trees rather than a
tree with a single root note (as in DBpedia). Thus, while
one could expect that each entity in the dataset should
descend from ‘object’, this is not the case when looking
at the data. In addition, we noticed that in DBpedia, out
of the 1’368 properties actually used in the data, 1’109
have a domain declaration in the ontology and 1’181 have
a range declaration. Conversely, Freebase specifies domain
and range of 65’019 properties but only 18’841 properties
are used in the data.

In this paper we argue that a number of occurrences of
wrong domains or ranges are due to the fact that the same
property is used in different contexts, thus with different se-
mantics. The property dpo:gender, for example, whose do-
main is not specified in the DBpedia ontology, is used both
to indicate the gender of a given person and the gender of a
school (that is, if it accepts only boys, girls or both). Hence,
dpo:gender appears both in the context of dpo:GivenName
and of dpo:School. While this can make sense in spoken
language, we believe that the two cases should be distinct
in a knowledge base. However, we cannot make a general
rule out of this sole example as, for instance, we have that
foaf:name (whose domain is not defined in the DBpedia on-
tology) is attached to 25 direct subtypes of owl:Thing out of
33; these types include dpo:Agent (the parent of dpo:Person
and dpo:Organization), dpo:Event, and dpo:Place. In
this case, it does not make sense to claim that all these
occurrences represent different contexts in which the prop-
erty appears, since the right domain for this case is indeed
owl:Thing, as specified by the FOAF Vocabulary Specifica-
tion.5 Moreover, in this case creating a new property for
each subtype would lead to an overcomplicated schema. Fi-
nally, the fact that dpo:name is not attached to all the sub-
types of owl:Thing suggests that the property is optional.

What follows describes the intuition given by this example
in terms of statistics computed on the knowledge base. In
addition, we also present algorithms to identify the use of
properties in different contexts.

4. DETECTING AND CORRECTING

MULTI-CONTEXT PROPERTIES
In this section, we describe in detail the algorithm we

propose, namely, LeRiXt (LEft and RIght conteXT). For
the sake of presentation, we first describe a simpler version
of the method we call LeXt (LEft conteXT) that uses the
types of the entities appearing as subjects of the property
in order to identify properties that are used in different con-
texts (multi-context properties). We then present the full
algorithm as an extension of this simpler version. For the
description of the algorithm, we make use of the notation
defined in Table 2.

4.1 Statistical Tools
5http://xmlns.com/foaf/spec/.

http://dbpedia.org/Downloads2014
http://dbpedia.org/Downloads2014
http://freebase.com
http://freebase.com
http://xmlns.com/foaf/spec/

Table 1: Top-5 properties by absolute number of domain violations (top), and range vi-
olations (bottom), with their domain/range violation rate (the truncated properties are
fb:dataworld.gardening_hint.last_referenced_by and fb:common.topic.topic_equivalent_webpage).

DBpedia property #Wrong Dom. WDR Freebase Property #Wrong Dom. WDR

dpo:years 641’528 1.00 fb:type.object.type 99’119’559 0.61
dpo:currentMember 260’412 1.00 fb:type.object.name 41’708’548 1.00
dpo:class 255’280 0.95 fb:type.object.key 35’276’872 0.29
dpo:managerClub 47’324 1.00 fb:type.object.permission 7’816’632 1.00
dpo:address 36’449 0.90 fb:[. . .].last referenced by 3’371’713 1.00

DBpedia property #Wrong Rng. WRR Freebase Property #Wrong Rng. WRR

dpo:starring 298’713 0.95 fb:type.type.instance 96’764’915 0.61
dpo:associatedMusicalArtist 70’307 0.64 fb:[. . .]topic equivalent webpage 53’338’833 1.00
dpo:instrument 60’385 1.00 fb:type.permission.controls 7’816’632 1.00
dpo:city 55’697 0.55 fb:common.document.source uri 4’578’671 1.00
dpo:hometown 47’165 0.52 fb:[. . .].last referenced by 3’342’789 0.99

Table 2: Notation used for describing LeRiXt.

Symbol Meaning

KB the knowledge base composed of triples (s, p, o)
s.t. s ∈ E ∪ T , p ∈ P , o ∈ E ∪ L ∪ T with E set
of all entities, P set of all properties, T set of all
entity types, and L set of all literals.

⊤ the root of the type hierarchy.
e, t an entity and an entity type, respectively.
e a t (e, a, t) ∈ KB, that is, e is an instance of t
p a property.
tL an entity type t on the left side of a property.
tR an entity type t on the right side of a property.

Par(t) the parent of a type t in the type hierarchy.
Ch(t) the set of children of a type t in the type hierar-

chy.
Cov(p′) the coverage of a sub-property p′ of a property

p, that is, the rate of occurrences of p covered by
p′.

LeXt makes use of two main statistics: Pr(tL | p), that
is, the conditional probability of finding an entity of type t

as the subject of a triple having p as predicate (i.e., finding
t “to the Left” of p), and the probability Pr(p | tL), that is,
the probability of seeing a property p given a triple whose
subject is an instance of t. Equation 1 formally defines those
two probabilities.

Pr(tL | p) =
| { (s, p′, o) ∈ KB | s a t, p = p′ } |

| { (s, p′, o) ∈ KB | p = p′ } |

Pr(p | tL) =
| { (s, p′, o) ∈ KB | s a t, p = p′ } |

| { (s, p′, o) ∈ KB | s ∈ t } |

(1)

As one can imagine, Pr(tL | p) = 1 indicates that t is a suit-
able domain for p, however, t can be very generic. In partic-
ular Pr(⊤L | p) = 1 for every property p where ⊤ is the root
of the type hierarchy. Conversely, Pr(p | tL) measures how
common a property is among the instances of a certain type.
Pr(p | tL) = 1 suggests that the property is mandatory for
t’s instances. In addition, whenever we have strong indica-
tors that a property is mandatory for many children ti of a
given type t, that is, Pr(p | tLi) is close to 1 for all tis, we can
deduce that t is a reasonable domain for p and that all the ti
are using p as an inherited (possibly optional) property. For
example, if in DBpedia we consider the property foaf:name

and we analyze Pr(p | tLi) for all ti ∈ Ch(owl:Thing) we see
that the probability is greater than 0 in 25 cases out of 33
and is greater than 0.50 in 18 cases, suggesting that all the
tis do not constitute uses of the properties in other contexts
but rather that the properties are used in the more general
context identified by owl:Thing.

Computationally, we only need to maintain one value for
each property p and for each type t, that is the number
#(p ∧ tL) of triples having as subject an instance of t and
p as predicate. In fact, if we assume that whenever there
is a triple stating that (e, a , t) ∈ KB there is also a triple
(e, a , t′) ∈ KB for each ancestor t′ of t in the type hierarchy,
we have that

∀p ∈ P.|
{

(s, p′, o) ∈ KB | p = p
′
}

| = #(p ∧ ⊤L),

∀p ∈ P.|
{

(s, p′, o) ∈ KB | s ∈ t
}

| =
∑

p′∈P

#(p′ ∧ t
L).

The computation of all the #(p ∧ tL) can be done with one
map/reduce job similar to the well-known word-count ex-
ample often used to show how the paradigm works, thus, it
can be efficiently computed in a distributed environment al-
lowing the algorithms we propose to scale to large amounts
of data. Another interesting property implied by the type
subsumptions of the underlying type hierarchy is that if
t1 ∈ Ch(t0) then Pr(tL1 | p) ≤ Pr(tL0 | p). Assuming the same
premises, however, nothing can be said about Pr(p | tL0) and
Pr(p | tL1).

4.2 LeXt
As previously anticipated, LeXt detects multi-context

properties by exploiting the types of the entities found on
the left-hand side of the property taken into consideration.
Specifically, given a property p, the algorithm makes a
depth-first search of the type hierarchy starting from
the root to find all cases for which there is enough
evidence that the property is used with a different context.
Practically, at each step, a type t—the current root of the
tree—is analyzed and all the ti ∈ Ch(t) having Pr(tLi | p)
greater than a certain threshold λ are considered. If
there is no such child, or if we are in a case similar to
that of the foaf:name example described previously, a
new sub-property t p of p is created with t as domain;
otherwise the method is recursively called on each ti.
Finally, cases analogous to the foaf:name example are

H = 0.09 SportSeason
0.55

Agent
0.24

...

Thing
1.00

...H = 1.96 Soccer Cricket
εk−1

Rugby
εk

Baseball
ε10.42

... ...SoccerClubSeason
0.55

SportsTeam
0.44

... ... Organisation
0.44

SportsTeamSeason
0.55

Figure 1: Execution of LeXt on dpo:manager.

detected by using the entropy of the probabilities Pr(p | tDi)
with ti ∈ Ch(t) that captures the intuition presented
while introducing the above mentioned statistics. Since,
in general,

∑

ti∈Cht Pr(p | tLi) 6= 1, we normalize each

probability by dividing it by Z =
∑

ti∈Ch(t) ti and we
compute the entropy H using Equation 2.

H
(

p | Ch(t)
)

= −
∑

ti∈Ch(t)

Pr(p | ti)

Z
· log2

(

Pr(p | ti)

Z

)

(2)

Algorithm 1 formally describes the full process. In the
pseudo-code, a context of the input property is encoded with
a triple (p′, dom(p′), coverage) where p′ is a property identi-
fying the context, dom(p′) is its domain, and coverage ≥ λ

is the rate of the occurrences of p covered by the context,
denoted by Cov(p′). If the coverage is one, p is used in just
one context (see Line 5). In Line 8, a new property p′ is
created and its domain is set to curr root , while in Line 9,
p′ is declared to be a sub-property of p: this makes the data
retro-compatible under the assumption that the clients can
resolve sub-properties. Ideally, after the execution of the
algorithm, all the triples referring to the identified mean-
ings should be updated. The algorithm can also be used to
obtain hints on how to improve the knowledge base.

The execution steps of the algorithm on dpo:manager

(m, for short) with λ = 0.4 and η = 1 are depicted in
Figure 1. The entity types are organized according to the
DBpedia type hierarchy and each type t is subscripted by
Pr(t | m). As can be observed, during the first step the
children of owl:Thing are analyzed: the entropy constraint
is satisfied and two nodes satisfy the Pr(t | m) constraint.
The exploration of the dpo:sportsSeason branch ends
when dpo:SoccerClubSeason is reached. The triple
(SoccerClubSeason manager, dpo:SoccerClubSeason,
0.55) is returned. The new property is a sub-property of
dpo:manager that covers 55% of the occurrences. Finally,
the algorithm goes down the other branch until the entropy
constraint is violated and returns the context (SportsTeam
manager, dpo:SportsTeam, 0.45).

4.3 Discussion
The threshold λ sets a condition on the minimum degree

of evidence we need to state that we have identified a new
meaning for p, expressed in term of the Pr(t | p) probability.
This threshold is of key importance in practice. On the one
hand, low thresholds require little evidence and thus foster
the creation of new properties, possibly over-populating the
schema. On the other hand, high thresholds almost never
accept a new meaning of a property, thus inferring coarser
domains. In particular, with λ = 1 the exact domain of p
is inferred (which in several cases can result to be ⊤). In

Algorithm 1 LeXt

Require: 0 ≤ λ ≤ 1 strictness threshold, η ≥ 0 entropy thresh-
old.

Require: curr root ∈ T the current root, p ∈ P .
Require: acc a list containing all the meanings found so far.
Ensure: acc updated with all the meanings of p.
1: p given t ←

{

Pr
(

p | tDc)
)

| tc ∈ Ch(curr root)
}

2: H = Entropy(p given t)
3: candidates ←

{

tc | tc ∈ Ch(curr root) ∧ Pr(tDc | p) ≥ λ
}

4: if H ≥ η ∨ candidates = ∅ then

5: if Pr(curr root | p) = 1 then

6: acc ← (p, curr root , 1) : acc
7: else

8: p′ ← new property(p, curr root)
9: KB ← KB ∪ { (p′, rdfs:subPropertyOf, p) }
10: acc ←

(

p′, curr root , Pr(curr root ′ | p)
)

: acc
11: end if

12: else

13: for c ∈ candidates do

14: LeXt(λ, η, c, acc)
15: end for

16: end if

Section 5 we show how the algorithm behaves with varying
levels of strictness.

The presented algorithm has a number of limitations. In
particular, it does not explicitly cover the cases for which
one type has more than one parent, thus multi-inheriting
from several other types. In that case, an entity type can
be processed several times (at most once per parent). We
leave to future work studying if simply making sure that
each node is processed once is enough to cover that case.

4.4 ReXt and LeRiXt
It is straightforward to define a variant of LeXt that con-

siders property ranges instead of property domains by using
Pr(tR | p) and Pr(p | tR). We call this method ReXt. In our
implementation we only consider object properties, that is,
properties that connect an entity to another entity (rather
than, for example, to a literal since these values are not
entities and thus are not in the type hierarchy).

Generalizing LeXt to identify multi-context properties
based on both domains and ranges is a more complicated
task. The solution we propose is called LeRiXt and con-
sists in using two copies of the type hierarchy, one for the
domains, and one for the ranges. At each step there is a
“current domain” td and a “current range” tr whose children
are analyzed (thus the algorithm takes one more parameter
than LeXt). Instead of using the condition Pr(tD | p) ≥ λ

to select the candidate types to explore, we use Pr(tDi ∧ tRj |
p) ≥ λ for each ti ∈ Ch(td), tj ∈ Ch(tr), and we recursively
call LeRiXt for each pair of types satisfying the constraint
(see Line 14 of Algorithm 1).

5. EXPERIMENTS
We empirically evaluate the three methods described in

Section 4, namely, LeXt, ReXt, and LeRiXt, first by
studying how they behave when varying the threshold λ,
and then by measuring the precision of the modifications
they suggest. The LOD dataset we selected for our evalua-
tion is DBpedia 2014 since its entity types are organized in a
well-specified tree, contrary to Freebase, whose type system
is a forest. As we anticipated in Section 4.4, we consider
only object properties when the range is used to identify
multi-context properties by using ReXt and LeRiXt. The

0.0

0.2

0.4

0.6

0.8

1.0
A

v
g
.

C
o
v
e
ra

g
e

LeXt ReXt LeRiXt

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

1000

#
 N

e
w

 P
ro

p
e
rt

ie
s

0.0 0.2 0.4 0.6 0.8 1.0

Threshold Value
0.0 0.2 0.4 0.6 0.8 1.0

Figure 2: Average coverage and number of new
properties with varying values of the threshold λ.

numbers of properties we take into consideration when run-
ning LeXt and the other two algorithms are 1’368 and 643,
respectively. Finally, during our experimentation we fix the
η threshold to 1. This value was chosen based on the anal-
ysis of the entropy stopping criterion on a small subset of
properties.

The impact of λ on the output of the algorithms is studied
in terms of average property coverage and number of gen-
erated sub-poperties. Recall that in Section 4.2 we defined
the coverage of a sub-property. Here we measure the prop-

erty coverage, defined as the overall rate of occurrences of a
certain property p that is covered by its sub-properties, that
is, the sum of Cov(p′) for all p′ generated sub-property of p.

In the upper part of Figure 2 the average over the prop-
erty coverage is shown for various λ. We notice that, as
expected, lower values of λ lead to a high coverage since
many new properties covering small parts of the data are cre-
ated. As the value of the threshold increases, fewer and fewer
properties are created, reaching the minimum at λ = 1. In-
terestingly, we observe that the average coverage curve is
M-shaped with a local minimum at λ = 0.5. That is the
consequence of the fact that with λ ≥ 0.5 the new proper-
ties are required to cover at least half of the occurrences of
the original property, leaving no space for other contexts,
thus, at most one new context can be identified for each
property. Finally, at λ = 1 the average coverage drops to
0 since no sub-property can cover all the instances of the
original property.

In order to evaluate the output produced by the methods,
3 authors and 2 external experts evaluated the output of the
algorithms computed on a sample of fifty randomly selected
DBpedia properties using λ = 0.1 and η = 1. To decide
whether the context separation proposed by the algorithm
is correct or not, we built a web application showing to the
judges the clickable URI of the original property together
with the types of the entities it appears with. The judges
had then to express their opinion on every generated sub-
property.

The judgments were aggregated by majority vote and then
precision was computed by dividing the number of positive
judgments by the number of all judgments. LeXt, ReXt,
and LeRiXt achieved a precision of 96.50%, 91.40%, and
87.00%, respectively.

We note that this result was obtained with just one con-
figuration of the parameters—we leave a deeper evaluation

of the algorithm as future work.
In practice, we envision our algorithms to be used as a

decision-support tool for LOD curators rather than a fully
automatic system to fix LOD datasets.

6. CONCLUSIONS
In this paper, we tackled the problem of extracting and

then amending domain and range information from LOD.
The main idea behind our work stems from the observa-
tion that many properties are misused at the instance level
or used in several, distinct contexts. The three algorithms
we proposed, namely, LeXt, ReXt, and LeRiXt, exploit
statistics about the types of the entities appearing as subject
and object in the triples involving the property analyzed in
order to identify the various cases in which a multi-context
property is used. Once a particular context is identified,
a new sub-property is derived such that occurrences of the
original property can be substituted using the newly gener-
ated sub-property. Our methods can also be used to provide
insight into the knowledge base analyzed and how it should
be revised in subsequent iterations. We evaluated our meth-
ods by studying their behavior with different parameter set-
tings and by asking Semantic Web experts to evaluate the
generated sub-properties.

The algorithms we propose require the entities contained
in the dataset to be typed with types organized in a tree-
structured type hierarchy. As future work, we plan to run a
deeper evaluation of our techniques, and to design a method
that overcomes the limitation presented above by consider-
ing the case in which the entity types are organized in a
Direct Acyclic Graph, thus supporting multiple inheritance.

Acknowledgments

This work was supported by the Haslerstiftung in the
context of the Smart World 11005 (Mem0r1es) project
and by the Swiss National Science Foundation under grant
number PP00P2 128459.

7. REFERENCES
[1] L. Bühmann and J. Lehmann. Universal OWL axiom

enrichment for large knowledge bases. LNCS, 7603
LNAI:57–71, 2012.

[2] C. d’Amato, N. Fanizzi, and F. Esposito. Inductive learning
for the semantic web: What does it buy? Semantic Web,
1(1):53–59, 2010.

[3] G. A. Grimnes, P. Edwards, and A. Preece. Learning
meta-descriptions of the foaf network. In The Semantic
Web–ISWC 2004, pages 152–165. Springer, 2004.

[4] M. Knuth and H. Sack. Data Cleansing Consolidation with
PatchR. In ESWC, volume 8798 of LNCS, pages 231–235.
Springer, 2014.

[5] H. Paulheim and C. Bizer. Improving the Quality of Linked
Data Using Statistical Distributions. I. J. Semantic Web
Inf. Syst., 10(2):63–86, Jan. 2014.

[6] L. L. Pipino, Y. W. Lee, and R. Y. Wang. Data quality
assessment. Communications of the ACM, 45(4):211, 2002.

[7] M. Schmachtenberg, C. Bizer, and H. Paulheim. Adoption of
the linked data best practices in different topical domains. In
ISWC, pages 245–260, 2014.

[8] G. Töpper, M. Knuth, and H. Sack. DBpedia ontology
enrichment for inconsistency detection. I-SEMANTICS,
page 33, 2012.

[9] J. Völker and M. Niepert. Statistical schema induction.
LNCS, 6643 LNCS:124–138, 2011.

	Introduction
	Related Work
	Motivation and Basic Ideas
	Detecting and Correcting Multi-Context Properties
	Statistical Tools
	LeXt
	Discussion
	ReXt and LeRiXt

	Experiments
	Conclusions
	References

