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Abstract

The paper revisits the problem of local optimization for RANSAC. Improvements of

the LO-RANSAC procedure are proposed: a use of truncated quadratic cost function, an

introduction of a limit on the number of inliers used for the least squares computation

and several implementation issues are addressed. The implementation is made publicly

available.

Extensive experiments demonstrate that the novel algorithm called LO
+-RANSAC is

(1) very stable (almost non-random in nature), (2) very precise in a broad range of con-

ditions, (3) less sensitive to the choice of inlier-outlier threshold and (4) it offers a sig-

nificantly better starting point for bundle adjustment than the Gold Standard method

advocated in the Hartley-Zisserman book.

1 Introduction

One of the attractive properties of RANSAC [8] is, at least with the top-hat (inlier 1, out-

lier 0) cost function, that it returns an optimal solution with a predefined, user-controllable

probability. The theoretical guarantee is based on the assumption that all all-inlier (minimal)

samples lead to the optimal solution. It has been observed [6, 21] that the assumption is

not valid in practice and that often a significant data-dependent fraction of all-inlier samples

does not lead to an acceptable solution.

To address the “not all all-inlier samples are good” problem, Chum et al. [6] introduced

the LO-RANSAC which applies a local optimization (LO) step to promising hypotheses gen-

erated from random minimal samples. Experiments in [6] show that LO-RANSAC is superior

to plain RANSAC in terms of accuracy and its probability of obtaining a correct solution is

close to the theoretical value derived from the stopping criterion. The LO-RANSAC method

is popular, highly cited and has been used in a number of applications [4, 23].

Chum et al. [6] stated that the improvements of the accuracy and the probability of ob-

taining a correct solution may even speed the algorithm up since the increased number of

found inliers triggers the stopping criterion earlier. The LO is run only rarely, the number of

runs being close to the logarithm of the number of samples.
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As the first contribution of the paper we show that the “no extra time” statement is true

only for estimation problems with low inlier ratios. For image pairs with a high fraction of

inliers, where a small number of random samples is sufficient for finding the solution, the

original LO procedure significantly effects the running time, sometimes becoming a dom-

inating factor that may increase the running time by an order of magnitude. To alleviate

the problem and reduce the overhead, we modify the iterative least squares by introducing a

limit on the number of inliers used in the least squares computation. Nevertheless, the mod-

ified LO-RANSAC is slower than plain RANSAC, fortunately mainly for easy datasets where

the procedure is very fast anyway. Essentially the result shows that the local optimization

is not always a free lunch and that there is a trade-off between estimation quality (accuracy

and repeatability) and the computational time. As a second contribution, we introduce a fast

version – LO’ that has an execution time close to the standard RANSAC and perform close to

LO-RANSAC in almost all cases.

The LO procedure is relatively complex, with a high number of parameters. As a third

contribution of the paper, we are making public an ultimate description of the method: a

C/C++ implementation of the improved LO
+. The implementation has been extensively ex-

perimentally tested and performed well on dozens of geometry estimation problems with the

same parameter settings1. The proposed method is very stable - for many tested geometric

problems it returned the identical set of inliers in 10000 out of 10000 test runs. We also show

that the proposed algorithm is insensitive to the choice of the error scale which defines the

inlier-outlier separation. In this context we confirm the slight advantage of the MSAC-like

truncated quadratic [22] over the the top-hat, 0-1 loss function. The precision of the LO pro-

cedure for both methods is almost identical, but the MSAC-like kernel increases tolerance to

the choice of the inlier threshold. Therefore, the proposed LO
+ differs from the standard LO

[6], besides a number of implementation details, by using an inlier limit and the truncated

quadratic cost function.

Finally, the accuracy of the proposed LO
+ method is tested within a standard Bundle

adjustment method [12]. Perhaps surprisingly the bundler is rather sensitive to initialization.

The LO initialized non-linear optimization is always superior in terms of residual errors to

the Gold Standard method advocated by Hartley and Zissermann [10].

The structure of this paper is as follows. We describe LO-RANSAC algorithm [6] in

section 2 and lists its parameters. In section 3, procedures to speed the LO up are presented.

The speed and precision of the proposed methods are experimentally evaluated in section 4.

Finally, section 5 draws the conclusions.

2 LO-RANSAC algorithm

The structure of the RANSAC algorithm is simple. Repeatedly, minimal subsets are randomly

selected from the input data (i.e. tentative correspondences in a two-view geometry estima-

tion) and model parameters fitting the sample are computed. Subsequently, in a verification

step all inliers to the model are found and the quality of the model parameters evaluated.

The model maximising the cost function is returned. The locally optimized RANSAC adds

an optimization step after the verification phase, if a so-far-the-best model is found. The

LO-RANSAC is summarized in Algorithm 2. All symbols used in the algorithm are described

in Table 1. The algorithm is written as a for-loop where K denotes the number of cycles. As

1With the geometric error tolerance a fixed function of the image dimensions
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in standard RANSAC, K is a function of the user-defined desired probability η of finding the

optimal solution and the number of inliers of the best model.

Algorithm 1 LO-RANSAC [6].

1: for k = 1→K(|I∗|,η) do

2: Sk← randomly drawn minimal sample

3: Mk← model estimated from sample Sk

4: Ik← find_inliers(Mk,θ)
5: if |Ik|> |I∗s | then

6: M∗s ←Mk;I∗s ←Ik

7: MLO,ILO← run Local Optimization (Alg. 2)

8: if |ILO|> |I∗| then

9: M∗←MLO;I∗←ILO

10: update K

11: end if

12: end if

13: end for

14: return M∗

Table 1: Notation.
Symbol Description Value for EG Value for HG

sis size of inner sample min(14,
|Ibase|

2 ) min(12,
|Ibase|

2 )

mθ threshold multiplier
√

2
√

2

m′θ threshold multiplier – LO’ 4 ·mθ mθ

reps inner sam. repetitions 10 10

iters iterations of LSq 4 4

iters′ iterations of LSq – LO’ 10 4

∆θ threshold decrement mθ ·θ−θ
iters−1

mθ ·θ−θ
iters−1

θ inlier-outlier error threshold (error scale)

η user-required probability of finding the optimal solution

LSq Least Squares solution, normalized and possibly weighted

find_inliers find points with error smaller than θ w.r.t. model M

S random sample

M(M∗,M∗s ) model (the best found, the best from minimal sample)

I(I∗,I∗s ) inlier set (the largest found, the largest from minimal sample)

The LO procedure of Chum et al. includes least squares on inliers, iterative least squares

with a narrowing threshold and random sampling of non-minimal samples (from inliers of

the so-far-the-best model); the standard LO is outlined in Algorithms 2 and 3. The procedure

is fairly complex with a number of parameters. It is a result of extensive experimentation that

showed that all attempts to simplify the algorithm lead to a decrease in stability and accuracy

of the algorithm.

It should be noted that the proposed local optimization does not handle degenerate scenes

and it must be combined with approaches like DEGENSAC [7] or QDEGSAC [9] that cover this

problem.
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Algorithm 2 Local Optimization step.

Input: M∗s ,mθ , reps

1: Mmθ
← model estimated by LSq on find_inliers(M∗s ,mθ ·θ)

2: Ibase← find_inliers(Mmθ
,θ)

3: for r = 1→ reps do

4: Sis← sample of size sis randomly drawn from Ibase

5: Mis← model estimated from Sis by LSq

6: Mr← Iterative Least Squares (Mis,mθ , iters) (Alg. 3)

7: end for

8: return the best of M∗s , all Mis, all Mr, with its inliers

Algorithm 3 Iterative Least Squares.

Input: Mis,mθ , iters

1: M′← model estimated by LSq on find_inliers(Mis,θ)
2: θ ′← mθ ·θ
3: for i = 1→ iters do

4: I ′← find_inliers(M′,θ ′)
5: w′← computed weights of I ′ (depend on model)

6: M′← model estimated by LSq on I ′ weighted by w′

7: θ ′← θ ′−∆θ

8: end for

9: return the best M′

3 Speeding up Local Optimization

The full local optimization step uses the (iterated) linear least squares to improve the quality

of the estimated model. For a large number of inliers, this procedure can dominate the

execution time, even if executed only once. Therefore, LO-RANSAC is considerably slower

than plain RANSAC in scenarios with large number (both relative and absolute) of inliers.

Formally, the total running time of LO-RANSAC is

ttot =CR ·K+CLO · ⌈log(K)⌉ (1)

where CLO is the average time of LO procedure and CR is the time of standard RANSAC single

hypothesis generation and verification round. For small K, the significant difference of CLO

and CR means that CLO · ⌈log(K)⌉ ≫ CR ·K. E.g. for the head pair with 74 inliers (86 %)

where K ≈ 22, the standard RANSAC running time CR ·K is only 0.4 ms while a single local

optimization (CLO) takes 5.6 ms on average.

We propose to reduce the time consumption by introducing a limit on the number of

correspondences that participate in estimation of model M′ parameters (Alg. 3, line 6). If

the number of inliers exceeds this limit, a subset (limit-sized) is randomly chosen and used

for the estimation. In our experiments, the limit was empirically set to 7×minimal sample

size. This approach reduces the cost of the least squares estimation to a constant independent

of the number of inliers. The experiments show that the precision of the estimated model is

not affected and even improved for a non-negligible number of epipolar geometry estimation

tasks.

For fast applications, where no challenging camera motion or illumination changes are
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Figure 1: The dataset for epipolar geometry estimation

Figure 2: The dataset for homography estimation

expected, a lightweight version (LO’) is proposed. Instead of estimating models from non-

minimal samples followed by iterative least squares, only a single iterative least squares are

applied on each so-far-the-best model. The limit on the number of inliers used in each step

of the least squares is applied. The experimental evaluation shows significant reduction in

the execution time while sacrificing only little accuracy, especially for “easy” image pairs.

4 Experimental results

The performance of different RANSAC variants was evaluated on a collection of 16 image

pairs (Figure 1) for epipolar geometry and 16 pairs (Figure 2) for homography estimation.

These image pairs were previously used for evaluation in a number of publications [3, 5, 7,

14, 15, 17, 18, 20, 24, 25]). The datasets are available at http://cmp.felk.cvut.cz/

data/geometry2view/. In the paper, results on a subset (Figure 3) of those image pairs

are reported. For full evaluation see the technical report [11].

What is measured. In standard RANSAC, the number of data points consistent with the

estimated model (inliers) is optimized. Such a measure is a good indicator how well the

image pair is matching [19]. For some applications such as 3D reconstruction, the precision

of the estimated model is of high importance. To compare the precision, we record the error

of the estimated model on manually annotated ground truth correspondences. These corre-

spondences are not included in the estimation process. Note that such a measure includes

the error in the manual selection as well as error induced by deviation of the imaging process

from a pin-hole camera model (such as radial distortion). Statistically, smaller error indi-
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Figure 3: Scenes with results presented in the paper (for more scenes and further experiments

see [11])

cates better precision, however, small differences in small values are insignificant. Finally,

the time complexity was evaluated by both number of samples drawn by RANSAC, and the

execution duration in seconds (all the tests were performed on 2 GHz dual core machine with

2 GB RAM at 667 MHz and 2 MB L2 cache).

Measurements were averaged over multiple runs with required confidence of success

95 %. For a fair comparison, the seeds of the pseudo-random generator were fixed so that dif-

ferent methods draw the same samples. Tentative correspondences were obtained by match-

ing SIFT descriptors [13] of MSER’s [15]. In the supplementary material, experiments using

Hessian Affine detector [16] are presented. The results on Hessian Affine features are even

more favourable for the LO methods because of lower inlier ratios.

4.1 Sensitivity of cost functions to the choice of inlier error scale

The sensitivity of RANSAC with a hard decision on inliers and outliers (top-hat cost function)

and MSAC (truncated parabolic cost function) on the expected noise level in inlier localization

was measured. We model the inlier noise as a zero mean normal distribution with standard

deviation dependent on the size of the image as σscaled = σ · sizeFactor. Here, sizeFactor is

the ratio of the larger dimension of the image and constant 768. The inlier-outlier threshold

θ for RANSAC was set as 95% percentile of the χ2 distribution (with one DoF for epipolar

geometry and two DoF’s in the case of homography) with standard deviation σscaled.

The error on the ground truth points as a function of σ is plotted in Figure 4 (every

measured point is a mean from 1000 runs). The dashed lines show the error when using

the MSAC-like cost function widened by factor 3/2 to have an equivalent kernel as the top-

hat function (the same area). The solid lines correspond to a top-hat cost function with the

quadratic cost function used as a tie-breaker when comparing two models with an equal

top-hat score (which happens often [22]). From the graph in Fig. 4, it can be seen that

both cost functions in the vicinity of the optimal threshold output similar accuracy of the

resulting geometries (the truncated quadratic scoring yields slightly better results). For larger

thresholds this difference becomes more significant – the truncated quadratic cost function is

more robust to the selection of the error scale. It provides a range of one order of magnitude

of usable thresholds for most of the image pairs, making it easier to select a suitable one for

a diverse set of data.
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Figure 4: The dependence of the geometric accuracy on the cost function and the inlier-

outlier threshold

4.2 Two-view geometry estimation evaluation

We used the truncated quadratic cost function in the following experiments as it outperforms

the top-hat function. The parameter σ was empirically set to 0.3 (illustrated as vertical cyan

lines in Fig. 4). Table 2 summarizes the evaluation results. Measurements were averaged

over 10 000 runs with an exception of experiments with the bundle adjustment, where only

100 runs were performed. To assure maximal possible precision of time measurements, we

measured overall duration of all RANSAC runs. Thus there is no information about the vari-

ance of consumed time. The first two columns give reference results of standard methods:

plain MSAC [22], and MSAC followed by linear least squares on all inliers [10].

Then we show lightweight LO’ (with inlier-subset speed-up) and improved full version

of local optimization. In the next column the effect of the proposed speed-up action is shown

(LO
+). The last two columns report results after non-linear bundle adjustment.

Stability of the results. RANSAC, as a randomized algorithm, returns different outputs each

time it is executed, which is often considered as a drawback. The local optimization signifi-

cantly reduces the variance in both the number of detected inliers and the accuracy. Here the

stability of a model returned with usage of a truncated quadratic cost function should be em-

phasized. In particular, e.g. for the Boston image pair, LO
+-RANSAC with MSAC-like gain

function returned (with precision sufficient for all practical purposes) the same resulting

homography for all 10,000 runs.

Iterative LSq on bounded number of inliers. The experiments show that LO
+-RANSAC

not only improves the speed, but often has also a positive effect on the accuracy. We explain

such a behaviour as avoiding stucking in a local minimum by randomizing the set of points

used in each iteration of the least squares. This technique is also used in the LO’ procedure.

Compared to full LO-RANSAC, LO’ is up to six times faster, mostly reducing the accuracy

only marginally.
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Table 2: The geometric accuracy, stability and speed of RANSAC variants
MSAC [22] MSAC+LSq[10] LO’ LO LO

+
MSAC+LSq+BA LO+BA

co
rr

Inliers 62.7± 4.4 66.0± 4.2 69.8± 2.8 73.1± 1.6 73.3± 1.8 67.4± 4.2 73.2± 1.5
Error (px) 0.48± 0.33 0.37± 0.33 0.31±0.12 0.18±0.11 0.18±0.10 0.34± 0.25 0.16±0.04

Time (ms) 1.1 1.3 2.1 6.5 6.3 2 459.5 2 046.8

Samples 61.0± 25.1 61.0± 25.1 49.7±16.1 49.5±15.9 49.5±15.9 63.7± 27.0 52.3±20.7

h
ea

d

Inliers 66.9± 4.1 71.9± 2.7 73.7± 0.9 73.9± 0.6 74.0± 0.6 72.9± 2.0 74.0± 0.2
Error (px) 0.78± 0.52 0.40± 0.19 0.30±0.03 0.31±0.03 0.31±0.03 0.38± 0.15 0.35±0.02

Time (ms) 0.4 0.6 1.6 6.0 5.8 812.4 685.8

Samples 21.8± 10.1 21.8± 10.1 21.7± 9.8 21.7± 9.8 21.7± 9.8 21.6± 9.9 21.6± 9.9

K
y
o
to

Inliers 295.2± 16.5 311.4± 15.3 325.1± 9.2 333.5± 6.7 330.7± 5.7 313.7± 16.7 332.1± 8.0
Error (px) 2.25± 1.28 1.64± 1.14 1.07±0.54 0.81±0.32 0.78±0.23 1.47± 0.97 0.78±0.33

Time (ms) 2.4 2.7 3.6 12.2 9.8 18 499.7 12 006.1

Samples 65.4± 26.0 65.4± 26.0 49.6±12.6 49.2±12.1 49.1±12.1 66.8± 27.5 51.3±14.9

w
as

h

Inliers 45.7± 3.5 50.1± 1.7 51.7± 0.5 51.3± 0.4 51.4± 0.5 50.6± 1.0 51.0± 0.2
Error (px) 1.04± 0.61 0.39± 0.17 0.28±0.02 0.27±0.04 0.27±0.03 0.32± 0.13 0.26±0.03

Time (ms) 0.3 0.4 1.4 5.4 5.4 132.2 107.4

Samples 16.7± 9.8 16.7± 9.8 16.7± 9.7 16.7± 9.7 16.7± 9.7 15.8± 8.9 15.8± 8.9

B
o
st

o
n Inliers 277.3± 21.5 303.0± 5.4 305.0± 0.1 305.0± 0.0 305.0± 0.0 305.0± 0.2 305.0± 0.0

Error (px) 1.78± 1.01 0.72± 0.20 0.60±0.08 0.66±0.00 0.66±0.00 0.67± 0.03 0.66±0.00

Time (ms) 1.1 1.3 1.9 16.0 11.0 82.6 26.0

Samples 12.8± 5.8 12.8± 5.8 12.8± 5.8 12.8± 5.8 12.8± 5.8 12.3± 5.7 12.3± 5.7

B
ru

ss
el

s Inliers 328.7± 32.4 371.4± 18.2 387.9± 4.4 390.6± 1.3 390.5± 2.1 379.0± 8.6 387.1± 0.6
Error (px) 3.65± 0.92 2.59± 0.50 2.25±0.20 2.88±0.05 2.86±0.08 3.15± 0.21 2.97±0.01

Time (ms) 2.3 2.6 3.3 20.7 14.1 116.6 112.4

Samples 21.0± 9.4 21.0± 9.4 20.9± 9.2 20.9± 9.2 20.9± 9.2 21.8± 9.6 21.8± 9.5

E
if

fe
l

Inliers 60.9± 4.1 64.4± 3.2 66.0± 1.7 66.8± 1.1 66.7± 1.1 65.3± 2.6 66.5± 0.8
Error (px) 1.23± 0.57 0.92± 0.44 0.82±0.28 0.88±0.16 0.88±0.15 0.91± 0.35 0.78±0.17

Time (ms) 6.8 6.8 5.5 19.6 18.6 28.5 45.1

Samples 438.9±155.3 438.9±155.3 273.2±40.7 254.5±18.6 254.4±17.2 444.8±168.3 255.7±22.6

W
h
it

eB
. Inliers 161.1± 13.2 171.6± 7.7 173.7± 1.8 174.0± 0.0 174.0± 0.0 172.7± 6.5 174.0± 0.0

Error (px) 1.48± 0.49 1.09± 0.19 1.02±0.06 1.08±0.00 1.06±0.01 1.08± 0.12 1.05±0.00

Time (ms) 0.7 0.8 1.3 9.7 7.6 61.2 53.1

Samples 11.7± 5.8 11.7± 5.8 11.7± 5.8 11.7± 5.8 11.7± 5.8 10.2± 4.3 10.2± 4.3

Bundle adjustment (BA). To further minimize the reprojection error, non-linear iterative op-

timization is employed [10], using the output of the robust estimator as an initialization. The

last two columns of Table 2 report results after application of the non-linear optimization us-

ing publicly available bundle adjustment of Lourakis [12]. Two initializations are compared:

the Gold Standard method [10] (output of MSAC refined by one linear least squares) and the

output of the fully locally optimized MSAC. The results consistently show, that LO-MSAC

provides better starting point for the BA: lower reprojection error is acquired in shorter time.

Note that the time saved in the BA is orders of magnitude higher than the overhead related

to the local optimization.

4.3 LO overhead and the inlier ratio

Figure 5 shows the behaviour of RANSAC using truncated quadratic cost function with and

without local optimization on the booksh ([11]) image pair (the percentage of inliers is

controlled by the threshold of the second closest match during the matching process). As

expected, LO
+ outperforms MSAC in both the number of inliers and the geometric error. In

the cases of low inlier ratios, where the numbers of samples drawn by every RANSAC are

high, LO
+ is faster than MSAC. However, for high inlier ratios the curves cross.

4.4 Implementations details and issues

Since for some pairs each call of the LO has impact on the overall speed, it is efficient not to

call the LO during first Kstart iterations (set to 50 in our implementation). In such a case it is
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Figure 5: The dependence of the precision and speed on the percentage of inliers which is

controlled by the threshold of the second closest match.

necessary to ensure that LO is executed at least once, after Kstart iterations, or at the end of

RANSAC (as some scenes may require less than Kstart samples). In this case, the LO is run

for the best model found in the first Kstart iteration.

We observed that to choice of numerical methods is critical for getting fast and precise

model estimates. While SVD is a convenient and stable way to compute a least square

solution of a system of linear equations, it is significantly faster to use eigen-decomposition

of the covariance matrix, especially for large systems of equations.

In our experiments, we have encountered a significant drop in performance for epipolar

geometry estimation caused by the instability of SVD decomposition when using CCMATH

library [2]. The instability was observed during fundamental matrix singularization. The

final implementation uses the LAPACK library [1] that does not suffer by such an instability.

5 Conclusion

Several technical improvements of the LO-RANSAC were proposed. Our extensive evalua-

tion shows that: (1) the LO
+-RANSAC offers a stable robust estimation despite its randomized

nature, (2) limiting the number of inliers included in the (iterative) least squares signifi-

cantly reduces the execution time and often even improves the precision, (3) the speed of the

lightweight LO’ is comparable to plain RANSAC even for easy problems with very high inlier

ratios, and that (4) LO
+-RANSAC offers a significantly better starting point for bundle adjust-

ment than the Gold Standard [10]. We addressed a number of implementation issues and

extensively tested the method. An implementation of the proposed LO methods is available

at http://cmp.felk.cvut.cz/software/LO-RANSAC/.



10 LEBEDA, MATAS, CHUM: FIXING THE LOCALLY OPTIMIZED RANSAC

References

[1] LAPACK: Linear algebra package.

http://www.netlib.org/lapack/.

[2] D. A. Atkinson. CCMATH: Mathematics software library.

http://freecode.com/projects/ccmath.

[3] J. Cech, J. Matas, and M. Perdoch. Efficient sequential correspondence selection by

cosegmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32

(9):1568–1581, 2009.

[4] S. Choi, T. Kim, and W. Yu. Performance evaluation of RANSAC family. In Proc. of

BMVC, pages 81.1–81.12, 2009.

[5] O. Chum and J. Matas. Matching with PROSAC – progressive sample consensus. In

Proc. of the Conf. on CVPR, pages 220–226, 2005.

[6] O. Chum, J. Matas, and J. Kittler. Locally optimized RANSAC. In DAGM-Symposium,

pages 236–243, 2003.

[7] O. Chum, T. Werner, and J. Matas. Two-view geometry estimation unaffected by a

dominant plane. In Proc. of the Conf. on CVPR, pages 772–779, 2005.

[8] M. A. Fischler and R. C. Bolles. Random sample consensus: A paradigm for model

fitting with applications to image analysis and automated cartography. Communications

of the ACM, 24(6):381–395, 1981.

[9] J.-M. Frahm and M. Pollefeys. RANSAC for (Quasi-)degenerate data (QDEGSAC). In

Proc. of the Conf. on CVPR, pages 453–460, 2006.

[10] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cam-

bridge University Press, 2004.

[11] K. Lebeda, J. Matas, and O. Chum. Fixing the Locally Optimized RANSAC. Research

Report CTU–CMP–2012–17, Center for Machine Perception, Czech Technical Univer-

sity, Prague, Czech Republic, 2012.

http://cmp.felk.cvut.cz/software/LO-RANSAC/Lebeda-2012-Fixing_LORANSAC-tr.pdf.

[12] M. I. A. Lourakis and A. A. Argyros. SBA: A Software Package for Generic Sparse

Bundle Adjustment. ACM Trans. Math. Software, 36(1):1–30, 2009.

[13] D. G. Lowe. Distinctive image features from scale-invariant keypoints. International

Journal of Computer Vision, 60(2):91–110, 2004.

[14] D. Martinec and T. Pajdla. 3D reconstruction by fitting low-rank matrices with mising

data. In Proc. of the Conf. on CVPR, pages 198–205, 2005.

[15] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide baseline stereo from maxi-

mally stable extremal regions. In Proc. of BMVC, pages 384–396, 2002.

[16] K. Mikolajczyk and C. Schmid. Scale and affine invariant interest point detectors.

International Journal of Computer Vision, 60(1):63–86, 2004.



LEBEDA, MATAS, CHUM: FIXING THE LOCALLY OPTIMIZED RANSAC 11

[17] J.-M. Morel and G. Yu. ASIFT: A new framework for fully affine invariant image

comparison. SIAM Journal on Imaging Sciences, 2(2):438–469, 2009.

[18] M. Perdoch, J. Matas, and O. Chum. Epipolar geometry from two correspondences. In

Proc. of the ICPR, pages 215–220, 2006.

[19] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object retrieval with large

vocabularies and fast spatial matching. In Proc. of the Conf. on CVPR, 2007.

[20] M. Pollefeys, R. Koch, M. Vergauwen, and L. Van Gool. Automated reconstruction of

3D scenes from sequences of images. ISPRS Journal Of Photogrammetry And Remote

Sensing, 55(4):251–267, 2000.

[21] B. Tordoff and D. W. Murray. Guided sampling and consensus for motion estimation.

In Proc. of the ECCV, pages 82–98, 2002.

[22] P. H. S. Torr and A. Zisserman. Robust computation and parametrization of multiple

view relations. In Proc. of the ICCV, pages 727 –732, 1998.

[23] P. Turcot and D.G. Lowe. Better matching with fewer features: The selection of use-

ful features in large database recognition problems. In International Conference on

Computer Vision Workshops, pages 2109 –2116, 2009.

[24] T. Tuytelaars and L. Van Gool. Wide baseline stereo matching based on local, affinely

invariant regions. In Proc. of BMVC, pages 412–422, 2000.

[25] G. Yang, C.V. Stewart, M. Sofka, and C.-L. Tsai. Registration of challenging image

pairs: Initialization, estimation, and decision. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 29(11):1973 –1989, 2007.


