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Abstract

Data-augmentation is key to the training of neural networks for image classifi-
cation. This paper first shows that existing augmentations induce a significant
discrepancy between the size of the objects seen by the classifier at train and test
time: in fact, a lower train resolution improves the classification at test time!

We then propose a simple strategy to optimize the classifier performance, that
employs different train and test resolutions. It relies on a computationally cheap
fine-tuning of the network at the test resolution. This enables training strong clas-
sifiers using small training images, and therefore significantly reduce the training
time. For instance, we obtain 77.1% top-1 accuracy on ImageNet with a ResNet-
50 trained on 128×128 images, and 79.8% with one trained at 224×224.

A ResNeXt-101 32x48d pre-trained with weak supervision on 940 million
224×224 images and further optimized with our technique for test resolution
320×320 achieves 86.4% top-1 accuracy (top-5: 98.0%). To the best of our
knowledge this is the highest ImageNet single-crop accuracy to date.

1 Introduction

Convolutional Neural Networks [18] (CNNs) are used extensively in computer vision tasks such as
image classification [17], object detection [27], inpainting [37], style transfer [9] and even image
compression [28]. In order to obtain the best possible performance from these models, the training
and testing data distributions should match. However, often data pre-processing procedures are
different for training and testing. For instance, in image recognition the current best training practice
is to extract a rectangle with random coordinates from the image, to artificially increase the amount
of training data. This region, which we call the Region of Classification (RoC), is then resized to
obtain an image, or crop, of a fixed size (in pixels) that is fed to the CNN. At test time, the RoC
is instead set to a square covering the central part of the image, which results in the extraction of a
center crop. This reflects the bias of photographers who tend center important visual content. Thus,
while the crops extracted at training and test time have the same size, they arise from different RoCs,
which skews the distribution of data seen by the CNN.

Over the years, training and testing pre-processing procedures have evolved to improve the perfor-
mance of CNNs, but so far they have been optimized separately [7]. In this paper, we first show
that this separate optimization has led to a significant distribution shift between training and testing
regimes with a detrimental effect on the test-time performance of models. We then show that this
problem can be solved by jointly optimizing the choice of resolutions and scales at training and test
time, while keeping the same RoC sampling. Our strategy only requires to fine-tune two layers in
order to compensate for the shift in statistics caused by changing the crop size. This retains the
advantages of existing pre-processing protocols for training and testing, including augmenting the
training data, while compensating for the distribution shift.

Our approach is based on a rigorous analysis of the effect of pre-processing on the statistics of natural
images, which shows that increasing the size of the crops used at test time compensates for randomly
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Figure 1: Selection of the image regions fed to the network at training time and testing time, with
typical data-augmentation. The red region of classification is resampled as a crop that is fed to the
neural net. For objects that have as similar size in the input image, like the white horse, the standard
augmentations typically make them larger at training time than at test time (second column). To
counter this effect, we either reduce the train-time resolution, or increase the test-time resolution
(third and fourth column). The horse then has the same size at train and test time, requiring less
scale invariance for the neural net. Our approach only needs a computationally cheap fine-tuning.

sampling the RoCs at training time. This analysis also shows that we need to use lower resolution
crops at training than at test time. This significantly impacts the processing time: halving the crop
resolution leads to a threefold reduction in the network evaluation speed and reduces significantly
the memory consumption for a typical CNN, which is especially important for training on GPUs.
For instance, for a target test resolution of 224×224, training at resolution 160×160 provides better
results than the standard practice of training at resolution 224×224, while being more efficient. In
addition we can adapt a ResNet-50 train at resolution 224×224 for the test resolution 320×320 and
thus obtain top-1 accuracy of 79.8% (single-crop) on ImageNet.

Alternatively, we leverage the improved efficiency to train high-accuracy models that operate at
much higher resolution at test time while still training quickly. For instance, we achieve an top-1
accuracy of 86.4% (single-crop) on ImageNet with a ResNeXt-101 32x48d pre-trained in weakly-
supervised fashion on 940 million public images. Finally, our method makes it possible to save GPU
memory, which we exploit in the optimization: employing larger batch sizes leads to a better final
performance [13].

2 Related work

Image classification is a core problem in computer vision, and used as a benchmark task by the
community to measure progress on image understanding. Models pre-trained for image classifica-
tion, usually on the ImageNet database [8], transfer to a variety of other applications [24]. Further-
more, advances in image classification translate to improved results on many other tasks [10, 15].

Recent research in image classification has demonstrated improved performance by considering
larger networks and higher resolution images [14, 22]. For instance, the state of the art in the Im-
ageNet ILSVRC 2012 benchmark is currently held by the ResNeXt-101 32x48d [22] architecture
with 829M parameters using 224×224 images for training. The state of the art for a model learned
from scratch is currently held by the EfficientNet-b7 [34] with 66M parameters using 600×600
images for training. In this paper, we focus on the ResNet-50 architecture [11] due to its good accu-
racy/cost tradeoff (25.6M parameters) and its popularity. We also conduct some experiments using
the PNASNet-5-Large [21] architecture (86.1M parameters), which exhibits good performance on
ImageNet with a reasonable training time, and with the ResNeXt-101 32x48d [22] weakly super-
vised, which is best publicly available network on ImageNet.

Data augmentation is routinely employed at training time to improve model generalization and
reduce overfitting. Typical transformations [3, 5, 32] include: random-size crop, horizontal flip and
color jitter. In our paper, we adopt the standard set of augmentations commonly used in image clas-
sification. As a reference, we consider the default models in the PyTorch library. The accuracy is
also improved by combining multiple data augmentations at test time, although this means that sev-
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Figure 2: Empirical distribution of the areas of
the RoCs as a fraction of the image areas ex-
tracted by data augmentation. The data aug-
mentation schemes are the standard ones used
at training and testing time for CNN classifiers.
The spiky distribution at test time is due to the
fact that RoCs are center crops and the only re-
maining variability is due to the different image
aspect ratios. Notice that the distribution is very
different at training and testing time.

eral forward passes are required to classify one image. For example, [11, 17, 32] used ten crops (one
central, and one for each corner of the image and their mirrored versions). Another performance-
boosting strategy is to classify an image by feeding it at multiple resolutions [11, 30, 32], again
averaging the predictions. More recently, multi-scale strategies such as the feature pyramid net-
work [20] have been proposed to directly integrate multiple resolutions in the network, both at train
and test time, with significant gains in category-level detection.

Feature pooling. A recent approach [5] employs p-pooling instead of average pooling to adapt the
network to test resolutions significantly higher than the training resolution. The authors show that
this improves the network’s performance, in accordance with the conclusions drawn by Boureau et
al. [6]. Similar pooling techniques have been employed in image retrieval for a few years [26, 35],
where high-resolution images are required to achieve a competitive performance.

3 Region selection and scale statistics

Applying a Convolutional Neural Network (CNN) classifier to an image generally requires to pre-
process the image. One of the key steps involves selecting a rectangular region in the input image,
which we call Region of Classification (RoC). The RoC is then extracted and resized to a square
crop of a size compatible with the CNN, e.g., AlexNet requires a 224× 224 crop as input.

While this process is simple, in practice it has two subtle but significant effects on how the image
data is presented to the CNN. First, the resizing operation changes the apparent size of the objects
in the image (section 3.1). This is important because CNNs do not have a predictable response to a
scale change (as opposed to translations). Second, the choice of different crop sizes (for architectures
such as ResNet that admit non-fixed inputs) has an effect on the statistics of the network activations,
especially after global pooling layers (section 3.2). This section analyses in detail these two effects.
In the discussion, we use the following conventions: The “input image” is the original training or
testing image; the RoC is a rectangle in the input image; and the “crop” is the pixels of the RoC,
rescaled with bilinear interpolation to a fixed resolution, then fed to the CNN.

3.1 Scale and apparent object size

If a CNN is to acquire a scale-invariant behavior for object recognition, it must learn it from data.
However, resizing the input images in pre-processing changes the distribution of objects sizes. Since
different pre-processing protocols are used at training and testing time1, the size distribution differs
in the two cases. This is quantified next.

3.1.1 Relation between apparent and actual object sizes

We consider the following imaging model: the camera projects the 3D world onto a 2D image, so
the apparent size of the objects is inversely proportional to their distance from the camera. For
simplicity, we model a 3D object as an upright square of height and width R × R at a distance Z
from the camera, and fronto-parallel to it. Hence, its image is a r × r rectangle, where the apparent

1At training time, the extraction and resizing of the RoC is used as an opportunity to augment the data by
randomly altering the scale of the objects, in this manner the CNN is stimulated to be invariant to a wider range
of object scales.
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size r is given by r = fR/Z where f is the focal length of the camera. Thus we can express the
apparent size as the product r = f · r1 of the focal length f , which depends on the camera, and
of the variable r1 = R/Z, whose distribution p(r1) is camera-independent. While the focal length
is variable, the field of view angle θFOV of most cameras is usually in the [40�, 60�] range. Hence,

for an image of size H × W one can write f = k
√
HW where k�1 = 2 tan(θFOV/2) ≈ 1 is

approximately constant. With this definition for f , the apparent size r is expressed in pixels.

3.1.2 Effect of image pre-processing on the apparent object size

Now, we consider the effect of rescaling images on the apparent size of objects. If an object has an
extent of r × r pixels in the input image, and if s is the scaling factor between input image and the
crop, then by the time the object is analysed by the CNN, it will have the new size of rs× rs pixels.
The scaling factor s is determined by the pre-processing protocol, discussed next.

Train-time scale augmentation. As a prototypical augmentation protocol, we consider
RandomResizedCrop in PyTorch, which is very similar to augmentations used by other toolkits
such as Caffe and the original AlexNet. RandomResizedCrop takes as input an H × W image,
selects a RoC at random, and resizes the latter to output a Ktrain × Ktrain crop. The RoC extent
is obtained by first sampling a scale parameter σ such that σ2 ∼ U([σ2

�
,σ2

+]) and an aspect ra-
tio α such that lnα ∼ U([lnα�, lnα+]). Then, the size of the RoC in the input image is set

to HRoC × WRoC =
√
σαHW ×

p

σHW/α. The RoC is resized anisotropically with factors
(Ktrain/HRoC,Ktrain/WRoC) to generate the output image. Assuming for simplicity that the input
image is square (i.e. H = W ) and that α = 1, the scaling factor from input image to output crop is
given by:

s =

√
KtrainKtrain

√
HRoCWRoC

=
1

σ
·

Ktrain
√
HW

. (1)

By scaling the image in this manner, the apparent size of the object becomes

rtrain = s · r = sf · r1 =
kKtrain

σ
· r1. (2)

Since kKtrain is constant, differently from r, rtrain does not depend on the size H ×W of the input
image. Hence, pre-processing standardizes the apparent size, which otherwise would depend on the
input image resolution. This is important as networks do not have built-in scale invariance.

Test-time scale augmentation. As noted above, test-time augmentation usually differs from train-
time augmentation. The former usually amounts to: isotropically resizing the image so that the

shorter dimension is K image
test and then extracting a Ktest ×Ktest crop (CenterCrop) from that. Under

the assumption that the input image is square (H = W ), the scaling factor from input image to crop

rewrites as s = K image
test /

√
HW , so that

rtest = s · r = kK image
test · r1. (3)

This has a a similar size standardization effect as the train-time augmentation.

Lack of calibration. Comparing eqs. (2) and (3), we conclude that the same input image contain-
ing an object of size r1 results in two different apparent sizes if training or testing pre-processing is
used. These two sizes are related by:

rtest

rtrain

= σ ·

K image
test

Ktrain

. (4)

In practice, for standard networks such as AlexNet K image
test /Ktrain ≈ 1.15; however, the scaling factor

σ is sampled (with the square law seen above) in a range [σ�,σ+] = [0.28, 1]. Hence, at testing
time the same object may appear as small as a third of what it appears at training time. For standard
values of the pre-processing parameters, the expected value of this ratio w.r.t. σ is
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rtest

rtrain

�

= F ·

K image
test

Ktrain

≈ 0.80, F =
2

3
·

σ
3
+ − σ

3
�

σ2
+ − σ2

�

, (5)

where F captures all the sampling parameters.
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Figure 3: Cumulative density function of the
vectors components on output of the spatial av-
erage pooling operator, for a standard ResNet-
50 trained at resolution 224, and tested at differ-
ent resolutions. The distribution is measured on
the validation images of Imagenet.

3.2 Scale and activation statistics

In addition to affecting the apparent size of objects, pre-processing also affects the activation statis-
tics of the CNN, especially if its architecture allows changing the size of the input crop. We first
look at the receptive field size of a CNN activation in the previous layer. This is the number of input
spatial locations that affect that response. For the convolutional part of the CNN, comprising linear
convolution, subsampling, ReLU, and similar layers, changing the input crop size is almost neutral
because the receptive field is unaffected by the input size. However, for classification the network
must be terminated by a pooling operator (usually average pooling) in order to produce a fixed-size
vector. Changing the size of the input crop strongly affects the activation statistics of this layer.

Activation statistics. We measure the distribution of activation values after the average pooling in
a ResNet-50 in fig. 3. As it is applied on a ReLU output, all values are non-negative. At the default
crop resolution of Ktest =Ktrain = 224 pixels, the activation map is 7×7 with a depth of 2048. At
Ktest = 64, the activation map is only 2×2: pooling only 0 values becomes more likely and activations
are more sparse (the rate of 0’s increases form 0.5% to 29.8%). The values are also more spread out:
the fraction of values above 2 increases from 1.2% to 11.9%. Increasing the resolution reverts the
effect: with Ktest = 448, the activation map is 14×14, the output is less sparse and less spread out.

This simple statistical observations shows that if the distribution of activations changes at test time,
the values are not in the range that the final classifier layers (linear & softmax) were trained for.

3.3 Larger test crops result in better accuracy

Despite the fact that increasing the crop size affects the activation statistics, it is generally beneficial
for accuracy, since as discussed before it reduces the train-test object size mismatch. For instance,
the accuracy of ResNet-50 on the ImageNet validation set as Ktest is changed (see section 5) are:

Ktest 64 128 224 256 288 320 384 448
accuracy 29.4 65.4 77.0 78.0 78.4 78.3 77.7 76.6

Thus for Ktest = 288 the accuracy is 78.4%, which is greater than 77.0% obtained for the native
crop size Ktest = Ktrain = 224 used in training. In fig. 5, we see this result is general: better accuracy
is obtained with higher resolution crops at test time than at train time. In the next section, we explain
and leverage this discrepancy by adjusting the network’s weights.

4 Method

Based on the analysis of section 3, we propose two improvements to the standard setting. First,
we show that the difference in apparent object sizes at training and testing time can be removed by
increasing the crop size at test time, which explains the empirical observation of section 3.3. Second,
we slightly adjust the network before the global average pooling layer in order to compensate for
the change in activation statistics due to the increased size of the input crop.

4.1 Calibrating the object sizes by adjusting the crop size

Equation (5) estimates the change in the apparent object sizes during training and testing. If the

size of the intermediate image K image
test is increased by a factor α (where α ≈ 1/0.80 = 1.25 in the

example) then at test time, the apparent size of the objects is increased by the same factor. This
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Ktest = 64 Ktest = 128 Ktest = 224 Ktest = 448

Figure 4: CDF of the activations on output of the average pooling layer, for a ResNet-50, when
tested at different resolutions Ktest. Compare the state before and after fine-tuning the batch-norm.

equalizes the effect of the training pre-processing that tends to zoom on the objects. However,

increasing K image
test with Ktest fixed means looking at a smaller part of the object. This is not ideal: the

object to identify is often well framed by the photographer, so the crop may show only a detail of the

object or miss it altogether. Hence, in addition to increasing K image
test , we also increase the crop size

Ktest to keep the ratio K image
test /Ktest constant. However, this means that Ktest > Ktrain, which skews

the activation statistics (section 3.2). The next section shows how to compensate for this skew.

4.2 Adjusting the statistics before spatial pooling

At this point, we have selected the “correct” test resolution for the crop but we have skewed activa-
tion statistics. Hereafter we explore two approaches to compensate for this skew.

Parametric adaptation. We fit the output of the average pooling layer (section 3.2) with a para-
metric Fréchet distribution at the original Ktrain and final Ktest resolutions. Then, we define an equal-
ization mapping from the new distribution back to the old one via a scalar transformation, and apply
it as an activation function after the pooling layer (see Appendix A). This compensation provides
a measurable but limited improvement on accuracy, probably because the model is too simple and
does not differentiate the distributions of different components going through the pooling operator.

Adaptation via fine-tuning. Increasing the crop resolution at test time is effectively a domain
shift. A simple way to compensate for this shift is to fine-tune the model. In our case, we fine-
tune on the same training set, after switching from Ktrain to Ktest. We restrict the fine-tuning to the
very last layers of the network. We observed in the distribution analysis that the sparsity should be
adapted. This requires at least to include the batch normalization that precedes the global pooling
into the fine-tuning. In this way the batch statistics are adapted to the increased resolution. We also
use the test-time augmentation scheme during fine-tuning to avoid incurring further domain shifts.
Figure 4 shows the pooling operator’s activation statistics before and after fine-tuning. After fine-
tuning the activation statistics closely resemble the train-time statistics. This hints that adaptation is
successful. Yet, as discussed above, this does not imply an improvement in accuracy.

5 Experiments

Benchmark data. We experiment on the ImageNet-2012 benchmark [29], reporting validation
performance as top-1 accuracy. It has been argued that this measure is sensitive to errors in the
ImageNet labels [31]. However, the top-5 metrics, which is more robust, tends to saturate with
modern architectures, while the top-1 accuracy is more sensitive to improvements in the model.

To assess the significance of our results, we compute the standard deviation of the top-1 accuracy:
we classify the validation images, split the set into 10 folds and measure the accuracy on 9 of them,
leaving one out in turn. The standard deviation of accuracy over these folds is ∼ 0.03% for all
settings. Therefore, we report 1 significant digit in the accuracy percentages.

We also report results for other datasets involving transfer learning in section 5.3 when presenting
transfer learning results.
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Figure 5: Top-1 accuracy of the ResNet-50 according to the test time resolution. Left: without
adaptation, right: after resolution adaptation. The numerical results are reported in Appendix C. A
comparison of results without random resized crop is reported in Appendix D.

Architectures. We use standard state-of-the-art neural network architectures with no modifica-
tions, We consider in particular ResNet-50 [11]. For larger experiments, we use PNASNet-5-Large
[21], learned using neural architecture search as a succession of interconnected cells. It is accurate
(82.9% Top-1) with relatively few parameters (86.1 M). We use also ResNeXt-101 32x48d [22],
pre-trained in weakly-supervised fashion on 940 million public images with 1.5k hashtags matching
with 1000 ImageNet1k synsets. It is accurate (85.4% Top-1) with lot of parameters (829 M).

Training protocol. We train ResNet-50 with SGD with a learning rate of 0.1× B/256, where B
is the batch size, as in [13]. The learning rate is divided by 10 every 30 epochs. With a Repeated
Augmentation of 3, an epoch processes 5005 × 512/B batches, or ∼90% of the training images,
see [5]. In the initial training, we use B = 512, 120 epochs and the default PyTorch data augmen-
tation: horizontal flip, random resized crop (as in section 3) and color jittering. To finetune, the
initial learning rate is 0.008 same decay, B = 512, 60 epochs. For ResNeXt-101 32x48d we use the
pretrained version from the PyTorch hub repository [2]. We also use a ten times smaller learning
rate and a batch size two times smaller. For PNASNet-5-Large we use the pretrained version from
Cadene’s GitHub repository [1]. The difference with the ResNet-50 fine-tuning is that we modify
the last three cells, in one epoch and with a learning rate of 0.0008. We ran our training experiments
on machines with 8 Tesla V100 GPUs and 80 CPU cores.

Fine-tuning data-augmentation. We experimented three data-augmentation for fine-tuning: The
first one (test DA) is resizing the image and then take the center crop, The second one (test DA2)
is resizing the image, random horizontal shift of the center crop, horizontal flip and color jittering.
The last one (train DA) is the train-time data-augmentation as described in the previous paragraph.

The test DA data-augmentation described in this paragraph is the simplest. We use it for a more
direct comparison with the literature for all the results reported with ResNet-50 and PNASNet-5-
Large, except in Table 2 where we report results with test DA2, which provides a slightly better
performance. For ResNeXt-101 32x48d all reported results are obtained with test DA2.

Section C provides a comparison of the performance of these train-time data augmentation.

The baseline experiment is to increase the resolution without adaptation. Repeated augmentations
already improve the default PyTorch ResNet-50 from 76.2% top-1 accuracy to 77.0%. Figure 5(left)
shows that increasing the resolution at test time increases the accuracy of all our networks. E.g., the
accuracy of a ResNet-50 trained at resolution 224 increases from 77.0 to 78.4 top-1 accuracy, an
improvement of 1.4 percentage points. This concurs with prior findings in the literature [12].

5.1 Results

Improvement of our approach on a ResNet-50. Figure 5(right) shows the results obtained after
fine-tuning the last batch norm in addition to the classifier. With fine-tuning we get the best results
(79%) with the classic ResNet-50 trained at Ktrain = 224. Compared to when there is no fine-tuning,
the Ktest at which the maximal accuracy is obtained increases from Ktest = 288 to 384. If instead
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Table 1: Application to larger networks: Resulting top-1 accuracy.

Model Train Fine-tuning Test resolution

resolution Class. BN 3 cells 331 384 395 416 448 480

PNASNet-5-Large 331 82.7 83.0 83.2 83.0 83.0 82.8
PNASNet-5-Large 331 X X 82.7 83.4 83.5 83.4 83.5 83.4
PNASNet-5-Large 331 X X X 82.7 83.3 83.4 83.5 83.6 83.7

Class. BN 3 conv. 224 288 320

ResNeXt-101 32x48d 224 X X 85.4 86.1 86.4

Table 2: State of the art on ImageNet with various architectures (single Crop evaluation).

Models Extra Training Data Train Test # Parameters Top-1 (%) Top-5 (%)

ResNet-50 Pytorch 224 224 25.6M 76.1 92.9
ResNet-50 mix up [40] 224 224 25.6M 77.7 94.4
ResNet-50 CutMix [39] 224 224 25.6M 78.4 94.1
ResNet-50-D [13] 224 224 25.6M 79.3 94.6
MultiGrain R50-AA-500 [5] 224 500 25.6M 79.4 94.8
ResNet-50 Billion-scale [38] X 224 224 25.6M 81.2 96.0

Our ResNet-50 224 384 25.6M 79.1 94.6
Our ResNet-50 CutMix 224 320 25.6M 79.8 94.9
Our ResNet-50 Billion-scale@160 X 160 224 25.6M 81.9 96.1
Our ResNet-50 Billion-scale@224 X 224 320 25.6M 82.5 96.6

PNASNet-5 (N = 4, F = 216) [21] 331 331 86.1M 82.9 96.2
MultiGrain PNASNet @ 500px [5] 331 500 86.1M 83.6 96.7
AmoebaNet-B (6,512) [14] 480 480 577M 84.3 97.0
EfficientNet-B7 [34] 600 600 66M 84.4 97.1

Our PNASNet-5 331 480 86.1M 83.7 96.8

ResNeXt-101 32x8d [22] X 224 224 88M 82.2 96.4
ResNeXt-101 32x16d [22] X 224 224 193M 84.2 97.2
ResNeXt-101 32x32d [22] X 224 224 466M 85.1 97.5
ResNeXt-101 32x48d [22] X 224 224 829M 85.4 97.6

Our ResNeXt-101 32x48d X 224 320 829M 86.4 98.0

we reduce the training resolution, Ktrain = 128 and testing at Ktrain = 224 yields 77.1% accuracy,
which is above the baseline trained at full test resolution without fine-tuning.

Application to larger networks. The same adaptation method can be applied to any convolutional
network. In Table 1 we report the result on the PNASNet-5-Large and the IG-940M-1.5k ResNeXt-
101 32x48d [22]. For the PNASNet-5-Large, we found it beneficial to fine-tune more than just the
batch-normalization and the classifier. Therefore, we also experiment with fine-tuning the three last
cells. By increasing the resolution to Ktest = 480, the accuracy increases by 1 percentage point.
By combining this with an ensemble of 10 crops at test time, we obtain 83.9% accuracy. With
the ResNeXt-101 32x48d increasing the resolution to Ktest = 320, the accuracy increases by 1.0
percentage point. We thus reached 86.4% top-1 accuracy.

Speed-accuracy trade-off. We consider the trade-off between training time and accuracy (nor-
malized as if it was run on 1 GPU). The full table with timings are in supplementary Section C. In
the initial training stage, the forward pass is 3 to 6 times faster than the backward pass. However,
during fine-tuning the ratio is inverted because the backward pass is applied only to the last layers.

In the low-resolution training regime (Ktrain = 128), the additional fine-tuning required by our
method increases the training time from 111.8 h to 124.1 h (+11%). This is to obtain an accuracy
of 77.1%, which outperforms the network trained at the native resolution of 224 in 133.9 h. We
produce a fine-tuned network with Ktest = 384 that obtains a higher accuracy than the network
trained natively at that resolution, and the training is 2.3× faster: 151.5 h instead of 348.5 h.
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Table 3: Transfer learning task with our method and comparison with the state of the art. We only
compare ImageNet-based transfer learning results with a single center crop for the evaluation (if
available, otherwise we report the best published result) without any change in architecture com-
pared to the one used on ImageNet. We report the Top-1 accuracy (%).

Dataset Models Baseline +our method State-of-the-art models

Stanford Cars [16] SENet-154 94.0 94.4 EfficientNet-B7 [34] 94.7
CUB-200-2011 [36] SENet-154 88.4 88.7 MPN-COV [19] 88.7
Oxford 102 Flowers [23] InceptionResNet-V2 95.0 95.7 EfficientNet-B7 [34] 98.8
Oxford-IIIT Pets [25] SENet-154 94.6 94.8 AmoebaNet-B (6,512) [14] 95.9
Birdsnap [4] SENet-154 83.4 84.3 EfficientNet-B7 [34] 84.3

Ablation study. We study the contribution of the different choices to the performance, limited
to Ktrain = 128 and Ktrain = 224. By simply fine-tuning the classifier (the fully connected layers
of ResNet-50) with test-time augmentation, we reach 78.9% in Top-1 accuracy with the classic
ResNet-50 initially trained at resolution 224. The batch-norm fine-tuning and improvement in data
augmentation advances it to 79.0%. The higher the difference in resolution between training and
testing, the more important is batch-norm fine-tuning to adapt to the data augmentation. The full
results are in the supplementary Section C.

5.2 Beyond the current state of the art

Table 2 compares our results with competitive methods from the literature. Our ResNet-50 is slightly
worse than ResNet50-D and MultiGrain, but these do not have exactly the same architecture. On
the other hand our ResNet-50 CutMix, which has a classic ResNet-50 architecture, outperforms
others ResNet-50 including the slightly modified versions. Our fine-tuned PNASNet-5 outperforms
the MultiGrain version. To the best of our knowledge our ResNeXt-101 32x48d surpasses all other
models available in the literature. It achieves 86.4% Top-1 accuracy and 98.0% Top-5 accuracy,
i.e., it is the first model to exceed 86.0% in Top-1 accuracy and 98.0% in Top-5 accuracy on the
ImageNet-2012 benchmark [29]. This exceeds the previous state of the art [22] by 1.0% absolute in
Top-1 accuracy and 0.4% Top-5 accuracy.

5.3 Transfer learning tasks

We have used our method in transfer learning tasks to validate its effectiveness on other dataset
than ImageNet. We evaluated it on the following datasets: Stanford Cars [16], CUB-200-2011 [36],
Oxford 102 Flowers [23], Oxford-IIIT Pets [25] and Birdsnap [4]. We used our method with two
types of networks for transfer learning tasks: SENet-154 [3] and InceptionResNet-V2 [33]. For all
these experiments, we proceed as follows. (1) we initialize our network with the weights learned
on ImageNet (using models from [1]); (2) we train it entirely for several epochs at a certain reso-
lution; (3) we fine-tune with a higher resolution the last batch norm and the fully connected layer.
Table 3 reports the baseline performance and shows that our method systematically improves the
performance, leading to the new state of the art for several benchmarks. We notice that our method
is most effective on datasets of high-resolution images.

6 Conclusion

We have studied extensively the effect of using different train and test scale augmentations on
the statistics of natural images and of the network’s pooling activations. We have shown that, by
adjusting the crop resolution and via a simple and light-weight parameter adaptation, it is possi-
ble to increase the accuracy of standard classifiers significantly, everything being equal otherwise.
We have also shown that researchers waste resources when both training and testing strong net-
works at resolution 224 × 224; We introduce a method that can “fix” these networks post-facto
and thus improve their performance. An open-source implementation of our method is available at
https://github.com/facebookresearch/FixRes.
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[40] Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond
empirical risk minimization. arXiv preprint arXiv:1710.09412, 2017.

11


