
Under review as a conference paper at ICLR 2018

FIXING WEIGHT DECAY REGULARIZATION IN ADAM

Anonymous authors
Paper under double-blind review

ABSTRACT

We note that common implementations of adaptive gradient algorithms, such
as Adam, limit the potential benefit of weight decay regularization, because the
weights do not decay multiplicatively (as would be expected for standard weight
decay) but by an additive constant factor. We propose a simple way to resolve this
issue by decoupling weight decay and the optimization steps taken w.r.t. the loss
function. We provide empirical evidence that our proposed modification (i) decou-
ples the optimal choice of weight decay factor from the setting of the learning rate
for both standard SGD and Adam, and (ii) substantially improves Adam’s general-
ization performance, allowing it to compete with SGD with momentum on image
classification datasets (on which it was previously typically outperformed by the
latter). We also demonstrate that longer optimization runs require smaller weight
decay values for optimal results and introduce a normalized variant of weight de-
cay to reduce this dependence. Finally, we propose a version of Adam with warm
restarts (AdamWR) that has strong anytime performance while achieving state-of-
the-art results on CIFAR-10 and ImageNet32x32. Our source code will become
available after the review process.

1 INTRODUCTION

Adaptive gradient methods, such as AdaGrad (Duchi et al., 2011), RMSProp (Tieleman & Hinton,
2012), and Adam (Kingma & Ba, 2014) have become a default method of choice for training feed-
forward and recurrent neural networks (Xu et al., 2015; Gregor et al., 2015; Radford et al., 2015).
Nevertheless, state-of-the-art results for popular image classification datasets, such as CIFAR-10
and CIFAR-100 Krizhevsky (2009), are still obtained by applying SGD with momentum (Huang
et al., 2016; 2017; Loshchilov & Hutter, 2016; Gastaldi, 2017). Furthermore, Wilson et al. (2017)
suggested that adaptive gradient methods do not generalize as well as SGD with momentum when
tested on a diverse set of deep learning tasks such as image classification, character-level language
modeling and constituency parsing. Different hypotheses about the origins of this worse generaliza-
tion have been investigated, such as the presence of sharp local minima (Keskar et al., 2016; Dinh
et al., 2017) and inherent problems of adaptive gradient methods (Wilson et al., 2017). In this paper,
we show that a major factor in the poor generalization of the most popular adaptive gradient method,
Adam, lies in its dysfunctional implementation of weight decay; the issue we identify in Adam also
pertains to other adaptive gradient methods.

Specifically, our analysis of Adam given in this paper leads to the following observations:

The standard way to implement L2 regularization/weight decay in Adam is dysfunctional.
One possible explanation why Adam and other adaptive gradient methods might be outper-
formed by SGD with momentum is that L2 regularization/weight decay are implemented
suboptimally in common deep learning libraries. Therefore, on tasks/datasets where the
use of L2 regularization is beneficial (e.g., on many popular image classification datasets),
Adam leads to worse results than SGD with momentum (for which L2 regularization
behaves as expected).

L2 regularization and weight decay are not the same thing. Contrary to common belief, the two
techniques are not equivalent. For SGD, they can be made equivalent by a reparameteriza-
tion of the weight decay factor based on the learning rate; this is not the case for Adam. In
particular, when combined with adaptive gradients, L2 regularization leads to weights with
large gradients being regularized less than they would be when using weight decay.

1



Under review as a conference paper at ICLR 2018

Optimal weight decay is a function (among other things) of the total number of batch passes/weight updates.
Our empirical analysis of Adam suggests that the longer the runtime/number of batch
passes to be performed, the smaller the optimal weight decay. This effect tends to be
neglected because hyperparameters are often tuned for a fixed or a comparable number of
training epochs. As a result, the values of the weight decay found to perform best for short
runs do not generalize to much longer runs.

Our contributions are aimed at fixing the issues described above:

Decoupling weight decay from the gradient-based update (Section 2). We suggest to decouple
the gradient-based update from weight decay for both SGD and Adam. The resulting SGD
version SGDW decouples optimal settings of the learning rate and the weight decay factor,
and the resulting Adam version AdamW generalizes substantially better than Adam.

Normalizing the values of weight decay (Section 3). We propose to parameterize the weight de-
cay factor as a function of the total number of batch passes. This leads to a greater invari-
ance of the hyperparameter settings in the sense that the values found to perform best for
short runs also perform well for many times longer runs.

Adam with warm restarts and normalized weight decay (Section 4). After we fix the weight
decay in Adam and design AdamW, we introduce AdamWR to obtain strong anytime per-
formance by performing warm restarts.

The main motivation of this paper is to fix the weight decay in Adam to make it competitive w.r.t.
SGD with momentum even for those problems where it did not use to be competitive. We hope
that as a result, practitioners do not need to switch between Adam and SGD anymore, which in turn
should help to reduce the common issue of selecting dataset/task-specific training algorithms and
their hyperparameters.

2 DECOUPLING THE WEIGHT DECAY FROM THE GRADIENT-BASED UPDATE

In the weight decay described by Hanson & Pratt (1988), the weights x decay exponentially as

xt+1 = (1− wt)xt − αt∇ft(xt), (1)

where wt defines the rate of the weight decay at time-step t and ∇ft(xt) is the t-th batch gradient
multiplied by a learning rate αt. Following Hanson & Pratt (1988), one can also modify the original
batch loss ft(xt) and consider a bias term (also referred to as the regularization term) accounting for
“costs” on weights which are, e.g., quadratic in the weight values as for L2 regularization:

ft,reg(xt) = ft(xt) +
wt

2
‖xt‖22 , (2)

where wt defines the impact of the L2 regularization. In order to consider the weight decay regular-
ization, one can reformulate the objective function as in Eq. (2) or directly adjust∇ft(xt) as

∇ft,reg(xt) = ∇ft(xt) + wtxt. (3)

Historically, stochastic gradient descent methods inherited this way of implementing the weight
decay regularization.

The currently most common way (e.g., in popular libraries such as TensorFlow, Keras, PyTorch,
Torch, and Lasagne) to introduce the weight decay regularization is to use the L2 regularization term
as in Eq. (2) or, often equivalently, to directly modify the gradient as in Eq. (3). Let’s first consider
the simple case of SGD with momentum; Algorithm 1 demonstrates modifying the gradients directly
in this method (see line 6). The weight decay term wtxt−1 will first modify gt (see line 6) and then
affect the momentum term mt (see line 8). While the smoothing of the weight decay factor by β1

2



Under review as a conference paper at ICLR 2018

Algorithm 1 SGD with momentum and SGDW with momentum

1: given learning rate αt ∈ IR, momentum factor β1 ∈ IR, weight decay factor w ∈ IR
2: initialize time step t ← 0, parameter vector xt=0 ∈ IRn, first moment vector mt=0 ← 0,

schedule multiplier ηt=0 ∈ IR
3: repeat
4: t← t+ 1
5: ∇ft(xt−1)← SelectBatch(xt−1) ⊲ select batch and return the corresponding gradient

6: gt ← ∇ft(xt−1) +wtxt−1

7: ηt ← SetScheduleMultiplier(t) ⊲ can be fixed, decay, be used for warm restarts
8: mt ← β1mt−1 + ηtαtgt
9: xt ← xt−1 −mt −ηtwtxt−1

10: until stopping criterion is met
11: return optimized parameters xt

Algorithm 2 Adam and AdamW

1: given αt = 0.001, β1 = 0.9, β2 = 0.999, ǫ = 10−8, w ∈ IR
2: initialize time step t← 0, parameter vector xt=0 ∈ IRn, first moment vector mt=0 ← 0, second

moment vector vt=0 ← 0, schedule multiplier ηt=0 ∈ IR
3: repeat
4: t← t+ 1
5: ∇ft(xt−1)← SelectBatch(xt−1) ⊲ select batch and return the corresponding gradient

6: gt ← ∇ft(xt−1) +wtxt−1

7: mt ← β1mt−1 + (1− β1)gt ⊲ here and below all operations are element-wise
8: vt ← β2vt−1 + (1− β2)g

2
t

9: m̂t ← mt/(1− βt
1) ⊲ here, β1 is taken to the power of t

10: v̂t ← vt/(1− βt
2) ⊲ here, β2 is taken to the power of t

11: ηt ← SetScheduleMultiplier(t) ⊲ can be fixed, decay, be used for warm restarts

12: xt ← xt−1 − ηt

(

αtm̂t/(
√

v̂t + ǫ) +wtxt−1

)

13: until stopping criterion is met
14: return optimized parameters xt

(see line 8) might be a feature, we note (for simplicity, we omit ηt) that xt will decay by αtwtxt−1

(see line 9) and not wtxt−1 as one could expect according to the definition of the weight decay given
by Eq. (1). Practically, if one wants to keep the actual weight decay αtwt fixed while changing αt

to α′

t, then wt should be modified to w′

t = αtwt

α′

t

. This renders the problem of hyperparameter

selection of αt and wt non-separable.

We propose to fix this problem by following the original definition of weight decay given by Eq.
(1) and decay the weights simultaneously with the update of xt based on gradient information in
Line 9 of Algorithm 1. This yields our proposed SGD variant SGDW with momentum. Although
the proposed simple modification explicitly decouples wt and αt, some problem-dependent implicit
coupling is likely to remain. In order to account for a possible scheduling of both αt and wt, we
introduce a scaling factor ηt delivered by a user-defined procedure SetScheduleMultiplier(t). It
should be noted that when L2 regularization is used, weight decay contributes to the batch gradient
and thus effectively is scheduled in the same way as the learning rate. Now, since we decouple the
two we should also remember to schedule both of them with ηt.

Having shown that using L2 regularization instead of weight decay already couples regularization
and learning rate in the simple case of SGD with momentum, we now consider adaptive gradient op-
timizers, such as the Adam algorithm proposed by Kingma & Ba (2014), in which the coupling leads
to even more unintended behavior. As an adaptive gradient method, Adam maintains a vector vt re-
sponsible for storing smoothed amplitudes of parameter-wise gradients g2t (see line 8 in Algorithm
2). These factors are used to control parameter-wise learning rates by normalizing parameter-wise
gradients by

√
v̂t + ǫ in line 12 of Algorithm 2. The common way to introduce the weight decay

wtxt−1 to Adam results in an update which only distantly resembles the original weight decay given

3



Under review as a conference paper at ICLR 2018

by Eq. (1) because the vt vectors are not only responsible for the parameter-wise amplitudes of
gt but also for the parameter-wise amplitudes of weights xt. The amplitudes are then used to re-
normalize m̂t as given in line 12 of Algorithm 2. To gain a bit of intuition, let us consider the case
when t is large, causing βt

1 and βt
2 to go to zero and

xt ← xt−1 − ηtαt

β1mt−1 + (1− β1)gt
√

β2vt−1 + (1− β2)g2t + ǫ
, with gt = ∇ft(xt−1) + wtxt−1, (4)

where operations are performed parameter-wise. Not only the batch gradient ∇ft(xt−1) is normal-
ized but also the weight decay wtxt−1 itself. Since this formula normalizes updates by their typical
amplitudes, the decay of weights does not account for amplitudes anymore, leading to the relative
decay being weaker for weights with large gradients. This is a correct implementation of L2

regularization, but not of weight decay. Therefore, it might be misleading to use the two terms
interchangeably, as is commonly done in the literature. We note that this difference between the two
mechanisms for Adam has not been investigated and/or described before. As in the case of SGDW,
we propose to follow the original definition of weight decay and perform it simultaneously with the
gradient-based update as shown in line 12 of Algorithm 2 for AdamW. As we will demonstrate
experimentally (in Section 5.2), AdamW generalizes much better than Adam.

3 NORMALIZED WEIGHT DECAY

Since our preliminary experiments showed that different weight decay factors are optimal for differ-
ent computational budgets (defined in terms of the number of batch passes), we introduce a normal-
ized weight decay to reduce this dependence. At iteration t, wt is set as follows:

wt = wnorm

√

bt
BTi

, (5)

where bt is the batch size, B is the total number of training points to be used in one epoch and
Ti is the total number of epochs within the i-th run/restart of the algorithm. Thus, wnorm can be
interpreted as the weight decay to be used if only one batch pass is allowed. We note a recent
relevant observation of Li et al. (2017) who demonstrated that a smaller batch size (for the same
total number of epochs) leads to the shrinking effect of weight decay being more pronounced. Here,
we propose to address that effect with normalized weight decay.

4 ADAM WITH WARM RESTARTS AND NORMALIZED WEIGHT DECAY

We now apply warm restarts to Adam, following the recent work of Loshchilov & Hutter (2016).
There, the authors proposed Stochastic Gradient Descent with Warm Restarts (SGDR) to improve
anytime performance of SGD by quickly cooling down the learning rate and periodically increasing
it. SGDR has been successfully adopted to lead to new state-of-the-art results for popular image
classification benchmarks (Huang et al., 2017; Gastaldi, 2017), and we therefore tried extending
it to Adam. However, while our initial version of Adam with warm restarts had better anytime
performance than Adam, it was not competitive with SGD with warm restarts, precisely because
of Adam’s dysfunctional weight decay. Now, having fixed weight decay regularization (Section 2)
and also having introduced normalized weight decay (Section 3), the work of Loshchilov & Hutter
(2016) on warm restarts directly carries over, and we use it to construct AdamWR to fully benefit
from warm restarts.

In the interest of keeping the presentation self-contained, we briefly describe how SGDR schedules
the change of the effective learning rate in order to accelerate the training of DNNs. Here, we
decouple the initial learning rate and its multiplier ηt used to obtain the actual learning rate at
iteration t (see, e.g., line 8 in Algorithm 1). In SGDR, we simulate a new warm-started run/restart of
SGD once Ti epochs are performed, where i is the index of the run. Importantly, the restarts are not
performed from scratch but emulated by increasing ηt while the old value of xt is used as an initial

4



Under review as a conference paper at ICLR 2018

solution. The amount by which ηt is increases controls to which extent the previously acquired
information (e.g., momentum) is used. Within the i-th run, the value of ηt decays according to the
cosine annealing (Loshchilov & Hutter, 2016) for each batch as follows:

ηt = η
(i)
min + 0.5(η(i)max − η

(i)
min)(1 + cos(πTcur/Ti)), (6)

where η
(i)
min and η

(i)
max are ranges for the multiplier and Tcur accounts for how many epochs have

been performed since the last restart. Tcur is updated at each batch iteration t and is thus not

constrained to integer values. Adjusting (e.g., decreasing) η
(i)
min and η

(i)
max at every i-th restart (see

also Smith (2016)) could potentially improve performance, but we do not consider that option in our

experiments because it would involve additional hyperparameters. For η
(i)
max = 1 and η

(i)
min = 0,

one can simplify Eq. (6) to

ηt = 0.5 + 0.5 cos(πTcur/Ti). (7)

In order to maintain a good anytime performance, one can start with an initially small Ti (e.g., from
1% to 10% of the expected total budget) and multiply it by a factor of Tmult (e.g., Tmult = 2) at
every restart. The (i + 1)-th restart is triggered when Tcur = Ti by setting Tcur to 0. An example
setting of the schedule multiplier is given in Section 1.1 of the supplementary material. Note that
the effective learning rate is controlled by ηtαt where αt is set to the initial learning rate and stays
constant in our experimental setup. The reason why we employ αt and not simply α is to account for
possible practical extensions, e.g., to adapt αt as a function of batch size in (scheduled) large-batch
settings.

Our proposed AdamWR algorithm represents AdamW given in Algorithm 2 with ηt following Eq.
(7) and wt computed at each iteration using normalized weight decay according to Eq. (5). We note
that normalized weight decay allowed us to use a constant parameter setting across short and long
runs performed within AdamWR. Equivalently to AdamWR, we define SGDWR as SGDW with
warm restarts.

5 EXPERIMENTAL VALIDATION

Our experimental setup follows that of Gastaldi (2017), who proposed, in addition to L2 regulariza-
tion, to apply the new Shake-Shake regularization to a 3-branch residual neural network. Gastaldi
(2017) showed that this regularization allowed to achieve new state-of-the-art results of 2.86% on
the CIFAR-10 dataset (Krizhevsky, 2009) and of 15.85% on CIFAR-100. The network was trained
by SGDR with batch size 128 for 1800 epochs (T0 = 1800) without restarts with the learning rate
scheduled by Eq. (6). The regular data augmentation procedure used for the CIFAR datasets was
applied. We used the same model/source code based on fb.resnet.torch 1. The base networks are
a 26 2x64d ResNet (i.e. the network has a depth of 26, 2 residual branches and the first residual
block has a width of 64) and 26 2x96d ResNet with 11.6M and 25.6M parameters, respectively. For
a detailed description of the network and the Shake-Shake method, we refer the interested reader to
Gastaldi (2017).

5.1 DECOUPLING THE WEIGHT DECAY AND INITIAL LEARNING RATE PARAMETERS

In order to verify our hypothesis about the coupling of the initial learning rate αt and the weight
decay factor wt, we trained a 2x64d ResNet with cosine annealing for 100 epochs with different
settings of αt and wt. Throughout this paper, we scheduled the learning rate with cosine annealing
because it leads to better results than a fixed learning rate (see SuppFigure 1 in the supplementary
material). Figure 1 compares SGD vs. SGDW (top row) and Adam vs. AdamW (bottom row). For
the case of SGD (Figure 1, top left), weight decay is not decoupled from the learning rate (the
common way as described in Algorithm 1), and the figure clearly shows that the basin of best hy-
perparameter settings (depicted by color and top-10 hyperparameter settings by black circles) is not

1https://github.com/xgastaldi/shake-shake

5



Under review as a conference paper at ICLR 2018

Figure 1: The Top-1 test error of a 26 2x64d ResNet on CIFAR-10 measured after 100 epochs. The
proposed SGDW and AdamW (right column) have a more separable hyperparameter space.

aligned with the x-axis or y-axis but lies on the diagonal. This suggests that the two hyperparam-
eters are interdependent and need to be changed simultaneously, while only changing one of them
might substantially worsen results. Consider, e.g., the setting at the top left black circle (αt = 1/2,
wt = 1/8 ∗ 0.001); only changing either αt or wt by itself would worsen results, while changing
both of them could still yield clear improvements. We note that this coupling of initial learning rate
and weight decay factor might have contributed to SGD’s reputation of being very sensitive to its
hyperparameter settings.

In contrast, the results for our new SGDW in Figure 1 (top right) show that SGDW decouples
weight decay and initial learning rate. The proposed approach renders the two hyperparameters
more separable: even if the learning rate is not well tuned yet (e.g., consider the value of 1/1024 in
Figure 1, top right), leaving it fixed and only optimizing the weight decay factor would yield a good
value (of 1/4*0.001). This is not the case for the original SGD shown in Figure 1 (top left).

The results for different hyperparameter settings of the original Adam are given in Figure 1 (bottom
left). Adam’s best hyperparameter settings performed clearly worse than SGD’s best ones (compare
Figure 1, top left). While both methods use the original way to employ weight decay, the original
Adam did not benefit from it at all: its best results obtained for non-zero weight decay values were
comparable to the best ones obtained without the weight decay regularization, i.e., when wt = 0.
Similarly to the original SGD, the shape of the hyperparameter landscape suggests that the two
hyperparameters are coupled.

In contrast, the results for our new AdamW in Figure 1 (bottom right) show that AdamW largely
decouples weight decay and learning rate. The results for the best hyperparameter settings were
substantially better than the best ones of the original Adam and rivaled those of SGD and SGDW.

6



Under review as a conference paper at ICLR 2018

Figure 2: Learning curves (top row) and generalization results (bottom row) obtained by a 26 2x96d
ResNet trained with Adam and AdamW on CIFAR-10. See text for details.

In summary, the experimental results in Figure 1 support our hypothesis that the weight decay and
learning rate hyperparameters can be decoupled, and that this in turn simplifies the problem of
hyperparameter tuning in SGD and improves Adam’s performance to be competitive w.r.t. SGD
with momentum.

5.2 BETTER GENERALIZATION OF ADAMW

While the previous experiment suggested that the basin of optimal hyperparameters of AdamW is
broader and deeper than the one of Adam, we next investigated the results for much longer runs of
1800 epochs to compare the generalization capabilities of AdamW and Adam.

We fixed the initial learning rate to 0.001 which represents both the default learning rate for Adam
and the one which showed reasonably good results in our experiments. Figure 2 shows the results for
12 settings of the weight decay of Adam and 7 settings of the normalized weight decay of AdamW.
Interestingly, while the dynamics of the learning curves of Adam and AdamW often coincided for
the first half of the training run, AdamW often led to lower training loss and test errors (see Figure
2 top left and top right, respectively). Importantly, the use of weight decay in Adam did not yield as
good results as in AdamW (see also Figure 2, bottom left). Next, we investigated whether AdamW’s
better results were only due to better convergence or due to better generalization. The results in
Figure 2 (bottom right) for the best settings of Adam and AdamW suggest that AdamW did
not only yield better training loss but also yielded better generalization performance for sim-
ilar training loss values. The results on ImageNet32x32 (see SuppFigure 4 in the supplementary
material) lead to the same conclusion of substantially improved generalization performance.

7



Under review as a conference paper at ICLR 2018

Figure 3: Top-1 test error on CIFAR-10 (left) and Top-5 test error on ImageNet32x32 (right).

5.3 EASIER HYPERPARAMETER SELECTION DUE TO NORMALIZED WEIGHT DECAY

Our experimental results with Adam and SGD suggested that the total runtime in terms of the num-
ber of epochs affect the basin of optimal hyperparameters (see SuppFigure 3 in the supplementary
material). More specifically, the greater the total number of epochs the smaller the values of the
weight decay should be. SuppFigure 3 shows that our remedy for this problem, the normalized
weight decay defined in Eq. (7), simplifies hyperparameter selection because the optimal values
observed for short runs are similar to the ones for much longer runs. While our initial experiments
on CIFAR-10 suggested the square root fit we proposed in Eq. (7), to double-check that this is not
a coincidence, we also performed experiments on the ImageNet32x32 dataset (Chrabaszcz et al.,
2017), a downsampled version of the original ImageNet dataset with 1.2 million 32×32 pixels im-
ages, where an epoch is 24 times longer than on CIFAR-10. This experiment also supported the
square root scaling: the best values of the normalized weight decay observed on CIFAR-10 repre-
sented nearly optimal values for ImageNet32x32 (see SuppFigure 3). In contrast, had we used the
same raw weight decay values wt for ImageNet32x32 as for CIFAR-10 and for the same number of
epochs, without the proposed normalization, wt would have been roughly 5 greater than opti-
mal for ImageNet32x32, leading to much worse performance. The optimal normalized weight
decay values were also very similar (e.g., wnorm = 0.025 and wnorm = 0.05) across SGDW and
AdamW.

We investigated whether the use of much longer runs (1800 epochs) of the original Adam with
L2 regularization makes the use of cosine annealing unnecessary. The results of Adam without
cosine annealing (i.e., with fixed learning rate) for a 4 by 4 logarithmic grid of hyperparameter
settings are given in SuppFigure 5 in the supplementary material. Even after taking into account
the low resolution of the grid, the results appear to be at best comparable to the ones obtained with
AdamW with 18 times less epochs and a smaller network (see SuppFigure 2). These results are not
very surprising given Figure 1 (which demonstrates the effectiveness of AdamW) and SuppFigure 2
(which demonstrates the necessity to use some learning rate schedule such as cosine annealing).

5.4 ADAMWR WITH WARM RESTARTS FOR BETTER ANYTIME PERFORMANCE

Finally, we investigated the strong anytime performance AdamWR obtains from warm restarts (us-
ing normalized weight decay to avoid the need for a different weight decay factor for restarts with
longer annealing schedules). As Figure 3 shows, AdamWR greatly sped up AdamW on CIFAR-
10 and ImageNet32x32, up to a factor of 10 (see the results at the first restart). For the default
learning rate of 0.001, AdamW achieved 15% relative improvement in test errors compared
to Adam both on CIFAR-10 (also see Figure 2) and ImageNet32x32 (also see SuppFigure 4).
AdamWR achieved the same improved results but with a much better anytime performance.
These improvements closed most of the gap between Adam and SGDWR on CIFAR-10 and yielded
comparable performance on ImageNet32x32.

8



Under review as a conference paper at ICLR 2018

6 DISCUSSION AND CONCLUSION

Following suggestions that adaptive gradient methods such as Adam might lead to worse generaliza-
tion than SGD with momentum (Wilson et al., 2017), we identified at least one possible explanation
to this phenomenon: the dysfunctional use of L2 regularization and weight decay. We proposed
a simple fix to deal with this issue, yielding substantially better generalization performance in our
AdamW variant. We also proposed normalized weight decay and warm restarts for Adam, showing
that a more robust hyperparameteer selection and a better anytime performance can be achieved in
our new AdamWR variant.

Our preliminary results obtained with AdamW and AdamWR on image classification datasets must
be verified on a wider range of tasks, especially the ones where the use of regularization is expected
to be important. It would be interesting to integrate our findings on weight decay into other methods
which attempt to improve Adam, e.g, normalized direction-preserving Adam (Zhang et al., 2017).
While we focussed our experimental analysis on Adam, we believe that similar results also hold for
other adaptive gradient methods, such as AdaGrad (Duchi et al., 2011) and RMSProp (Tieleman &
Hinton, 2012).

The results shown in Figure 2 suggest that Adam and AdamW follow very similar curves most of
the time until the third phase of the run where AdamW starts to branch out to outperform Adam.
As pointed out by an anonymous reviewer, it would be interesting to investigate what causes this
branching and whether the desired effects are observed at the bottom of the landscape. One could
investigate this using the approach of Im et al. (2016) to switch from Adam to AdamW at a given
epoch index. Since it is quite possible that the effect of regularization is not that pronounced in
the early stages of training, one could think of designing a version of Adam which exploits this by
being fast in the early stages and well-regularized in the late stages of training. The latter might be
achieved with a custom schedule of the weight decay factor.

In this paper, we argue that the popular interpretation that weight decay = L2 regularization is not
precise. Instead, the difference between the two leads to the following important consequences. Two
algorithms as different as SGD and Adam will exhibit different effective rates of weight decay even
if the same regularization coefficient is used to include L2 regularization in the objective function.
Moreover, when decoupled weight decay is applied, two algorithms as different as SGDW and
AdamW will optimize two effectively different objective functions even if the same weight decay
factor is used. Our findings suggest that the original Adam algorithm with L2 regularization affects
effective rates of weight decay in a way that precludes effective regularization, and that effective
regularization is achievable by decoupling the weight decay.

Advani & Saxe (2017) analytically showed that in the limited data regime of deep networks the
presence of eigenvalues that are zero forms a frozen subspace in which no learning occurs and thus
smaller (e.g., zero) initial weight norms should be used to achieve best generalization results. Our
future work shall consider adapting initial weight norms or weight norm constraints (Salimans &
Kingma, 2016) at each warm restart. Kawaguchi et al. (2017) proposed a family of regularization
techniques which are specific to the current batch and its size. Similarly to L2 regularization and
weight decay, the latter techniques might be attempted to be transformed to act directly on weights.

REFERENCES

Madhu S. Advani and Andrew M. Saxe. High-dimensional dynamics of generalization error in
neural networks. arXiv:1710.03667, 2017.

Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A downsampled variant of ImageNet as an
alternative to the CIFAR datasets. arXiv:1707.08819, 2017.

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize
for deep nets. arXiv:1703.04933, 2017.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. The Journal of Machine Learning Research, 12:2121–2159, 2011.

Xavier Gastaldi. Shake-Shake regularization. arXiv preprint arXiv:1705.07485, 2017.

9



Under review as a conference paper at ICLR 2018

Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan Wierstra. Draw: A
recurrent neural network for image generation. arXiv:1502.04623, 2015.

Stephen José Hanson and Lorien Y Pratt. Comparing biases for minimal network construction with
back-propagation. In Proceedings of the 1st International Conference on Neural Information
Processing Systems, pp. 177–185, 1988.

Gao Huang, Zhuang Liu, and Kilian Q Weinberger. Densely connected convolutional networks.
arXiv:1608.06993, 2016.

Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E Hopcroft, and Kilian Q Weinberger.
Snapshot ensembles: Train 1, get m for free. arXiv:1704.00109, 2017.

Daniel Jiwoong Im, Michael Tao, and Kristin Branson. An empirical analysis of deep network loss
surfaces. arXiv preprint arXiv:1612.04010, 2016.

Kenji Kawaguchi, Leslie Pack Kaelbling, and Yoshua Bengio. Generalization in deep learning.
arXiv:1710.05468, 2017.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima.
arXiv:1609.04836, 2016.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv:1412.6980,
2014.

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.

Hao Li, Zheng Xu, Gavin Taylor, and Tom Goldstein. Visualizing the loss landscape of neural nets.
arXiv preprint arXiv:1712.09913, 2017.

Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient descent with warm restarts.
arXiv:1608.03983, 2016.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv:1511.06434, 2015.

Tim Salimans and Diederik P Kingma. Weight normalization: A simple reparameterization to accel-
erate training of deep neural networks. In Advances in Neural Information Processing Systems,
pp. 901–909, 2016.

Leslie N Smith. Cyclical learning rates for training neural networks. arXiv:1506.01186v3, 2016.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26–
31, 2012.

Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nathan Srebro, and Benjamin Recht. The
marginal value of adaptive gradient methods in machine learning. arXiv:1705.08292, 2017.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudinov, Rich
Zemel, and Yoshua Bengio. Show, attend and tell: Neural image caption generation with visual
attention. In International Conference on Machine Learning, pp. 2048–2057, 2015.

Zijun Zhang, Lin Ma, Zongpeng Li, and Chuan Wu. Normalized direction-preserving adam.
arXiv:1709.04546, 2017.

10



Under review as a conference paper at ICLR 2018

1 SUPPLEMENTARY MATERIAL

1.1 AN EXAMPLE SETTING OF THE SCHEDULE MULTIPLIER

An example schedule of the schedule multiplier ηt is given in SuppFigure 1 for Ti=0 = 100 and
Tmult = 2. After the initial 100 epochs the learning rate will reach 0 because ηt=100 = 0. Then,
since Tcur = Ti=0, we restart by resetting Tcur = 0, causing the multiplier ηt to be reset to 1
due to Eq. (7). This multiplier will then decrease again from 1 to 0, but now over the course of 200
epochs because Ti=1 = Ti=0Tmult = 200. Solutions obtained right before the restarts, when ηt = 0
(e.g., at epoch indexes 100, 300, 700 and 1500 as shown in SuppFigure 1) are recommended by the
optimizer as the solutions, with more recent solutions prioritized.

200 400 600 800 1000 1200 1400
0

0.2

0.4

0.6

0.8

1

Epochs

L
e

a
rn

in
g

 r
a

te
 m

u
lt
ip

lie
r 
η

T
0
=100, T

mult
=2

SuppFigure 1: An example schedule of the learning rate multiplier as a function of epoch index.
The first run is scheduled to converge at epoch Ti=0 = 100, then the budget for the next run is
doubled as Ti=1 = Ti=0Tmult = 200, etc.

SuppFigure 2: Adam with fixed learning rate (left) and with cosine annealing (right). We show
the final test error of a 26 2x64d ResNet on CIFAR-10 after 100 epochs of SGD with momentum.
The results where the learning rate is fixed (left) are inferior to the ones where the learning rate
is scheduled according to cosine annealing (right). Therefore, we schedule the learning rate with
cosine annealing for all methods given in the paper.

1



Under review as a conference paper at ICLR 2018

SuppFigure 3: Effect of normalized weight decay. We show the final test Top-1 error on CIFAR-
10 (first two rows for AdamW without and with normalized weight decay) and Top-5 error on
ImageNet32x32 (last two rows for AdamW and SGDW, both with normalized weight decay) of a
26 2x64d ResNet after different numbers of epochs (see columns). While the optimal settings of the
raw weight decay change significantly for different runtime budgets (see the first row), the values
of the normalized weight decay remain very similar for different budgets (see the second row) and
different datasets (here, CIFAR-10 and ImageNet32x32), and even across AdamW and SGDW.

2



Under review as a conference paper at ICLR 2018

SuppFigure 4: Learning curves (top row) and generalization results (Top-5 errors in bottom row)
obtained by a 26 2x96d ResNet trained with Adam and AdamW on ImageNet32x32.

3



Under review as a conference paper at ICLR 2018

SuppFigure 5: Adam without cosine annealing, i.e., with fixed learning rate. We show the final
test error of a 26 2x96d ResNet on CIFAR-10 after 1800 epochs of the original Adam for different
settings of learning rate and weight decay used for L2 regularization. These results can be compared
to the ones of AdamW shown in SuppFigure 3 (top row). The results of AdamW with only 100
epochs and a smaller network seem to be at least as good as the ones of Adam with 18 times as
many epochs and a bigger network.

4


	Introduction
	Decoupling the Weight Decay from the gradient-based update

	Normalized Weight Decay
	Adam with Warm Restarts and Normalized Weight Decay
	Experimental Validation
	Decoupling The Weight Decay and Initial Learning Rate Parameters
	Better Generalization of AdamW
	Easier Hyperparameter Selection due to Normalized Weight decay
	AdamWR with Warm Restarts for better anytime performance

	Discussion and Conclusion
	Supplementary Material
	An example setting of the schedule multiplier


