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Abstract Patching is a common activity in software development. It is gen-
erally performed on a source code base to address bugs or add new function-
alities. In this context, given the recurrence of bugs across projects, the asso-
ciated similar patches can be leveraged to extract generic fix actions. While
the literature includes various approaches leveraging similarity among patches
to guide program repair, these approaches often do not yield fix patterns that
are tractable and reusable as actionable input to APR systems.

In this paper, we propose a systematic and automated approach to mining
relevant and actionable fix patterns based on an iterative clustering strategy
applied to atomic changes within patches. The goal of FixMiner is thus to
infer separate and reusable fix patterns that can be leveraged in other patch
generation systems. Our technique, FixMiner, leverages Rich Edit Script

which is a specialized tree structure of the edit scripts that captures the AST-
level context of the code changes. FixMiner uses different tree representations
of Rich Edit Scripts for each round of clustering to identify similar changes.
These are abstract syntax trees, edit actions trees, and code context trees.

We have evaluated FixMiner on thousands of software patches collected
from open source projects. Preliminary results show that we are able to mine
accurate patterns, efficiently exploiting change information in Rich Edit Scripts.
We further integrated the mined patterns to an automated program repair
prototype, PARFixMiner, with which we are able to correctly fix 26 bugs of the
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Defects4J benchmark. Beyond this quantitative performance, we show that
the mined fix patterns are sufficiently relevant to produce patches with a high
probability of correctness: 81% of PARFixMiner’s generated plausible patches are
correct.

1 Introduction

Code change patterns have various uses in the software engineering domain.
They are notably used for labeling changes [77], triaging developer commits [87]
or predicting changes [96]. In recent years, fix patterns have been heavily lever-
aged in the software maintenance community, notably for building patch gen-
eration systems, which now attract growing interest in the literature [68]. Au-
tomated Program Repair (APR) has indeed gained incredible momentum, and
various approaches [10,12,27,30,32,33,41–44,50,51,56–58,64,72,88,90,94,95]
have been proposed, aiming at reducing manual debugging efforts through au-
tomatically generating patches. A common and reliable strategy in automatic
program repair is to generate concrete patches based on fix patterns [33] (also
referred to as fix templates [54] or program transformation schemas [27]). Sev-
eral APR systems [15, 27, 33, 50, 51, 54, 63, 81] in the literature implement this
strategy by using diverse sets of fix patterns obtained either via manual
generation or automatic mining of bug fix datasets.

In PAR [33], the authors mined fix patterns by inspecting 60,000 devel-
oper patches manually. Similarly, for Relifix [84], a manual inspection of 73
real software regression bug fixes is performed to infer fix patterns. Manual
mining is however tedious, error-prone, and cannot scale. Thus, in order to
overcome the limitations of manual pattern inference, several research groups
have initiated studies towards automatically inferring bug fix patterns. With
Genesis [56], Long et al. proposed to automatically infer code transforms for
patch generation. Genesis infers 108 code transforms, from a space of 577
sampled transforms, with specific code contexts. However, this work limits the
search space to previously successful patches from only three classes of defects
of Java programs: null pointer, out of bounds, and class cast related defects.

Liu and Zhong [54] proposed SOFix to explore fix patterns for Java pro-
grams from Q&A posts in Stack Overflow, which mines patterns based on
GumTree [17] edit scripts, and builds different categories based on repair pat-
tern isomorphism. SOFix then mines a repair pattern from each category.
However, the authors note that most of the categories are redundant or even
irrelevant, mainly due to two major issues: (1) a considerable portion of code
samples are designed for purposes other than repairing bugs; (2) since the un-
derlying GumTree tool relies on structural positions to extract modifications,
these “modifications do not present the desirable semantic mappings”. They
relied on heuristics for manually filtering categories (e.g., categories that con-
tain several modifications), and then after SOFIX mines repair patterns they
have to manually select useful ones (e.g., merging some repair patterns due to
their similar semantics).
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Liu et al. [48] and Rolim et al. [80] proposed to mine fix patterns from static
analysis violations from FindBugs and PMD respectively. Both approaches,
leverage a similar methodology in the inference process. Rolim et al. [80] rely
on the distance among edit scripts: edit scripts with low distances among them
are grouped together according to a defined similarity threshold. Liu et al. [48],
on the other hand, leverage deep learning to learn features of edit scripts, to
find clusters of similar edit scripts. Eventually, both works do not consider
code context in their edit scripts and manually derive the fix patterns from
the clusters of similar edit scripts of patches.

In another vein, CapGen [90] and SimFix [30] propose to use frequency
of code change actions. The former uses it to drive patch selection, while the
latter uses it in computing donor code similarity for patch prioritization. In
both cases, however, the notion of patterns is not an actionable artefact, but
rather a supplementary information that guides their patch generation system.
Although we concurrently1 share with SimFix and CapGen the idea of adding
more contextual information for patch generation, our objective is to infer
actionable fix patterns that are tractable and reusable as input to other APR
systems.

Table 1 presents an overview of different automated mining strategies im-
plemented in literature to obtain diverse sets of fix patterns. Some of the
strategies are directly presented as part of APR systems, while others are
independent approaches. We characterize the different strategies by consid-
ering the diff representation format, the use of contextual information, the
tractability of patterns (i.e., what extent they are separate and reusable com-
ponents in patch generation systems), and the scope of mining (i.e., whether
the scope is limited to specific code changes). Overall, although the literature
approaches can come handy for discovering diverse sets of fix patterns, the
reality is that the intractability of the fix patterns and the generalizability
of the mining strategies remain a challenge for deriving relevant patterns for
program repair.

Table 1: Comparison of fix pattern mining techniques in the literature.

Genesis [56] SOFix [54] Liu et al. [48] Rolim et al. [80] CapGen [90] SimFix [30] FixMiner

Diff
notation

Transform Edit Script Edit Script Edit Script Edit Script Edit Script Edit Script

Scope
Three defect

classes
Any bug type

Static analysis
violations

Static analysis
violations

Any bug type
Insert and update

changes only
Any bug type

Context
information

✗ ✗ ✗ ✗ ✓ ✓ ✓

Tractability of
Patterns*

Medium High High High Low Low High

* High: Patterns are part of output and reusable as input to APR systems
Medium: Patterns are not readily usable
Low: Patterns are not separate or available as output.

This paper. We propose to investigate the feasibility of mining relevant fix
patterns that can be easily integrated into an automated pattern-based pro-
gram repair system. To that end, we propose an iterative and three-fold clus-
tering strategy, FixMiner, to discover relevant fix patterns automatically from
atomic changes within real-world developer fixes. FixMiner is a pattern min-
ing approach to produce fix patterns for program repair systems. We present

1 The initial version of this paper was written concurrently to SimFix and CapGen.
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in this paper the concept of Rich Edit Script which is a specialized tree
data structure of the edit scripts that captures the AST-level context of code
changes. To infer patterns, FixMiner leverages identical trees, which are com-
puted based on the following information encoded in Rich Edit Scripts for
each round of the iteration: abstract syntax tree, edit actions tree, and code
context tree.
Contribution. We propose the FixMiner pattern mining tool as a separate
and reusable component that can be leveraged in other patch generation sys-
tems.
Paper content. Our contributions are:

– We present the architecture of a pattern inference system, FixMiner, which
builds on a three-fold clustering strategy where we iteratively discover simi-
lar changes based on different tree representations encoding contexts, change
operations and code tokens.

– We assess the capability of FixMiner to discover patterns by mining fix
patterns among 11 416 patches addressing user-reported bugs in 43 open
source projects. We further relate the discovered patterns to those that can
be found in a dataset used by the program repair community [31]. We assess
the compatibility of FixMiner patterns with patterns in the literature.

– Finally, we investigate the relevance of the mined fix patterns by embedding
them as part of an Automated Program Repair system. Our experimental
results on the Defects4J benchmark show that our mined patterns are ef-
fective for fixing 26 bugs. We find that the FixMiner patterns are relevant
as they lead to generating plausible patches that are mostly correct.

2 Motivation

Mining, enumerating and understanding code changes have been a key chal-
lenge of software maintenance in recent years. Ten years ago, Pan et al. have
contributed with a manually-compiled catalog of 27 code change patterns re-
lated to bug fixing [77]. Such “bug fix patterns” however are generic patterns
(e.g., IF-RMV: removal of an If Predicate) which represent the type of changes
that are often fixing bugs. More recently, thanks to the availability of new AST
differencing tools, researchers have proposed to automatically mine change pat-
terns [47, 59, 74, 75]. Such patterns have been mostly leveraged for analysing
and towards understanding characteristics of bug fixes. In practice, however,
the inferred patterns may turn out to be irrelevant and intractable.

We argue however that mining fix patterns can help for guiding mutation
operations for patch generation. In this case, there is a need to mine truly
recurrent change patterns to which repair semantics can be attached, and
to provide accurate, fine-grained patterns that can be actionable in practice,
i.e., separate and reusable as inputs to other processes. Our intuition is that
relevant patterns cannot be mined globally since bug fixes in the wild are
subject to noisy details due to tangled changes [25]. There is thus a need
to break patches into atomic units (contiguous code lines forming a hunk)
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and reason about the recurrences of the code changes among them. To mine
changes, we propose to rely on the edit script format, which provides a fine-
grained representation of code changes, where different layers of information
are included:

– the context, i.e., AST node type of the code element being changed (e.g.,
a modifier in declaration statements, should not be generalized to other
types of statements);

– the change operation (e.g., a “remove then add” sequence should not be
confused with “add then remove” as it may have a distinct meaning in a
hierarchical model such as the AST);

– and code tokens (e.g., changing calls to “Log.warn” should not be confused
to any other API method).

Our idea is to iteratively find patterns within the contexts, and patterns of
change operations for each context, and patterns of recurrently affected literals
in these operations.

We now provide background information for understanding the execution
as well as the information processed by FixMiner.

2.1 Abstract Syntax Tree

Code representation is an essential step in the analysis and verification of
programs. Abstract syntax trees (ASTs), which are generally produced for
program analysis and transformations, are data structures that provide an
efficient form of representing program structures to reason about syntax and
even semantics. An AST indeed represents all of the syntactical elements of
the programming language and focuses on the rules rather than elements like
braces or semicolons that terminate statements in some popular languages
like Java or C. The AST is a hierarchical representation where the elements
of each programming statement are broken down recursively into their parts.
Each node in the tree thus denotes a construct occurring in the programming
language.

Formally, let t be an AST and N be a set of AST nodes in t. An AST t

has a root that is a node referred to as root(t) ∈ N . Each node n ∈ N (and
n ≠ root(t)) has a parent denoted as parent(n) = p ∈ N . Note that there is
no parent node of root(t). Furthermore, each node n has a set of child nodes
(denoted as children(n) ⊂ N). A label l (i.e., AST node type) is assigned to
each node from a given alphabet L (label(n) = l ∈ L). Finally, each node has
a string value v (token(n) = v where n ∈ N and v is an arbitrary string) rep-
resenting the corresponding raw code token. Consider the AST representation
in Figure 2 of the Java code in Figure 1. We note that the illustrated AST
has nodes with labels matching structural elements of the Java language (e.g.,
MethodDeclaration, IfStatement or StringLiteral) and can be associated
with values representing the raw tokens in the code (e.g., A node labelled
StringLiteral from our AST is associated to value “Hi!”).
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public class Helloworld {

public String hello(int i) {

if (i == 0) return "Hi!";

}

}

Fig. 1: Example Java class.

CompilationUnit

TypeDeclaration

SimpleName: HelloworldModifier: public MethodDeclaration

SimpleName: helloSimpleType: StringModifier: public SingleVariableDeclaration Block

IfStatementSimpleName:iPrimitiveType: intSimpleName: String

InfixExpression: ==0 ReturnStatement

StringLiteral: Hi!NumberLiteral: 0SimpleName: i

Fig. 2: AST representation of the Helloworld class.

2.2 Code Differencing

Differencing two versions of a program is the key pre-processing step of all
studies on software evolution. The evolved parts must be captured in a way
that makes it easy for developers to understand or analyze the changes. Devel-
opers generally deal well with text-based differencing tools, such as the GNU
Diff represents changes as addition and removal of source code lines as shown
in Figure 3. The main issue with this text-based differencing is that it does
not provide a fine-grained representation of the change (i.e., StringLiteral
Replacement) and thus it is poorly suited for systematically analysing the
changes.

--- Helloworld_v1.java 2018-04-24 10:40:19.000000000 +0200

+++ Helloworld_v2.java 2018-04-24 11:43:24.000000000 +0200

@@ -1,5 +1,5 @@

public class Helloworld {

public String hello(int i) {

- if (i == 0) return "Hi!";

+ if (i == 0) return "Morning!";

}

}

Fig. 3: GNU diff format.

To address the challenges of code differencing, recent algorithms have been
proposed based on tree structures (such as the AST). ChangeDistiller and
GumTree are examples of such algorithms which produce edit scripts that de-
tail the operations to be performed on the nodes of a given AST (as formalized
in Section 2.1) to yield another AST corresponding to the new version of the
code. In particular, in this work, we build on GumTree’s core algorithms for
preparing an edit script. An edit script is a sequence of edit actions describing
the following code change actions:
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– UPD where an upd(n, v) action transforms the AST by replacing the old
value of an AST node n with the new value v.

– INS where an ins(n,np, i, l, v) action inserts a new node n with v as value
and l as label. If the parent np is specified, n is inserted as the ith child of
np, otherwise n is the root node.

– DEL where a del(n) action removes the leaf node n from the tree.
– MOV where a mov(n,np, i) action moves the subtree having node n as root

to make it the ith child of a parent node np.

An edit action, embeds information about the node (i.e., the relevant node
in the whole AST tree of the parsed program), the operator (i.e., UPD, INS, DEL,
and MOV) which describes the action performed, and the raw tokens involved
in the change.

2.3 Tangled Code Changes

Solving a single problem per patch is often considered as a best practice to
facilitate maintenance tasks. However, often patches in real-world projects
address multiple problems in a patch [37, 85]. Developers often commit bug
fixing code changes together with changes unrelated to fix such as functionality
enhancements, feature requests, refactorings, or documentation. Such patches
are called tangled patches [25] or mixed-purpose fixing commits [71]. Nguyen
et al. found that 11% to 39% of all the fixing commits used for mining archives
were tangled [71].

Consider the example patch from GWT illustrated in Figure 4. The patch
is intended to fix the issue2 that reported a failure in some web browsers when
the page is served with a certain mime type (i.e., application/xhtml+xml).
The developer fixes the issue by showing a warning when such mime type is
encountered. However, in addition to this change, a typo has been addressed
in the commit. Since the typo is not related to the fix, the fixing commit is
tangled. There is thus a need to separately consider single code hunks within
a commit to allow the pattern inference to focus on finding recurrent atomic
changes that are relevant to bug fixing operations.

3 Approach

FixMiner aims to discover relevant fix patterns from the atomic changes within
bug fixing patches in software repositories. To that end, we mine code changes
that are similar in terms of context, operations, and the programming tokens
that are involved. Figure 5 illustrates an overview of the FixMiner approach.

2 https://github.com/gwtproject/gwt/issues/676

https://github.com/gwtproject/gwt/issues/676
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--- a/dev/core/src/com/google/gwt/dev/shell/GWTShellServlet.java

+++ b/dev/core/src/com/google/gwt/dev/shell/GWTShellServlet.java

@@ -72,6 +72,8 @@

+ private static final String XHTML_MIME_TYPE = "application/xhtml+xml";

private final Map loadedModulesByName = new HashMap();

private final Map loadedServletsByClassName = new HashMap();

@@ -110,7 +112,7 @@

writer.println("<html><body><basefont face=’arial’>");

- writer.println("To launch an an application, specify a URL of the form <code>

/<i>module</i>/<i>file.html</i></code>");

+ writer.println("To launch an application, specify a URL of the form <code>/<i>

module</i>/<i>file.html</i></code>");

writer.println("</body></html>");

}

@@ -407,6 +409,8 @@

}

+ maybeIssueXhtmlWarning(logger, mimeType, partialPath);

@@ -755,6 +759,25 @@

+ private void maybeIssueXhtmlWarning(TreeLogger logger, String mimeType,

+ String path) {

+ if (!XHTML_MIME_TYPE.equals(mimeType)) {

+ return;

+ }

+

+ String msg = "File was returned with content-type of \"" + mimeType

+ + "\". GWT requires browser features that are not available to "

+ + "documents with this content-type.";

+

+ int ix = path.lastIndexOf(’.’);

+ if (ix >= 0 && ix < path.length()) {

+ String base = path.substring(0, ix);

+ msg += " Consider renaming \"" + path + "\" to \"" + base + ".html\".";

+ }

+

+ logger.log(TreeLogger.WARN, msg, null);

+ }

Fig. 4: Tangled commit.

Code changes in
Software repositories

Bug fix 
patches

Rich Edit Scripts Search index Identical Trees Clusters

Step 0 Step 1 Step 2 Step 3 Step 4

Iterative folding

Fig. 5: The FixMiner Approach. At each iteration, the search index is refined, and the
computation of tree similarity is specialized in specific AST information details.

3.1 Overview

In Step 0, as an initial step, we collect the relevant bug-fixing patches (cf.
Definition 1) from project change tracking systems. Then, in Step 1, we com-
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pute a Rich Edit Script representation (cf. Section 3.3) to describe a code
change in terms of the context, operations performed and tokens involved. Ac-
cordingly, we consider three specialized tree representations of the Rich Edit

Script (cf. Definition 2) carrying information about either the impacted AST
node types, or the repair actions performed, or the program tokens affected.
FixMiner works in an iterative manner considering a single specialized tree
representation in each pattern mining iteration, to discover similar changes:
first, changes affecting the same code context (i.e., on identical abstract syntax
trees) are identified; then among those identified changes, changes using the
same actions (i.e., identical sequence of operations) are regrouped; and finally
within each group, changes affecting the same tokens set are mined. Therefore,
in FixMiner, we perform a three-fold strategy, carrying out the following steps
in a pattern mining iteration:

– Step 2: We build a search index (cf. Definition 3) to identify the Rich Edit

Scripts that must be compared.
– Step 3: We detect identical trees (cf. Definition 4) by computing the dis-

tance between two representations of Rich Edit Scripts.
– Step 4: We regroup identical trees into clusters (cf. Definition 5).

The initial pattern mining iteration uses Rich Edit Scripts computed in
Step 1 as its input, where the following rounds use clusters of identical trees
yielded in Step 4 as their input.

In the following sections, we present the details of Steps 1-4, considering
that a dataset of bug fix patches is available.

3.2 Step 0 - Patch Collection

Definition 1 (Patch) A program patch is a transformation of a program
into another program, usually to fix a defect. Let P being a set of programs,
a patch is represented by a pair (p, p′), where p, p′ ∈ P are programs before
and after applying the patch, respectively. Concretely, a patch implements
changes in code block(s) within source code file(s).

To identify bug fix patches in software repositories projects, we build on
the bug linking strategies implemented in the Jira issue tracking software. We
use a similar approach to the ones proposed by Fischer et al. [18] and Thomas
et al. [86] in order to link commits to relevant bug reports. Concretely, we
crawl the bug reports for a given project and assess the links with a two-step
search strategy: (i) we check project commit logs to identify bug report IDs
and associate the corresponding bug reports to commits; then (ii) we check for
bug reports that are indeed considered as such (i.e., tagged as “BUG”) and
are further marked as resolved (i.e., with tags “RESOLVED” or “FIXED”),
and completed (i.e., with status “CLOSED”).

We further curate the patch set by considering bug reports that are fixed
by a single commit. This provides more guarantees that the selected commits
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are indeed fixing the bugs in a single shot (i.e., the bug does not require
supplementary patches [78]). Eventually, we consider only changes that are
made on the source code files: changes on configuration, documentation, or
test files are excluded.

3.3 Step 1 – Rich Edit Script Computation

Definition 2 (Rich Edit Script) A Rich Edit Script r ∈ RE repre-
sents a patch as a specialized tree of changes. This tree describes which
operations are made on a given AST, associated with the code block before
patch application, to transform it into another AST, associated with the
code block after patch application: i.e., r ∶ P → P. Each node in the tree is
an AST node affected by the patch. Every node in Rich Edit Script has
three different types of information: Shape, Action, and Token.

A bug-fix patch collected in open source change tracking systems is repre-
sented in the GNU diff format based on addition and removal of source code
lines as shown in Figure 6. This representation is not suitable for fine-grained
analysis of changes.

// modules. We need to move this code up to a common module.

- int indexOfDot = namespace.indexOf(‘.’);

+ int indexOfDot = namespace.lastIndexOf(‘.’);

if (indexOfDot == -1) {

Fig. 6: Patch of fixing bug Closure-93 in Defects4J dataset.

To accurately reflect the change that has been performed, several algo-
rithms have been proposed based on tree structures (such as the AST) [6, 9,
14, 17, 21, 24, 79]. ChangeDistiller [21] and GumTree [17] are state-of-the-art
examples of such algorithms which produce edit scripts that detail the opera-
tions to be performed on the nodes of a given AST in order to yield another
AST corresponding to the new version of the code. In particular, in this work,
we selected the GumTree AST differencing tool which has seen recently a mo-
mentum in the literature for computing edit scripts. GumTree is claimed to
build in a fast, scalable and accurate way the sequence of AST edit actions
(a.k.a edit scripts) between the two associated AST representations (the buggy
and fixed versions) of a given patch.

UPD SimpleName ‘‘indexOf’’ to ‘‘lastIndexOf’’

Fig. 7: GumTree edit script corresponding to Closure-93 bug fix patch repre-
sented in Figure 6.

Consider the example edit script computed by GumTree for the patch of
Closure-93 bug from Defects4J illustrated in Figure 7. The intended behaviour
of the patch is to fix the wrong variable declaration of indexOfDot due to a
wrong method reference (lastIndexOf instead of indexOf) of java.lang.String
object. GumTree edit script summarizes the change as an update operation
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on an AST node simple name (i.e., an identifier other than a keyword) that is
modifying the identifier label (from indexOf to lastIndexOf).

Although GumTree edit script is accurate in describing the bug fix oper-
ation at fine-grained level, much of the contextual information describing the
intended behaviour of the patch is missing. The information regarding method
invocation, the method name (java.lang.String), the variable declaration frag-
ment which assigns the value of the method invocation to indexOfDot, as well
as the type information (int for indexOfDot - cf. Figure 6) that is implied in
the variable declaration statement are all missing in the GumTree edit script.
Since such contextual information is lost, the yielded edit script fails to convey
the full syntactic and semantic meaning of the code change.

To address this limitation, we propose to enrich GumTree-yielded edit
scripts by retaining more contextual information. To that end, we construct
a specialized tree structure of the edit scripts which captures the AST-level
context of the code change. We refer to this specialized tree structure as Rich
Edit Script. A Rich Edit Script is computed as follows:

Given a patch, we start by computing the set of edit actions (edit script)
using GumTree, where the set contains an edit action for each contiguous
group of code lines (hunks) that are changed by a patch. In order to cap-
ture the context of the change, we re-organize edit actions under new AST
(minimal) subtrees building an AST hierarchy. For each edit action in an edit
script, we extract a minimal subtree from the original AST tree which has the
GumTree edit action as its leaf node, and one of the following predefined node
types as its root node: TypeDeclaration, FieldDeclaration, MethodDeclara-
tion, SwitchCase, CatchClause, ConstructorInvocation, SuperConstructorIn-
vocation or any Statement node. The objective is to limit the scope of context
to the encompassing statement, instead of going backwards until the compila-
tion unit (cf. Figure 2). We limit the scope of parent traversal mainly for two
reasons: first, the pattern mining must focus on the program context that is
relevant to the change; second, program repair approaches, which FixMiner is
built for, generally target statement-level fault localization and patch genera-
tion.

Consider the AST differencing tree presented in Figure 8. From this diff
tree, GumTree yields the leaf nodes (gray) of edit actions as the final edit
script. To build the Rich Edit Script, we follow these steps:

i) For each GumTree-produced edit action, we remap it to the relevant node
in the program AST;

ii) Then, starting from the GumTree edit action nodes, we traverse the AST
tree of the parsed program from bottom to top until we reach a node of
predefined root node type.

iii) For every predefined root node that is reached, we extract the AST subtree
between the discovered predefined root node down to the leaf nodes mapped
to the GumTree edit actions.
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iv) Finally, we create an ordered3 sequence of these extracted AST subtrees
and store it as Rich Edit Script.

Predefined root node 

GumTree edit action

Rich edit script

Compilation Unit

AST node

Fig. 8: Illustration of subtree extraction.

Concretely, with respect to our running example, consider the case of
Closure-93 illustrated in Figure 6. The construction of the Rich Edit Script

starts by generating the GumTree edit script (cf. Figure 7) of the patch. The
patch consists of a single hunk, thus we expect to extract a single AST sub-
tree, which is illustrated by Figure 9. To extract this AST subtree, first, we
identify the node of the edit action “SimpleName” at position 4 in the AST
Tree of program. Then, starting from this node, we traverse backward the
AST tree until we reach the node “VariableDeclarationStatement” at position
1. We extract the AST subtree, by creating a new tree, setting “VariableDec-
larationStatement” as root node of the new tree, and adding the intermediate
nodes at positions 2,3 until we reach the corresponding node of the edit action
“UPD SimpleName” at position 4. We create a sequence, and add the extracted
AST subtree to the sequence.

VariableDeclarationStatement “int indexOfDot= namespace.indexOf”

VariableDeclarationFragment “indexOfDot= namespace.indexOf”

MethodInvocation “namespace.indexOf”

SimpleName “indexOf”

①

②

③

④

Fig. 9: Excerpt AST of buggy code (Closure-93).

Rich Edit Scripts are tree data structures. They are used to represent
changes. In order to provide tractable and reusable patterns as input to other
APR systems, we define the following string notation (cf. Grammar 1) based
on syntactic rules governing the formation of correct Rich Edit Script.

Figure 10 illustrates the computed Rich Edit Script. The first line indi-
cates the root node (no dashed line). ‘UPD ’ indicates the action type of the
node, VariableDeclarationStatement corresponds to ast node type of the node,
tokens between ‘@@’ and ‘@TO@’ contains the corresponding code tokens be-
fore the change, where as tokens between ‘@TO@’ and ‘@AT’ corresponding
to new code tokens with the change. The three dashed (- - -) lines indicate a
child node. Immediate children nodes contain three dashes while their children
add another three dashes (- - - - - -) preserving the parent-child relation.

3 The order of AST subtrees follows the order of hunks of the GNU diff format.
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⟨richEditScript⟩ ::= ⟨node⟩+

⟨node⟩ ::= ‘- - -’* ⟨move⟩
| ‘- - -’* ⟨delete⟩
| ‘- - -’* ⟨insert⟩
| ‘- - -’* ⟨update⟩

⟨move⟩ ::= ‘MOV ’ ⟨astNodeType⟩ ‘@@’ ⟨tokens⟩ ‘@TO@’ ⟨astNodeType⟩ ‘@@’ ⟨tokens⟩ ‘@AT@’

⟨delete⟩ ::= ‘DEL ’ ⟨astNodeType⟩ ‘@@’ ⟨tokens⟩ ‘@AT@’

⟨insert⟩ ::= ‘INS ’ ⟨astNodeType⟩ ‘@@’ ⟨tokens⟩ ‘@TO@’ ⟨astNodeType⟩ ‘@@’ ⟨tokens⟩ ‘@AT@’

⟨update⟩ ::= ‘UPD ’ ⟨astNodeType⟩ ‘@@’ ⟨tokens⟩ ‘@TO@’ ⟨tokens⟩ ‘@AT@’

Grammar 1: Notation of Rich Edit Script

UPD VariableDeclarationStatement@@int indexOfDot = namespace.indexOf(’.’); ↩

@TO@ int indexOfDot = namespace.lastIndexOf(’.’); @AT@

---UPD VariableDeclarationFragment@@indexOfDot = namespace.indexOf(’.’) @TO@ ↩

indexOfDot = namespace.lastIndexOf(’.’) @AT@

-----UPD MethodInvocation@@namespace.indexOf(’.’) @TO@ ↩

namespace.lastIndexOf(’.’) @AT@

--------UPD SimpleName@@MethodName:indexOf:[’.’] @TO@ ↩

MethodName:lastIndexOf:[’.’] @AT@

Fig. 10: Rich Edit Script for Closure-93 patch in Defects4J. ↩ represents the
carriage return character which is necessary for presentation reasons.

An edit action node carries the following three types of information: the
AST node type (Shape), the repair action (Action), the raw tokens (Token) in
the patch. For each of these three information types, we create separate tree
representations from the Rich Edit Script, named as ShapeTree, ActionTree
and TokenTree, each carrying respectively the type of information indicated by
its name. Figures 11, 12, and 13 show ShapeTree, ActionTree, and TokenTree,
respectively, generated for Closure-93.

VariableDeclarationStatement

---VariableDeclarationFragment

------MethodInvocation

---------SimpleName

Fig. 11: ShapeTree of Closure-93.

UPD root

---UPD child1

------UPD child1_1

---------UPD child1_1_1

Fig. 12: ActionTree of Closure-93.
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@@int indexOfDot = namespace.indexOf(’.’); @TO@ int indexOfDot = namespace.la...

---@@indexOfDot = namespace.indexOf(’.’) @TO@ indexOfDot = namespace.lastInde...

------@@namespace.indexOf(’.’) @TO@ namespace.lastIndexOf(’.’)

---------@@MethodName:indexOf:[’.’] @TO@ MethodName:lastIndexOf:[’.’]

Fig. 13: TokenTree of Closure-93.

3.4 Step 2 – Search Index Construction

Definition 3 (Search Index) To reduce the effort of matching similar
patches, a search index (SI) is used to confine the comparison space. Each
fold ({Shape, Action, Token}) defines a search index: SIShape, SIAction,
and SIToken, respectively. Each is defined as SI∗ ∶ Q∗ → 2RE , where Q is a
query set specific to each fold and ∗ ∈ {Shape,Action, Token}.

Given that Rich Edit Scripts are computed for each hunk in a patch,
they are spread inside and across different patches. A direct pairwise compar-
ison of these Rich Edit Scripts would lead to a combinatorial explosion of
the comparison space. In order to reduce this comparison space and enable a
fast identification of Rich Edit Scripts to compare, we build search indices.
A search index is a set of comparison sub-spaces created by grouping the Rich
Edit Scripts with criteria that depend on the information embedded the
used tree representation (Shape, Action, Token) for the different iterations.

The search indices are built as follows:
“Shape” search index. The construction process takes the ShapeTree repre-
sentations of the Rich Edit Scripts produced by Step 1 as input, and groups
them based on their tree structure in terms of AST node types. Concretely,
Rich Edit Scripts having the same root node (e.g., IfStatement, Method-
Declaration, ReturnStatement) and same depth are grouped together. For each
group, we create a comparison space by enumerating the pairwise combinations
of the group members. Eventually, the “Shape” search index is built by stor-
ing an identifier per group, denoted as root node/depth (e.g., IfStatement/2,
IfStatement/3, MethodDeclaration/4), and a pointer to its comparison space
(i.e., the pairwise combinations of its members).
“Action” search index. The construction process follows the same princi-
ple as for “Shape” search index, except that the regrouping is based on the
clustering output of ShapeTrees. Thus, the input is formed by ActionTree
representations of the Rich Edit Scripts and the group identifier for each
comparison space is generated as node/depth/ShapeTreeClusterId (e.g., IfS-
tatement/2/1,MethodDeclaration/2/2) where ShapeTreeClusterId represents
the id of the cluster yielded by the clustering (Steps 3-4) based on the Shape-
Tree information. Concretely, this means that the “Action” search index is
built on groups of trees having the same shape.
“Token” search index. The construction process follows the same prin-
ciple as for “Action” search index, using this time the clustering output of
ActionTrees. Thus, the input is formed by TokenTree representations of the
Rich Edit Scripts and the group identifier for each comparison space is
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generated as node/depth/ShapeTreeClusterId/ActionTreeClusterId (e.g., If-
Statement/2/1/3,MethodDeclaration/2/2/1) where ActionTreeClusterId rep-
resents the id of the cluster yielded by the clustering (Steps 3-4) based on the
ActionTree information.

3.5 Step 3 – Tree Comparison

Definition 4 (Pair of identical trees) Let a = (ri, rj) ∈ Ridentical be a pair
of Rich Edit Script specialized tree representations if d(ri, rj) = 0, where
ri, rj ∈ RE and d is a distance function. Ridentical is a subset of RE ×RE.

The goal of tree comparison is to find identical tree representations of Rich
Edit Scripts for a given fold. There are several straightforward approaches
for checking whether two Rich Edit Scripts are identical. For example, syn-
tactical equality could be used. However, we aim at making FixMiner a flexible
and extensible framework where future research may tune threshold values for
defining similar trees. Thus, we propose a generic approach for comparing
Rich Edit Scripts, taking into account the diversity of information to com-
pare for each specialized tree representation. To that end, we compute tree
edit distances for the three representations of Rich Edit Scripts separately.
The tree edit distance is defined as the sequence of edit actions that transform
one tree into another. When the edit distance is zero (i.e., no operation is nec-
essary to transform one tree to another) the trees are considered as identical.
In Algorithm 1 we define the steps to compare Rich Edit Scripts.

The algorithm starts by retrieving the identifiers from the search index
SI corresponding to the fold. An identifier is a pointer to a comparison sub-
space that contains pairwise combinations of tree representation of Rich Edit

Scripts to compare (cf. Section 3.4). Concretely, we restore the Rich Edit

Scripts of a given pair from the cache, and their corresponding specialized
tree representation according to the fold: At the first iteration, we consider
only trees denoted ShapeTrees, whereas in the second iteration we focus on
ActionTrees, and TokenTrees for the third iteration. We compute the edit
distance between the restored trees in two distinct ways.

– In the first two iterations (i.e, Shape and Action) we leverage again the edit
script algorithm of GumTree [16, Section 3]. We compute the edit distance
by simply invoking GumTree on restored trees as input, given that Rich

Edit Scripts are indeed AST subtrees that are compatible with GumTree.
Concretely, GumTree takes the two AST trees as input, and generates a
sequence of edit actions (a.k.a edit script) that transform one tree into
another, where the size of the edit script represents the edit distance between
the two trees.

– For the third iteration (i.e., Token), since the relevant information in the tree
is text, we use a text distance algorithm (Jaro-Winkler [29,92]) to compute
the edit distance between two tokens extracted from the trees. We use the
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Algorithm 1: Rich Edit Script Comparison.
input : SI: Search Index where SI ∈ {SIShape,SIAction,SIToken}
input : fold ∈ {Shape,Action,Token}
input : threshold: Set to 0 to retrieve identical trees.
output: Ridentical: A set of pairs tagged to be identical

1 Function main (SI,fold)
2 Ridentical ← ∅

3 I ← SI.getIdentifiers() /* I: list of identifiers in the index */
4 foreach i ∈ I do
5 R ← SI.getPairs(i) /* R: list of tree pairs to compare for identifier i */
6 foreach a ∈ R do
7 if compareTree(a,fold) then
8 Ridentical.add(a) /* add if a is a pair of identical trees */

9 return Ridentical

10 Function compareTree(a,fold)
11 (sTree1,sTree2) ← specializedTree(a,fold)
12 if Fold != Token then
13 editActions ← GumTree(sTree1, sTree2)
14 editDistance ← size(editActions)

15 else
16 tokens1,tokens2 ← getTokens(sTree1,sTree2)
17 editDistance ← dw(tokens1,tokens2) /* dw: Jaro-Winkler distance */

18 if editDistance <= threshold then
19 return true
20 else
21 return false

22 Function specializedTree(a,fold)
23 (eTree1, eTree2) ← getRichEditScripts(a) /* restore Rich Edit Scripts of a given

pair from the cache */
24 if fold == Shape then
25 sTree1,sTree2 ← getASTNodeTrees(eTree1, eTree2)
26 else if fold == Action then
27 sTree1,sTree2 ← getActionTrees(eTree1, eTree2)
28 else
29 sTree1,sTree2 ← getTokenTrees(eTree1, eTree2) /* fold == Token */

30 return (sTree1,sTree2)

implementation of Jaro-Winkler edit distance from Apache Commons Text
library4, which computes the Jaro-Winkler edit distance of two strings dw
as defined in Equation 1. The equation consists of two components; Jaro’s
original algorithm (jsim) andWinkler’s extension(wsim). The Jaro similarity
is the weighted sum of percentage of matched characters c from each file
and transposed characters t. Winkler increased this measure for matching
initial characters, by using a prefix scale p that is is set to 0.1 by default,
which gives more favorable ratings to strings that match from the beginning
for a set prefix length l. The algorithm produces a similarity score (wsim)
between 0.0 to 1.0, where 0.0 is the least likely and 1.0 is a positive match.

4 https://commons.apache.org/proper/commons-text/

https://commons.apache.org/proper/commons-text/
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Finally, this similarity score is transformed to distance (dw).

dw(s1, s2) = 1 −wsim(s1, s2)
wsim(s1, s2) = jsim(s1, s2) + l ∗ p(1 − jsim(s1, s2))

jsim(s1, s2) =
⎧⎪⎪
⎨
⎪⎪⎩

0 if c = 0;
1
3
( c
∣s1∣
+

c
∣s2∣
+

c−t
c
) otherwise.

l: The number of agreed characters at the beginning of two strings.
p: is a constant scaling factor for how much the score is adjusted
upwards for having common prefixes, which is set to 0.1 in Win-
kler’s work [92].

(1)

As the last step of comparison, we check the edit distance of the tree pair and
tag the pairs having the distance zero as identical pairs, since the distance
zero implies that no operation is necessary to transform one tree to another,
or for the third fold (Token) the tokens in the tree are the same. Eventually,
we store and save the set of identical tree pairs produced in each iteration,
which would be used in Step 4.

3.6 Step 4 – Pattern Inference

Definition 5 (Pattern) Let g be a graph in which nodes are elements of
RE and edges are defined by Ridentical.
g consists of a set of connected subgraphs SG (i.e., clusters of specialized
tree representations of Rich Edit Scripts) where sgi and sgj are disjoint
∀sgi, sgj ∈ SG. A pattern is defined by sgi ∈ SG if sgi has at least two nodes
(i.e., there are recurrent trees).

Finally, to infer patterns, we resort to clustering of the specialized tree
representations of Rich Edit Scripts. First, we start by retrieving the set
of identical tree pairs produced in Step 3 for each iteration. Following Algo-
rithm 2, we extract the corresponding specialized tree representations accord-
ing to the fold (i.e., ShapeTrees, ActionTrees, TokenTrees) since the trees are
identical only in a given fold. In order to find groups of trees that are identical
among themselves (i.e., clusters) we leverage graphs. Concretely, we imple-
ment a clustering process based on the theory of connected components (i.e.,
subgraph) identification in a graph [82]. We create an undirected graph from
the list of tree pairs, where the nodes of the graph are the trees and the edges
represent trees that are associated (i.e., identical tree pairs). From this graph,
we identify clusters as the subgraphs, where each subgraph contains a group
of trees that are identical among themselves and disjoint from others.

A cluster contains a list of Rich Edit Scripts sharing a common special-
ized tree representations according to the fold. Finally, a cluster is qualified
as a pattern, when it has at least two members. The patterns for each fold

are defined as follows:
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Algorithm 2: Clustering based on subgraph identification.
input : Ridentical: A list of identical Rich Edit Script pairs
input : fold ∈ {Shape,Action,Token}
output: C: A list of clusters

1 Function main(Ridentical,fold)
2 C ← ∅
3 TP ← getTreePairs(Ridentical,fold)

4 E ← transformPairsToEdges(TP ) /* E: edges created from tree pairs TP */
5 g ← createGraph(E)
6 SG ← g.connectedComponents() /* SG: list of subgraphs found in graph g */
7 foreach sg in SG do
8 c← s.nodes() /* c: cluster formed from the nodes of subgraph sg */
9 C.add(c)

10 return C

11 Function getTreePairs(Ridentical,fold)
12 P ← ∅ /* P: list of tree pairs */
13 foreach a in Ridentical do
14 (eTree1, eTree2) ← getRichEditScripts(a) /* restore Rich Edit Scripts of a

given pair from the cache */
15 if fold == Shape then
16 sTree1,sTree2 ← getASTNodeTrees(eTree1, eTree2)
17 else if fold == Action then
18 sTree1,sTree2 ← getActionTrees(eTree1, eTree2)
19 else
20 sTree1,sTree2 ← getTokenTrees(eTree1, eTree2) /* fold == Token */

21 P .add(sTree1,sTree2)

22 return P

Shape patterns. The first iteration attempts to find patterns in the ShapeTrees
associated to developer patches. We refer to them as Shape patterns, since they
represent the shape of the changed code in a structure of the tree in terms of
node types. Thus, they are not fix patterns per se, but rather the context in
which the changes are recurrent.

Action patterns. The second iteration considers samples associated to each
shape pattern and attempts to identify reoccurring repair actions from their
ActionTrees. This step produces patterns that are relevant to program repair
as they refer to recurrent code change actions. Such patterns can indeed be
matched to dissection studies performed in the literature [83]. We will refer to
Action patterns as the sought fix patterns. Nevertheless, it is noteworthy that,
in contrast with literature fix patterns, which can be generically applied to any
matching code context, our Action patterns are specifically mapped to a code
shape (i.e., a shape pattern) and is thus applicable to specific code contexts.
This constrains the mutations to relevant code contexts, thus yielding more
likely precise fix operations.

Token patterns. The third iteration finally considers samples associated to
each action pattern and attempts to identify more specific patterns with re-
spect to the tokens available. Such token-specific patterns, which include spe-
cific tokens, are not suitable for implementation into pattern-based automated
program repair systems from the literature. We discuss however their use in
the context of deriving collateral evolutions (cf. Section 5.2).
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4 Experimental Evaluation

We now provide details on the experiments that we carry out for FixMiner.
Notably, we discuss the dataset, and present the implementation details. Then,
we overview the statistics on the mining steps, and eventually enumerate the
research questions for the assessment of FixMiner.

4.1 Dataset

We collect code changes from 44 large and popular open-source projects from
Apache-Commons, JBoss, Spring and Wildfly communities with the following
selection criteria: we focused on projects (1) written in Java, (2) with publicly
available bug reports, (3) having at least 20 source code files in at least one
of its version; finally, to reduce selection bias, (4) we choose projects from a
wide range of categories - middleware, databases, data warehouses, utilities,
infrastructure. This is a process similar to Bench4bl [46]. Table 2 details the
number of bug fixing patches that we considered in each project. Eventually,
our dataset includes 11 416 patches.

Table 2: Dataset.

Community Project # Patches Project # Patches

Apache

camel 1366 commons codec 11
commons collections 56 commons compress 73
commons configuration 89 commons crypto 9
commons csv 18 common io 58
hbase 2169 hive 2641

JBoss entesb 15 jbmeta 14

Spring

amqp 89 android 5
batch 224 batchadm 11
datacmns 151 datagraph 19
datajpa 112 datamongo 190
dataredis 65 datarest 91
ldap 26 mobile 11
roo 414 sec 304
secoauth 66 sgf 35
shdp 35 shl 11
social 14 socialfb 12
socialli 2 socialtw 9
spr 1098 swf 84
sws 101

Wildfly
ely 217 swarm 131
wfarq 8 wfcore 547
wfly 802 wfmp 13

Total 11416

4.2 Implementation Choices

We recall that we have made the following parameter choices in the FixMiner
workflow:
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– The “Shape” search index considers only Rich Edit Scripts having a
depth greater than 1 (i.e., the AST sub-tree should include at least one
parent and one child).

– Comparison of Rich Edit Scripts is designed to retrieve identical trees
(i.e., tree edit distance is 0).

4.3 Statistics

FixMiner is a pattern mining approach to produce fix patterns for program
repair systems. Its evaluation (cf. Section 5) will focus on evaluating the rele-
vance of the yielded patterns. Nevertheless, we provide statistics on the mining
process to provide a basis of discussion on the implications of FixMiner’s de-
sign choices.

Search Indices. FixMiner mines fix patterns through comparison of hunks
(i.e., contiguous groups of code lines). 11 416 patches in our database are even-
tually associated to 41 823 hunks. A direct pairwise comparison of these hunks
would lead to 874 560 753 tree comparison computations. The combinatorial
explosion of the comparison space is overcome by building search indices as
previously described in Section 3.4. Table 3 shows the details on the search
indices built for each fold in the FixMiner iterations. From the 874+ million
tree pairs to be compared (i.e., C2

41823), the construction of the Shape index
(implements criteria on the tree structure to focus on comparable trees) lead
to 670 relevant comparison sub-spaces yielding a total of only 12+ million
tree comparison pairs. This represents a reduction of 98% of the comparison
space. Similarly, the Action index and the Token index reduce the associated
comparison spaces by 88% and 72% respectively.

Table 3: Comparison space reduction.

Search Index # of hunks (in fold) # Comparison sub-spaces # Tree comparison pairs

Shape 41 823 670 12 601 712
Action 25 290 2 457 1 427 504
Token 6759 411 401 980

Clusters. We infer patterns by considering recurrence of trees: the clustering
process groups together only tree pairs that are identical among themselves.
Table 4 overviews the statistics of clusters yielded for the different iterations:
Shape patterns (which represent code contexts) are the most diverse. Action
patterns (which represent fix patterns that are suitable as inputs for program
repair systems) are substantially less numerous. Finally, Token patterns (which
may be codebase-specific) are significantly fewer. We recall that we consider
all possible clusters as long as it includes at least 2 elements. A practitioner
may however decide to select only large clusters (i.e., based on a threshold).

Because FixMiner considers code hunks as the unit for building Rich Edit

Scripts, a given pattern may represent a repeating context (i.e., Shape pat-
tern) or change (i.e., Action or Token pattern) that is only part of the patch
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Table 4: Statistics on clusters.

Pattern # Trees (clustering input) # Corresponding change hunks # Clusters

Shape 1 370 406 25 290 2947
Action 628 531 6 759 428
Token 18 471 1 562 326

(i.e., this patch includes other change patterns) or that is the full patch (i.e.,
the whole patch is made of this change pattern). Table 5 provides statistics on
partial and full patterns. The numbers represent the disjoint sets of patterns
that can be identified as always full or as always partial. Patterns that may be
full for a given patch but partial for another patch are not considered.Overall,
the statistics indicate that, from our dataset of over 40 thousand code hunks,
only a few (e.g., respectively 278 and 7 120 hunks) are associated with patterns
that are always full or always partial respectively. In the remaining cases, the
pattern is associated to a code hunk that may form alone the patch or may
be tangled with other code. This suggests that FixMiner is able to cope with
tangled changes during pattern mining.

Table 5: Statistics on Full vs Partial patterns.

Partial patterns Full patterns
# Patterns # Patch # Hunk # Patterns # Patch # Hunk

Shape 1358 3140 7120 120 223 278
Action 124 554 1153 10 20 25
Token 75 148 277 14 22 32

Similarly, we investigate how the patterns are spread among patches. In-
deed, a pattern may be found because a given patch has made the same change
in several code hunks. We refer to such pattern as vertical. In contrast, a pat-
tern may be found because the same code change is spread across several
patches. We refer to such pattern as horizontal. Table 6 shows that vertical
and horizontal patterns occur in similar proportions for Shape and Action
patterns. However, Token patterns are significantly more vertical than hori-
zontal (65 vs 224). This is in line with studies of collateral evolutions in Linux,
which highlight large patches making repetitive changes in several locations
at once [76] (i.e., collateral evolutions are applied through vertical patches).

Table 6: Statistics on Pattern Spread.

Vertical Horizontal
# Patterns # Patch # Hunk # Patterns # Patch # Hunk

Shape 881 881 2432 1194 3808 3808
Action 148 148 488 132 574 574
Token 224 224 709 65 170 170

* A pattern can simultaneously be vertical (when it is associated to several changes
in hunks of the same patch) and horizontal (when it appears as well within other
patches).



22 Anil Koyuncu et al.

4.4 Research Questions

The assessment experiments are performed with the objective of investigating
the usefulness of the patterns mined by FixMiner. To that end, we focus on
the following research questions (RQs):

RQ-1 Is automated patch clustering of FixMiner consistent with human man-
ual dissection?

RQ-2 Are patterns inferred by FixMiner compatible with known fix patterns?
RQ-3 Are the mined patterns effective for automated program repair?

5 Results

5.1 RQ1: Comparison of FixMiner Clustering against Manual Dissection

Objective.We propose to assess relevance of the clusters yielded by FixMiner

in terms of whether they represent patterns which practitioners would view
as recurrent changes that are indeed relevant to the patch behaviour. In pre-
vious section, the statistics showed that several changes are recurrent and
are mapped to FixMiner’s clusters. In this RQ, we validate whether they are
relevant to the practitioner’s viewpoint. For example, if FixMiner was not
leveraging AST information, removal of blank lines would have been seen as a
recurrent change (hence a pattern); however, a practitioner would not consider
it as relevant.
Protocol. We consider an oracle dataset of patches with change patterns that
are labelled by humans. Then we associate each of these patches to the relevant
clusters mined by FixMiner on our combined study datasets. This way, we
ensure that the clustering does not overfit to the oracle dataset labelled by
humans. Eventually, we check whether each set of patches (from the oracle
dataset) that are associated to a given FixMiner cluster, consists of patches
having the same labels (from the oracle).
Oracle. For our experiments, we leverage the manual dissection of Defects4J [31]
provided by Sobreira et. al [83]. This oracle dataset associates the developer
patches of 395 bugs in the Defects4J datasets with 26 repair pattern labels
(one of which is being “Not classified”).
Results. Table 7 provides statistics that describe the proportion5 of FixMiner’s
patterns that can be associated to change patterns in the Defects4J patches.

Table 7: Proportion of shared patterns between our study dataset and Defects4J.

Study dataset Defects4J
# corresponding hunks # Patterns # corresponding hunks # Patterns

Shape 25272 2947 479 214
Action 6755 428 103 37
Token 1562 326 23 13

5 In this experiment, we excluded 34 patches from Defects4J dataset which affect more
than 1 file.
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Diversity. We check the number of patterns that can be found in our study
dataset and Defects4J. In absolute numbers, Defects4J patches include a lim-
ited set of change patterns (i.e., ∼ 7% = 214

2947
) in comparison to what can be

found in our study dataset.

Consistency. We check for consistency of FixMiner’s pattern mining by as-
sessing whether all Defects4J patches associated to a FixMiner cluster are
indeed sharing a common dissection pattern label. We have found that the
clustering to be consistent for ∼ 78% = 166

214
, ∼ 73% = 27

37
and ∼ 92% = 12

13
of

Shape, Action and Token clusters respectively.

RQ1-Consistency ▸ FixMiner can produce patterns that are matching
patches that are labeled similarly by humans. The patterns are thus largely
consistent with manual dissection.

Granularity. The human dissection provides repair pattern labels for a given
patch. Nonetheless, the label is not specifically associated to any of the various
changes in the patch. FixMiner however yields patterns for code hunks. Thus,
while FixMiner links a given hunk to a single pattern, the dissection data
associates several patterns to a given patch. We investigate the granularity
level with respect to human-provided patterns. Concretely, several patterns of
FixMiner can actually be associated (based on the corresponding Defects4J
patches) to a single human dissection pattern. Consider the example cases in
Table 8. Both patches consist of nested InfixExpression under the IfStatement.
The first FixMiner pattern indicates that the change operation (i.e., update
operator) should be performed on the children InfixExpression. On the other
hand, the second pattern implies a change operation in the parent InfixEx-
pression. Thus, eventually, FixMiner patterns are finer-grained and associates
the example patches to two distinct patterns each pointing the precise node to
update, while manual dissection considers them under the same coarse-grained
repair pattern.

Table 8: Granularity example to FixMiner mined patterns.

Pattern Example patch from FixMiner dataset

FixMiner UPD IfStatement
---UPD InfixExpression
------UPD InfixExpression
---------UPD Operator

@@ -83,7 +83,7 @@ public BoundedInputStrea ...
@Override
public int read() throws IOException {

- if (max >= 0 && pos == max) {
+ if (max >= 0 && pos >= max) {

return -1;
Dissection [83]

Logic expression modification
Single Line

FixMiner UPD IfStatement
---UPD InfixExpression
------UPD Operator

@@ -145,7 +145,7 @@ private void moveFile(Path s ...
private Path createTargetPath(Path targetPath ...
Path deletePath = null;
Path mkDirPath = targetPath.getParent();

- if (mkDirPath != null & !fs.exists(mkDirPath)) {
+ if (mkDirPath != null && !fs.exists(mkDirPath)) {

Path actualPath = mkDirPath;Dissection [83]
Logic expression modification
Single Line

We have investigated the differences between FixMiner patterns and dis-
section labels and found several granularity mismatches similar to the pre-
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vious example: condBlockRetAdd (condition block addition with return state-
ment) from manual dissection is associated to 14 fine-grained Shape patterns
of FixMiner: this suggests that the repair-potential of this pattern could be
further refined depending on the code context. Similarly, expLogicMod (logic
expression modification), is associated to 2 separate Action patterns (see Ta-
ble 8) of FixMiner: this suggests that the application of this repair pattern can
be further specialized to reduce the repair search space and the false positives.

Overall, we found in total 37, 3 and 1 dissection repair patterns are further
refined into several FixMiner’s Shape, Action and Token patterns respectively.

RQ1-Granularity ▸We observe that manually-dissected patterns are more
coarse-grained compared to FixMiner’s patterns.

Assessment of FixMiner’s patterns with respect to associated bug reports.
Beyond assessing the consistency of FixMiner’s patterns based on human-
built oracle dataset of labels, we further propose to investigate the relevance
of the patterns in terms of the semantics that can be associated to the intention
of the changes. To that end, we consider bug reports associated to patches as a
proxy to characterize the intention of the code changes. We expect bug reports
sharing textual similarity to be addressed by patches that are syntactically
similar. This hypothesis drives the entire research direction on Information
retrieval-based bug localization [46].

Figure 14 provides the distribution of pairwise bug report (textual) simi-
larity values for the bug reports corresponding to patches associated to each
cluster. For clear presentation, we focus on the top-20 clusters (in terms of
size). We use TF-IDF to represent each bug report as a vector, and leverage
Cosine similarity to compute similarity scores among vectors. The represented
boxplots display all pairwise bug report similarity values, including outliers.
Although for Shape and Action patterns the similarities are near 0 for all clus-
ters, we note that there are fewer outliers for Action patterns. This suggests a
relative increase in the similarity among bug reports. As expected, similarity
among bug reports is the highest with Token patterns.

5.2 RQ2: Compatibility between FixMiner’s patterns and APR literature
patterns

Objective. Given that FixMiner aims to automatically produce fix patterns
that can be used by automated program systems, we propose to assess whether
the yielded patterns are compatible with patterns in the literature.
Protocol. We consider the set of patterns used by literature APR systems
and compare them against FixMiner’s patterns. Concretely, we systematically
try to map FixMiner’s patterns with patterns in the literature. To that end,
we rely on the comprehensive taxonomy of fix patterns proposed by Liu et
al. [52]: if a given FixMiner pattern can be mapped to a type of change in
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Fig. 14: Distribution of pairwise bug report similarity. Note: A red line represents
an average similarity for all bug reports in fold, and blue line represents average similarity
bug reports within a cluster.

the taxonomy, then this pattern is marked as compatible with patterns in the
literature.

Recall that, as described earlier, fix patterns used by APR tools abstract
changes at the form of FixMiner’s Action patterns (Section 3 - Step 4). In
the absence of common language for specifying patterns, the comparison is
performed manually. For the comparison, we do not conduct exact mapping
between literature patterns and the ones yielded by FixMiner as fix pat-
terns yielded by FixMiner have more context information. We rather consider
whether the context information yielded by FixMiner patterns matches with
the context of literature patterns. We discuss the related threats to validity in
Section 6. Given that the assessment is manual and thus time-consuming, we
limit the comparisons to the top 50 patterns (i.e., Action patterns) yielded by
FixMiner.
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Oracle. We build on the patterns enumerated by Liu et al. [52] who systemat-
ically reviewed fix patterns used by Java APR systems in the literature. They
summarised 35 fix patterns in GNU format, which we refer to for comparing
against FixMiner patterns.

Results. Overall, among the 35 fix patterns used by the total of 11 studied
APR systems, 16 patterns are also included in the fix patterns (i.e., Action
patterns) yielded by FixMiner when mining our study dataset. We recall that
these patterns are often manually inferred and specified by researchers for their
APR tools. Table 9 illustrates examples of FixMiner’s fix patterns associated
to some of the patterns used in literature. We note that fix patterns identified
by FixMiner are specific (e.g., for FP4: Insert Missed Statement, the cor-
responding FixMiner’s fix pattern specifies which type of statement must be
inserted).

Table 9: Example FixMiner fix-patterns associated to APR literature patterns.

Patterns enumerated by Liu et al. [52] Example fix pattern from FixMiner (*)

FP2. Insert Null Pointer Checker

INS IfStatement
— INS InfixExpression
—— INS SimpleName
—— INS Operator
—— INS NullLiteral
— INS ReturnStatement
—— INS NullLiteral

FP4. Insert Missed Statement
INS ExpressionStatement
—INS MethodInvocation
——INS SimpleName

FP7. Mutate Data Type
UPD CatchClause
— UPD SingleVariableDeclaration
—— UPD SimpleType

FP9. Mutate Literal Expression
UPD FieldDeclaration
— UPD VariableDeclarationFragment
—— UPD StringLiteral

FP10. Mutate Method Invocation Expression

UPD ExpressionStatement
— UPD MethodInvocation
—— UPD SimpleName
——— INS SimpleName

FP11. Mutate Operators
UPD IfStatement
— UPD InfixExpression
—— UPD Operator

FP12. Mutate Return Statement
UPD ReturnStatement
— UPD MethodInvocation
—— UPD SimpleName

* Complete list of 16 Fix Patterns from literature that match FixMiner’s patterns:
FP2. Insert Null Pointer Checker (i.e., 2.1, 2.2 and 2.5), FP3. Insert Range Checker, FP4.
Insert Missed Statement (i.e., 4.1), FP7. Mutate Data Type (i.e., 7.1), FP9. Mutate Lit-
eral Expression (i.e., 9.1), FP10. Mutate Method Invocation Expression (i.e., 10.1, 10.2,
10.3, and 10.4), FP11. Mutate Operators (i.e., 11.1), FP12. Mutate Return Statement,
FP13. Mutate Variable (i.e., 13.1), FP14. Move Statement and FP15. Remove Buggy
Statement (i.e., 15.1).

Table 10 illustrates the proportion of FixMiner’s patterns that are compat-
ible with patterns in the literature. In this comparison, we select the top-50 fix
patterns yielded by FixMiner and verify their presence within the fix patterns
used in the APR systems.
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Table 10: Compatibility of Patterns: FixMiner vs Literature Patterns.

PAR HDRepair ssFix ELIXIR S3 NPEfix SketchFix SOFix Genesis CapGen SimFix AVATAR
7/16 7/12 6/34 8/11 3/4 1/9 5/6 9/12 1/108 12/30 8/16 6/13

We provide x/y numbers: x is the number of fix patterns in the corresponding APR tool that are mined by
FixMiner; y is the number of fix patterns used by the corresponding APR tool.

We observed that

– 7 patterns are compatible with fix patterns that are mined manually from
bug fix patches (i.e., fix patterns in PAR [33]).

– between 1 and 8 patterns are compatible with researcher-predefined fix
patterns used in ssFix [93], ELIXIR [81], S3 [41], NEPfix [15], and Sketch-
Fix [27], respectively.

– 7 patterns are compatible with fix pattern mined from history bug fixes
by HDRepair [43], 9 patterns are compatible with fix patterns mined from
StackOverflow by SOFix [54], and 1 fix pattern is compatible with 1 fix
pattern mined by Genesis [56] that focuses on mining fix patterns for three
kinds of bugs.

– 12 and 8 patterns are compatible with the patterns used by CapGen [90]
and SimFix [30], respectively, which extract patterns in a statistic way
similar to the empirical studies of bug fixes [49, 61].

– 6 patterns are compatible with the fix patterns used in AVATAR [51], which
are presented in a study for inferring fix patterns from FindBugs [26] static
analysis violations [48].

RQ2▸ FixMiner effectively yields Action patterns that are compatible for
16 over 35 patterns used in the literature of pattern-based program repair.

Manual (but Systematic) Assessment of Token patterns. Action and Token
patterns are the two types of patterns that relate to code changes. In the
assessment scenario above, we only considered Action patterns since they are
the most appropriate for comparison with the literature patterns. We now
focus on Token patterns to assess whether our hypothesis on their usefulness
for deriving collateral evolutions holds (cf. Section 3 - Step 4). To that end, we
consider the various Token clusters yielded by FixMiner and manually verify
whether the recurrent change (i.e., the pattern) is relevant (i.e., a human can
explain whether the intentions of the changes are the same). Eventually, if the
pattern is validated, it should be presented as a generic/semantic patch [3,76]
written in SmPL6.

In Table 11, we list some of the patches that we found to be relevant.
Among the top 50 Token patterns investigated, 12 patterns correspond to a
modifier change, 4 patterns target changes in logging methods, and 1 pattern
is about fixing the infix operator (e.g., > → >= ). The remaining cases mainly
focus on changes that complete the implementation of code finally block logic
(e.g., missing call to closeAll for opened files), changes in Exception handling,
updates to wrong parameters passed to method invocations, as well as wrong

6 Semantic Patch Language
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method invocations. As mentioned earlier, these patterns are spread mostly
vertically (i.e. change is recurrent in several code hunks of a given patch) and
the semantic behaviour of these patterns are specific to project nature.

Overall, our manual investigations on the top 50 Token patterns confirm
that many of the recurrent changes associated to specific tokens are indeed
relevant. We even found several cases where collateral evolution changes are
regrouped to form a pattern as exhibited by the corresponding pattern exam-
ple presented in Figure 15. In this example, we illustrate the pattern using
the SmPL specification language, which was designed for specifying collateral
evolutions. This finding suggests that FixMiner can be leveraged to systemat-
ically mined collateral evolutions in the form of Token patterns which could be
automatically rewritten as semantic patches in SmPL format. This endeavour
is however out of the scope of this paper, and will be investigated in future
work.

Table 11: Example changes associated to FixMiner mined patterns.

Semantic Behaviour of Pattern Example change in developer patch

Missing field modifier - private boolean closed = true;
+ private volatile boolean closed = true;

Wrong Log level

} catch (Exception e) {
- LOG.fatal("Could not append. Requesting close of wal", e);
+ LOG.warn("Could not append. Requesting close of wal", e);

requestLogRoll();

// [caption=Wrong Log level]
@@
Logger log;
@@
...
- log.fatal(...);
+ log.warn(...);

Fig. 15: Example SmPL patch corresponding to generic representation of the
pattern associated to FixMiner pattern.

5.3 RQ3: Evaluation of Fix Patterns’ Relevance for APR

Objective. We propose to assess whether fix patterns yielded by FixMiner

are effective for automated program repair.
Protocol. We implement a prototype APR system that uses the fix patterns
mined by FixMiner to generate patches for bugs by following the principles
of the PAR [33], which is referred to as PARFixMiner in the remainder of this
paper. In contrast with PAR where the templates were engineered by a manual
investigation of example bug fixes, in PARFixMiner, the templates for repair are
engineered based on fix patterns mined by FixMiner. Figure 16 overviews the
workflow of PARFixMiner.

Fault Localization. PARFixMiner uses spectrum-based fault localization. We
use the GZoltar7 [8] dynamic testing framework and leverage Ochiai [1] ranking

7 We used GZoltar version 0.1.1
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Fig. 16: The overall workflow of PARFixMiner program repair pipeline.

metric to predict buggy statements based on execution coverage information
of passing and failing test cases. This setting is widely used in the repair
community [53,62,90,93,94], allowing for comparable assessment of PARFixMiner
against the state-of-the-art.

Pattern Matching and Patch Generation. Once the spectrum-based fault
localization (or ir-based fault localization [38, 91]) process yields a list of sus-
picious code locations, PARFixMiner attempts to select fix patterns for each state-
ment in the list. The selection of fix patterns is conducted by matching the
context information of suspicious code locations and fix patterns mined by
FixMiner. Concretely, first, we parse the suspicious statement and traverse
each node of its AST from its first child node to its last leaf node and form an
AST subtree to represent its context. Then, we try to match the context (i.e.,
shape) of the AST subtree (from a suspicious statement) to the fix patterns’
shapes.

If a matching fix pattern is found, we proceed with the generation of a
patch candidate. Some fix patterns require donor code (i.e., source code ex-
tracted from the buggy program) to generate patch candidates with fix pat-
terns. These are also often referred to as part of fix ingredients. Recall that,
to integrate with repair tools, we leverage FixMiner Action patterns, which
do not contain any code token information: they have holes. Thus we search
the donor code locally from the file which contains the suspicious statement.
We select relevant donor code among the ones that are applicable to the fix
pattern and the suspicious statement (i.e., data type(s) of variable(s), expres-
sion types, etc. that are matching to the context) to reduce the search space of
donor code and further limit the generation of nonsensical patch candidates.
For example, the fix pattern in Figure 17 can only be matched to a suspicious
return statement that has a method invocation expression: thus, the suspicious
return statement will be patched by replacing its method name with another
one (i.e., donor code). The donor code is searched by identifying all method
names from the suspicious file having the same return type and parameters
with the suspicious statement. Finally, a patch candidate is generated by mu-
tating suspicious statements with identified donor code following the actions
indicated in the matched fix pattern. We generate as many patches as the
number of identified pieces of donor code. Patches are generated consecutively
in the order of matching within the AST.
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Note: We remind the reader that in this study, we do not perform a specific
patch prioritization strategy. We search donor code from the AST tree of the
local file that contains the suspicious statement by traversing each node of the
AST of the local file from its first child node to its last leaf node in a breadth-
first strategy (i.e., left-to-right and top-to-bottom). In case of multiple donor
code options for a given fix pattern, the candidate patches are generated (each
with a specific donor code) following the positions of donor codes in the AST
tree (of the local file which contains the suspicious statement).

UPD ReturnStatement

---UPD MethodInvocation

------UPD Simple@MethodName

Fig. 17: Example of fix patterns yielded by FixMiner.

Pattern Validation. Once a patch candidate is generated, it is applied to
buggy program and will be validated against the test suite. If it can make
the buggy program pass all test cases successfully, the patch candidate will
be considered as a plausible patch and PARFixMiner stops trying other patch
candidates for this bug. Otherwise, the pattern matching and patch generation
steps are repeated until the entire suspicious code locations list is processed.
Specifically, we consider only the first generated plausible patch for each bug
to evaluate its correctness. For all plausible patches generated by PARFixMiner,
we further manually check the equivalence between these patches and the
oracle patch provided in Defects4J. If they are semantically similar to the
developer-provided fix, we consider they as correct patches, otherwise remain
as plausible.

Oracle. We use Defects4J8 [31] dataset which is widely used as a benchmark
for Java-targeted APR research [10,43,60,62]. The dataset contains 357 bugs
with their corresponding developer fixes and test cases covering the bugs.
Table 12 details statistics on the benchmark.

Table 12: Details of the benchmark.

Project Bugs LOC Tests
JFreechart (Chart, C) 26 96K 2,205
Apache commons-lang (Lang, L) 65 22K 2,245
Apache commons-math (Math, M) 106 85K 3,602
Joda-Time (Time, T) 27 28K 4,130
Closure compiler (Closure, Cl) 133 90K 7,927
Total 357 321K 20,109

† In the table, column “Bugs” denotes the total number of bugs in
Defects4J benchmark, column “LOC” denotes the number of thousands
of lines of code, and column “Tests” denotes the total number of test
cases for each project.

Results. Overall, we implemented the 31 fix patterns (i.e., Action patterns)
mined by FixMiner, focusing only on the top-50 clusters (in terms of size).

We compare the performance of PARFixMiner against 13 state-of-the-art APR
tools which have also used Defects4J benchmark for evaluating their repair per-
formance. Table 13 illustrates the comparative results in terms of numbers of

8 Version 1.2.0 - https://github.com/rjust/defects4j/releases/tag/v1.2.0

https://github.com/rjust/defects4j/releases/tag/v1.2.0
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plausible (i.e., that passes all the test cases) and correct (i.e., that is eventu-
ally manually validated as semantically similar to the developer-provided fix)
patches. Note that although HDRepair manuscript counts 23 bugs for which
”correct” fixes are generated (and among which a correct fix is ranked number
one for 13 bugs), the authors labeled fixes as ”verified ok” for only 6 bugs (see
artefact page 9). We consider these 6 bugs in our comparison.

Overall, we find that PARFixMiner successfully repaired 26 bugs from the De-
fects4J benchmark by generating correct patches. This performance is only sur-
passed to date by SimFix [30] that was concurrently developed with PARFixMiner.

Table 13: Number of bugs fixed by different APR tools.

Proj. PARFixMiner kPAR jGenProg jKali jMutRepair Nopol HDRepair ACS ssFix ELIXIR JAID SketchFix CapGen SimFix
Chart 5/8 3/10 0/7 0/6 1/4 1/6 0/2 2/2 3/7 4/7 2/4 6/8 4/4 4/8
Lang 2/3 1/8 0/0 0/ 0/1 3/7 2/6 3/4 5/12 8/12 1/8 3/4 5/5 9/13
Math 13/15 7/18 5/18 1/14 2/11 1/21 4/7 12/16 10/26 12/19 1/8 7/8 12/16 14/26
Time 1/1 1/2 0/2 0/2 0/1 0/1 0/1 1/1 0/4 2/3 0/0 0/1 0/0 1/1
Closure 5/5 5/9 0/0 0/0 0/0 0/0 0/7 0/0 2/11 0/0 5/11 3/5 0/0 6/8

Total 26/32 17/47 5/27 1/22 3/17 5/35 6/23 18/23 20/60 26/41 9/31 19/26 21/25 34/56
P(%) 81.3 36.2 18.5 4.5 17.7 14.3 26.1 78.3 33.3 63.4 29.0 73.1 84.0 60.7

† In each column, we provide x/y numbers: x is the number of correctly fixed bugs; y is the number of bugs for which a plausible patch
is generated by the APR tool (i.e., a patch that makes the program pass all test cases). Precision (P) means the precision of correctly
fixed bugs in bugs fixed by each APR tool. kPAR [50] is the Java implementation of PAR. The data about jGenProg, jKali and Nopol
are extracted from the experimental results reported by Martinez et al. [60]. The data of HDRepair [43] is collected from its author’s
reply. And the results of other tools are obtained from their papers in the literature (jMutRepair [62], ACS [94], ssFix [93], ELIXIR [81],
JAID [10], SketchFix(SF) [27], CapGen [90] and SimFix [30]). The same for the data presented in Table 14.

Nevertheless, while these tools generate more correct patches than PARFixMiner,
they also generate many more plausible patches which are however not correct.
In order to comparatively assess the different tools, we resort to a Precision
metric (P), which is the probability of correctness of the generated patches.
P(%) is defined as the ratio of the number of bugs for which a correct fix is
generated first (i.e., before any other plausible patch) against the number of
bugs for which a plausible (but incorrect) patch is generated first. For exam-
ple, 81% of PARFixMiner’s plausible patches are actually correct, while it is the
case for 63% and 60% of respectively ELIXIR and SimFix plausible patches
are correct. To date only CapGen [90] achieves similar performance at yielding
patches with slighter higher probability (at 84%) to be correct. The high per-
formance of CapGen confirms their intuition that context-awareness, which we
provide with Rich Edit Script, is essential for improving patch correctness.

Table 14 enumerates 128 bugs that are currently fixed (both correct and
plausible) in the literature. 89 of them can be correctly fixed by at least one
APR tool. PARFixMiner generates correct patches for 26 bugs. Among the bugs
in the used version of Defects4J benchmark, 267 bugs have not yet been fixed
by any tools in the literature, which still is a big challenge for automated
program repair research.

Finally, we find that, thanks to its automatically mined patterns, PARFixMiner
is able to fix six (6) bugs which have not been fixed by any state-of-the-art
APR tools (cf. Figure 18).

9 https://github.com/xuanbachle/bugfixes/blob/master/fixed.txt
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Table 14: Defects4J bugs fixed by different APR tools.

“✓” indicates that the bug is correctly fixed, “✗” indicates the produced patch is plausible
but not correct. “(✓)” indicates that a correct patch is generated by JAID, but is not the
first plausible patch to be generated)”.
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C-1 ✓ ✓ ✓ ✓ ✓ (✓) ✓ ✓ ✗ ✗ ✗ ✓

C-3 ✗ ✓ ✗ ✗ ✗

C-4 ✓ ✓

C-5 ✗ ✗ ✗ ✓

C-7 ✓ ✓ ✗ ✗

C-8 ✓ ✓ ✓ ✗

C-9 ✓ (✓) ✓

C-11 ✓ ✓ ✓ ✓

C-12 ✗ ✗ ✗

C-13 ✗ ✗ ✗ ✗ ✗ ✗ ✗

C-14 ✗ ✓

C-15 ✗ ✗ ✗

C-17 ✗

C-18 ✗

C-19 ✓

C-20 ✓ ✓ ✓

C-21 ✗

C-22 ✗

C-24 ✓ ✓ ✓ ✓ ✓

C-25 ✗ ✗ ✗ ✗ ✗ ✗

C-26 ✓ ✗ ✗ ✓ ✗ ✗ ✗

Cl-2 ✓

Cl-5 ✗

Cl-10 ✓ ✗

Cl-14 ✓ ✓ ✓ ✗

Cl-18 ✓

Cl-21 ✗

Cl-22 ✗

Cl-31 (✓)
Cl-33 ✓

Cl-38 ✓ ✓

Cl-40 ✓

Cl-51 ✗

Cl-57 ✓

Cl-62 ✓ ✓ ✓ ✓ (✓) ✗

Cl-63 ✓ ✓ ✓ (✓)
Cl-70 ✗ ✓ ✗

Cl-73 ✓ ✓ ✓ ✗ ✓ ✗

Cl-79 ✗

Cl-106 ✗

Cl-109 ✗

Cl-115 ✓ ✓

Cl-125 ✗

Cl-126 ✗ ✓ (✓) ✗

L-6 ✓ ✓ ✓ ✓ ✓

L-7 ✓

L-10 ✗ ✗

L-16 ✓

L-21 ✓

L-24 ✗ ✓ ✓

L-26 ✓ ✓

L-27 ✓ ✗

L-33 ✓ ✓ ✓ ✓

L-35 ✓

L-38 (✓) ✓

L-39 ✓ ✗ ✗ ✗ ✗

L-41 ✓

L-43 ✗ ✗ ✓ ✓ ✓ ✓ ✗

L-44 ✗ ✗ ✗ ✓

L-45 ✗ ✗ (✓)
L-46 ✗

L-50 ✓

L-51 ✗ ✗ (✓) ✗ ✓ ✗

L-53 ✗ ✗

L-55 ✓ (✓) ✓

L-57 ✓ ✗ ✓ ✓ ✗
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L-58 ✗ ✓ ✗ ✓

L-59 ✓ ✓ ✓ ✓ ✓ ✓ ✗

L-60 ✓

L-61 ✗

L-63 ✗

M-1 ✗ ✗

M-2 ✗ ✗ ✗ ✗

M-3 ✓

M-4 ✓

M-5 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

M-6 ✗

M-8 ✗ ✗ ✗ ✗

M-10 ✓

M-15 ✓

M-20 ✗ ✗

M-22 ✓ ✓

M-25 ✓

M-28 ✗ ✗ ✗ ✗ ✗ ✗

M-30 ✓ ✓ ✓ ✓

M-32 (✓) ✗ ✗ ✗

M-33 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗

M-34 ✓ ✓ ✗

M-35 ✓ ✓ ✓

M-40 ✗ ✗ ✗ ✗

M-41 ✓ ✓

M-42 ✗

M-49 ✗ ✗ ✗ ✗

M-50 ✗ ✓ ✓ (✓) ✓ ✓ ✓ ✓ ✓ ✗ ✓

M-51 ✗

M-53 ✓ ✓ (✓) ✓ ✓ ✓

M-57 ✓ ✓ ✓ ✓ ✓ ✗ ✗

M-58 ✓ ✓ ✓ ✓ ✗ ✗

M-59 ✓ ✓ ✓ ✓ ✓

M-61 ✓

M-62 ✗

M-63 ✗ ✓ ✓ ✗

M-65 ✓

M-69 ✗

M-70 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓

M-71 ✓ ✗ ✗

M-72 ✗

M-73 ✗ ✗ ✗ ✗ ✓ ✗

M-75 ✓ ✓ ✓ ✓ ✓

M-78 ✗ ✗ ✗

M-79 ✓ ✓ ✗ ✓

M-80 ✗ ✗ (✓) ✓ ✗ ✗ ✗ ✗

M-81 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

M-82 ✓ ✗ ✗ ✗ ✓ (✓) ✓ ✓ ✗ ✗ ✗ ✓ ✗

M-84 ✗ ✗ ✗ ✗ ✗

M-85 ✓ ✓ ✗ ✓ ✓ (✓) ✓ ✓ ✗ ✗ ✓ ✗

M-87 ✗

M-88 ✗ ✗ ✗

M-89 ✓ ✓

M-90 ✓

M-93 ✓

M-95 ✗ ✗

M-97 ✗ ✗

M-98 ✓

M-99 ✓

M-104 ✗ ✗

M-105 ✗ ✗

T-4 ✗ ✓ ✗ ✗

T-7 ✓ ✓

T-11 ✗ ✗ ✗ ✗ ✗ ✗

T-15 ✓ ✓

T-19 ✓ ✗
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63 620

Existing APR Tools PARFixMiner

Fig. 18: Overlap of the correct patches by PARFixMiner and other APR tools.

RQ3▸ Fix patterns (i.e., Action Patterns) yielded by FixMiner can be
directly used in automated program repair pipelines and generates correct
patches for buggy programs effectively. Additionally, the repair performance
of PARFixMiner, which uses fix patterns yielded by FixMiner, is comparable to
the state-of-the-art APR tools.

6 Discussions and Threats to Validity

Runtime performance. To run the experiments with FixMiner, we leveraged
a computing system with 24 Intel Xeon E5-2680 v3 cores with 2.GHz per
core and 3TB RAM. The construction of the Rich Edit Scripts took about
17 minutes. Rich Edit Scripts are cached in memory to reduce disk access
during the computation of identical trees. Nevertheless, we recorded that com-
paring 1 108 060 pairs of trees took about 18 minutes.

Threats to external validity. The selection of our bug-fix datasets carries some
threats to external validity that we have limited by considering known projects,
and heuristics used in previous studies. We also make our best effort to link
commits with bug reports as tagged by developers. Some false positives may
be included if one considers a strict and formal definition of what constitutes
a bug.

Threats to construct validity arise when checking the compatibility of FixMiner’s
patterns against the patterns used by literature APR systems. Indeed, for the
comparison, we do not conduct exact mapping where the elements should be
the same, given that literature patterns can be more abstract than the ones
yielded by FixMiner. For example, Modify Method Name (i.e., FP10.1) is a
sub-fix pattern of Mutate Method Invocation Expression (i.e., FP10), which is
about replacing the method name of a method invocation expression with an-
other appropriate method name [52]. This fix pattern can be matched to any
statement that contains a method name under method invocation expression.
However, in this paper, the similar fix patterns yielded by FixMiner have more
context information. Therefore, we consider context information to check the
compatibility of FixMiner’s patterns against the patterns used by literature
APR systems. For example, the fix pattern shown in Figure 17 is to modify
the buggy method name of a method invocation expression with another ap-
propriate method name which is inside a Return-Statement. As the context
information refers to a Return-Statement the fix pattern shown in Figure 17
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considered as compatible with Mutate Return Statement (i.e., FP12.). Nev-
ertheless, the mapping is conservative in the sense that we consider that a
FixMiner pattern matches a pattern from the literature as long as it can fit
with the literature pattern.

7 Related Work

Automated Program Repair. Patch generation is one of the key tasks in soft-
ware maintenance since it is time-consuming and tedious. If this task is au-
tomated, the cost and time of developers for maintenance will be dramati-
cally reduced. To address the issue, many automated techniques have been
proposed for program repair [68]. GenProg [45], which leverages genetic pro-
gramming, is a pioneering work on program repair. It relies on mutation op-
erators that insert, replace, or delete code elements. Although these muta-
tions can create a limited number of variants, GenProg could fix several bugs
(in their evaluation, test cases were passed for 55 out of 105 real program
bugs) automatically, although most of them have been found to be incorrect
patches later. PACHIKA [13] leverages object behavior models. SYDIT [65]
and LASE [66] automatically extracts an edit script from a program change.
While several techniques have focused on fixability, Kim et al. [33] pointed
out that patch acceptability should be considered as well in program repair.
Automatically generated patches often have nonsensical structures and logic
even though those patches can fix program bugs with respect to program be-
havior (i.e., w.r.t. test cases). To address this issue, they proposed PAR, which
leverages manually-crafted fix patterns. Similarly Long and Rinard proposed
Prophet [58] and Genesis [56] which generates patches by leveraging fix pat-
terns extracted from the history of changes in repositories. Recently, several
approaches [5, 22] leveraging deep learning have been proposed for learning
to fix bugs. Even recent APR approaches that target bug reports rely on fix
templates to generate patches. iFixR [39] is such an example which builds on
top of the templates built TBar [52] templates. Overall, we note that the com-
munity is going in the direction of implementing repair strategies based on fix
patterns or templates. Our work is thus essential in this direction as it pro-
vides a scalable, accurate and actionable tool to mine such relevant patterns
for automated program repair.

Code differencing. Code differencing is an important research and practice
concern in software engineering. Although commonly used by human devel-
opers in manual tasks, differencing at the text line level granularity [69] is
generally unsuitable for automated analysis of changes and the associated
semantics. AST differencing work has benefited in the last decade for the ex-
tensive investigations that the research community has performed for general
tree differencing [2,6,9,11]. ChangeDistiller [21] and GumTree [17] constitute
the current state-of-the-art for AST differencing in Java. In this work, we have
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selected GumTree as the base tool for the computation of edit scripts as its
results have been validated by humans, and it has been shown to be more
accurate and fine-grained edit scripts. Nevertheless, we have further enhanced
the edit script yielding an algorithm that keeps track of contextual informa-
tion. Our approach echoes a recently published work by Huang et al. [28]: their
CLDIFF tool similarly enriches the AST produced by GumTree to enable the
generation of concise code differences. The tool however was not available
at the time of our experiments. Thus, to satisfy the input requirements of
our fix pattern mining approach, we implement Rich Edit Script, to enrich
GumTree-yielded edit scripts by retaining more contextual information.

Change patterns. The literature includes a large body of work on mining
change patterns.

Mining-based approaches. In recent years, several approaches have built upon
the idea of mining patterns or leveraging templates. Fluri et al., based on edit
scripts computed by their ChangeDistiller AST difference, have used hierarchi-
cal clustering to discover unknown change types in three Java applications [20].
They have limited themselves however to considering only changes implement-
ing the 41 basic change types that they had previously identified [19]. Kreutzer
et al. have developed C3 to automatically detect groups of similar code changes
in code repositories with the help of clustering algorithms [40]. Martinez and
Monperrus [61] assessed the relationship between the types of bug fixes and
automatic program repair. They perform extensive large scale empirical in-
vestigations on the nature of human bug fixes based on fine-grained abstract
syntax tree differences by ChangeDistiller. Their experiments show that the
mined models are more effective for driving the search compared to random
search. Their models however remain at a high level and may not carry any
actionable patterns to be used by other template-based APR. Our work how-
ever also targets systematizing and automating the mining of actionable fix
patterns to feed pattern-based program repair tools.

An example application is related to work by Livshits and Zimmermann [55]
who discovered application-specific repair templates by using association rule
mining on two Java projects. More recently, Hanam et al. [23] have devel-
oped the BugAID technique for discovering most prevalent repair templates in
JavaScript. They use AST differencing and unsupervised learning algorithms.
Our objective is similar to theirs, focusing on Java programs with different
abstraction levels of the patterns. FixMiner builds on a three-fold clustering
strategy where we iteratively discover recurrent changes preserving surround-
ing code context.

Studies on code change redundancies. A number of empirical studies have con-
firmed that code changes are repeatedly performed in software code bases [34,
36, 67, 97]. Same changes are prevalent because multiple occurrences of the
same bug require the same change. Similarly, when an API evolves, or when
migrating to a new library/framework, all calling code must be adapted by
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same collateral changes [76]. Finally, code refactoring or routine code clean-
ing can lead to similar changes. In a manual investigation, Pan et al. [77] have
identified 27 extractable repair templates for Java software. Among other find-
ings, they observed that if-condition changes are the most frequently applied
to fix bugs. Their study, however, does not discuss whether most bugs are
related to If-condition or not. This is important as it clarifies the context to
perform if-related changes. Recently, Nguyen et al. [73] have empirically found
that 17-45% of bug fixes are recurring. Our focus in this paper is to provide
tool-support automated approach to inferring change patterns in a dataset to
drive repair patterns to guide APR mutation. Moreover, our patterns are less
generic than the ones in previous works (e.g., as in [73, 77]).

Concurrently to our work, Jiang et al. have proposed SimFix [30], and Wen
et al. CapGen [90] which implements a similar idea of leveraging code redun-
dancies using contextual information for shaping the program repair space. In
FixMiner however, the pattern mining phase is independent from the patch
generation phase, and the resulting patterns are tractable and reusable as
input to other APR systems.

Generic and semantic patch inference. Ideally, FixMiner is a tool that aims at
performing towards finding a generic patch that can be leveraged by automated
program repair to correctly update a collection of buggy code fragments. This
problem has been recently studied by approaches such as spdiff [3, 4] which
work on the inference of generic and semantic patches. This approach, however,
is known to be poorly scalable and has constraints of producing ready-to-use
semantic patches that can be used by the Coccinelle matching and transforma-
tion engine [7]. There have however a number of prior work that tries to detect
and summarize program changes. A seminal work by Chawathe et al. describes
a method to detect changes to structured information based on an ordered tree
and its updated version [9]. The goal was to derive a compact description of
the changes with the notion of minimum cost edit script which has been used
in the recent ChangeDistiller and GumTree tools. The representations of edit
operations, however, are either often too overfit to a particular code change
or abstract very loosely the change so that it cannot be easily instantiated.
Neamtiu et al. [70] proposed an approach for identifying changes, additions and
deletions of C program elements based on structural matching of syntax trees.
Two trees that are structurally identical but have differences in their nodes
are considered to represent matching program fragments. Kim et al. [35] have
later proposed a method to infer “change-rules” that capture many changes.
They generally express changes related to program headers (method headers,
class names, package names, etc.). Weissgerber et al. [89] have also proposed
a technique to identify likely refactorings in the changes that have been per-
formed in Java programs. Overall, these generic patch inference approaches
address the challenges of how the patterns that will be leveraged in practice.
Our work goes in that direction by yielding different kinds of patterns for dif-
ferent purposes: shape-based patterns reduce the context of code to match;
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action patterns are the ones that correspond to fix patterns used in the repair
community; token patterns are used for inferring collateral evolutions.

8 Conclusion

We have presented FixMiner, a systematic and automated approach to mine
relevant and actionable fix patterns for automated program repair. The ap-
proach builds on an iterative and three-fold clustering strategy, where in each
round forming clusters of identical trees representing recurrent patterns.

We assess the consistency of the mined patterns with the patterns in the
literature. We further demonstrate with the implementation of an automated
repair pipeline that the patterns mined by our approach are relevant for gen-
erating correct patches for 26 bugs in the Defects4J benchmark. These correct
patches correspond to 81% of all plausible patches generated by the tool.
Availability All the data and tool support is available at :

https://github.com/SerVal-DTF/fixminer-core
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46. Lee, J., Kim, D., Bissyandé, T.F., Jung, W., Le Traon, Y.: Bench4bl: reproducibility
study on the performance of ir-based bug localization. In: Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis, pp. 61–72. ACM
(2018)

47. Lin, W., Chen, Z., Ma, W., Chen, L., Xu, L., Xu, B.: An empirical study on the char-
acteristics of python fine-grained source code change types. In: Software Maintenance
and Evolution (ICSME), 2016 IEEE International Conference on, pp. 188–199. IEEE
(2016)
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real-world patches. In: 2018 IEEE International Conference on Software Maintenance
and Evolution, pp. 275–286. IEEE (2018)
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