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Abstract. In this paper, we develop and evaluate two new algorithms for check-

ing emptiness of alternating automata. Those algorithms build on previous works.

First, they rely on antichains to efficiently manipulate the state-spaces underlying

the analysis of alternating automata. Second, they are abstract algorithms with

built-in refinement operators based on techniques that exploit information com-

puted by abstract fixed points (and not counter-examples as it is usually the case).

The efficiency of our new algorithms is illustrated by experimental results.

1 Introduction

Alternating automata are a generalization of both nondeterministic and universal au-

tomata. In an alternating automaton, the transition relation is defined using positive

Boolean formulas: disjunctions allow for the expression of nondeterministic transitions

and conjunctions allow for the expression of universal transitions. The emptiness prob-

lem for alternating automata being PSPACE-COMPLETE [3], several computationally-

hard automata-theoretic and model-checking problems can be reduced in polynomial

time to the emptiness problem for those automata. Here are some illustrative examples.

The emptiness problem for a product of n nondeterministic automata, the language in-

clusion between two nondeterministic automata, or the LTL model-checking problem

can be reduced in linear time to the emptiness problem for alternating automata. It is

thus very desirable to design efficient algorithms for checking emptiness of those au-

tomata. In this paper, we propose new algorithms for efficiently checking the emptiness

problem for alternating automata over finite words. Those new algorithms combine two

recent lines of research.

First, we use efficient techniques based on antichains, initially introduced in [6],

to symbolically manipulate the state-spaces underlying the analysis of alternating au-

tomata. Antichain-based techniques have been applied to several problems in automata

theory [6, 8, 9, 1] and for solving games of imperfect information [13]. For example,

in [9], we show how to solve the language inclusion problem between nondeterministic

Büchi automata efficiently by exploiting the structures of the automata-based construc-

tions underlying this problem. Automata that were out of reach of existing algorithms

can be treated with these new antichain algorithms, see also [10] for new developments

⋆ This author is supported by an FNRS-FRIA grant.



on that problem. Those techniques have also been applied with success to the satisfia-

bility and model-checking of LTL specifications [8]. Our team has implemented these

algorithms in a tool called ALASKA [7], which is available for download1.

Second, to apply this antichain technique to even larger instances of alternating

automata, we instantiate a generic abstract-refinement method that we have proposed

in [5] and further developed in [11, 12]. This abstract-refinement method does not use

counter-examples to refine unconclusive abstractions contrary to most of the methods

presented and implemented in the literature, see for example [4]. Instead, our algo-

rithm uses the entire information computed by the abstract analysis and combines it

with information obtained by one application of a concrete predicate transformer. The

algorithm presented in [5] is a generic solution that does not lead directly to efficient

implementations. In particular, as shown in [11], in order to obtain an efficient imple-

mentation of this algorithm, we need to define a family of abstract domains on which

abstract analysis can be effectively computed, as well as practical operators to refine the

elements of this family of abstract domains. In this paper, we use the set of partitions

of the locations of an alternating automaton to define the family of abstract domains.

Those abstract domains and their refinement operators can be used both in forward and

backward algorithms for checking emptiness of alternating automata.

To show the practical interest of these new algorithms, we have implemented them

into the ALASKA tool. We illustrate the efficiency of our new algorithms on examples of

alternating automata constructed from LTL specifications interpreted over finite words.

With the help of those examples, we show that our algorithms are able to concentrate

the analysis on important parts of the state-space and abstract away the less interesting

parts automatically. This allows us to treat much larger instances than with the concrete

forward or backward algorithms. We are confident that those new algorithms will allow

us to solve problems of practical relevance that are currently out of reach of automatic

methods.

Structure of the paper. In Sect. 2, we recall some important notions about alternating

automata and about the lattice of partitions. In Sect. 3, we recall the basis for antichain

algorithms and their application to the emptiness of alternating automata. In Sect. 4,

we develop an adequate family of abstract domain based on the lattice of partitions

along with the tools to refine elements of this family. In Sect. 5, we present our abstract

forward and backward algorithms with refinement. In Sect. 6, we report on experiments

that illustrate the efficiency of our algorithms. Finally, we draw some conclusions and

evaluate future directions in Sect. 7.

2 Preliminaries

Alternating Automata. Let S be a set. We note B+(S) the set of positive Boolean

formulas over S. Formally, B+(S) ::= s | φ1 ∨ φ2 | φ1 ∧ φ2, where s ∈ S. A valuation

for a set of proposition S is encoded as a subset of S. For each formula φ ∈ B+(S) we

write JφK ⊆ 2S the set of valuations that satisfy φ; as usual, s ∈ JφK is interpreted as

the valuation that assigns “true” only to the variables in s. Let Σ be a finite alphabet.

1 See http://www.antichains.be



A finite word w is a finite sequence w = σ0σ1 . . . σn−1 of letters from Σ. We write

Σ∗ the set of finite words overΣ. We now recall the definition of alternating automata

over finite words (AFA for short).

Definition 1. An alternating finite automaton is a tuple 〈Loc, Σ, q0, δ, F 〉 where :

Loc = {l1, . . . , ln} is the set of locations; Σ = {σ1, . . . , σm} is the set of alphabet

symbols; q0 ∈ Loc is the initial location; δ : Loc × Σ → B+(Loc) is the transition

function; and F ⊆ Loc is the set of accepting locations.

As we will often manipulate sets of sets of locations in the sequel, we will refer to

the inner sets as cells. Let Cells(S) = 2S. A cell of an AFA with locations Loc is an

element of Cells(Loc). Instead of defining the traditional notion of runs for AFA, we

define their semantics as a directed graph, the nodes of which are cells. Each edge in

the cell graph is labeled by an alphabet symbol.

Definition 2. Let A = 〈Loc, Σ, q0, δ, F 〉, JAK = 〈V,E〉 where: V = Cells(Loc) and

〈c, σ, c′〉 ∈ E iff c′ ∈ J
∧

l∈c δ(l, σ)K. A wordw = σ1, . . . , σp is accepted by the automa-

ton A iff there exists a path c0, c1, . . . , cp of cells of V such that q0 ∈ c0, cp ∈ Cells(F )
(the set of accepting cells), and ∀i ∈ [1, . . . , p] : 〈ci−1, σi, ci〉 ∈ E.

In the sequel, we will consider JAK simply as the set of edges E of the cell graph

and leave the set of vertices V implicit.

Predicate Transformers. We have defined the semantics of alternating automata as a

directed graph of cells. To explore this graph, we use predicate transformers of type

2Cells(Loc) → 2Cells(Loc).

Definition 3. We consider the following predicate transformers (A is an AFA) :

postσ[A](X) = {c2 | ∃〈c1, σ, c2〉 ∈ JAK : c1 ∈ X} post [A](X) =
⋃

σ∈Σ postσ[A](X)

p̃ostσ[A](X) = {c2 | ∀〈c1, σ, c2〉 ∈ JAK : c1 ∈ X} p̃ost [A](X) =
⋂

σ∈Σ p̃ostσ[A](X)
preσ[A](X) = {c1 | ∃〈c1, σ, c2〉 ∈ JAK : c2 ∈ X} pre[A](X) =

⋃
σ∈Σ preσ[A](X)

p̃reσ[A](X) = {c1 | ∀〈c1, σ, c2〉 ∈ JAK : c2 ∈ X} p̃re[A](X) =
⋂

σ∈Σ p̃reσ[A](X)

These predicate transformers are actually two pairs which are dual of each other, as

expressed in the following lemma.

Lemma 1. For any AFA A with locations Loc, for any X ⊆ Cells(Loc), we have that

p̃ost [A](X) = post [A](X) and p̃re[A](X) = pre[A](X), where X ≡ Cells(Loc) \X .

The lattice of partitions. The heart of our abstraction scheme is to partition the set

of locations Loc of an AFA, in order to build a smaller (hopefully more manageable)

automaton. We recall the notion of partitions and some of their properties.

Let P be a partition of the set S = {l1, . . . , ln} into k classes (called blocks in the

sequel) P = {b1, . . . , bk}. Partitions are classically ordered as follows: P1 � P2 iff

∀ b1 ∈ P1, ∃ b2 ∈ P2 : b1 ⊆ b2. It is well known, see [2], that the set of partitions

together with � form a complete lattice where {{l1}, . . . , {ln}} is the �-minimal el-

ement, {{l1, . . . , ln}} is the �-maximal element and the greatest lower bound of two

partitionsP1 andP2, notedP1fP2, is the partition given by {b 6= ∅ | ∃ b1 ∈ P1, ∃ b2 ∈



P2 : b = b1 ∩ b2}. The least upper bound of two partitions P1 and P2, noted P1 g P2,

is the finest partition such that given b ∈ P1 ∪ P2, for all li 6= lj : li ∈ b and lj ∈ b we

have : ∃ b′ ∈ P1 g P2 : li ∈ b
′ and lj ∈ b

′. Also, we shall use P as a function such that

P(l) simply returns the block b to which l belongs in P .

Example 1. Given the set S = {a, b, c} and two partitions A1 = {{a, b}, {c}} and

A2 = {{a, c}, {b}}. We have that A1 f A2 = {{a}, {b}, {c}}, A1 g A2 = {a, b, c},
and A2(a) = {a, c}.

3 Deciding AFA Emptiness Using Antichains

A fundamental problem regarding AFA is the emptiness problem; i.e., to decide if there

exists at least one word accepted by an AFA. Since nondeterministic automata (NFA,

for short) emptiness can be solved in linear-time, a natural solution is to first perform

an AFA → NFA translation and then check for emptiness. The translation is simple

(albeit computationally difficult), as it amounts to a subset construction, similar to that

of NFA determinization. Notice that the cell-graph semantics of AFA defined in the

previous section is essentially an NFA obtained by subset construction. The following

theorem exhibits two different methods of checking for emptiness, each evaluating a

fixpoint-expression on the cell-graph.

Theorem 1. Let A = 〈Loc, Σ, q0, δ, F 〉 be an AFA. The language of A is empty

if and only if (the two expressions are equivalent, X ≡ Cells(Loc) \ X) :

(µ x · post [A](x) ∪ Jq0K) ⊆ Cells(F ) or (µ x · pre[A](x) ∪ Cells(F )) ⊆ Jq0K

Order relation on Cells(·) and antichains. In earlier works [6, 8, 9], we have designed

new efficient algorithms for several automata-theoretic problems. Those algorithms are

based on efficient manipulations of sets of cells using antichains. The crucial prop-

erty of antichains is that they are canonical representations of closed sets (for the set

inclusion order) of cells. We summarize here some useful results on antichains for rep-

resenting and manipulating closed sets. More details can be found in [6].

Let D be some finite domain. We define the upward-closure of X ⊆ Cells(D) as

↑X = {c ∈ Cells(D) | ∃ c′ ∈ X : c ⊇ c′}. A set X ⊆ Cells(D) is upward-closed iff

X = ↑X . The downward-closure of X is ↓X = {c ∈ Cells(D) | ∃ c′ ∈ X : c ⊆ c′}.
The set X is downward-closed iff X = ↓X . For any upward-closed set X , there exists

a unique set of minimal elements ⌊X⌋ = {c ∈ X | ∄ c′ ∈ X : c′ ⊂ c}. Likewise,

for any downward-closed set X , there exists a unique set of maximal elements ⌈X⌉ =
{c ∈ X | ∄ c′ ∈ X : c′ ⊃ c}. Both sets ⌊X⌋ and ⌈X⌉ antichains and they canonically

represent their upward- and downward-closure, respectively. In fact, if X = ↑X then

X =
x⌊X⌋ and if X = ↓X then X =

y⌈X⌉ .

Antichain manipulation and predidate transformers. Antichains of cells have addi-

tional useful properties. First, positive Boolean operation (union and intersection) on

closed sets preserves closedness and can be carried out efficiently on antichains. Also

set inclusions between closed sets, and set membership can be efficiently decided on

the antichains representation. Second, as it will be established below, each of the four



predicate transformers (post , p̃ost , pre, p̃re) can be evaluated directly over antichains,

without the need to consider any non-minimal or non-maximal cell. Furthermore, each

of these predicate transformers evaluates to sets which are closed for subset inclusion.

In other words, the result of their computation can be canonically represented using

antichains. In this work, we do not provide implementation-level details on how the

predicate transformers are computed or how to compute the antichain representing a

closed set of cells. Such information can be found in [8] and [7]. The two following

lemmas respectively ensure that all four predicate transformers evaluate to sets of cells

which can be represented with antichains; and that they can be transparently applied on

antichains.

Lemma 2. For any AFA A with locations Loc, for any X ⊆ Cells(Loc) we have

that post [A](X) is upward-closed, p̃ost [A](X) is downward-closed, pre[A](X) is

downward-closed, and p̃re[A](X) is upward-closed.

Lemma 3. Let A be an AFA with locations Loc. For any set X ⊆ Cells(Loc) we

have that post [A](X) = post [A](↑X ), p̃ost [A](X) = p̃ost [A](↓X ), pre[A](X) =
pre[A](↓X ), and p̃re[A](X) = p̃re[A](↑X ).

Efficient computation on antichains representation. The union and intersection opera-

tors on upward- or downward-closed sets of cells can be efficiently computed directly

over antichains in polynomial time. Let X and Y be two antichains. In the sequel, we

note by X ⊔ Y and X ⊓ Y the unique antichain which respectively represent the union

and the intersection of the sets represented by X and Y . Subset inclusion can also be

decided in polynomial time on antichain representations, which we note X ⊑ Y .

Finally, we show how to use antichains to evaluate more efficiently the fixpoint-

expressions of Theorem 1. Notice that Jq0K and Cells(F ) are respectively upward- and

downward-closed sets of cells. Also, ⌈Cells(F )⌉ = {{F}}, ⌊Cells(F )⌋ = {{l} | l 6∈

F}, ⌊Jq0K⌋ = {{q0}}, and ⌈Jq0K⌉ = {Loc \ {q0}}, all of which are antichains of linear

size w.r.t. to the AFA. We can now rewrite the fixpoint expressions of Theorem 1 to

exploit the properties of antichains.

Theorem 2. Let A = 〈Loc, Σ, q0, δ, F 〉 be an AFA. The language of A is empty iff

(the two expressions are equivalent and X ≡ Cells(Loc) \X) :

(µ x · ⌊post [A](x)⌋ ⊔ ⌊Jq0K⌋) ⊑ ⌊Cells(F )⌋ or (µ x · ⌈pre[A](x)⌉ ⊔ ⌈Cells(F )⌉) ⊑ ⌈Jq0K⌉

This theorem provides the basis of efficient antichain-based algorithms to decide

AFA emptiness. In the sequel, we will refer to them respectively as the concrete forward

and concrete backward algorithms, as they directly on the semantics of AFA.

4 Abstraction of Alternating Automata

4.1 Abstract domain

In this section, we present an original algorithmic framework for the analysis of AFA,

using antichains along with abstract interpretation. Given an AFA with locations Loc,

our algorithm will use a family of abstract domains defined by the set of partitions P



of Loc. The concrete domain is the complete lattice 2Cells(Loc), and each partition P
defines the abstract domain as 2Cells(P). We refer to elements of Cells(Loc) as concrete

cells and elements of Cells(P) as abstract cells. An abstract cell is thus a set of blocks

of the partition P and it represents all the concrete cells which can be constructed by

choosing at least one location from each block. To capture this representation role of

abstract cells, we define the following predicate.

Definition 4. The predicate Covers : Cells(P) × Cells(Loc) → {⊤,⊥} is defined as

follows : Covers(cα, c) iff cα = {P(l) | l ∈ c}.

Note that concrete cells are covered by a unique abstract cell while abstract cells usually

cover many concrete cells.

Example 2. Let Loc = {1, 2, 3, 4, 5}, P = {b1 = {1}, b2,3 = {2, 3}, b4,5 = {4, 5}}.
We have that Covers({b1, b4,5}, {1, 3}) is false, Covers({b1, b4,5}, {1, 4}) is true, and

Covers({b1, b4,5}, {1}) is false.

To make proper use of the theory of abstract interpretation, we define an abstraction

and a concretization functions, and show that they form a Galois connection between

the concrete domain and each of our abstract domains.

Definition 5. Let P be a partition of the set Loc, we define the functions

αP : 2Cells(Loc) → 2Cells(P) and γP : 2Cells(P) → 2Cells(Loc) as follows :

αP(X) = {cα | ∃ c ∈ X : Covers(cα, c)}, γP(X) = {c | ∃ cα ∈ X : Covers(cα, c)}.

In the sequel, we will omit the P subscript of α and γ when the partition is clear from

the context. Additionaly, we define µP = γP ◦ αP .

Lemma 4. For any partition P of Loc : (2Cells(Loc),⊆) −−→←−−α
γ

(2Cells(P),⊆).

Note that α and γ form a Galois insertion as it is easy to see that for all P , αP ◦ γP is

the identity function.

4.2 Efficient abstract analysis

In the sequel, we will need to evaluate fixpoint-expressions over the abstract domain. In

theory, we could simply surround every predicate transformer occuring in the fixpoint-

expressions by α◦·◦γ to obtain an abstract fixpoint. However, for obvious performance

concerns, we want to avoid as many concretization and abstraction steps as possible, and

ideally make all the computations directly over the abstract domain. Furthermore, we

would like that these abstract predicate transformers enjoy the same useful properties

w.r.t. antichains so that we can reuse the results of the previous section. To achieve this

goal, we proceed as follows. Given a partition P of the set of locations of an alternating

automaton, we use a syntactic transformation θ that builds an abstract AFA which over-

approximates the behavior of the original automaton. Later in this section we will show

that the pre and post predicate transformers can be directly evaluated on this abstract

automaton to obtain the same result (but much faster) than the α ◦ · ◦ γ computation

on the original automaton. To express this syntactic transformation, we define syntactic

variants of the abstraction and concretization functions.



Definition 6. Let P be a partition of the set Loc. We define the following syntactic

abstraction and concretization functions over positive Boolean formulas.

α̂ : B+(Loc)→ B+(P) γ̂ : B+(P)→ B+(Loc)

α̂(l) = P(l) γ̂(b) =
∨

l∈b

l

α̂(φ1 ∨ φ2) = α̂(φ1) ∨ α̂(φ2) γ̂(φ1 ∨ φ2) = γ̂(φ1) ∨ γ̂(φ2)

α̂(φ1 ∧ φ2) = α̂(φ1) ∧ α̂(φ2) γ̂(φ1 ∧ φ2) = γ̂(φ1) ∧ γ̂(φ2)

We formalize the link between the two variants of α and γ as follows.

Lemma 5. For every φ ∈ B+(Loc) we have that Jα̂(φ)K = α(JφK), and for every

φ ∈ B+(P) we have that Jγ̂(φ)K = γ(JφK).

We can now define the θ transformation.

Definition 7. Let A = 〈Loc, Σ, q0, δ, F 〉 and P a partition of Loc. θ(A,P) =
〈Locα, Σ, b0, δ

α, Fα〉 where: Locα = P , b0 = P(q0), δ
α(b, σ) = α̂(

∨
l∈b δ(l, σ)),

and Fα = {b ∈ P | b ∩ F 6= ∅}.

Theorem 3. Let A be an AFA, P a partition of its locations and Aα = θ(A,P), α ◦
post [A] ◦ γ = post [Aα] and α ◦ pre[A] ◦ γ = pre[Aα].

This theorem is crucial for the practical efficiency of our algorithms. In our framework,

the evaluation of an abstract fixpoint on a large automaton amounts to compute a con-

crete fixpoint on a smaller automaton that is easy to obtain (the θ transformation can be

done in linear time). This latter fixpoint computation can be performed with antichains,

using all the results of Section 3.

4.3 Precision of the abstract domain

We now present some results about precision and representability in our family of

abstract domains. In particular, for the automatic refinement of abstract domains, we

will need an effective way of computing the coarsest partition which can represent an

upward- or downward closed set of cells without loss of precision.

Definition 8. A set of cells X ⊆ Cells(Loc) is representable in the abstract domain

2Cells(P) iff µP(X) = X (recall that µP = γP ◦ αP ).

Lemma 6. Let X ⊆ Cells(Loc), let P1 and P2 be two partitions of Loc. If X is repre-

sentable with P1 and representable with P2, then X is representable with P1 g P2.

As the lattice of partition is a complete lattice, we have the following corollary.

Corollary 1. For all X ⊆ Cells(Loc), there exists a coarsest partition P = g{P ′ |
µP′(X) = X} such that µP(X) = X .



For upward- and downward-closed sets, we have an efficient way to compute this coars-

est partition. We start with upward-closed sets. To obtain an algorithm, we use the no-

tion of neighbour list. The neighbour list of a location l with respect to an upward-closed

set X , which we writeNX(l) is the set of subsets of Loc along which l appears in ⌊X⌋.

Definition 9. Let X ⊆ Cells(Loc) be an upward-closed set. The neighbour list of a

location l ∈ Loc w.r.t. X is the set NX(l) = {c \ {l} | c ∈ ⌊X⌋, l ∈ c}.

The following lemma states that if two locations share the same neighbour lists w.r.t.

an upward-closed set X , then they can be put in the same partition block and preserve

the representability of X . Conversely,X cannot be exactly represented by any partition

which puts into the same block two locations that have different neighbour lists.

Lemma 7. For any partition P of Loc, for any upward-closed set X , the set X is

representable in 2Cells(P) iff ∀ l, l′ ∈ Loc · P(l) = P(l′)→ NX(l) = NX(l′).

In other words, computing the neighbour list w.r.t. X for each element of Loc suffices

to compute the coarsest partition which can represent X .

Corollary 2. For all upward-closed set X ⊆ Cells(Loc), the partition P induced by

the equivalence relation l ∼ l′ iffNX(l) = NX(l′) is the coarsest partition that is able

to represent X . Assuming that ⌊X⌋ has been computed, this partition is computable in

O(n log n) set comparisons, where n is the size of ⌊X⌋.

The representability of downward-closed sets is immediate with the following lemma.

In practice, we simply compute the coarsest partition for the complementary upward-

closed set.

Lemma 8. Let X ⊆ Cells(Loc), P a partition of Loc. µP (X) = X iff µP (X) = X .

5 Abstraction Refinement Algorithm

This section presents two fixpoint-guided abstraction refinement algorithms for AFA.

These algorithms share several ideas with the generic algorithm presented in [5] but they

are formally different, so we provide arguments showing their correctness. To make the

algorithms more readable, we have chosen not to include the antichain-specific nota-

tions in the pseudo-code. From the results of Sect. 3, is easy to see that the forward

abstract algorithm only manipulates upward-closed sets while the backward abstract

algorithm only manipulates downward-closed sets, so all these sets can be represented

using antichains, which is what we implemented. We concentrate here on explanations

related to the abstract forward algorithm. The abstract backward algorithm is the dual

of this algorithm and its correctness can be established in a very similar way. We first

give an informal presentation of the ideas underlying the algorithm and then we expose

formal arguments for its soundness and completeness.



Input: A = 〈Loc, Σ, q0, δ, F 〉
Output: True iff L(A) = ∅

P0 ← {F, Loc \ F}1

Z0 ← Cells(F )2

for i in 0, 1, 2, . . . do3

Aα
i ← θ(A,Pi)4

Aα
i = 〈Locα, Σ, b0, δ

α, F α〉5

Ii ← Jb0K6

Ri ← µx ·(Ii∪post [Aα
i ](x))∩αPi

(Zi)7

if post [Aα
i ](Ri) ⊆ αPi

(Zi) then8

return True9

if Jq0K 6⊆ Zi then10

return False11

Zi+1 ← γPi
(Ri) ∩ fpre [A](γPi

(Ri))12

Pi+1 ← g{P | µP(Zi+1) = Zi+1}13

Input: A = 〈Loc, Σ, q0, δ, F 〉
Output: True iff L(A) = ∅

P0 ← {{q0}, Loc \ {q0}}1

Z0 ← Jq0K2

for i in 0, 1, 2, . . . do3

Aα
i ← θ(A,Pi)4

Aα
i = 〈Locα, Σ, b0, δ

α, F α〉5

Bi ← Cells(F α)6

Ri ← µx · (Bi∪pre [Aα
i ](x))∩αPi

(Zi)7

if pre [Aα
i ](Ri) ⊆ αPi

(Zi) then8

return True9

if Cells(F ) 6⊆ Zi then10

return False11

Zi+1 ← γPi
(Ri) ∩ gpost [A](γPi

(Ri))12

Pi+1 ← g{P | µP(Zi+1) = Zi+1}13

Fig. 1. The abstract-forward (left) and abstract-backward (right) FGAR algorithms.

Description of the forward abstract algorithm. The most important information com-

puted in the algorithm is Zi, which is an over-approximation of the set of reachable

cells which cannot reach an accepting cell in i steps or less. In other words, all the cells

outside Zi are either unreachable, or can lead to an accepting cell in i steps or less (or

both). Our algorithm always uses the coarsest partition Pi that allows Zi to be repre-

sented in the corresponding abstract domain. The algorithm begins by initializing Z0

with the set of accepting cells and by initializing P0 accordingly (lines 1 and 2). The

main loop proceeds as follows. First, we compute the abstract reachable cells Ri which

are within Zi, which is done by applying the θ transformation using Pi (line 4), and by

computing a forward abstract fixpoint (line 7). If Ri does not contain a cell which can

leave Zi, we know (as we will formally prove later in this section) that the automaton

is empty (line 8). If on the other hand, an initial cell (i.e., a cell containing q0) is no

longer in Zi then we know that it can lead to an accepting cell in i steps or less (as it is

obviously reachable) and we conclude that the automaton is non-empty (line 11). In the

case where both tests failed, we refine the information contained in Zi by removing all

the cells which can leave Ri in one step, as we know that these cells are either surely

unreachable or can lead to an accepting cell in i + 1 steps or less. Finally, the current

abstract domain is changed to be able to represent the new Zi (line 13), using the neigh-

bour list algorithm of Corollary 2. It is important to note that this refinement operation

is not the traditional refinement used in counter-example guided abstraction refinement.

Note also that our algorithm does not necessarily choose a new abstract domain that

is strictly more precise than the previous one as in [5]. Instead, the algorithm uses the

most abstract domain possible at all times. As we cannot rely on the termination proof

from [5], we provide a new one at the end of this section.

Completness and correctness of the forward abstract algorithm. Correctness and com-

pletness relies on the properties formalized in the following lemma.



Lemma 9. Let Reach = µx · Jq0K∪post [A](x) be the reachable cells of A, let Badk =

∪j=k
j=0pre

j [A](Cells(F )) be the cells that can reach an accepting cell in k steps or less,

and let us note Safek = Cells(Loc) \ Badk, i.e. the set of cells that cannot reach an

accepting cell in k steps or less. The following four properties hold:

1. ∀i ≥ 0: µPi
(Zi) = Zi, i.e. Zi is representable in the successive abstract domains;

2. ∀i ≥ 0: Zi+1 ⊆ Zi, i.e. the sets Zi are decreasing;
3. ∀i ≥ 0: Reach ∩ Safei ⊆ Zi, i.e. Zi over-approximates the reachable cells that

cannot reach an accepting cell in i steps or less;
4. if Zi = Zi+1 then post [Aα](Ri) ⊆ αPi

(Zi).

Proof. We prove each point in turn. Point 1 is straightforward as P0 is chosen in line 1
to be able to represent Z0, and Pi+1 is chosen in line 13 to be able to represent Zi+1.

Point 2 follows directly from the fact thatRi ⊆ αi(Zi), Zi is representable in Pi by the

previous point, and the definition of Zi+1 in line 12. Point 3 is established by induction.

The property is clearly true for Z0. Let us establish it for Zi+1 using the induction

hypothesis that it is true for Zi. By soundness of the theory of abstract interpretation,

we know that in line 7 we compute a set Ri which over-approximates the set Reach ∩
Safei. In line 12 we remove cells that can leave this set in one step, so Zi+1 is an over-

approximation of the reachable cells that cannot reach an accepting cell in i + 1 steps

or less, i.e. Reach ∩ Safei+1 ⊆ Zi+1, which concludes the proof. Point 4 is established

as follows. If Zi = Zi+1, then clearly post [A](γi(Ri)) ⊆ γi(Ri) as no cell can leave

γi(Ri) in one step (from line 12). Then γi(Ri) ⊆ Zi shows that post [A](γi(Ri)) ⊆
Zi. Finally we conclude from monotonicity of αi (itself a consequence of the Galois

connection, see lemma 4) that αi(post [A](γi(Ri))) ⊆ αi(Zi) which is equivalent to

post [Aα](Ri) ⊆ αi(Zi) by theorem 3.

We can now establish the soundness and completeness of our algorithm with the fol-

lowing theorem.

Theorem 4. The forward abstract algorithm with refinement is sound and complete to

decide the emptiness of AFA.

Proof. Let A be the AFA on which the algorithm is executed. First, let us show

that the algorithm is sound. Assume that the algorithm returns “True”. In this case,

the test of line 8 evaluates to true which implies that post [Aα](Ri) ⊆ Ri and so

post [A](γi(Ri)) ⊆ γi(Ri). Because γi(Ri) is an over-approximation of the concrete

reachable cells and as γi(Ri) ⊆ Zi we know that all the accepting cells are unreach-

able. Now, assume that the algorithm returns “False”. Then Jq0K 6⊆ Zi which means that

q0 is able to reach an accepting cell in i steps or less. Since q0 is obviously reachable,

we can conclude that the language of A is non-empty. To prove the completeness of

the algorithm, we only need to establish its termination. This is a direct consequence of

point 2 and point 4 of the previous lemma.

6 Experimental Evaluation

In this section, we evaluate the practical performance of our techniques with three series

of benchmarks. Each benchmark is composed of a pair of LTL formulas 〈ψ, φ〉 inter-

preted on finite words, and for which we want to know if φ is a logical consequence



of ψ, i.e. if ψ |= φ holds. To solve this problem, we translate the formula ψ ∧ ¬φ into

an AFA and check that the language of the AFA is empty. This translation is linear in

the size of the formula and creates a location in the AFA for each subformula. As we

will see, our ψ formulas are constructed as large conjunctions of constraints and model

the behavior of finite-state systems, while the φ formulas model properties of those sys-

tems. We defined properties with varying degrees of locality. Intuitively, a property φ

is local when only a small number of subformulas of ψ are needed to establish ψ |= φ.

This is not a formal notion but it will be clear from the examples. We will show in

this section that our abstract algorithms are able to automatically identify subformulas

which are not needed to establish the property. Due to lack of space, we only report

results where ψ |= φ holds. Positive instances are clearly the most difficult, as must be

prove that the corresponding AFA is empty, which requires to compute the entire fixed

point (See Theorem 2). We now briefly recall the definitions of LTL interpreted over

finite words and we follow by presenting each benchmark in turn.

Finite-Word LTL. Let Prop be a finite set of propositions. A LTL formula φ over Prop

is of the form: φ ::= p ∈ Prop | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | Xφ | φ1Uφ2. Let Σ = 2Prop.

The semantics of a finite-word LTL formula φ, which we note JφK, is a subset of Σ∗ as

defined by the following semantic rules. Let ω ∈ Σ∗. We use the following notations :

ωi is the letter in ω at the position i, starting at zero; |ω| is the length of ω; and ωi→ is

the suffix of ω starting at position i.

ω ∈ JpK iff p ∈ ω0 ; ω ∈ J¬φK iff ω 6∈ JφK
ω ∈ Jφ1 ∧ φ2K iff ω ∈ Jφ1K and ω ∈ Jφ2K
ω ∈ Jφ1 ∨ φ2K iff ω ∈ Jφ1K or ω ∈ Jφ2K
ω 6∈ JXφK if |ω| < 2, otherwise ω ∈ JXφK iff ω1→ ∈ JφK
ω ∈ Jφ1Uφ2K iff ∃ i, 0 ≤ i < |ω| : ωi→ ∈ Jφ2K and ∀ j, 0 ≤ j ≤ i : ωj→ ∈ Jφ1K

We define the syntactic shortcuts true and false in the usual way, as well as Fφ ≡
trueUφ and Gφ ≡ ¬F¬φ. Notice that no word of length 0 or 1 can satisfy Xtrue,

which is convenient to detect the end of the word. The formula F¬Xtrue is thus valid

in finite-word LTL, and GXtrue is not satisfiable.

Benchmark 1. The first benchmark takes 2 parameters n > 0 and 0 < k ≤ n :

Bench1(n, k) = 〈
∧n−1

i=0 G(pi → (F (¬pi) ∧ F (pi+1))), Fp0 → Fpk〉. Clearly we

have that ψ |= φ holds for all values of k and also that the subformulas of ψ for i > k

are not needed to establish ψ |= φ.

Benchmark 2. This second benchmark is used to demonstrate how our algorithms can

automatically detect less obvious versions of locality than for Bench1. It uses 2 parame-

ters k and nwith 0 < k ≤ n and is built using the following recursive nesting definition:

Sub(n, 1) = Fpn; for odd values of k > 1 Sub(n, k) = F (pn ∧ X(Sub(n, k − 1)));
and for even values of k > 1 Sub(n, k) = F (¬pn ∧ X(Sub(n, k − 1))). Our second

benchmark is : Bench2(n, k) = 〈
∧n−1

i=0 G(pi → Sub(i + 1, k)), Fp0 → Fpn〉. It is

relatively easy to see that ψ |= φ holds for any value of k, and that for odd values of k,

the nested subformulas beyond the first level are not needed to establish the property.



Benchmark 3. This third and final benchmark aims to demonstrate the usefulness of our

abstraction algorithms in a more realistic setting. We specified the behavior of a lift with

n floors with a parametric LTL formula. An example of such formulas can be found in

the appendix. For n floors, Prop = {f1, . . . , fn, b1, . . . , bn, open}. The fi propositions

represent the current floor. Only one of the fi’s can be true at any time, which is initially

f1. The bi propositions represent the state (lit or unlit) of the call-buttons of each floor

and there is only one button per floor. The additional open proposition is true when the

doors of the lift are open. The constraints on the dynamics of this system are as follows :

(i) initially the lift is at the first floor and the doors are open, (ii) the lift must close its

doors when changing floors, (iii) the lift must go through floors in the correct order,

(iv) when a button is lit, the lift eventually reaches the corresponding floor and opens

its doors, and finally (v) when the lift reaches a floor, the corresponding button becomes

unlit. Let n be the number of floors. We apply our algorithms to check two properties

which depend on a parameter k with 1 < k ≤ n, namely Spec1(k) = G((f1 ∧ bk) →
(¬fkUfk−1)), and Spec2(k) = G((f1 ∧ bk ∧ bk−1)→ (bkU¬bk−1)).

Experimental results. All the results of our experiments are found in Fig. 2, and were

performed on a quad-core 3,2 Ghz Intel CPU with 12 Gb of memory. Due to lack of

space, we only report results for the concrete forward and reverse backward algorithms

which were the fastest (by a large factor) in all our experiments. The columns of the

table are as follows. ATC is the size of the largest antichain encountered, iters is the

number of iterations of the fixpoint, ATCα and ATC γ are respectively the sizes of the

largest abstract and concrete antichains encountered, steps is the number of execution

of the refinement steps and |P| is the maximum number of blocks in the partitions.

Benchmark 1. The partition sizes of the first benchmark illustrate how our algorithm

exploits the locality of the property to abstract away the irrelevant parts of the system.

For local properties, i.e. for small values of k, |P| is small compared to |Loc| mean-

ing that the algorithm automatically ignores many subformulas which are irrelevant to

the property. For larger values of k, the abstraction overhead becomes larger, but that

overhead becomes less important as the system grows. Benchmark 2. On the second

benchmark, our abstract algorithm largely outperforms the concrete algorithm. Notice

how for k ≥ 3 the partition sizes do not continue to grow (it also holds for values of

k beyond 5). This means that contrary to the concrete algorithm, FGAR does not get

trapped in the intricate nesting of the F modalities (which are not necessary to prove the

property) and abstracts it completely with a constant number of partition blocks. The

speed improvement is considerable. Benchmark 3. On this final benchmark, the abstract

algorithm outperforms the concrete algorithm when the locality of the property spans

less than 5 floors. Beyond that value, the abstract algorithm starts to take longer than

the concrete version. From the ATC column, one can see that the antichain sizes remain

constant in the concrete algorithm, when the number of floors increases. This strongly

indicates that the difficulty of this benchmark comes mainly from the exponential size

of the alphabet rather than the state-space itself. Because our algorithms only abstracts

the locations and not the alphabet, these results are not surprising. But again, for local

properties, the gains are very significant.



concrete forward abstract backward

n k |Loc| |Prop| time ATC iters time ATCα ATCγ iters steps |P|
B
e
n
c
h
1

11 5 50 12 0,10 6 3 0,23 55 2 5 3 27

15 5 66 16 1,60 6 3 0,56 55 2 5 3 31

19 5 82 20 76,62 6 3 8,64 55 2 5 3 35

11 7 50 12 0,13 8 3 0,87 201 2 5 3 31

15 7 66 16 2,04 8 3 1,21 201 2 5 3 35

19 7 82 20 95,79 8 3 9,99 201 2 5 3 39

11 9 50 12 0,16 10 3 12,60 779 2 5 3 35

15 9 66 16 2,69 10 3 13,42 779 2 5 3 39

19 9 82 20 125,85 10 3 46,47 779 2 5 3 43

B
e
n
c
h
2

7 1 19 8 0,06 8 2 0,10 11 2 4 3 14

10 1 25 11 0,06 10 2 0,10 14 2 4 3 17

13 1 31 14 0,08 14 2 0,12 17 2 4 3 20

7 3 33 8 0,78 201 14 0,13 11 2 4 3 26

10 3 45 11 802,17 4339 20 0,30 14 2 4 3 35

13 3 57 14 > 1000 - - 1,26 17 2 4 3 44

7 5 47 8 88,15 2122 26 0,14 11 2 4 3 26

10 5 65 11 > 1000 - - 0,37 14 2 4 3 35

13 5 83 14 > 1000 - - 1,47 17 2 4 3 44

L
if

t
:
S
p
e
c
1

8 3 84 17 0,30 10 17 0,51 23 40 7 4 21

12 3 116 25 17,45 10 25 1,63 23 40 7 4 21

16 3 148 33 498,65 10 33 26,65 23 40 7 4 21

8 4 84 17 0,26 10 17 1,29 37 72 10 6 24

12 4 116 25 17,81 10 25 5,02 37 72 10 6 24

16 4 148 33 555,44 10 33 78,75 37 72 10 6 24

8 5 84 17 0,32 10 17 3,70 42 141 12 8 27

12 5 116 25 20,24 10 25 47,45 42 141 12 8 27

16 5 148 33 543,27 10 33 > 1000 - - - - -

L
if

t
:
S
p
e
c
2

8 3 84 17 0,46 10 17 1,18 58 72 8 4 22

12 3 116 25 17,98 10 25 3,64 58 72 8 4 22

16 3 148 33 557,75 10 33 48,90 58 72 8 4 22

8 4 84 17 0,29 10 17 3,04 124 126 11 6 25

12 4 116 25 19,29 10 25 10,63 124 126 11 6 25

16 4 148 33 576,56 10 33 128,40 124 126 11 6 25

8 5 84 17 0,31 10 17 15,88 131 266 14 8 28

12 5 116 25 19,47 10 25 283,90 131 266 14 8 28

16 5 148 33 568,83 10 33 > 1000 - - - - -

Fig. 2. Experimental results. Times are in seconds.



7 Discussion

We have proposed in this paper two new abstract algorithms with refinement for decid-

ing language emptiness for AFA. Our algorithm is based on an abstraction-refinement

scheme inspired from [5], which is different from the usual refinement techniques based

on counter-example elimination [4]. Our algorithm also builds on the successful tech-

nique of antichains, that we have introduced in [6], to symbolically manipulate closed

sets of cells (sets of sets of locations). We have demonstrated with a set of benchmarks

that our algorithm is able to find coarse abstractions for complex automata constructed

from large LTL formulas. For a large number of instances of those benchmarks, the ab-

stract algorithms outperform by several order of magnitude the concrete algorithms. We

believe that this clearly shows the interest of our new algorithms and their potential fu-

ture developments. Several lines of future works can be envisioned. First, we should try

to design a version of our algorithms where refinements are based on counter-examples

and compare the relative performance of the two methods. Second, we have developed

our technique for automata on finite words. We need to develop more theory to be able

to apply our ideas to automata on infinite words. The fixed points involved in deciding

emptiness for the infinite word case are more complicated (usually nested fixed points)

and our theory must be extended to handle this case. Finally, it would be interesting to

enrich our abstraction framework to deal with very large alphabets, possibly by parti-

tioning the set of alphabet symbols.
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8 Appendix

This is the formula for the lift system with 2 floors :

f1∧ ¬f2∧ open∧G(((b1→ (b1 U (f1∧ open))) ∧ (b2→ (b2 U (f2∧ open)))))∧
G((open→ (f1 ∨ f2))) ∧G(((f1→ (¬f2)) ∧ (f2→ (¬f1))))∧
G((f1→ ¬Xf2) ∧ (f2→ ¬(Xf1)))∧
G((((f1∧X2(true))→ X2((f1∨ f2)))∧ ((f2∧X2(true))→ X2((f1∨ f2)))))∧
G(((f1→ ¬b1) ∧ (f2→ ¬b2)))




