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Abstract: In underwater acoustic networks, the accurate estimation of routing weights is NP-hard
due to the time-varying environment. Fuzzy logic is a powerful tool for dealing with vague problems.
Software-defined networking (SDN) is a promising technology that enables flexible management by
decoupling the data plane from the control plane. Inspired by this, we proposed a fuzzy logic-based
software-defined routing scheme for underwater acoustic networks (FL-SDUAN). Specifically, we
designed a software-defined underwater acoustic network architecture. Based on fuzzy path optimiza-
tion (FPO-MST) and fuzzy cut-set optimization (FCO-MST), two minimum spanning tree algorithms
under different network scales were proposed. In addition, we compared the proposed algorithms to
state-of-the-art methods regarding packet delivery rate, end-to-end latency, and throughput in differ-
ent underwater acoustic network scenarios. Extensive experiments demonstrated that a trade-off
between performance and complexity was achieved in our work.

Keywords: software-defined networks; software-defined routing; underwater acoustic networks;
fuzzy logic

1. Introduction

The ocean is the largest ecosystem, which plays a significant role in the survival
and development of human beings. With the shortage of resources, the exploitation of
the ocean has become a hot topic [1]. An underwater acoustic network (UAN) consists
of sensor nodes with acoustic communication and computational capabilities [2]. This
system has the advantages of simple infrastructure, small size, and low cost compared
to traditional underwater networks. In a conventional UAN, the routing function relies
on the collaboration of underwater data nodes (DNs). The customer burns the specified
protocols in advance into the read-only memory (ROM) of DNs. Routing technologies
that rely on hardware infrastructure cannot be optimized regarding reliability and energy
consumption [3]. Additionally, these technologies are complex, poorly converged, and
inefficient. Software-defined networking (SDN) is an emerging paradigm that enables
the separation of the data plane and control plane, greatly simplifying management and
fostering innovation and growth.

The software-defined underwater acoustic network (SD-UAN) consists of multiple
DNs and surface buoys. The DN is set as an OpenFlow white switch, and the buoy is the
controller [4]. In SD-UAN, the DN sends a packet-in message containing the routing request
to the specified controller. At this point, the controller is triggered to execute a predesigned
routing algorithm and sends the calculated routing decision to the DN as a flow table,
which determines the path of data forwarding. Migrating routing tasks from performance-
and resource-constrained underwater nodes to a performance-powered SDN controller
is the most significant advantage of SD-UAN [5]. As a result, the routing computation is
faster and more efficient. Based on SDN, it dramatically reduces the energy consumption
of underwater nodes and extends the survival time of underwater nodes. The topology of
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the UAN is time-varying due to ocean currents. Therefore, it is not possible to evaluate the
path weights accurately. The fuzzy logic approach provides a novel routing mechanism
for uncertain UANs. This paper proposes a fuzzy logic-based software-defined routing
scheme for underwater acoustic networks (FL-SDUAN). To the best of our knowledge, this
is the first work to apply a combined SDN and fuzzy logic routing algorithm for UANs.
The main contributions of this paper are summarized as follows.

1. The architecture of FL-SDUAN was designed to perform routing protocols in a
robust SDN control plane, reducing complexity and increasing the availability of
underwater nodes.

2. Fuzzy logic was used to implement routing decisions, which improves the reliability
of underwater acoustic networks.

3. Two minimum spanning tree algorithms, fuzzy path optimization (FPO-MST), and
fuzzy truncated set optimization (FCO-MST) were proposed for different underwater
network scenarios.

4. FPO-MST and FCO-MST are compared with state-of-the-art methods in terms of
packet transmission rate, end-to-end latency, and throughput. Experiments showed
that a trade-off between performance and complexity was achieved in our work.

The rest of this paper is organized as follows. Section 2 describes the related work. In
Section 3, we present the architecture of FL-SDUAN. Section 4 offers the FPO-MST and
FCO-MST algorithms. Simulation experiments are performed in Section 5. In addition, in
Section 6, we conclude the paper.

2. Related Work
2.1. Software-Defined Routing Technologies in UANs

Many recent studies have focused on SDN-based routing techniques for underwater
acoustic networks. Akyildiz et al. [6] introduced Softwater, a software-defined underwater
communication system that supports various applications and enables the interoperability
of devices from different manufacturers. Torres et al. [7] developed a software-defined
platform in hydroacoustic networks with runtime configuration. The platform worked
well while maintaining flexibility. Ghannadrezaii et al. [8] proposed a routing system
that relies on software-defined underwater nodes. Each DN obtained a prediction of the
communication quality of a potential link with a one-hop neighbor by receiving beacon
signals from the aggregation node. Mohammadi et al. [9] proposed an SDN-based routing
technique to improve the quality of service (QoS) in the underwater Internet of Things (IoT).
The experimental results showed that this method significantly outperformed other non-
SDN methods concerning the packet loss rate, end-to-end latency, and energy consumption.
Luo et al. [10] presented an SDN-based routing testbed for hydroacoustic networks with a
one-hop RF channel in the control plane and a hydroacoustic channel as the data plane.

Sreeraj et al. [11] proposed a software-defined routing protocol that supports deep
learning in hydroacoustic networks. Simulation experiments showed that the survival time
of the protocol improved by 15% compared to conventional techniques. Ruby et al. [12]
modeled the underwater multimodal routing problem as an optimization problem and
solved it using a convex relaxation method in the full duplex case. Lin et al. [13] employed
the paradigm of SDN technology and proposed an SDN-based underwater cooperative
searching framework for AUV-based UWNs. Wang et al. [14] suggested a software-defined
clustering mechanism that achieved a trade-off between multiple constraints and improved
the performance of hydroacoustic networks. Lin et al. [15] proposed an SDN-based hy-
droacoustic network paradigm and introduced a clustering method through an improved
Birch algorithm. Lin et al. [16] proposed an SDN-based delay-sensitive routing algorithm
in hydroacoustic networks. The simulation results showed that the method could accu-
rately reflect the spatio-temporal characteristics of the network state. Ghafoor et al. [17]
recommended an SDN-based routing protocol for underwater acoustic networks. A central
controller on the surface buoy provided a global view, while a local controller on the
autonomous underwater vehicle (AUV) offered a local view.
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2.2. The Fuzzy Logic-Based Clustering Techniques in UANs

Krishnaswamy et al. [18] designed a fuzzy logic-based clustering scheme for hydroa-
coustic networks. There was a significant difference between detecting malicious nodes and
delivering packets. Krishnaswamy et al. [19] proposed a fuzzy inference-based clustering
mechanism that could reduce and prolong the survival time of UANs. Bharathy et al. [20]
introduced a fuzzy logic-based clustering algorithm to select cluster heads (CHs) in hydroa-
coustic networks. Goyal et al. [21] proposed a fuzzy logic clustering method to identify the
best CH in hydroacoustic networks. Goyal et al. [22] proposed a fuzzy clustering algorithm
for hydroacoustic networks. The experimental results showed that this protocol mini-
mized energy consumption and latency while increasing throughput and transmission rate.
Song et al. [23] implemented a fuzzy clustering algorithm based on the analytic hierarchy
process (AHP) in a hydroacoustic network. Umamaheswari et al. [24] used a fuzzy algo-
rithm for CH selection to extend the stability and depletion rate of UANs. The experimental
results showed that their method outperformed other methods.

2.3. The Fuzzy Logic-Based Routing Technologies in UANs

To optimize end-to-end latency, Bennouri et al. [25] implemented an optimized vector
protocol based on fuzzy logic (FLOVP) that provides better routing performance than
vector-based forwarder (VBF) algorithms. Li et al. [26] performed a weight-based fuzzy
logic (WBFL) algorithm for underwater acoustic networks. Experiments showed that this
mechanism for selecting relay nodes is efficient and accurate. Mulla et al. [27] proposed
an energy-efficient routing protocol that used fuzzy logic to select DNs in hydroacoustic
networks. Bu et al. [28] proposed a fuzzy-based routing protocol to determine node loca-
tions and energy levels in UANs. Rahman et al. [29] developed a fuzzy algorithm to assist
in cooperative opportunity routing in UANs, effectively reducing energy consumption,
survival time, and delay. Rahman et al. [30] recommended an energy-efficient cooperative
opportunity routing (EECOR) protocol for hydroacoustic networks, which used a fuzzy
logic-based scheme to select the most suitable relay node considering energy consumption.
Reza et al. [31] presented a fuzzy logic-based grid routing algorithm that extended the
survival time and reduced the end-to-end latency of UANs.

Tariq et al. [32] used a routing protocol that considered the residual energy and
deployment depth of underwater nodes. Based on various fuzzy logic metrics, this protocol
outperformed similar protocols regarding end-to-end latency and energy consumption.
Huang et al. [33] proposed a direction-sensitive routing protocol (DSR) that used fuzzy
reasoning to select the best candidate for hydroacoustic networks. The simulation results
showed that the algorithm had better energy consumption, packet delivery rate (PDR),
and average end-to-end latency. Pabani et al. [34] proposed an energy-efficient packet
protection scheme based on fuzzy logic. The simulation results showed that the proposed
routing protocol is efficient with a minimum number of routing table entries. Tavakoli
et al. [35] proposed a fuzzy logic-based clustering algorithm that constructed optimal CHs
based on fuzzy logic.

2.4. Summary

The above works aimed to design software-defined system architectures that run
fewer routing algorithms in the control plane. Fuzzy logic is suitable for solving routing
problems in dynamic underwater environments because it can handle uncertainty and give
optimal solutions. Most studies use fuzzy logic to optimize residual energy, hop distance,
link quality, and deployment density. However, it also faces the following challenges. On
the one hand, the extended fuzzy logic-based schemes are mainly based on the cooperative
communication of CHs. Therefore, the energy of CHs will be depleted quickly. Frequent CH
elections can affect the stability of clusters and lead to constant changes in network topology.
On the other hand, many fuzzy logic-based schemes assume a uniform distribution of
underwater nodes, which differs significantly from the actual deployment. In underwater
acoustic networks, DNs move due to ocean currents. Consequently, the possibility of
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dense and sparse node types is high. Unfortunately, there are relatively few fuzzy routing
schemes involving these two states.

3. Methodology
3.1. The FL-SDUAN Model

The FL-SDUAN model consists of three parts: the underwater data nodes, the surface
aggregation nodes, which act as controllers, and the coastal base stations (BSs). The DN
consists of a buoy, an anchor chain, and an anchor. The sensor is mounted on the buoy, and
the anchor chain connects the anchor to the buoy. When the DN is deployed, the anchor
sinks to the bottom, and the anchor chain expands and contracts to a fixed length. Finally,
all the buoys form a 3D network structure. The FL-SDUAN model is shown in Figure 1.
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The data plane is built by virtualization, in which Open vSwitch (OvS) is installed
on the DNs to implement the OpenFlow switching function [36]. The controller is set
on the water surface, and the OpenDayLight (ODL) system is installed on it to build the
control plane. A high-energy rechargeable battery powers the controller. As an application
plane, the associated applications run on the BS. The multi-application system is an agent
management system based on Flowvisor [37].

In FL-SDUAN, it uses an SDN architecture with the separation of data communication
and control communication. Different hydroacoustic signal frequencies are designed for
control communication and data communication. Single-hop mode is used for control
communication, and multi-hop relay mode is used for data communication. RF signals
are used for communication between BSs and surface controllers. When the UAN is
deployed, the controller triggers all underwater nodes in the management area through
control communication. At a given time, the underwater nodes are connected to the
controller via one-hop control communication and then report their status information,
such as location and resource status, at any time. When the underwater node sends a
routing request, the controller executes the routing algorithm and assigns routing decisions
to the corresponding node.

3.2. The Routing Procedure of FL-SDUAN

The routing algorithm of FL-SDUAN consists of three phases: node clustering, route
calculation, and data transmission.

(1) Node clustering phase

The main steps of node clustering include four actions, i.e., temporary head (TH)
election, cluster construction, CH election, and DN joins to the corresponding cluster. The
clustering is triggered based on the trigger-cluster message sent by a controller. The DN
decides whether it is a TH by comparing its random number with the TH threshold. When
the TH is determined, clusters are formed and centered on the TH. The nodes in the cluster
select the CH by comparing their respective communication capabilities. If the CH is
elected, the DN signs the CH, and the clustering process is completed. In a cycle, there is
only one CH in a cluster and each node belongs to only one cluster. Then, the DN sends
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a cluster-statistics message to the controller. The message includes cluster ID, remaining
energy, resource utilization, node static data, node ID, timestamp, and rounds. The format
of the cluster-statistics message is shown in Figure 2.
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(2) Route calculation phase

In FL-SDUAN, the controller receives cluster-statistics messages and stores them in
the corresponding node state table. At this time, the controller can candidate CHs. If
CHs are selected, they are periodically registered to corresponding controllers. Therefore,
controllers have a global view of the network in real time. Then, they use cluster-statistics
messages to calculate path weights between CHs based on fuzzy logic and construct routing
paths. As shown in Figure 3, the yellow nodes are the CHs elected by each cluster, while
the white nodes are the data nodes. Routing decisions are calculated and passed by the
controller. The routing paths are then implemented by multi-hop relay communication
through the corresponding CHs.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 20 
 

(1) Node clustering phase 

The main steps of node clustering include four actions, i.e., temporary head (TH) 

election, cluster construction, CH election, and DN joins to the corresponding cluster. The 

clustering is triggered based on the trigger-cluster message sent by a controller. The DN 

decides whether it is a TH by comparing its random number with the TH threshold. When 

the TH is determined, clusters are formed and centered on the TH. The nodes in the cluster 

select the CH by comparing their respective communication capabilities. If the CH is 

elected, the DN signs the CH, and the clustering process is completed. In a cycle, there is 

only one CH in a cluster and each node belongs to only one cluster. Then, the DN sends a 

cluster-statistics message to the controller. The message includes cluster ID, remaining 

energy, resource utilization, node static data, node ID, timestamp, and rounds. The format 

of the cluster-statistics message is shown in Figure 2. 

Cluster ID
Residual 

Energy

Resource 

occupancy

Node 

Statics
Node ID Timestamp Rounds

CPU TCAM RAM

 

Figure 2. The format of a cluster-statistics message. 

(2) Route calculation phase 

In FL-SDUAN, the controller receives cluster-statistics messages and stores them in 

the corresponding node state table. At this time, the controller can candidate CHs. If CHs 

are selected, they are periodically registered to corresponding controllers. Therefore, con-

trollers have a global view of the network in real time. Then, they use cluster-statistics 

messages to calculate path weights between CHs based on fuzzy logic and construct rout-

ing paths. As shown in Figure 3, the yellow nodes are the CHs elected by each cluster, 

while the white nodes are the data nodes. Routing decisions are calculated and passed by 

the controller. The routing paths are then implemented by multi-hop relay communica-

tion through the corresponding CHs. 

Water Surface

Controller

Controller

Underwater Node

Cluster head (CH)

Inter-cluster link

Intra-cluster link

4

2
3

1

19
20

22

21

25
24

23
12

13 14
15

9 11

10

8

6

5

7

16

17

18

 

Figure 3. The FL-SDUAN routing schematic. 

(3) Data transmission phase 

In data transmission, each DN sends data only to the corresponding CH, and multi-

ple CHs transmit data to the controller through relay communication. The controller cal-

culates an optimal path for the node requesting the route, and the data is forwarded along 

this path. The FL-SDUAN routing procedure is shown in Figure 4. 

Figure 3. The FL-SDUAN routing schematic.

(3) Data transmission phase

In data transmission, each DN sends data only to the corresponding CH, and multiple
CHs transmit data to the controller through relay communication. The controller calculates
an optimal path for the node requesting the route, and the data is forwarded along this
path. The FL-SDUAN routing procedure is shown in Figure 4.

3.3. The Path Weights between CHs

Routing is performed based on the relay communication of CHs in FL-SDUAN. If the
network status changes, the controller waits for a route request message via the control
communication. When a route-request message is received, it retrieves the node state
table to find the optimal path. Due to multi-hop transmission, a CH may have multiple
neighboring nodes. Path weights are quantified for the distance from the CH neighbor
to the controller, the node’s residual energy, and the resource occupancy. The distance
between the CH and the controller is determined by the strength of the signal it sends.
Resource occupancy includes CPU utilization and ternary content addressed memory
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(TCAM). The CH with the lowest path weight is selected as the next hop. The path weight
from CHi to CHj is counted on the controller as shown in (1).

Weight(i, j) = α× Strength(j) + β× (1− Residual(j)) + γ× Resource(j) (1)

where Strength(j) denotes the signal strength; Residual(j) indicates the residual energy;
Resource(j) is the resource occupancy; and α, β, and γ are weighting factors of signal
strength, residual energy, and resource occupancy, respectively.
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The weights are different from the application concerns. Therefore, there are differ-
ences in the designed weighting factors. Table 1 shows the state statistics of the three
CHs, including signal strength, residual energy, and resource occupancy expectation. It
indicates that CH5 has the most considerable residual energy, CH7 has the most robust
signal strength, and CH12 has the most significant resource occupancy. This situation exists
in multi-service hydroacoustic networks. If only one weighting factor is considered, it is
easy to choose the optimal CH. However, selecting CH among multiple weighting indices
is a challenge.

Table 1. Status statistics of CHs.

ID of CHs
Expectations

Signal Strength Residual Energy Resource Occupancy

CH5 0.2520 0.8420 0.2460
CH7 0.2840 0.7040 0.2650
CH12 0.1040 0.6850 0.2890

In general, the weighting factors are determined empirically. The subjective weight
factors have a significant impact on the selection of CHs. Once a reasonable CH is not
selected, the routing path is not optimal. We give three weight factors α, β, and γ, and
calculate the path weights from CHi to CH5, CH7, and CH12. The weight factors are
randomly set and are shown in Table 2.
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Table 2. Path weights under different factors.

Records
Factors Path Weights

α β γ CHi to CH5 CHi to CH7 CHi to CH12 Optimal CH

Item 1 0.3 0.34 0.36 0.22 0.28 0.23 CH5
Item 2 0.4 0.3 0.3 0.21 0.28 0.24 CH5
Item 3 0.33 0.28 0.39 0.22 0.28 0.25 CH5
Item 4 0.39 0.47 0.14 0.21 0.29 0.21 CH5 or CH12
Item 5 0.21 0.41 0.37 0.23 0.28 0.22 CH12
Item 6 0.18 0.49 0.33 0.23 0.28 0.2 CH12

The first three items indicate that the optimal node is CH5. However, the focus of
each item is different. Among them, items 1 and 3 focus on resource occupation, and
item 2 emphasizes signal strength. Item 4 indicates that the optimal node is CH5 or CH12.
Unfortunately, the two nodes’ residual energy, resource occupation, and signal strength
are different. Therefore, the randomly designed weighting factors are unreasonable and
cannot reflect the practical concerns.

4. Methodology
4.1. The Definition and Procedure of Fuzzy Logic

Fuzzy logic is a decision-making system inspired by human perception and judgment
capabilities. It is a simple technique for deriving uncertain or fuzzy information with less
computational power. Let X be a traditional set. Given the fuzzy set FA that is composed
of ordered numbers in X, as shown in (2).

FA = {(x, µA(x))|x ∈ X} (2)

where µA(x) ∈ [0, 1] is the attribution function. It indicates the degree to which X is
affiliated with FA.

Given a fuzzy number in the set R of real numbers. Let FA = (l, m, r), and the
attribution function µA [38] is shown in (3)

µA(x) =


0, x < l

x−l
m−l , l ≤ x ≤ m
r−x
r−m , m ≤ x ≤ r

0, r > x

(3)

where FA is a set of triangular fuzzy number, and l ∈ R, m ∈ R, r ∈ R. m is the principal
value of the triangular fuzzy number. l and r are the lower and upper bound of FA. The
attribution function µA(x) is shown in Figure 5.
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(1) Fuzzification

Fuzzification is the mapping of observations in the input space to fuzzy sets. Due to
the random disturbances such as latency and noise in hydroacoustic networks, we use a
triangular fuzzy logic approach to select the optimal CH. The input variables of the fuzzy
set mainly include the residual energy of neighboring CHs and resource utilization. These
two parameters are encapsulated in the cluster-statistics message. Figure 6 lists the fuzzy
degree of residual energy, which contains five affiliations, namely very low, low, medium,
high, and very high, with a fixed domain of [0, 1]. The fuzzy degree of resource utilization
is given in Figure 7, which consists of four affiliations, namely low, medium, high, and
very high, with the domain [0, 1]. The output set is represented by the optimal adaptation
degree, which consists of four affiliations: no fitness, low fitness, fitness, and extreme
fitness, with the domain defined as [0, 1], as shown in Figure 8.
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(2) Fuzzy inference

Fuzzy inference is used to estimate the optimal fitness and quantify the path weights
of CH. In fuzzy inference, each control rule is a vague conditional statement. All rules are
a set of fuzzy implications. We use Mamdani’s IF-THEN rule [39] to derive the optimal
CH with residual energy and resource utilization as inputs. Ãi is the i-th variable of
residual energy, B̃i is the resource utilization variable, and R̃i is the optimal fitness of CH, as
shown in (4).

R̃i = Ãi × B̃i (4)
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The rules correspond to the inference relation R∗, as shown in (5).

R∗ =
n
∪

i=1
R̃i =

n
∪

i=1

(
Ãi × B̃i

)
(5)

The inference rules are shown in Table 3, and the CH with optimal fitness is selected.

Table 3. Fuzziness rules.

Residual Energy
(Ãi )

Resource Utilization
(B̃i )

Fitness Value
(R̃i )

Very low Low Low fitness
Very low Medium No fitness
Very low High No fitness
Very low Very high No fitness

Low Low Low fitness
Low Medium No fitness
Low High No fitness
Low Very high No fitness

Medium Low Fitness
Medium Medium Low fitness
Medium High No fitness
Medium Very high No fitness

High Low Extremely fitness
High Medium Fitness
High High Low fitness
High Very high No fitness

Very high Low Extremely fitness
Very high Medium Fitness
Very high High Low fitness
Very high Very high No fitness

(3) Defuzzification

In fuzzy logic, the output is also a fuzzy set. Selecting a quantity to determine the
fuzzy value is called defuzzification. Multiple eligible candidates are generated when fuzzy
inference is completed, and the results are ranked using defuzzification. In this paper, the
maximum affiliation method was used for fuzzification. The point corresponding to the
foremost affiliation (R̃) is selected as the output quantity, as shown in (6).

Rout = max
{

n
∪

i=1
µ
(

R̃i

)}
(6)

If the number of points is not unique, it is expressed as an arithmetic or geometric
mean. Let RGn

out be the geometric mean and RAn
out the arithmetic mean, as shown in (7).

RAn
out = max

{
n
∪

i=1
1
n

m
∑

j=1
µ
(

R̃ij

)}

RGn
out = max

{
n
∪

i=1
m

√
m
∏
j=1

µ
(

R̃ij

)} (7)

4.2. Minimum Spanning Tree Algorithm Based on Fuzzy Cut-Set Optimization

Given an undirected network G(N, E, W), where N denotes the set of vertices, E is the
set of edges, and W is the weight function. The path L〈p, q〉 ∈ E′ is a tree arc between two
vertices p and q in G. Let L be a non-tree arc where L〈p, q〉 /∈ E′. Let E′ ⊆ E, if T(N, E′) is
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connected and has no loops. Then, T(N, E′) is a spanning tree of G. Assuming that each
edge e ∈ E has a weight W(e), thus, the sum weight of T is shown in (8).

W(T) = ∑
e∈E′

W(e) (8)

Let T∗ be the spanning tree of G. If W(T∗) ≤W(T), then T∗ is the minimum spanning
tree (MST) of G. If L〈p, q〉 is a tree arc, removing it from T divides the set N into two parts
X and X = N − X.

(
X, X

)
=
{
(i, j) ∈ E

∣∣i ∈ X, j ∈ X
}

is the cut set of G. If the cut-set is
minimum, then T(N, E′) is the MST of G(N, E).

The MST algorithm based on fuzzy cut-set optimization (FCO-MST) continuously ex-
pands a subtree T = (S∗, E∗) until all vertices of G(N, E) are included, where
S∗ = N. In FCO-MST, the path weights between CHs are calculated using triangular
fuzzy inference, and the arcs with the most negligible weights in the cut set are sequentially
added to form the MST of T. The FCO-MST pseudo code is shown as follows (Algorithm 1).

Algorithm 1 The FCO-MST algorithm

Input: G(V, E), E = ∞, Enew = ∅ //initialization graph G and arc
Output MST(G)

1: Procedure FCO-MST()
2: Vnew ← {V0|V 0 ∈ N} ; //initialize the root node
3: T ← (V0,∅) ; //initialize the spanning tree
4: for each node Vi ∈ Vnew and Vj ∈ V −Vnew

5: Ãij = Residual
(

Ṽj

)
; //residual energy of node

6: B̃ij = Resource
(

Ṽj

)
; //resource occupancy of node

7: R̃ij = Ãij × B̃ij; //fuzzy inference-based arc weights

8: W̃Vi→Vj ← max

{
n
∪

i=1
m

√
m
∏
j=1

µ
(

R̃ij

)}
;

9: WVi→Vj ← min
(

W̃Vi→Vj

)
;

10: if (Vnew = V)
11: T = (Vnew, Enew);
12: MST(G)← T ;
13: else if (Vnew, V −Vnew) = ∅
14: MST(G) = ∅; //unable to construct an MST tree
15: else
16: Vnew ← {Vi |V i ∈ N} ; //add the node Vi to Vnew
17: Vnew = Vnew ∪ {V −Vnew}; //update Vnew
18: Enew ← EVi→Vj ; //add the arc EVi→Vj to Enew

19: Enew = Enew ∪ {E− Enew}; //update Enew
20: T = T ∪ (Vnew, Enew); //update T
21: MST(G)← (Vnew, Enew) ; //construct T
22: End if
23: Continue;
24: End if
25: End for

4.3. Minimum Spanning Tree Algorithm Based on Fuzzy Path Optimization

If L〈p, q〉 is a non-tree arc, there exists a unique path from node p to q on the tree T that
connects the two nodes to form a loop. For a non-tree arc L〈p, q〉 ∈ E− E′, if the weights of
all arcs in T(N, E′) are less than the directly connected arc weights of p and q, then T is a
spanning tree of G. The MST algorithm based on fuzzy path optimization (FPO-MST) is
also known as the greedy approach. The graph G is constructed by CHs. Fuzzy inference is
used to calculate the path weights between CHs. In FPO-MST, the arcs with the smallest
weights are joined to the subtree T. If the arc does not form a ring when connected to T,



Appl. Sci. 2023, 13, 944 11 of 18

the arc is added. Then the next arc is considered until all nodes are traversed. Finally, it
constructs the tree. The FPO-MST pseudo code is shown as follows (Algorithm 2).

Algorithm 2 The FPO-MST algorithm

Input G(V, E), E = ∞, Enew = ∅ //initialization graph G and arc value
Output MST(G)

1: Procedure FPO-MST()
2: Vnew ← {V0 |V 0 ∈ N} ;
3: T ← (V0,∅) ;
4: For each node Vi ∈ Vnew and Vj ∈ V −Vnew

5: Ãij = Residual
(

Ṽj

)
; //residual energy of node

6: B̃ij = Resource
(

Ṽj

)
; //resource occupancy of node

7: R̃ij = Ãij × B̃ij ;

8: W̃Vi→Vj ← max

{
n
∪

i=1
m

√
m
∏
j=1

µ
(

R̃ij

)}
;

9: WVi→Vj ← min
(

W̃Vi→Vj

)
; //pick the arc weight

10: if
(

WVi→Vj < WVi+1→Vj+1

)
11: T = T ∪

(
Vi → Vj

)
;

12: else if T ∪
(

Vi+1 → Vj+1

)
∈ Ci+1,j+1

13: MST(G) = ∅; //unable to construct an MST tree
14: else
15: Vnew ← {Vi |V i ∈ N} ; //add the node Vi to Vnew
16: Vnew = Vnew ∪ {V −Vnew}; //update Vnew
17: Enew ← EVi→Vj ; //add the arc EVi→Vj to Enew

18: Enew = Enew ∪ {E− Enew}; //update Enew
19: T = T ∪ (Vnew, Enew); //update T
20: MST(G)← T ; //construct T
21: End if
22: Continue
23: End if
24: End for

5. Experimental Results and Analysis

In this paper, we constructed a simulation experiment to run the proposed routing
algorithms on a controller. It uses fuzzy logic to infer the optimal path weights between
CHs and then implements FPO-MST and FCO-MST.

5.1. Experimental Settings

Mininet 2.2.1 and WOSS 1.5.0 software were used to design the simulation platform.
We set up VirtualBox 5.2.12 as the virtual machine. Open vSwitch v2.5.1 was installed
in DNs to build an SDN switch, and OpenDayLight was deployed on the surface sink
node as the SDN controller. FPO-MST and FCO-MST algorithms were running on the
controller. The experiment was run on a clustered system consisting of eight blade servers.
Each server was configured with two E5-2698 v4 processors and 512 GB of memory. The
clustered system was configured with an IBM v3700 storage of 10 TB disk capacity. Eight
controllers and 200 DNs were given in the experiment. Each controller was allocated
20 core CPU resources, 64 GB of memory, and 2 TB of disk capacity. A DN provided one
core CPU resource, 8 GB of memory, and 10 GB of disk capacity. The network is assumed to
be randomly deployed in a 1000 × 1000 × 100 m3 submerged area. We supposed that the
depth range of the nodes is 10~110 m, and the underwater nodes are relatively stationary
and the motion is insignificant. Let the data communication distance be 100 m, the cluster
radius 50 m, and the control communication distance be 1000 m. Other parameters are
shown in Table 4.
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Table 4. Experimental parameters.

Parameter Value Parameter Value

Control channel model Rayleigh Fading [40] Data channel model Rice Fading [41]
Noise type Complex Gaussian Underwater signal rate 2000 bps

Carrier frequency 10 kHz Size of data Packet 6400 bits
Size of control package 200 bits Power of clustering 200 mW

Threshold of delay 0.01 Power of data communication 300 mW

Threshold of PDR 0.005 Power of control
communication 500 mW

Threshold of reselecting CH 0.35 Power of the receiving
message 100 mW

Duration of the sequence 5 ms Power of sleep 50 mW

We compared the PDR, end-to-end latency, and throughput of FPO-MST and FCO-
MST with the three related algorithms in different scenarios. The low-energy adaptive
clustering hierarchy algorithm (LEACH) [42] divides UANs into multiple clusters. Each
cluster consists of one CH and multiple DNs. The CH is predefined in this algorithm.
When the cluster is formed, the CH broadcasts the communication schedule based on
the time division multiple access (TDMA) technique. Each DN in the cluster transmits
data to the CH according to the allocated time slots. The CH aggregates the data and
sends them to a BS. Dipanwita’s algorithm is a clustering-based routing [43] method for
hydroacoustic networks. It consists of two phases: CH selection and data transmission.
In this algorithm, the CH implements a multi-hop routing scheme by aggregating data.
Energy-efficient hybrid clustering algorithm (EEHC) [44] is a routing protocol with a
predetermined percentage of clusters.

5.2. The Packet Delivery Rate

The packet delivery rate is a fundamental merit of a routing protocol. The PDR of
LEACH, EEHC, Dipanwita’s algorithm, FPO-MST, and FCO-MST in different rounds is
shown in Figure 9. The PDR of all five algorithms tended to decrease as the number of
rounds increases. When runtime increased, some nodes died. Therefore, the network
connectivity became worse. FPO-MST and FCO-MST use triangular fuzzy logic to estimate
the optimal path weights between CHs. Consequently, they had a higher PDR. Due to
re-clustering, FCO-MST had the highest PDR before round 43. After this period, the dead
nodes increased dramatically. As a result, many new CHs were selected and the size of the
spanning tree increased. As a result, FPO-MST had the highest PDR.
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We compared the PDR with a different number of nodes, as shown in Figure 10. The
PDR tended to increase with increasing DNs. EEHC is a cluster-based routing algorithm
that combines the depth of the DNs and the residual energy. Therefore, the PDR was
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relatively high. Dipanwita’s algorithm also uses a clustering architecture with a small
square structure, so the PDR was relatively low. On the contrary, LEACH had the lowest
PDR. Since the number of single-node clusters may increase after running for a while,
the routing efficiency decreased sharply. When the number of DNs increased to 140, the
PDR of FCO-MST was higher than that of FPO-MST. Thus, FCO-MST is more suitable for
large-scale hydroacoustic networks.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 20 
 

0 20 40 60 80 100

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

T
h
e 

p
ac

k
et

 d
el

iv
er

y
 r

at
e

Rounds

 FCO-MST

 FPO-MST

 EEHC

 Dipanwita's algorithm

 LEACH

 

Figure 9. PDRs vs. rounds. 

We compared the PDR with a different number of nodes, as shown in Figure 10. The 

PDR tended to increase with increasing DNs. EEHC is a cluster-based routing algorithm 

that combines the depth of the DNs and the residual energy. Therefore, the PDR was rel-

atively high. Dipanwita’s algorithm also uses a clustering architecture with a small square 

structure, so the PDR was relatively low. On the contrary, LEACH had the lowest PDR. 

Since the number of single-node clusters may increase after running for a while, the rout-

ing efficiency decreased sharply. When the number of DNs increased to 140, the PDR of 

FCO-MST was higher than that of FPO-MST. Thus, FCO-MST is more suitable for large-

scale hydroacoustic networks. 

20 40 60 80 100 120 140 160 180 200

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 

 

T
h
e 

p
ac

k
et

 d
el

iv
er

y
 r

at
e

Number of nodes

 FCO-MST

 FPO-MST

 EEHC

 Dipanwita's algorithm

 LEACH

 

Figure 10. PDR vs. the number of nodes. 

5.3. The End-to-End Latency 

As the average delay of packets from source to destination, the end-to-end latency 

(E2EL) reflects the network’s access rate and transmission quality. Smaller E2EL indicates 

better performance of the routing protocol. We compared the E2EL with different num-

bers of DNs, as shown in Figure 11. It is clear that the E2ELs of the five algorithms had an 

increasing trend with increasing DNs. Among them, Dipanwita’s algorithm had the larg-

est E2EL compared to the EEHC and LEACH algorithms. However, FCO-MST had the 

most negligible end-to-end latency with a small number of nodes (50–100). Furthermore, 

FPO-MST had the smallest E2EL when the number of nodes was 100~200. We know that 

the E2EL of FPO-MST is more advantageous in a dense node environment. 

Figure 10. PDR vs. the number of nodes.

5.3. The End-to-End Latency

As the average delay of packets from source to destination, the end-to-end latency
(E2EL) reflects the network’s access rate and transmission quality. Smaller E2EL indicates
better performance of the routing protocol. We compared the E2EL with different numbers
of DNs, as shown in Figure 11. It is clear that the E2ELs of the five algorithms had an
increasing trend with increasing DNs. Among them, Dipanwita’s algorithm had the largest
E2EL compared to the EEHC and LEACH algorithms. However, FCO-MST had the most
negligible end-to-end latency with a small number of nodes (50–100). Furthermore, FPO-
MST had the smallest E2EL when the number of nodes was 100~200. We know that the
E2EL of FPO-MST is more advantageous in a dense node environment.
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To demonstrate the benefits based on SDN architecture, we also compared the E2EL of
the five algorithms under different buffer utilization, as shown in Figure 12. It can be seen
that with the increase in buffer utilization, the end-to-end latency of the five algorithms
increased. Specifically, LEACH still had the highest latency, while EEHC and Dipanwita’s
algorithms had the essential reaching delay. Both algorithms were higher than the two
algorithms proposed in this paper. It is because routing decisions are executed in the control
plane, whereas underwater nodes only forward data in the data plane. The main reason for
the latency difference between FCO-MST and FPO-MST is that they have differences on
network scales.



Appl. Sci. 2023, 13, 944 14 of 18

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 20 
 

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

 

 

T
h
e 

en
d
-t

o
-e

n
d
 l

at
en

cy
 (

m
s)

Number of nodes

 FCO-MST

 FPO-MST

 EEHC

 Dipanwita's algorithm

 LEACH

 

Figure 11. The comparison of E2EL under a different number of nodes. 

To demonstrate the benefits based on SDN architecture, we also compared the E2EL 

of the five algorithms under different buffer utilization, as shown in Figure 12. It can be 

seen that with the increase in buffer utilization, the end-to-end latency of the five algo-

rithms increased. Specifically, LEACH still had the highest latency, while EEHC and 

Dipanwita’s algorithms had the essential reaching delay. Both algorithms were higher 

than the two algorithms proposed in this paper. It is because routing decisions are exe-

cuted in the control plane, whereas underwater nodes only forward data in the data plane. 

The main reason for the latency difference between FCO-MST and FPO-MST is that they 

have differences on network scales. 

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

20

40

60

80

100

120

 

 

T
h
e 

E
n
d
-t

o
-e

n
d
 L

at
en

cy
 (

m
s)

Buffer Utilization

 FCO-MST

 FPO-MST

 EEHC

 Dipanwita's algorithm

 LEACH

 

Figure 12. Comparison of E2EL under different buffer utilization. 

5.4. The Comparisons of Throughput 

Throughput is also an essential metric for routing algorithms. The throughput of the 

five algorithms at different underwater signal rates is shown in Figure 13. The maximum 

signal rate of the experimental design is 2000 bps, and the throughput of all five algo-

rithms tended to increase as the signal rate increased. FCO-MST had the highest through-

put at lower underwater rate conditions (<1350 bps). However, as the underwater signal 

rate increased (>1400 bps), FPO-MST had the highest throughput, while Dipanwita’s al-

gorithm had the lowest throughput, and the EEHC and LEACH algorithms had compa-

rable throughputs. 

Figure 12. Comparison of E2EL under different buffer utilization.

5.4. The Comparisons of Throughput

Throughput is also an essential metric for routing algorithms. The throughput of
the five algorithms at different underwater signal rates is shown in Figure 13. The max-
imum signal rate of the experimental design is 2000 bps, and the throughput of all five
algorithms tended to increase as the signal rate increased. FCO-MST had the highest
throughput at lower underwater rate conditions (<1350 bps). However, as the underwater
signal rate increased (>1400 bps), FPO-MST had the highest throughput, while Dipan-
wita’s algorithm had the lowest throughput, and the EEHC and LEACH algorithms had
comparable throughputs.
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We also compared the throughput of the five algorithms for different numbers of
underwater nodes, and the results are shown in Figure 14. The throughput of all algorithms
decreased as the number of underwater nodes increased. In UAN, as the number of nodes
increased, the probability of interference in the signals transmitted between nodes increased.
On the contrary, FCO-MST and FPO-MST are based on SDN architecture and achieved the
separation of data and control communication. They use fuzzy logic for routing decisions,
which reduced the delays caused by communication detection and state switching. In
summary, the proposed algorithms have high overall throughput. The FCO-MST algorithm
is based on cut-set optimization and is suitable for large-scale hydroacoustic networks.
In comparison, FPO-MST focuses on path optimization and is more fit for small-scale
networks. Therefore, the throughput of FPO-MST was higher than that of FCO-MST when
the number of nodes was small (<100), and FCO-MST had a good throughput when the
number of nodes increased to 117.
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5.5. The Comparison of Complexity

The high complexity of hydroacoustic networks leads to rapid energy consumption.
The routing algorithm is performed on the controller, which sends the results to the DN
requesting the routing path. The complexity affects the results of the path calculation for
CHs, but not the energy consumption of the UAN, which is the most significant advantage.
The complexity comparison of these five algorithms is shown in Figure 15. We see that
Dipanwita’s algorithm had the highest complexity and the LEACH algorithm had the
lowest complexity. The complexity of the EEHC algorithm was close to Dipanwita’s
algorithm. The complexity of FCO-MST and FPO-MST was slightly higher than that of
LEACH. When the number of DNs was greater than 100, the complexity of FCO-MST was
greater than that of FPO-MST. When the number of DNs was less than 80, the complexity
of FPO-MST was greater than that of FCO-MST.
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In the LEACH algorithm, a random number r(0− 1) is activated for DNs that has not
yet served as CHs in each round. The threshold T(n) is set in the algorithm. If r < T(n), the
node can be set as a CH and the complexity is O(n). For Dipanwita’s algorithm, it uses the
ratio of CHs m to DNs n and the number of rounds to count for the selection probability of
CHs with a complexity of O(m ∗ n). The EEHC algorithm keeps the nodes as CHs at time t.
Since each node has an equal probability of becoming the CH, the complexity is O(t ∗ n).
The minimum spanning tree is constructed by judging the cut set in FCO-MST. For an
orphan graph G〈n, e〉 with n nodes and e edges constructed from CHs, the complexity of
constructing T(n, e′) based on the adjacency table is O(n + e). In addition, the complexity
for building T(n, e′) using the non-tree arc approach in FPO-MST is O(e log e).

6. Conclusions

This paper presents FL-SDUAN, a routing scheme for SDN-based underwater acoustic
networks. First, we established the architecture of FL-SDUAN and presented the fuzzy
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problem of path weights in the system. Then, we developed two MST-based fuzzy routing
algorithms, FPO-MST and FCO-MST, in detail. Finally, the packet delivery rate, end-to-
end latency, and throughput of FPO-MST and FCO-MST were compared with EEHC,
Dipanwita’s algorithm, and LEACH under different underwater network scenarios. The
experimental results showed that the algorithm improved the routing performance and
achieved a trade-off of performance and complexity.

Recently, we are prototyping a fuzzy logic-based SDN controller. Next, the field
deployment and experiments of FL-SDUAN will be the main work.
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AHP Analytic Hierarchy Process
BS Base Station
CH Cluster Head
DN Data Node
DSR Direction-Sensitive Routing
E2EL End-to-End Latency
EECOR Energy-Efficient Cooperative Opportunistic Routing
EEHC Energy-Efficient Hybrid Clustering
FCO-MST Minimum Spanning Tree Algorithms Based on Fuzzy Cut-Set Optimization
FLOVP Fuzzy Logic-Based Optimized Vector Protocol
FL-SDUAN Fuzzy Logic-Based Software-Defined Underwater Acoustic Networks
FPO-MST Minimum Spanning Tree Algorithms Based on Fuzzy Path Optimization
LEACH Low-Energy Adaptive Clustering Hierarchy
ODL OpenDayLight
OvS Open vSwitch
PDR Packet Delivery Rate
QoS Quality of Service
ROM Read-Only Memory
SDN Software-Defined Networking
SD-UAN Software-Defined Underwater Acoustic Network
TDMA Time Division Multiple Access
TH Temporary Head
UAN Underwater Acoustic Network
VBF Vector-Based Forwarder
WBFL Weight-Based Fuzzy Logic
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