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It is widely believed that the swimming speed, v, of many flagel-

lated bacteria is a nonmonotonic function of the concentration, c,

of high-molecular-weight linear polymers in aqueous solution, show-

ing peaked v(c) curves. Pores in the polymer solution were suggested

as the explanation. Quantifying this picture led to a theory that pre-

dicted peaked v(c) curves. Using high-throughput methods for char-

acterizing motility, we measured v and the angular frequency of cell

body rotation, Ω, of motile Escherichia coli as a function of polymer

concentration in polyvinylpyrrolidone (PVP) and Ficoll solutions of

different molecular weights. We find that nonmonotonic v(c)

curves are typically due to low-molecular-weight impurities. After

purification by dialysis, the measured v(c) and Ω(c) relations for all

but the highest-molecular-weight PVP can be described in detail by

Newtonian hydrodynamics. There is clear evidence for non-Newto-

nian effects in the highest-molecular-weight PVP solution. Calcula-

tions suggest that this is due to the fast-rotating flagella seeing a

lower viscosity than the cell body, so that flagella can be seen as

nano-rheometers for probing the non-Newtonian behavior of high

polymer solutions on a molecular scale.

swimming microorganisms | complex fluids | rheology |
non-Newtonian fluids

The motility of microorganisms in polymer solutions is a topic
of vital biomedical interest. For example, mucus covers the

respiratory (1), gastrointestinal (2), and reproductive (3) tracks of
all metazoans. Penetration of this solution of biomacromolecules
by motile bacterial pathogens is implicated in a range of diseases,
e.g., stomach ulcers caused by Helicobacter pylori (4). Oviduct
mucus in hens provides a barrier against Salmonella infection of
eggs (5). Penetration of the exopolysaccharide matrix of biofilms
by swimming bacteria (6) can stabilize or destabilize them in vivo
(e.g., the bladder) and in vitro (e.g., catheters). In reproductive
medicine (human and veterinary), the motion of sperms in semi-
nal plasma and vaginal mucus, both non-Newtonian polymer sol-
utions, is a strong determinant of fertility (3), and polymeric media
are often used to deliver spermicidal and other vaginal drugs (7).
Microorganismic propulsion in non-Newtonian media such as

high-polymer solutions is also a hot topic in biophysics, soft matter
physics, and fluid dynamics (8). Building on knowledge of pro-
pulsion modes at low Reynolds number in Newtonian fluids (8),
current work seeks to understand how these are modified to enable
efficient non-Newtonian swimming. In particular, there is significant
interest in a flapping sheet (9, 10) or an undulating filament (11)
(modeling the sperm tail) and in a rotating rigid helix (modeling the
flagella of, e.g., Escherichia coli) (12, 13) in non-Newtonian fluids.
An influential set of experiments in this field was performed

40 years ago by Schneider and Doetsch (SD) (14), who measured
the average speed, v, of seven flagellated bacterial species (in-
cluding E. coli) in solutions of polyvinylpyrrolidone (PVP, mo-
lecular weight given as M = 360 kDa) and in methyl cellulose
(MC, M unspecified) at various concentrations, c. SD claimed
that vðcÞ was always nonmonotonic and peaked.
A qualitative explanation was suggested by Berg and Turner

(BT) (15), who argued that entangled linear polymers formed “a
loose quasi-rigid network easily penetrated by particles of
microscopic size.” BT measured the angular speed, Ω, of the

rotating bodies of tethered E. coli cells in MC solutions. They
found that adding MC hardly decreased Ω. However, in solutions
of Ficoll, a branched polymer, Ω is proportional to η−1, where η is
the solution’s viscosity, which was taken as evidence for New-
tonian behavior. In MC solutions, however, BT suggested that
there were E. coli-sized pores, so that cells rotated locally in
nearly pure solvent. Magariyama and Kudo (MK) (16) formu-
lated a theory based on this picture and predicted a peak in vðcÞ
by assuming that a slender body in a linear-polymer solution
experienced different viscosities for tangential and normal motions
in BT’s “easily penetrated” pores.
This standard model is widely accepted in the biomedical

literature on flagellated bacteria in polymeric media. It also
motivates much current physics research in non-Newtonian
low-Reynolds-number propulsion. Nevertheless, there are several
reasons for a fundamental reexamination of the topic.
First, polymer physics (17) casts a priori doubt on the presence of

E. coli-sized pores in an entangled solution. Entanglement occurs
above the overlap concentration, cp, where coils begin to touch. The
mesh size at cp, comparable to a coil’s radius of gyration, rg , gives
the maximum possible pore size in the entangled network. For 360-
kDa PVP in water, rgK 60  nm (see below), which is well under the
cross section of E. coli (0.8 μm). Thus, the physical picture suggested
by BT (15) and used by MK (16) has doubtful validity.
Second, SD’s data were statistically problematic. They took

movies, from which cells with “the 10 greatest velocities were
used to calculate the average velocity” (14). Thus, their peaks in
vðcÞ could be no more than fluctuations in measurements that
were in any case systematically biased.
Finally, although MK’s theory indeed predicts a peak in vðcÞ,

we find that their formulas also predict a monotonic increase in
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themucosal lining of mammal guts. Physicists are also fascinated

by self-propulsion in such complex non-Newtonian fluids. The

current standard model of how bacteria propelled by rotary

helical flagella swim through concentrated polymer solutions

postulates bacteria-sized pores, allowing them relative easy

passage. Our experiments using high-throughput methods

overturn this standard model. Instead, we show that the pecu-

liarities of flagellated bacteria locomotion in concentrated poly-

mer solutions are due to the fast-rotating flagellum, giving

rise to a lower local viscosity in its vicinity. The bacterial

flagellum is therefore a nano-rheometer for probing flows

at the molecular level.

Author contributions: V.A.M. and W.C.K.P. designed research; V.A.M., J.S.-L., M.R., and

A.N.M. performed research; V.A.M. and L.G.W. contributed new reagents/analytic

tools; V.A.M., J.S.-L., M.R., A.N.M., and W.C.K.P. analyzed data; and V.A.M., A.N.M.,

and W.C.K.P. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

1To whom correspondence should be addressed. Email: vincent.martinez@ed.ac.uk.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.

1073/pnas.1415460111/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1415460111 PNAS | December 16, 2014 | vol. 111 | no. 50 | 17771–17776

P
H
Y
S
IC
S

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1415460111&domain=pdf
mailto:vincent.martinez@ed.ac.uk
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1415460111/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1415460111/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1415460111


ΩðcÞ in the same range of c (Fig. S1), which is inconsistent with
the data of BT, who observed a monotonic decrease.
We therefore performed a fresh experimental study of E. coli

motility using the same polymer (PVP) as SD, but varying the
molecular weight, M, systematically. High-throughput methods
for determining v and Ω enabled us to average over ∼ 104 cells at
each data point. Using polymers as purchased, we indeed found
peaked vðcÞ curves at all M studied. However, purifying the poly-
mers removed the peak in all but a single case. Newtonian
hydrodynamics can account in detail for the majority of our
results, collapsing data onto master curves. We show that the
ratio vðcÞ=ΩðcÞ is a sensitive indicator of non-Newtonian effects,
which we uncover for 360-kDa PVP. We argue that these are due
to shear-induced changes in the polymer around the flagella.
Below, we first give the necessary theoretical and experimental

background before reporting our results.

Theoretical Groundwork: Solving Purcell’s Model

Purcell’s widely used “model E. coli” has a prolate ellipsoidal cell
body bearing a single left-handed helical flagellum at one pole
(18). Its motion is described by three kinematic parameters: the
swimming speed, v, the flagellum angular speed, ω, and the body
angular speed, Ω,

v= ðv; 0; 0Þ; ω= ð−ω; 0; 0Þ; Ω= ðΩ; 0; 0Þ; [1]

with ðv; ω; ΩÞ> 0. The drag forces and torques ðF;NÞ on the
body (subscript b) and flagellum (subscript f ′) are given by

�

Fb

Nb

�

=−

�

A0 0
0 D0

��

v

Ω

�

; [2]

�

Ff

Nf

�

=−

�

A B
B D

��

v

ω

�

; [3]

where A0; D0; A; B;  D∝ ηs, the solvent viscosity. Requiring the
body and flagellum to be force and torque free, we find

Ω=
DðA0 +AÞ−B2

D0ðA+A0Þ
ω≡ βω; [4]

v=
B

A0 +A
ω≡ γω; [5]

where β and γ are viscosity-independent geometric constants.
Eqs. 4 and 5 predict that

Ω=R1v; with R1 = β=γ; [6]

but underdetermine ðv; Ω; ωÞ. Closure requires experimental in-
put, in the form of the relationship between the torque developed
by the motor, N, and its angular speed, ωm, where

ωm =Ω+ω=

�

1+ β−1
�

Ω: [7]

Measurements have repeatedly shown (19) that NðωmÞ dis-
plays two regimes (Fig. 1), which we model as

ω≤ωc
m : N =N0 [8a]

ω>ωc
m : N = α

�

ωmax
m −ωm

�

; [8b]

where α= jdN=dωmj=N0=ðω
max
m −ωc

mÞ is the absolute slope of
NðωmÞ when ωc

m <ω<ωmax
m . For our purposes later, it is important

to realize that Eq. 7 implies an equivalent NðΩÞ relation, with
associated Ωc and Ωmax.

Eqs. 4, 5, 8a, and 8b completely specify the problem. We can
now predict Ω and v=Ω=R1, the observables in this work, as
functions of solvent viscosity by noting that the motor torque is
balanced by the drag torque on the body

N =D0Ω=

�

D0

1+ β−1

�

ωm: [9]

Eq. 9 specifies a load line that intersects with the motor charac-
teristic curve (Fig. 1) to determine the operating condition. For a
prolate ellipsoidal cell body with semimajor and semiminor axes
a and b, D0 = 16πηab2=3, so that

ω<ωc
m : Ω=

N0

D0
=

�

3N0

16πab2

�

η−1 [10a]

ω>ωc
m : Ω=

αpΩmax

αp +D0
=

3αpΩmaxη−1

16πab2 + 3αpη−1
; [10b]

where αp = jdN=dΩj=N0=ðΩ
max

−ΩcÞ is the absolute slope of the
NðΩÞ relation (cf Fig. 1) in the variable-torque regime.
Recall that BT equated Ω∝ η−1 scaling with Newtonian be-

havior (15). The above results show that this is true in the con-
stant-torque regime ðω<ωc

mÞ of the motor. Our experiments
demonstrate that this is not the only relevant regime.

Experimental Groundwork: Characterizing Polymers

SD used “PVP K-90, molecular weight 360,000” (14), which,
according to current standards (20), has a number averaged
molecular weight of Mn = 360 kDa, and a weight-average mo-
lecular weight of Mw ≈ 106   kDa. We show in SI Text that SD’s
polymer probably has somewhat lower Mw than the current PVP
360 kDa. We used four PVPs (Sigma Aldrich) with stated av-
erage molecular weights ofM ∼ 10 kDa (no K-number given), 40
kDa (K-30), 160 kDa (K-60), and 360 kDa (K-90). Measured
low-shear viscosities, which obeyed a molecular weight scaling
consistent with good solvent conditions, yielded (see SI Text for
details) the overlap concentrations (17), cp = 0:55± 0:01; 1:4±
0:02;   3:8± 0:1, and 9:5± 0:5 wt.% (in order of decreasing M;
Fig. S2 and Table S1). Static light scattering in water gave Mw ≈

840 kDa for our PVP360k, well within the expected range (20),
and rg = 56 nm (Table S2). We also used Ficoll with M ∼ 70 kDa
and 400 kDa from Sigma Aldrich (Fi70k, Fi400k).

Results

We measured the motility of E. coli in polymer solutions using two
new high-throughput methods (Materials and Methods and SI Text).
Differential dynamic microscopy (DDM), which involves correlat-
ing Fourier-transformed images in time, delivers, inter alia, the
mean swimming speed v (21, 22). In dark-field flicker microscopy
(DFM), we average the power spectrum of the flickering dark-field
image of individual swimmers to obtain the mean body angular
speed, Ω.

Fig. 1. Schematic of the relationship NðωmÞ between the flagellum motor

torque, N, and its angular speed, ωm. Intersection with a load-line determines

the operating condition. The NðΩÞ relation has the same form (cf. Eq. 7).
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Cells suspended in a phosphate motility buffer were mixed
with polymer solution in buffer to reach final desired concen-
trations and loaded into sealed capillaries for DDM and DFM.
The concentrations of cells were low enough to avoid any cell–
cell interaction, including polymer-induced depletion aggrega-
tion (23)—the absence of the latter being confirmed by micros-
copy. Separate experiments confirmed that oxygen depletion is
negligible over the duration of the measurements.

Native Polymer. The measured vðcÞ curves for all four PVP (Fig.
S3) and Ficoll (Fig. S4) solutions are all nonmonotonic. The
peak we see in PVP360k (Fig. S3) is somewhat reminiscent of
SD’s observation (14) for E. coli (Fig. 2A). Interestingly, all ΩðcÞ
are also nonmonotonic except for PVP360k (Fig. S3).

Dialyzed Polymers. The initial rise in v and Ω on addition of native
polymers (Figs. S3 and S4) are somewhat reminiscent of the way
swimming speed of E. coli rises on adding small-molecule carbon
sources (see the example of glycerol in Fig. S5), which cells take up
and metabolize to increase the proton motive force. PVP is highly
efficient in complexing with various small molecules (20). We
therefore cleaned the as-bought, native polymers by repeated di-
alysis using membranes that should remove low-molecular-weight
impurities (Materials and Methods) and then repeated the vðcÞ and
ΩðcÞ measurements (Fig. 2), now reported in normalized form,
v=v0 and Ω=Ω0, with v0 and Ω0 values at c= 0 (buffer).
The prominent broad peaks or plateaus seen in the data for

native PVP40k and PVP160k have disappeared (the same is true
for Fi70k and Fi400k; Fig. S6). A small bump (barely one error
bar high) in the data for PVP10k remains. Given the flatness of
the data in PVP40k and PVP160k, we believe that the residual
peak in PVP10k, whose coils have higher surface to volume ratio,
is due to insufficient cleaning. A small peak (K10% increase) in
vðcÞ=v0 also remains for PVP360k. For now, what most obviously
distinguishes the PVP360k from the other three polymers is that
the normalized vðcÞ and ΩðcÞ for the latter coincide over the
whole c range, whereas for PVP360k, they diverge from each
other at all but the lowest c.

Newtonian Propulsion. To observe vðcÞ=v0 =ΩðcÞ=Ω0 (Fig. 2 B–D)
we require v∝Ω, i.e., that Eq. 6 should be valid. This pro-
portionality is directly confirmed by Fig. 3: data for PVP10k, 40k,
and 160k collapse onto a single master proportionality at all
concentrations. Data for two dialyzed Ficolls also fall on the
same master line. The good data collapse shows that there is only
very limited sample-to-sample variation in the average body and
flagellar geometry, which are the sole determinants of R1 in
Eq. 6. The slope of the line fitted to all of the data gives
R1 ≈ 9:6  μm−1 (compare ≈ 7  μm−1 in ref. 24). The constancy of
the ratio R1 =Ω=v is also be seen from the strongly peaked
distribution of this quantity calculated from all individual pairs of
vðcÞ and ΩðcÞ values except those for PVP360k (Fig. 3, Inset).
Physically, R1 is an inverse cell body processivity, i.e., on av-
erage a bacterium swims forward a distance R−11 ≈ 0:1  μm per
body revolution.
The implication of Fig. 3 is that swimming E. coli sees all our

polymer solutions except PVP360k as Newtonian fluids. In-
terestingly, BT cited the proportionality between Ω and η−1

(rather than Ω and v) as evidence of Newtonian behavior in
Ficoll. We show the dependence of body rotation speed normal-
ized by its value at no added polymer, Ω=Ω0, on the normalized
fluidity ηs=η (where ηs is the viscosity of the solvent, i.e., buffer) for
our four PVPs and two Ficolls in Fig. 4, together with the lines
used by BT to summarize their MC and Ficoll data. Our data
and BT’s MC results (which span 0:2K ηs=η< 1) cluster
around a single master curve, which, however, is not a simple
proportionality. Eqs. 10a and 10b together predict such nonlinear
data collapse, provided that the cell body geometry, ða; bÞ, and the
motor characteristics, ðN0;Ω

c;ΩmaxÞ, remain constant between
datasets. The larger data scatter in Fig. 4 compared with Fig. 3
suggests somewhat larger variations in motor characteristics than
in geometry between samples.*

A B

C D

Fig. 2. (A–D) Normalized swimming speed v=v0 (black circles) and body

angular speed Ω=Ω0 (red squares) vs. dialyzed PVP concentration (in weight

percent) at four molecular weights, with v0 ≈ 15  μm=s and Ω0 ≈ 20 Hz. Top

axis: PVP concentration normalized to c*. The blue stars in A are the swim-

ming speeds from SD (14) normalized to the values at their lowest polymer

concentration.

Fig. 3. Mean rotational frequency Ω=2π vs. swimming speed v for dialyzed

PVP and Ficoll solutions at molecular weights as indicated (there are at least

two datasets per each PVP and one dataset for each Ficoll). The line is

a linear fit to all data (except PVP360k), giving R1 =9:6± 0:1  μm−1 in Eq. 6.

(Inset) Probability distribution of R1 for all datasets except PVP360k. The dia-

monds are for PVP360k averaged over two datasets with the errors bars being

SDs. The stars linked by the full curve are the predicted ΩðvÞ for PVP360k,

according to a model in which the body experiences the full low-shear viscosity

of the polymer solution, and the flagella experiences the viscosity of pure buffer, ηs.

*Note, however, that this refers to the fictitious effective motor powering the single

effective flagellum in Purcell’s E. coli model, so that in reality, the variability may reflect

differing number and spatial distribution of flagella as much as individual motor

characteristics.
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Of all of the polymers contributing to Fig. 4, PVP360k gave the
most extensive coverage over the whole range of fluidity (Fig. 5).†

Eqs. 10a and 10b apply to the low and high fluidity regimes of
these data, respectively. Eq. 10a depends on a single motor pa-
rameter,N0, and predicts a strict proportionality. Our lowest fluidity
data points suggest that at the highest polymer concentrations
reached, we are indeed operating in this regime. Using a= 1:2  μm
and b= 0:43  μm (average values from microscopy) to fit Eq. 10a to
the lowest fluidity data gives N0 = 1;450± 50 pN·nm (Fig. 5, blue),
which agrees well with previously measured stall torque (19).
The majority of the data away from the lowest fluidities are

clearly nonlinear and need to be fitted with Eq. 10b. Doing
so with the above value of N0 gives Ω

c
=2π = 6:6± 0:5 s−1 and

Ω
max

=2π = 20:5± 0:5 s−1 (Fig. 5, pink). Given that Ω∝ωm (Eq.
7), we expect Ωmax=Ωc

=ωmax
m =ωc

m. Our ratio of Ω
max

=Ω
c
≈ 3:1

compares reasonably with ωmax
m =ωc

m ≈ 2:3 for a different strain of
E. coli at the same temperature (22 °C) (19).
Thus, Eqs. 10a and 10b give a reasonable account of the data

in Fig. 5. We conclude that PVP360k solution is Newtonian as
far as body rotation is concerned.

Non-Newtonian Effects and Flagella Nano-Rheology. Given the above
conclusion, the nonlinearΩðvÞ for PVP360k (Fig. 3) suggests a non-
Newtonian response at the flagellum. In a minimal model, the
flagellum “sees” a different viscosity, η′ðcÞ, than the cell body,
which simply experiences the low-shear viscosity of the polymer
solution, ηðcÞ. Making explicit the viscosity dependence of the
resistive coefficients in Eqs. 2 and 3 by writing A= âη, etc., force
and torque balance now read

η  â0   v= η′
�

−â  v+ b̂  ω
�

; [11]

η  d̂0  Ω= η′
�

−b̂  v+ d̂  ω
�

: [12]

Solving these gives

Ω

v
=

d̂

��

η

η′

�

â0 + â

�

− b̂
2

�

η

η′

�

d̂0b̂

: [13]

Eq. 11 makes an interesting prediction. If we take η′ðcÞ= ηs
and use previously quoted flagellum dimensions for E. coli (24)
to calculate ðâ0; d̂0; â; b̂; d̂Þ, it predicts nearly perfectly the observed
nonlinear ΩðvÞ relationship for PVP360k (Fig. 3). Details are given
in SI Text, where we also predict the observed peak in vðcÞ (Fig. 2
and Fig. S7). To check consistency, we proceed in reverse and treat
the flagellum as a nano-rheometer. Given the measured vðcÞ in
PVP360k, we deduce the viscosity seen by the flagellum, η′ðcÞ, at
shear rate _γ ≈ 104   s−1 (SI Text and Fig. 6). In Fig. 6 we also show the
low-shear viscosity of PVP360k solutions measured using conven-
tional rheometry. Indeed, over most of the concentration range, we
find η′≈ ηs. (Note that the highest c data points are subject to large
uncertainties associated with measuring very low swimming speeds.)
Thus, our data are consistent with the flagellum seeing essentially
just the viscosity of the pure solvent (buffer). Macroscopically, this
corresponds to extreme shear thinning. Is this a reasonable
interpretation?
For a helical flagellum of thickness d and diameter D rotating

at angular frequency ω, the local shear rate is _γf ∼ωD=d (we
neglect translation because v � ωD). For an E. coli flagellar
bundle, d≈ 40 nm, D≈ 550 nm, and ω≈ 2π × 115 rad=s (24),
giving _γf K 104   s−1 in the vicinity of the flagellum. The Zimm
relaxation time of a polymer coil is τZ ∼ 4πηsr

3
g=kBT, where kBT

is the thermal energy. Using ηs = 10−3 Pa · s and rg ∼ 60 nm, we
find τZ ∼ 1 ms for our PVP360k at room temperature. Because
Ω−1 � τZ, the cell body does not perturb significantly the poly-
mer conformation. However, _γ−1f ∼ 0:1τZ, so that the polymer
may be expected to shear thin in both dilute ðc< cpÞ (25) and
semidilute ðcJ cpÞ (26) solutions. Low-shear rate data collected
using rheometry and high-frequency microrheological data col-
lected using 1-μm beads and interpreted using the Cox–Merz
rule (27) (see SI Text for details) show that there is indeed sig-
nificant shear thinning of our PVP360k polymer (Fig. 6 and Fig.
S8), although not as extreme as thinning down to ηs.

Fig. 4. Relative rotational body speed Ω=Ω0 vs. fluidity ð1=ηÞ, normalized

to the fluidity of the motility buffer (c = 0), for all polymer solutions we studied.

Full and dashed lines are those used by BT to summarize their MC and Ficoll

data, respectively. BT’s MC data spanned a smaller interval ð0:2K ηs=η< 1Þ

than ours.

Fig. 5. Body rotation frequency vs. fluidity averaged over all PVP360k

datasets. Blue line, fitting the constant-torque result, Eq. 10a, in the range

0K ηK 0:15 cP−1. Pink curve, fitting the linear-torque result, Eq. 10b, in the

range ηJ 0:2 cP−1. The thickness of the line/curve indicates uncertainties

associated with choosing the boundary between the two kinds of behavior.

(Inset) Log-log plot to show that Eq. 10b alone does not fit the data.

†To reach lower fluidity, or higher viscosity, required progressively more polymer (by

mass). To recover enough polymer after dialysis becomes more challenging as the mo-

lecular weight decreases.
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Anisotropic elastic stresses (9–11, 13) and shear thinning (28,
29) have been proposed before as a possible cause of non-
Newtonian effects in biological swimmers. However, in the
usual sense, these are continuum concepts arising from experiments
on the millimeter (rheometry) or micrometer (microrheology) scale.
Neither is obviously applicable to an ∼40-nm segment of flagellum
moving through somewhat larger polymer coils ðrg ∼ 60 nmÞ.
One of the very few explorations of the . . .probe ∼ polymer
size regime to date found a highly nonlinear time dependent re-
sponse with a shear-thinning steady state that matched bulk
rheometry data, albeit with quite stiff polymers (λ-phage DNA)
(30). The relevant physics may be similar to, but perhaps more
complex than, the active microrheology of colloidal suspensions
using probes that are approximately the same size as the colloids
(31). A qualitative picture (Fig. 6, Inset) may be as follows. A
section of the flagellum traveling at ωD=2∼ 200  μm=s takes
∼ 0:3τZ to traverse ∼ rg. Thus, polymer coils in its vicinity are
strongly stretched as quasi-stationary objects and the flagellum
effectively carves out an ∼ 2rg-wide channel practically void of
polymers. Each flagellum section revisits approximately the same
spatial location with a period 2π=ω∼ 10 ms (because the trans-
lation per turn is low). Although this time is larger than the
single chain relaxation time τZ, the time required for collective
relaxation and diffusion of a large number of strongly stretched
polymer chains is significantly larger than that. Effectively, then,
the flagellum moves inside a channel with viscosity → ηs. More-
over, under strong local elongation of the kind we suggested, it is
also possible that polymers may break (32). This separate, but re-
lated, mechanism could change the mechanical properties of the
solution around the flagellum.
We note that previous experiments of E. coli swimming in MC

(15, 33) used polymers and worked in concentration regimes
where shear thinning effects are insignificant. There is already
indirect evidence of this in Fig. 4, where data from BT (15)
collapse onto a Newtonian master curve for Ωðη−1Þ. More di-
rectly, these previous studies used methyl celluloses with viscosity
grade around 4,000 cP in the range of 0–0.3 wt.% (15) and at
0.18 wt.% (33). The shear thinning of such polymers has been
measured (polymer AM4 in ref. 34) and fitted to a power law:
η∼ _γn−1; at c = 0.25 wt.% and 0.5 wt.%: n= 1:00 and 0.961,

respectively. Thus, at the concentrations used before (15, 33),
shear thinning is very weak or absent, and the solutions behave
as Newtonian.

Summary and Conclusions

We measured the average swimming speed and cell body rota-
tion rate in populations of E. coli bacteria swimming in different
concentrations of solutions of the linear polymer PVP (nominal
molecular weights of 10, 40, 160, and 360 kDa, these probably
were number-averaged values) and the branched polymer Ficoll
(70 and 400 kDa). We dialyzed each polymer to remove small-
molecular impurities that can be metabolized by the cells to in-
crease their swimming speed. The collapse of data for all polymers
except PVP360k onto a single proportionality relationship be-
tween swimming speed and body rotation rate, ΩðvÞ (Fig. 3),
demonstrates that these solutions behave as Newtonian fluids as
far as E. coli propulsion is concerned.
Significant nonlinearities in ΩðvÞ were found for E. coli swim-

ming in PVP360k solutions. Further analysis showed that the
motion of the cell body remained Newtonian: the measured
Ωðη−1Þ can be fitted to results derived from Newtonian hydro-
dynamics (Eqs. 10a and 10b; Fig. 5). Thus, there must be non-
Newtonian effects at the flagellum. The observed deviations
from Newtonian behavior can be quantitatively accounted for by
a simple model in which the flagellum sees the viscosity of pure
buffer. This result is consistent with significant shear thinning
observed at the micrometer level in PVP360k solutions using
microrheology, although we suggest that molecular effects must
be taken into account because the polymer and flagellum fila-
ment have similar, nanometric dimensions. The effects we are
considering, which arise from high shear rates, are absent from
experiments using macroscopic helices as models for viscoelastic
flagella propulsion (13).
Shear thinning is not the only possible effect in the vicinity of a

flagellum creating local deformation rates of ∼ 104 s−1. Higher-
molecular-weight polymers that are more viscoelastic than PVP
360 kDa will show significant elastic effects. Interestingly, it is
known that double-stranded DNA could be cut at a significant
rate at _γ ∼ 104 s−1 (35). An E. coli swimming through a high-
molecular-weight DNA solution should therefore leave behind
a trail of smaller DNA and therefore of lower-viscosity solution,
making it easier for another bacterium to swim in the wake. The
latter may have important biomedical implications: the mucosal
lining of normal mammalian gastrointestinal tracks and of
diseased lungs can contain significant amounts of extracellular
DNA. Exploration of these issues will be the next step in
seeking a complete understanding of flagellated bacterial mo-
tility in polymeric solution.

Materials and Methods
Cells. We cultured K12-derived WT E. coli strain AB1157 as previously detailed

(21, 22). Briefly, overnight cultures were grown in Luria-Bertani (LB) broth using

a shaking incubator at 30 °C and shaking speed of 200 rpm. A fresh culture was

inoculated as 1:100 dilution of overnight grown cells in 35 mL tryptone broth

(TB) and grown for 4 h (to late exponential phase). Cells were washed three

times with motility buffer (MB, pH = 7.0, 6.2 mM K2HPO4, 3.8 mM KH2PO4,

67 mM NaCl, and 0.1 mM EDTA) by careful filtration (0.45-μm HATF filter;

Millipore) to minimize flagellar damage and were resuspended in MB to var-

iable cell concentrations.

Polymers.

Native. PVP and Ficoll from Sigma-Aldrich were used at four (10, 40, 160, and

360 kDa) and two (70 and 400 kDa) nominal molecular weights, respectively.

Polymer stock solutions were prepared and diluted with MB.

Dialysis. The polymer stock solutions were dialyzed in tubes with 14-mm-

diameter and 12-kDa cutoff (Medicell International) against double-distilled

water. The dialysis was performed over 10 dwith daily exchange of thewater.

The final polymer concentration was determined by measuring the weight

loss of a sample during drying in an oven at 55 °C and subsequent vacuum

Fig. 6. Viscosities of PVP360k solutions: low-shear values from rheometry

(filled circle); microrheology data obtained using 980-nm beads at 104 Hz

(red square); and η′ deduced from swimming data (green triangle). Lines are

best fits (SI Text). (Inset) Schematic showing three snapshots of a section of

a flagellum (sphere, ≈ 40 nm) cutting through a solution of polymer coils

(≈ 120  nm) (with a circular path). Coils, which are initially in the path of the

flagellum section (gray), become stretched out (red), leaving a coil-sized

channel of solvent.
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treatment for 6 h. Polymer solutions at several concentration were prepared

by dilution using MB.

Motility Measurement. Bacterial suspensions were gently mixed with the

polymer solutions to a final cell density of ≈5× 108   cells=mL. An ≈400‐μm-

deep flat glass sample cell was filled with ≈150 μL of suspension and sealed

with petroleum jelly to prevent drift. Immediately after, two movies, one in

phase-contrast illumination (∼40 s long, Nikon Plan Fluor 10×Ph1 objective,

NA = 0.3, Ph1 phase-contrast illumination plate at 100 frames/s and 5002

pixels) and one in dark-field illumination (∼10 s long, Nikon Plan Fluor

10×Ph1 objective, NA = 0.3, Ph3 phase-contrast illumination plate, either

500 or 1,000 frames/s, 5002 pixels) were consecutively recorded on an in-

verted microscope (Nikon TE300 Eclipse) with a Mikrotron high-speed

camera (MC 1362) and frame grabber (Inspecta 5, 1-Gb memory) at room

temperature ð22± 1  °CÞ. We image at 100 μm away from the bottom of

the capillary to avoid any interaction with the glass wall.

We measured the swimming speed from the phase contrast movies

using the method of DDM as detailed previously (21, 22). The dark field

movies were analyzed to measure the body rotation speed using the

method of DFM, in which we Fourier transform the power spectrum of the

flickering image of individual cells, and identify the lowest frequency peak in

the average power spectrum (Fig. S9) as the body rotation frequency as in

previous work (24, 36); the difference here is that DFM is a high-throughput

method (SI Text).

Rheology.Wemeasured the low-shear viscosity η of polymer solutions using a

TA Instruments AR2000 rheometer in cone-plate geometry (60 cm, 0.5°). Pas-

sive microrheology was performed using diffusing wave spectroscopy in trans-

mission geometry with 5-mm-thick glass cuvettes. The setup (LS Instruments)

uses an analysis of the measured mean square displacement (MSD) of tracer

particles as detailed previously (37). Tracer particles (980-nm-diameter

polystyrene) were added to the samples at 1 wt% concentration. The

transport mean free paths l* of the samples were determined by comparing

the static transmission to a reference sample (polystyrene with 980 nm di-

ameter at 1 wt% in water). The shear rate-dependent viscosity η was

obtained from the frequency dependent storage and loss moduli using the

Cox–Merz rule (27).
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Predictions from Magariyama and Kudo. We calculated the pre-
dicted dependence of swimming velocity on polymer concen-
tration using the theory of Magariyama and Kudo (1) (Fig. S1)
and show that, as they claimed, there is a peak. However, we also
show a calculation that they did not report, namely, the predicted
dependence of body rotation frequency as a function of polymer
concentration. The latter is a rapidly increasing function, which is
clearly unphysical and contradicts the observation by BT (2), as
well as data shown here (Fig. 4).

Characterizing the PVP.

Intrinsic viscosity and overlap concentration. The viscosity of a polymer
solution at low concentrations can be written as a virial expansion
of η in c

η= ηs

�

1+ ½η�c+ kH ½η�
2c2 + . . .

�

; [S1]

where ½η� and kH are the intrinsic viscosity and the Huggins co-
efficient, respectively, and ηs is the viscosity of the solvent, which
here is motility buffer. The linearity at low c can be expressed in
two different ways

η− ηs

ηsc
= ½η�+ kH ½η�

2
c ðHugginsÞ; [S2]

lnðη=ηsÞ

c
= ½η�+

�

kH −

1

2

�

½η�2c ðKraemerÞ: [S3]

These two linear plots should extrapolate to ½η� at c= 0. The in-
trinsic viscosity measures the volume of a polymer coil normalized
by its molecular weight, so that cp ≈ ½η�−1. A modern text names
this as the best experimental method for estimating the overlap
concentration (3).
We first regraph the ηðcÞ data given by SD (4) as HK plots (Fig.

S2A). For here and below, concentrations in wt% and grams per
deciliter are interchangeable at the sort of concentrations we are
considering. It is clear that their lowest c data point must be in-
accurate. Discarding this point gives the expected linear depen-
dence in both plots and a uniquely extrapolated value of ½η�=
1:055 at c= 0, giving cp = 0:95  g=dL. Reference to our cp values
below suggests that SD’s PVP360k has somewhat lower molecular
weight than our material with the same label.
According to current industry standards (5), PVP360k should

have viscosities of ≈3–5 and ≈300–700 mPa·s at 1 and 10 wt.% in
water, respectively. SD’s reported viscosities at 1 and 10 wt.% at
2.5 and 249 Pa·s, respectively, are lower than these values, again
consistent with their material having lower molecular weight
than our PVP360k.
We characterized all four PVPs used in this work by measuring

their low-shear viscosity in motility buffer as a function of con-
centration. For PVP360k (K-90) at 1 and 10 wt.%, we found η≈ 4
and 370 mPa·s, agreeing well with the published standards (5). We
now graph the measured viscosities of our four PVPs at low
concentrations as HK plots (Fig. S2 B–E). In each case, the ex-
pected behavior is found; the extrapolated values of ½η� and the
overlap concentrations calculated from these are given in Table
S1. The scaling of ½η� vs.M is consistent with a power law (Fig. S2F)
½η�∼Ma, with a= 0:781. Because ½η�≈ r3=M, r∼Mν with
ν= ð1+ aÞ=3. We find ν= 0:593, which is consistent with the

renormalization group value of ν= 0:588 for a linear polymer
in a good solvent.
Coil radii, second virial coefficient, and molecular weight.We performed
static and dynamic light scattering (SLS and DLS, respectively)
experiments to measure the radius of gyration, Rg, the molecular
weight, Mw, the second virial coefficient, A2, and the hydrody-
namic radius, Rh, of PVP360k in water and motility buffer (6).
Rh was measured by DLS, and Rg, Mw, and A2 were measured
using the Zimm plot of SLS data. Results are summarized in
Table S2. The positive A2 is consistent with our conclusion
above that water is a good solvent for PVP. There may be a
mild degree of aggregation in motility buffer (larger radii and
slightly smaller A2).

Native Polymer Results. Fig. S3A shows v and Ω vs. polymer con-
centration, c, for as-bought, or native, PVP360k. Although ΩðcÞ
decays monotonically, a peak is observed in v at c≈ 0:5wt%, or
roughly cp for this molecular weight. The latter ostensibly re-
produces SD’s observations (4): their data are also plotted in Fig.
S3A. In native PVP160k (Fig. S3B), the peak in vðcÞ broadens, and
now there is a corresponding broad peak in ΩðcÞ as well. These
peaks broaden out into plateaus for native PVP40k and PVP10k
(Fig. S3 C and D). We also performed experiments with native
Ficoll with the manufacturer-quoted molecular weights of 70k and
400k and observed similar nonmonotonic, broadly peaked re-
sponses in both vðcÞ and ΩðcÞ (Fig. S4).

The Effect of Small-Molecule Energy Sources.Here we show vðcÞ for
E. coli swimming in glycerol solutions of a range of concen-
trations (Fig. S5). The plot is indeed reminiscent of what is seen
for native PVP10k and PVP40k. Indeed, we suggest that the in-
creases at low concentrations in all four polymers have the same
origin as the increase observed at low glycerol concentration: the
availability of a small-molecule energy source. The decrease at
high glycerol is an osmotic effect (as observed for other small
molecules, e.g., sucrose) (7), whereas that seen in the 10k, 40k,
and 160k polymers can be entirely accounted for by low-Re
Newtonian hydrodynamics (polymeric osmotic effects at our
concentrations are negligible).

Dialyzed Ficoll Results. Swimming speed and body rotation fre-
quency as a function of concentration are shown for two purified
Ficolls in Fig. S6.

Shear-Thinning Calculations.

Predicting Ω(v) for flagellum experiencing buffer viscosity. Here we
outline the procedure used to calculate the rotation rate of the
cell body for a bacterium swimming in shear-thinning PVP360k
solution as a function of the swimming speed. We assume that the
flagellum sees a viscosity η′ that is different from the low-shear-
rate viscosity η experienced by the bacterial body. This assump-
tion is partly motivated by bulk and microrheological measure-
ments (Fig. 6), showing that at the shear rates generated by the
flagellum, shear thinning can be expected at least down to the
micrometer scale. Empirically, the low- and high-shear viscosities
plotted in Fig. 6 can be fitted by

�

ηlow−shear =−5:32+ 6:33 expð0:39cÞ _γ→ 0 s−1;

ηhigh−shear = 0:96+ 0:69c+ 0:44c2 _γ = 104 s−1;
[S4]

where c is in wt% and η in centipoise (cP).
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In this two-viscosity model, the force and torque balance
equations solve to Eq. 13

Ω

v
=

d̂

��

η

η′

�

â0 + â

�

− b̂
2

�

η

η′

�

d̂0b̂

: [S5]

The friction coefficients in Eq. S5 are given by (8)

â= knL sinψ tanψ
	

1+ γ cot2 ψ



; [S6]

b̂= knL
λ

2π
sinψ tanψð1− γÞ; [S7]
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2π
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16π

3
a2b; [S10]

where

kn =
8π

2 ln
cλ

r
+ 1

; [S11]

kt =
4π

2 ln
cλ

r
− 1

; [S12]

and γ = kt=kn. Here, L= 7  μm and λ= 2  μm are the total length
and pitch of the flagellum, respectively, ψ = 41∘ is the angle made
by the flagellar filament with the flagellar axis, r= 20  nm is the
estimated radius of the composite filament in a flagella bundle,
and c= 2:4 is the Lighthill constant. All parameters are taken
from a previous experimental paper (8), where this set of param-
eters were shown to be consistent with the Purcell model.
Using the measured values of ΩðcÞ for PVP360k, η′= ηs, η=

ηlow−shear, and Eq. S5 is sufficient to calculate the corresponding
vðΩÞ. Results show good agreement with the measured values
(Fig. 3), thus predicting a peak in the swimming velocity on an
increase in the viscosity of the polymer solution. For a better

illustration, we compare the predicted and measured values of v
as a function of the viscosity experienced by the body (ηlow−shear)
in Fig. S7. Our theory is successful in predicting a peak in the
swimming velocity in the right position and of the right shape.
Deducing the viscosity the flagellum sees from measurements. Now we
relax our previous assumption that η′ is equal to the viscosity of
the solvent, and use Eq. S5 to extract the viscosity of the fluid
surrounding the flagellar filament. Using the measured values
of ΩðcÞ and vðcÞ, Eq. S5 can be solved for η′. The results are
shown in Fig. 6. Indeed, for most of the concentration range
studied, η′≈ ηs.

Dark-Field Flicker Microscopy. Under dark-field illumination, the
image of a swimming bacterium appears to flicker. By calculating
the power spectrum of the spatially localized time-dependent in-
tensity fluctuations of low-magnification images of a quantized
pixel box (containing approximately one cell) and then averaging
over all cells in the images, we are able to measure the body ro-
tational frequency Ω=2π averaged over ∼ 104 cells based on
aK 10-s movie. This method is similar to what was done by Lowe
et al. (9), who measured the power spectrum of single swimming
cells. However, here we use low-magnification dark-field imaging,
which allows high-throughput measurement of Ω=2π.
Dark-field movies were recorded (Nikon Plan Fluor 10×Ph1

objective, NA = 0.3, Ph3 phase-contrast illumination plate) at
either 500 or 1,000 Hz on an inverted microscope (Nikon TE300
Eclipse) with a Mikrotron high-speed camera (MC 1362) and
frame grabber (Inspecta 5, 1-Gb memory) at room temperature
(22 ± 1 °C). The images correspond to an area of ≈ 720×
720 μm, containing around 104 bacteria. Approximately 4,000
frames were captured, at a resolution of 512 × 512 pixels.
To process a video sequence, each frame was divided into

square tiles of side length l (typically five pixels), and the pixel
values in each tile were summed to give a single number. This
process was repeated for every frame in the video sequence,
yielding intensity as a function of time for each tile. The power
spectrum of these data was calculated for each tile separately,
before averaging over all tiles to give smoothed data for the
whole video sequence. The power spectrum is then normalized
by the frequency squared to remove any contribution from
Brownian motion due the nonmotile cells, inherently present in
the bacterial suspensions. An example is shown in Fig. S9. We
identify the first peak as the body rotational frequency Ω=2π in
line with previous studies (9).

Viscosity Measurements. The viscosity of PVP360k measured
using conventional rheometry and DWSmicrorheology (Materials
and Methods) at different concentrations is shown in Fig. S8.
There is reasonable overlap between the two methodologies at
intermediate shear rates.
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Fig. S1. Normalized swimming speed v=v0, body rotational speed Ω=Ω0, and flagella rotational speed ω=ω0 vs. viscosity according to Magariyama and Kudo (1).

Fig. S2. (A–E) Huggins and Kraemer representation: (red circles) ðη− ηsÞ=ηsc and (black squares) lnðη=ηsÞ=c vs. polymer concentration. Lines are linear fits to the

data using Eqs. S2 and S3 simultaneously. Both quantities should be linear and extrapolate to a unique intrinsic viscosity ½η� at c= 0. (A) From the PVP viscosity

data of Schneider and Doetsch. Discarding the lowest-c point gives ½η�= 1:05±0:02. (B–E) Our PVP at four different molecular weights. (F) The scaling of in-

trinsic viscosity, ½η�, with molecular weight, M, for our PVPs.

Martinez et al. www.pnas.org/cgi/content/short/1415460111 3 of 6

www.pnas.org/cgi/content/short/1415460111


Fig. S3. (A–D) Swimming speed v (black circles) and body rotation frequency Ω=2π (red squares) of E. coli vs. concentration (in weight percent) of native PVP of

four molecular weights. Top axis: PVP concentration normalized to the overlap concentration c* (see Table S1). The stars (blue) in A are results for swimming

speed from SD (4).

Fig. S4. Speed v (red symbols) and body rotation frequency Ω (black symbols) given in absolute (Upper) and normalized values (Lower) as functions of

concentration for native Ficoll of two molecular weights: (A and B) M = 70k (one dataset) and (C and D) M = 400k (four datasets). Lines are guides to the eye.

Fig. S5. Swimming E. coli in glycerol. Speed v as a function of glycerol concentration.
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Fig. S6. Speed v (red circles) and body rotation frequency Ω (black squares) given in absolute (Upper) and normalized values (Lower) as functions of con-

centration for dialyzed Ficoll of two molecular weights: (A and B) M = 70k and (C and D) M = 400k. Lines are guides to the eye.

Fig. S7. Speed v vs. viscosity from experiments (black dots) and our theory (red diamonds) as discussed in SI Text.

Fig. S8. Viscosity of PVP360k as a function of shear rate obtained from bulk rheology (open symbols) and DWS microrheology (filled symbols) for several

polymer concentrations (see legend in weight percent).
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Fig. S9. Typical example of the power spectrum of the flickering dark-field image of individual cells averaged over ≈ 104 cells based on an ≈ 10-s dark-field

movie (Materials and Methods). The power spectrum is normalized by the frequency square to remove contribution from Brownian motion due to the inherent

presence of nonmotile cells in the suspension. The black line corresponds to a two-peak fit using Lognormal distribution.

Table S1. Intrinsic viscosity, [η], and Huggins coefficient, kH,

obtained by fitting simultaneously (global fitting) the viscosity

data using both Huggins and Kraemer equations

Solutions ½η� (dL/g) kH c*(g/dL or wt%)

PVP360k 1.84 ± 0.04 0.38 ± 0.02 0.55 ± 0.01

PVP160k 0.72 ± 0.01 0.38 ± 0.01 1.40 ± 0.02

PVP40k 0.263 ± 0.003 0.38 ± 0.02 3.8 ± 0.1

PVP10k 0.105 ± 0.006 0.42 ± 0.08 9.5 ± 0.5

SD (4) 1.05 ± 0.02 0.38 ± 0.02 0.95 ± 0.02

Table S2. Parameters obtained from SLS and DLS for PVP360k in

water or in motility buffer (MB)

Solutions Mw (g/mol) A2 (mol L/g2) Rg (nm) Rh (nm)

PVP360k in water 840 × 103 3.0 × 10−7 56 30

PVP360k in MB 1,500 × 103 2.6 × 10−7 79 37
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