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Abstract—Software testing assures that code changes do not adversely affect existing functionality. However, a test case can be flaky,
i.e., passing and failing across executions, even for the same version of the source code. Flaky test cases introduce overhead to software
development as they can lead to unnecessary attempts to debug production or testing code. Besides rerunning test cases multiple times,
which is time-consuming and computationally expensive, flaky test cases can be predicted using machine learning (ML) models, thus
reducing the wasted cost of re-running and debugging these test cases. However, the state-of-the-art ML-based flaky test case predictors
rely on pre-defined sets of features that are either project-specific, i.e., inapplicable to other projects, or require access to production
code, which is not always available to software test engineers. Moreover, given the non-deterministic behavior of flaky test cases, it can
be challenging to determine a complete set of features that could potentially be associated with test flakiness. Therefore, in this paper,
we propose Flakify, a black-box, language model-based predictor for flaky test cases. Flakify relies exclusively on the source code of
test cases, thus not requiring to (a) access to production code (black-box), (b) rerun test cases, (c) pre-define features. To this end, we
employed CodeBERT, a pre-trained language model, and fine-tuned it to predict flaky test cases using the source code of test cases.
We evaluated Flakify on two publicly available datasets (FlakeFlagger and IDoFT) for flaky test cases and compared our technique with
the FlakeFlagger approach, the best state-of-the-art ML-based, white-box predictor for flaky test cases, using two different evaluation
procedures: (1) cross-validation and (2) per-project validation, i.e., prediction on new projects. Flakify achieved F1-scores of 79% and
73% on the FlakeFlagger dataset using cross-validation and per-project validation, respectively. Similarly, Flakify achieved F1-scores of
98% and 89% on the IDoFT dataset using the two validation procedures, respectively. Further, Flakify surpassed FlakeFlagger by 10
and 18 percentage points (pp) in terms of precision and recall, respectively, when evaluated on the FlakeFlagger dataset, thus reducing
the cost bound to be wasted on unnecessarily debugging test cases and production code by the same percentages (corresponding to
reduction rates of 25% and 64%). Flakify also achieved significantly higher prediction results when used to predict test cases on new
projects, suggesting better generalizability over FlakeFlagger. Our results further show that a black-box version of FlakeFlagger is not a
viable option for predicting flaky test cases.

Index Terms—Flaky tests; Software testing; Black-box testing; Natural language processing; CodeBERT
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1 INTRODUCTION

Software testing is an essential activity to assure software
dependability. When a test case fails, it usually indicates
that recent code changes were incorrect. However, it has
been observed, in many environments, that test cases can
be non-deterministic, passing and failing across executions,
even for the same version of the source code. These test
cases are referred to as flaky test cases [1–3]. Flaky test cases
can introduce overhead to software development, since they
require developers to either (a) debug the production or
testing code looking for a bug that might not really exist,
or (b) rerun a failed test case multiple times to check if it
would eventually pass, thus suggesting that the failure is
not due to recent code changes but to the test case itself.

Previous research has investigated the common reasons
behind test flakiness, such as concurrency, resource leakage,
and test smells. The conventional approach to detect flaky
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test cases is to rerun them numerous times [4, 5], which
is in most practical cases computationally expensive [6] or
even impossible. To address this issue, recent studies have
proposed approaches using machine learning (ML) models
to predict flaky test cases without rerunning them [7–9],
thus proposing a much more scalable and practical solution.
Despite significant progress, these approaches (a) rely on
production code, which is not always accessible by soft-
ware test engineers or a scalable solution, or (b) employ
project-specific features as flaky test case predictors, which
makes them inapplicable to other projects. Moreover, these
approaches rely on a limited set of pre-defined features,
extracted from the source code of test cases and the system
under test. However, when evaluated on realistic datasets,
these approaches yield a relatively low accuracy (F1-scores
in the range 19%-66%), thus suggesting they may not
capture enough information about test flakiness. Finding
additional features that could potentially be associated with
flaky test cases, preferably based on test code only (black-
box), is therefore a research challenge.

In this paper, we propose Flakify (Flaky Test Classify), a
generic language model-based solution for predicting flaky
test cases. Flakify is black-box as it relies exclusively on the
source code of test cases (test methods), thus not requiring
access to the production code of the system under test. This
is important as production code is not always (entirely)
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accessible to test engineers due, for example, to outsourcing
software testing to a third-party. Further, analyzing produc-
tion code may raise many scalability and practicality issues,
especially when applied to large industrial systems using
multiple programming languages. In addition, Flakify does
not require the definition of features—which are necessarily
incomplete—to be used as predictors for flaky test cases.
Instead, we used CodeBERT [10], a pre-trained language
model, and fine-tuned it to classify test cases as flaky or
not based on their source code. To improve Flakify, we
further pre-processed test code to remove potentially irrel-
evant information. We evaluated Flakify on two different
datasets: the FlakeFlagger dataset, containing 21,661 test
cases collected from 23 Java projects, and the IDoFT dataset,
containing 3,862 test cases collected from 312 Java projects.
To do this, we used two different evaluation procedures: (1)
cross-validation and (2) per-project validation, i.e., predic-
tion on new projects. Our results were compared to Flake-
Flagger [7], the best state-of-the-art ML-based predictor for
flaky test cases. Specifically, our evaluation addresses the
following research questions.

• RQ1: How accurately can Flakify predict flaky test
cases?
Flakify achieved promising prediction results when
evaluated using two different datasets. In particular,
based on cross-validation, Flakify achieved a pre-
cision of 70%, a recall of 90%, and an F1-score of
79% on the FlakeFlagger dataset, and a precision of
99%, a recall of 96%, and an F1-score of 98% on the
IDoFT dataset. Flakify yielded slightly worse results
when predicting flaky tests on new projects, with a
precision of 72%, a recall of 85%, and an F1-score of
73% on the FlakeFlagger dataset, and a precision of
91%, a recall of 88%, and an F1-score of 89% on the
IDoFT dataset.

• RQ2: How does Flakify compare to the state-of-the-
art predictors for flaky test cases?
The best performing model of Flakify achieved a
significantly higher precision (70% vs. 60%) and re-
call (90% vs 72%) on the FlakeFlagger dataset in
predicting flaky test cases than FlakeFlagger, the best
state-of-the-art, white-box approach for predicting
flaky test cases. Hence, with Flakify, the cost of
debugging test cases and production code is reduced
by 10 and 18 percentage points (pp) (a reduction
rate of 25% and 64%), respectively, when compared
to FlakeFlagger. Moreover, our results show that a
black-box version of FlakeFlagger is not a viable
option for predicting flaky test cases. Specifically,
FlakeFlagger became 39 pp less precise with 20 pp
less recall when only black-box features were used
as predictors for flaky test cases.

• RQ3: How does test case pre-processing improve
Flakify?
Retaining only code statements that are related to
a selected set of test smells improved the precision,
recall, and F1-score of Flakify by 5 pp and 6 pp on the
FlakeFlagger and IDoFT datasets, respectively. The
goal was to address a limitation of CodeBERT (and
all other language models), which leads to only con-

sidering the first 512 tokens in the test source code.
This result also confirms the previously reported
association of test smells with flaky test cases [7, 9,
11, 12].

Overall, this paper makes the following contributions.

• A generic, black-box, language model-based flaky
test case predictor, which does not require rerunning
test cases.

• An ML-based classifier that predicts flaky test cases
on the basis of test code without requiring the defi-
nition of features.

• An Abstract Syntax Tree (AST)-based technique for
statically detecting and only retaining statements
that match eight test smells in the test code, thus
enhancing the application of language models.

The rest of this paper is organized as follows. Section 2
provides background about flaky test cases and language
models. Section 3 presents our black-box approach for pre-
dicting flaky test cases. Section 4 evaluates our approach,
reports experimental results, and discusses the implications
of our research.. Section 5 discusses the validity threats to
our results. Section 6 reviews and contrasts related work.
Finally, Section 7 concludes the paper and suggests future
work.

2 BACKGROUND

In this section, we describe flaky test cases, their root causes,
their practical impact, and the strategies to detect them. In
addition, we describe pre-trained language models and how
they can potentially contribute to predicting flaky test cases.

2.1 Flaky Test Cases

In software testing, a flaky test refers to test cases that
intermittently fail and pass across executions, even for the
same version of the source code, i.e., non-deterministically
behaving test cases [1]. Flaky test cases lead to many
problems during software testing, by producing unreliable
results and wasting time and computational resources. A
flaky test can also fail for different reasons across executions,
making it difficult to identify which failures are actually
related to faults in the system under test.

Flaky test cases have been reported to be a significant
problem in practice at many companies including Google,
Huawei, Microsoft, SAP, Spotify, Mozilla, and Facebook [13–
16]. As reported by Google, almost 16% of their 4.2 million
test cases are flaky [6]. Microsoft has also reported that
26% of 3.8k build failures were due to flaky test cases.
Many studies have been conducted to study flaky test cases,
their causes, and the solutions to address them [1, 2, 4,
7–9, 12, 17]. Prominent causes of flaky test cases include
asynchronous waits, test order dependency, concurrency,
resource leakage, and incorrect test inputs or outputs. In
addition, flaky test cases were found to be associated with
other factors, such as test smells, which are further discussed
below.
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2.2 Flaky Test Case Detection

The most common approach for detecting flaky test cases is
by rerunning test cases numerous times to check whether
they behave consistently across executions [4, 5]. Though
effective, this approach is computationally expensive and
not practical in many situations, for example in continu-
ous integration contexts, where builds are submitted auto-
matically and frequently to perform regression testing. To
mitigate such cost, other approaches attempted to detect
flaky test cases without relying on rerunning them. To that
end, characteristics of test cases, such as execution history,
coverage information, and static test features, were used
to predict whether a test case is flaky or not. Prediction
models were built using ML and Natural Language Pro-
cessing (NLP) techniques [7–9]. Such techniques require
training ML models with pre-defined sets of features used as
indicators for test flakiness. Such features commonly present
practical limitations, such as (a) their reliance on production
code, which is not always accessible or efficiently analyzable
by test engineers, and (b) their limited capacity to capture
the actual structure or behavior of test cases, such as the use
of language keywords [8] or the presence of test smells [7,
9, 12] in test code.

After identifying potentially flaky test cases, developers
can focus their investigation on them and, hence, attempt
to fix code statements causing such flakiness. Developers
may also choose to rerun those specific test cases many
more times to verify that they are actually flaky [18]. This
is a reasonable undertaking, since test cases predicted as
flaky normally represent a small percentage of the entire
test suite. This, in turn, significantly eliminates a large part
of the effort and time required to investigate or rerun test
cases whenever a failure occurs [7].

2.3 Test Smells

Test Smells are inappropriate design or implementation
choices made by developers while writing test cases [19].
Though test smells might not harm the functionality of a
test case, previous research has reported that they tend to be
associated with test flakiness. Palomba et al. [11] reported
that nearly two-thirds of flaky test cases were associated
with at least one test smell. Test smells were further em-
ployed to classify whether a test case is flaky or not. For
example, test smells in Table 1 were part of the features used
by Alshammari et al. [7] to predict test flakiness. Camara et
al. [9] also used a more comprehensive set of test smells for
flaky test case prediction. Results showed that Sleepy Test
and Assertion Roulette are among test smells that are highly
associated with flaky test cases.

2.4 Pre-trained Language Models

Much research has been carried out in the field of NLP for
developing pre-trained language models. Language models
estimate the probability of different linguistic units, i.e.,
words, symbols, and sequence of them, occurring in a given
sentence. There are many language models proposed in
the literature, such as BERT [20], ELMo [21], XLNet [22],
RoBERTa [23], and VideoBERT [24]. These models were pre-
trained, using self-supervised learning, on a large corpus of

unlabelled data. For example, BERT was pre-trained using
a large dataset of English text collected from books and
Wikipedia, whereas VideoBERT was pre-trained using a
large dataset of instructional videos collected from YouTube.

Pre-trained language models are often further fine-tuned
using a specific, labelled dataset to train neural networks
for performing various NLP tasks, such as text classification
and entity recognition [25], relation extraction [26], sentence
tagging, or next sentence prediction [20]. For example,
BERT was fine-tuned to perform sentiment analysis [27,
28], trained on labelled datasets to assign sentiment tags,
i.e., positive, negative, or neutral, to a given text. Fine-
tuning requires initializing a language model with the same
parameters used for pre-training, and then further training
the model using labeled data related to a specific task.

Language models usually employ multi-layer transform-
ers as a model architecture to perform many computations
in parallel [29]. Transformer models adopt positional em-
bedding to vectorize individual words by considering their
positions in a given sequence of words. Thus, unlike Recur-
rent Neural Networks (RNNS) [30] and Long-Short Term
Memory (LSTM) [31], transformer models do not require
looking at past hidden states to capture dependencies with
previous words in a sequence of words.

Given the wide popularity of language models in vari-
ous NLP applications, researchers have attempted to apply
these language models to programming languages. How-
ever, when BERT, for example, was used for detecting the
architectural tactics in source code [32], e.g., recognizing
software design patterns, the results were relatively worse
compared to those obtained when BERT was used for nat-
ural language text. To address this issue, recent work pro-
posed pre-training language models on source code written
in many programming languages in addition to natural
language text [10, 33–35]. These models are well suited
for fine-tuning to perform tasks related to source code.
CodeBERT [10] is an example of a language model that was
pre-trained on both natural and programming languages.

2.4.1 CodeBERT

CodeBERT [10] is a language model that was pre-trained
on a large, unlabeled dataset containing English text as
well as source code written in six different programming
languages, namely Java, JavaScript, Python, Ruby, PHP, and
Go, obtained from the CodeSearchNet corpus [36]. Code-
BERT takes, as input, source code statements and natural
language sentences, which are then tokenized using the
WordPiece [37] tokenizer. Similar to BERT and RoBERTa,
CodeBERT uses a multi-layer bidirectional transformer [29]
as model architecture. This transformer is composed of
six layers, each of which contains 12 self-attention heads
capturing word relationships, a hidden state, and a 768-
dimensional vector, as the output of each layer.

CodeBERT also employed Masked Language Model-
ing (MLM) [20] and Replaced Token Detection (RTD) [38]
during pre-training, allowing to take tokens from random
positions and masking them with special tokens, which
are later used to predict the original tokens. As a result,
each token is assigned a vector representation containing
information about the token and its position in a given code.
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Table 1: Test smells used by FlakeFlagger [7]

Test Smell Description

Indirect Testing A test interacts with the class under test using methods from other classes
Eager Testing A test performs multiple checks for various functionalities
Test Run War A test allocates files or resources that might be used by other test cases
Conditional Logic A test uses a conditional if statement
Fire and Forget A test launches background threads or processes
Mystery Guest A test accesses external resources
Assertion Roulette A test performs multiple assertions
Resource Optimism A test accesses external resources without checking their existence

The final output of CodeBERT is a single vector representa-
tion aggregating all individual vector representations. This
vector representation can further be fine-tuned to perform
various tasks, e.g., classification. For example, to evaluate
the performance of CodeBERT, it was fine-tuned to perform
two tasks: (1) code search, i.e., retrieving the most relevant
code to a given natural language text; (2) code documen-
tation, i.e., generating a natural language description for a
given source code. Moreover, CodeBERT was also adopted
to perform classification tasks, such as bug prediction [39]
and vulnerability detection [40].

2.4.2 Other models for programming languages

As mentioned above, recently, many language models
for programming languages were proposed. For example,
GraphCodeBERT [33] was pre-trained on the inherent struc-
ture of source code and its data flow showing variables
dependencies. Similar to CodeBERT, GraphCodeBERT was
used for code search, in addition to code translation and
refinement as well as clone detection. Another model for
programming languages is TreeBERT [35], which was pre-
trained using AST representations of Java and Python
source code. TreeBERT was used for code documentation,
similar to CodeBERT, in addition to code summarization.
There is also CuBERT [34], a programming language model
pre-trained using Python source code. CuBERT was used
for classification tasks, such as classifying exceptions and
variable misuses.

Despite the capabilities of these models, CodeBERT has
been the most commonly used language model and we
selected it to address our objectives for several reasons
presented below.

• The pre-trained CodeBERT model is publicly avail-
able.1

• Unlike GraphCodeBERT, CodeBERT does not take
into consideration the data flow in a given source
code, which might not be easy to capture using test
code only. For example, unlike local variables, if a
global or external variable is used by a test case,
GraphCodeBERT cannot identify the type and value
of that variable when analyzing test code only.

• Unlike TreeBERT, which requires converting source
code into ASTs, CodeBERT only requires source code
as input.

• Unlike CuBERT, which was only pre-trained on
Python source code without comments, CodeBERT
was pre-trained on multiple programming languages
using both source code and natural language com-
ments.

1. https://huggingface.co/microsoft/CodeBERT-base

3 BLACK-BOX FLAKY TEST CASE PREDICTOR

This section describes our black-box solution for predicting
flaky test cases. This is motivated by making such pre-
dictions scalable, as white-box analysis of the production
source code, especially in the context of large systems, is
often not a viable solution.

3.1 CodeBERT for Flaky Test Case Prediction
In this paper, we propose Flakify, a black-box solution for
predicting whether a test case is flaky or not. Flakify relies
solely on the source code of a test case and does not require
to rerun it multiple times. The source code of test cases,
i.e., Java test methods, includes the method declaration,
body, and it associated Javadoc comments. While several
studies have proposed ML techniques to predict flaky test
cases, such techniques rely on pre-defined features extracted
not only from the source code of test cases but also that
of the system under test. However, results [7–9] suggest
those features may not be enough, and finding additional
features that could potentially be associated with flaky
test cases remains a research challenge given their non-
deterministic behavior. Therefore, we employed CodeBERT,
the pre-trained language model described above, to perform
a binary classification of test cases as Flaky or Non-Flaky.
CodeBERT does not require to define features as it automat-
ically identifies patterns based on the syntax and semantics
of a given test code.

CodeBERT starts by converting the source code of a test
case into a list of tokens, each of which is converted into an
integer vector representation. Finally, an aggregated vector
representation is generated as an output of CodeBERT,
which is further fine-tuned to classify test cases as Flaky or
Non-Flaky. Figure 1 presents an example of how the source
code of a test case is converted into tokens and then into
integer vector representations.

3.1.1 Source Code Tokenization
To transform the source code into tokens, the source code of
test cases is tokenized by the WordPiece [37] tokenizer using
a pre-generated vocabulary file containing the vocabulary of
both English and programming languages used for model
pre-training. However, uncommon words, i.e., those that do
not exist in the vocabulary file, are separated into several
sub-words. For example, the CodeBERT tokenizer splits
‘assertThat’ into ‘assert’ and ‘##that’, where ‘##’
denotes that a token represents a sub-word. Then, if a token
is not found in the vocabulary file, the unknown token,
<UNK>, is used. For each input, two special tokens, [CLS]
and [SEP], are added. Eventually, for a given source code,
the tokenizer generates a sequence of tokens in the form of

https://huggingface.co/microsoft/CodeBERT-base
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[CLS], c1, c2, .., cn, [SEP], where ci is a code token. The
[CLS] token plays an important role in the classification
of flaky test cases, as it contains the aggregated vector
representation of all the vector representations of the tokens
of a given test case. On the basis of that aggregated vector
representation, our model classifies a test case as Flaky
or Non-Flaky. [SEP] is just used to mark the end of the
sequence of tokens. The tokenizer also adds ‘_G’ in front of
each word that is preceded by a whitespace in a statement.

3.1.2 Converting Tokens into Vector Representations
Once the source code tokens are generated, each token, in-
cluding sub-word, special, and unknown tokens, is mapped
to an index, e.g., id 34603 for “Test” in Figure 1, based on
the position and context of each word in a given input.
Each token is described by an 768-dimensional integer vec-
tor generated during CodeBERT pre-training. Using token
padding, the same token length is given to the code of all
test cases used as input, e.g., “1” in Figure 1. However,
CodeBERT has a limit of 512 tokens per input. As a result,
any token sequence exceeding that limit is truncated, which
might lead to removing code statements with potentially
relevant information about test flakiness. In addition to
input ids matching tokens, another list of attention masks
is generated containing ones and zeros to help the model
distinguish between code tokens, which should be given
attention, and extra tokens added for padding. Finally,
for each test case, token vectors are aggregated to form
one vector characterizing the [CLS] token, which is also
represented using a 768-sized vector referred to by the first
input index ‘0’.

@Test

public void test_example() throws Exception

{

assertThat(expected, actual);
}

'@', 'Test', 'Ġpublic', 'Ġvoid', 
'Ġtest', '_', 'example', '()', 
'Ġthrows', 'ĠException', 'Ġ{', 
'assert', 'That', '(', 'expected', 
',', 'Ġactual', ');', '}'

'input_ids': [0, 1039, 34603, 285, 13842, 1296, 
1215, 46781, 43048, 6989, 47617, 25522, 
46346, 1711, 1640, 10162, 6, 3031, 4397, 
24303, 2, 1, 1, 1, 1, 1, 1, ...., 1]
'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, ...., 0]

Tokens are assigned indices 
and attention mask

Code is tokenized

Figure 1: The process of converting the source code of a test
case into a sequence of tokens, where each token is assigned
an input index (id) and attention mask. Dots ‘....’ are used
to save space, since the actual length is 512. The input id of
each token refers to a 768-dimensional vector representation.

3.1.3 Fine-Tuning CodeBERT for Flaky Test Classification
CodeBERT was pre-trained with a huge number of param-
eters, enabling it to recognize the source code structure. As

CodeBERTTest case
Feedforward 

Neural Network
768-Sized 

Vector of [CLS]

Flaky

Non-
Flaky

Classifier

Figure 2: Fine-tuning CodeBERT for classifying test cases as
flaky or not

a result, if CodeBERT were to be trained from scratch on
our dataset, it would result into over-fitting. To avoid that,
CodeBERT, similar to other language models [41], needs to
be fine-tuned using data representative of the problem at
hand. To do this, we employed CodeBERT as pre-trained
and use its outputs, on our dataset, to train a Feedforward
Neural Network (FNN) to perform binary classification of
test cases as flaky or non-flaky, as shown in Figure 2.

The output of CodeBERT, i.e., the aggregated vector
representation of the [CLS] token, is then fed as input to
a trained FNN to classify test cases as flaky or not. The FNN
contains an input layer of 768 neurons, a hidden layer of 512
neurons, and an output layer with two neurons. We used
ReLU [42] as an activation function, which helps to speed up
training by transforming the data within layers and output
the input directly if it is positive or zero otherwise. Then, we
added a dropout layer [43] to eliminate some neurons ran-
domly from the network, by resetting their weights to zero
during the training phase to prevent model over-fitting [44].
We used the Softmax function to compute the probability of
a test case to be Flaky or Non-Flaky. We used a learning rate
of 10−5 using the AdamW optimizer [45] and employed a
batch size of two due to computational limitations. Using
this configuration, we further trained CodeBERT on our
training and validation datasets, which enabled the selec-
tion of improved parameter values for weights and biases
through back propagation. We then evaluated the model,
with the obtained weights, using a test dataset.

3.2 Identifying Test Smells

As indicated above, the 512 token length limit induced
by CodeBERT truncates longer test code, which leads to
losing potentially relevant information about test flakiness.
Therefore, we pre-possessed the source code of test cases
to reduce their token length by only retaining information
believed to be more relevant to test flakiness. To this end,
for test cases exceeding the token length limit, we retained
only code statements that match at least one of the eight
test smells that were used by FlakeFlagger [7] as predictors
for flaky test cases. We also retained the method declaration
and the associated Javadoc, since the signature and natural
language description, if any, of the test case, might contain
key terms or phrases that are likely associated with test
flakiness, e.g., ”...failures...unnecessary...” or ”thread-safe”.

There exist several open source tools available for detect-
ing test smells [46]. However, these tools, e.g., tsDetect [47]
and JNose Test [48], either rely on production code for de-
tecting test smells or do not detect all test smells that are po-
tentially relevant to test flakiness [7, 11]. While Alshammari
et al. [7] detects all the eight test smells shown in Table 1,
their technique does so by running test cases and requiring
access to the production code for smell detection. Though
we were inspired by the heuristics used by Alshammari et
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al. to detect test smells, given that our approach aims to
be black-box, we developed an entirely different technique
that detects test smells statically, relying exclusively on test
code without requiring to run test cases. Flakify detects all
targeted test smells and can be easily extended to detect
additional test smells. We used an Abstract Syntax Tree
(AST) [49] parser, provided by the Eclipse JDT library,2 to
statically traverse any given test code and retain statements
that match any of the targeted test smells.Using this library,
each Java file in a test suite is parsed and converted into AST
nodes representing different code elements, e.g., method
declaration or invocation. Then, an AST visitor is used to
traverse those AST nodes. We extended the AST visitor
to check the AST nodes related to method declarations
and apply heuristics (described below) to detect and retain
code statements that match at least one test smell. Such
statements are extracted as part of the pre-processed code.

Figure 3 gives an example of a Java test method,
test_example, and how it is pre-processed. As we can
see, test_example has seven different statements, four
of them having test smells. In particular, test_example
contains the following test smells: Fire and Forget (line 5 –
launching a thread), Conditional Test (line 7 – if condition),
and Assertion Roulette (lines 8 and 10 – multiple assertions).
As a result, our technique retains only these four statements,
which in turn leads to reducing the token length from 62
to 43 (31% reduction rate). We expect our test code pre-
processing to help improve the classification performance,
since it mitigates the random truncation of code statements
induced by CodeBERT.

@Test
public void test_example() throws Exception
{

int i = 0;
new Thread() {public void run() {}}.start();
methodCall();
if (condition)) {

assertThat(expected, actual);
for (i; i < max; i++) {

assertTrue(expected);
}

}
}

@Test
public void test_example() throws Exception
{

new Thread() {public void run() {}}.start();
if (condition)) {

assertThat(expected, actual);
assertTrue(expected);

}
}

Conditional Test

Assertion Roulette

Test Smells

Test method is pre-processed to retain 
only statements with test smells

Fire and Forget

1
2
3
4
5
6
7
8
9
10
11
12
13

Original code

Preprocessed code

Figure 3: Example of pre-processing the source code of a test
case, which leads to reducing the number of tokens from 62
down to 43

3.2.1 Heuristics for detecting test smells
To detect test smells in test code, we followed the same
detection heuristics as those used by Alshammari et al. [7].
However, different from this work, which extracts test
smell information dynamically from the test and production

2. https://www.eclipse.org/jdt

code (code coverage), we detected test smells statically
by analyzing the test code only. To this end, we used an
Abstract Syntax Tree (AST) [49] parser, provided by the
Eclipse JDT library,3 to traverse any given test code and
retain statements that match, according to our heuristics,
any of the targeted test smells. Using this library, each Java
test file in the test suite is parsed and converted into AST
nodes representing different code elements, e.g., method
declaration or invocation. While parsing Java test files, not
all types are necessarily resolved due to missing production
code. We describe below the heuristics used to identify each
of the eight test smells presented in Table 1. For each test
case, i.e., test method, we analyzed each statement to check
whether it matches one of the targeted test smells. If so,
we retain that statement as part of the pre-processed test
code and otherwise exclude that statement. For some test
smells, we added flags, i.e., a Java line comments appended
to the end of each statement matching the test smell, to help
our fine-tuned model learn about the association of these
statements with test flakiness. The test smells used in this
work were detected as described below.

• Indirect Testing: We check whether a statement in-
vokes a method that belongs to a class other than the
test class or the production class under test. Since our
approach is black-box, i.e., no access to production
code, the production class name is extracted from
the test class name by removing the word ‘Test’.
This is a commonly used coding convention, but
our approach can easily be adapted to other coding
conventions in practice [11]. Any statement that is
found to invoke such methods is retained and the
‘//IT’ flag is added.

• Eager Testing: We check whether a test case invokes
more than one method belonging to the production
class under test as it can introduce confusion to what
exactly a test method is testing [46]. If this is the case,
we retain the statements invoking these methods,
adding the ‘//ET’ flag.

• Test Run War: We check whether a statement ac-
cesses static variables that are not declared as final,
as the value of such variables could be changed by
other test cases in different test executions, especially
when a test case is order-dependent, which can then
cause resource interference during test case execu-
tion [11]. Any statement that is found to use one of
these variables is retained, adding the ‘//RW’ flag.

• Conditional Logic: We check whether a statement
contains an if condition. If so, we retain if state-
ments, including their logical expressions. The pres-
ence of conditional statements makes test case be-
havior dependent on their logical expressions, thus
making them unpredictable [46]. For the statements
inside the then and else blocks, we only retain
those that match one of the eight test smells.

• Fire and Forget: We check whether a statement
invokes a method that launches a thread by
checking if the invoked method belongs to the
java.lang.Thread class, java.lang.Runnable
interface, or java.util.concurrent package.

3. https://www.eclipse.org/jdt

https://www.eclipse.org/jdt
https://www.eclipse.org/jdt
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Thread-related statements make test cases prone to
synchronization issues during their execution [12]. If
this test smell is present, we retain that statement.

• Mystery Guest: We check whether a statement in-
vokes a method that accesses external resources,
such as the file system (via java.io.File),
database system (via java.sql, javax.sql, or
javax.persistence), or network (via java.net
or javax.net). Such external resources can intro-
duce stability and performance issues during test
case execution [12]. Any statement that is found to
use methods that belong to one of these classes or
packages is retained.

• Assertion Roulette: We check whether a statement
performs one of the following assertion mechanisms,
including assertArrayEquals, assertEquals,
assertFalse, assertNotNull, assertNotSame,
assertNull, assertSame, assertThat,
assertTrue, and fail. If so, the statement is
retained. Multiple assert statements in a test method
makes it difficult to identify the cause of the failure
if just one of the asserts fails [9].

• Resource Optimism: We check whether a statement
accesses the file system (java.io.File) without
checking if the path (for either a file or direc-
tory) exists. Doing so makes optimistic assumptions
about the availability of resources, thus causing non-
deterministic behavior of the test case [47]. We check
the test initialization method (usually named as
setUp or containing the @Before annotation) for
any path checking method, including getPath(),
getAbsolutePath(), or getCanonicalPath().
If no such checking is present, the statement is re-
tained, adding the ‘//RO’ flag.

4 VALIDATION

This section reports on the experiments we conducted to
evaluate how accurate is Flakify in predicting flaky test
cases and how it compares to FlakeFlagger as a baseline.
We discuss the research questions we address, the datasets
used, and the experiment design. Then, we present the
results for each research question and discuss their practical
implications.

4.1 Research Questions

• RQ1: How accurately can Flakify predict flaky test
cases?
The performance of ML-based flaky test predictors
can be influenced by the data used for training and
the underlying modeling methodology. In this RQ,
we evaluate Flakify on two distinct datasets, which
differ in terms of numbers of projects, ratios of flaky
and non-flaky test cases, and the way flaky test
cases were detected. In addition, predicting flaky
test cases can be influenced by project-specific in-
formation used during model training, which is not
available for new projects. Therefore, we evaluate
Flakify using two different procedures: 10-fold cross-
validation and per-project validation. The former

mixes test cases from all projects together to perform
model training and testing, whereas the later tests
the model on every project such that no information
from that project was used as part of model training.

• RQ2: How does Flakify compare to the state-of-the-
art predictors for flaky test cases?
Many solutions have been proposed to predict flaky
test cases. In this RQ, we compare the performance
of our best performing model of Flakify (with test
case pre-processing) to two versions (white-box and
black-box) of FlakeFlagger, the best flaky test case
predictor to date.
RQ2.1: How accurate is Flakify for flaky test case
prediction compared to the best white-box ML-
based solution? White-box prediction of flaky test
cases requires access to production code, which is
not (easily) accessible by software test engineers in
many contexts. We assess whether Flakify achieves
results that are at least comparable to the best white-
box flaky test case predictor. Specifically, we compare
the accuracy of the best performing model of Flak-
ify with FlakeFlagger [7], the best white-box solution
currently available, on the dataset used by FlakeFlag-
ger. Our motivation is to determine whether black-
box solutions, based on CodeBERT, can compete with
the state-of-the-art, white-box ones. We compare the
results of Flakify and FlakeFlagger on the dataset on
which FlakeFlagger was evaluated, hereafter referred
to as the FlakeFlagger dataset. We also performed
a per-project validation of Flakify compared against
FlakeFlagger to assess their relative capability to
predict test cases in new projects.
RQ2.2: How accurate is Flakify for black-box flaky
test case prediction compared to the best ML-based
solution? Existing black-box flaky test case predic-
tion solutions rely on a limited set of features that
are sometimes project-specific or applicable only to a
certain programming language, e.g., Java [8], since
they were trained on features capturing the key-
words of that language. Besides not being generic,
the accuracy of these solutions has shown to be very
low compared to white-box solutions [7]. Therefore,
we compare the accuracy of Flakify with a black-box
version of FlakeFlagger, by excluding the features
related to production code, such as code coverage
features (see Table 2).

• RQ3: How does test case pre-processing improve
Flakify? The token length limitation of CodeBERT
may lead to unintentionally removing relevant in-
formation about flaky test cases, which could then
impact prediction accuracy. We assess whether the
accuracy of Flakify is improved when training the
model using pre-processed test cases containing only
code statements related to test smells, as opposed to
the entire test case code. We fully realize that we may
be missing test smells or unintentionally removing
relevant statements. But our motivation is to assess
the benefits, if any, of our approach to reduce the
number of tokens used as input to CodeBERT. We
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performed this analysis on both the FlakeFlagger and
the IDoFT datasets.

4.2 Datasets Collection and Processing
To evaluate Flakify, we used two publicly available datasets
for flaky test cases. The first dataset is the FlakeFlagger
dataset [7]. The second dataset is the International Dataset
of Flaky Tests (IDoFT)4, which comprises many datasets for
flaky test cases used by previous studies on flaky test case
prediction [5, 50–54].

FlakeFlagger dataset: It is provided by Alshammari et
al. [7], containing flakiness information about 22,236 test
cases collected from 23 GitHub projects. These projects have
different test suite sizes, ranging from 55 to 6,267 (with a
median of 430) test cases per project. All projects in the
FlakeFlagger dataset are written in Java and use Maven as
a build system, and each test case is a Java test method.
The dataset contains the source code of each test case and
the corresponding features that were computed to train
FlakeFlagger. Also, test cases in the dataset were assigned
labels indicating whether they are Flaky or Non-Flaky, which
were determined by executing each test case 10,000 times.

When we analyzed the dataset, we identified 453 test
cases with missing source code when intersecting test cases
in a provided CSV file (called processed data5) with those
in a provided folder (called original tests6) containing their
source code. In addition, we identified 122 test cases, in
the original tests folder, with empty source code, which we
found out were not written in Java.7 Therefore, we excluded
these test cases from our dataset, since they do not add
any valuable information regarding our flakiness prediction
evaluation. Nine of these test cases were labeled as flaky,
three with missing source code and six with empty method
body. After excluding test cases with missing and empty
code, we obtained 21,661 test cases for our experiments.
We compared Flakify and FlakeFlagger using this updated
dataset. To pre-process the source code of the test cases (see
Section 3.2), we cloned the GitHub repository of each project
and extracted the Java classes defining the methods of test
cases.

There are 802 test cases in the dataset that are labeled
as Flaky (with a median of 19 flaky test cases per project),
whereas 20,859 test cases are Non-Flaky. About 4% of all test
cases exceed the 512 limit of CodeBERT when converted into
tokens, including 14% of the flaky test cases.

IDoFT dataset: This dataset contains 3,742 Flaky test cases
from 314 different Java projects, and collected using differ-
ent ways, i.e., different runtime environments with different
numbers of runs to detect test flakiness. However, we were
unable to obtain the test code of 474 test cases (from 2
projects) due to missing GitHub repositories or commits,
leaving us with 3,268 Flaky test cases from 312 projects.
Given that the IDoFT dataset contains no test cases catego-
rized as Non-Flaky, we used the fixed versions of 1,263 flaky

4. https://mir.cs.illinois.edu/flakytests
5. https://github.com/AlshammariA/FlakeFlagger/blob/main/

flakiness-predicter/result/processed data.csv
6. https://github.com/AlshammariA/FlakeFlagger/tree/main/

flakiness-predicter/input data/original tests
7. https://github.com/AlshammariA/FlakeFlagger/pull/4

test cases, from 174 projects, to obtain non-flaky test cases,
as recommended by the IDoFT maintainers8. To do so, we
relied on the provided links to pull requests9 used for fixing
flaky test cases to collect the corresponding code changes.
However, of the 1,263 fixed flaky test cases, we found only
594 flaky test cases, from 126 projects, in which the test case
code is changed to fix test flakiness. Based on our analysis,
the other flaky test cases were fixed in other ways, such as
changing the order of test case execution, test configuration,
or production code. Such flaky tests are out of the scope
of this paper, since we consider only test cases whose test
code was fixed, e.g., causes of flakiness related to test smells
or other test characteristics. As a result, we added the 594
Non-Flaky (fixed) tests to the 3,268 Flaky test cases to end
up with an updated dataset of 3,862 test cases. Limitations,
regarding the causes of flakiness we could not detect, are
discussed in Section 5. About 13% of all test cases exceed
the 512 limit of CodeBERT when converted into tokens.

We made the updated datasets of FlakeFlagger and
IDoFT, including their pre-processed test cases, publicly
available in our replication package [55].

4.3 Experiment Design

4.3.1 Baseline
We used the FlakeFlagger approach as a baseline against
which we compare the results achieved by Flakify. To this
end, we reran the experiments conducted by Alshammari et
al. [7] to reproduce the prediction results of FlakeFlagger
using their provided replication package.10 FlakeFlagger
was trained and tested using a combination of white-box
and black-box features listed in Table 2. These features were
selected based on their Information Gain (IG), i.e., only fea-
tures having an IG≥ 0.01 were selected for training. Besides
reproducing the original results of FlakeFlagger, we also
reran the experiments using black-box features only, which
was done by excluding all features that required access
to production code. Comparing Flakify with FlakeFlagger
is performed on the FlakeFlagger dataset only, as running
FlakeFlagger on the IDoFT dataset requires extracting fea-
tures, both dynamic and static, needed to train FlakeFlagger.
To do so, we must access the project’s production code
and then successfully execute thousands of test cases across
hundreds of project versions.

4.3.2 Training and Testing Prediction Models
Training and testing Flakify were conducted using two
different procedures, performed independently on the two
datasets describe above, as follows.

1st Procedure (cross-validation): In this procedure, we eval-
uated Flakify similarly to how FlakeFlagger was originally
assessed. Specifically, we used a 10-fold stratified cross-
validation to ensure our model is trained and tested in a
valid and unbiased way. For that, we allocated 90% of the
test cases for training and 10% for testing our model in each
fold. However, different from FlakeFlagger, we employed
20% of the training dataset as a validation dataset, which

8. https://github.com/TestingResearchIllinois/IDoFT/issues/566
9. https://mir.cs.illinois.edu/flakytests/fixed.html
10. https://github.com/AlshammariA/FlakeFlagger

https://mir.cs.illinois.edu/flakytests
https://github.com/AlshammariA/FlakeFlagger/blob/main/flakiness-predicter/result/processed_data.csv
https://github.com/AlshammariA/FlakeFlagger/blob/main/flakiness-predicter/result/processed_data.csv
https://github.com/AlshammariA/FlakeFlagger/tree/main/flakiness-predicter/input_data/original_tests
https://github.com/AlshammariA/FlakeFlagger/tree/main/flakiness-predicter/input_data/original_tests
https://github.com/AlshammariA/FlakeFlagger/pull/4
https://github.com/TestingResearchIllinois/IDoFT/issues/566
https://mir.cs.illinois.edu/flakytests/fixed.html
https://github.com/AlshammariA/FlakeFlagger
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Table 2: FlakeFlagger Features

Category Feature Description

Bl
ac

k-
Bo

x Presence of Test Smells See Table 1
Test Lines of Code Number of lines of code in the body of the test method
Number of Assertions Number of assertions checked by the test
Execution Time Running time for the test execution
Libraries Number of external libraries used by the test

W
hi

te
-B

ox Source Covered Classes Number of production classes covered by each test
Source Covered Lines Number of lines covered by the test, counting only production code
Covered Lines Number of lines of code covered by the test
Covered Lines Churn Churn of covered lines in past 5, 10, 25, 50, 75, 100, 500, and 10,000 commits

is required for fine-tuning CodeBERT. Using the validation
dataset, we calculated the training and validation loss,
which helped obtain optimal weights and stop the training
early enough to avoid overfitting.

Given that both of the datasets we used are highly
imbalanced—Flaky test cases represent only 3.7% of all test
cases in the FlakeFlagger dataset and Non-Flaky test cases
represent only 15% of the IDoFT dataset—we balanced
Flaky and Non-Flaky test cases in the training and valida-
tion datasets of FlakeFlagger and IDoFT. Different from
FlakeFlagger, which used the synthetic minority oversam-
pling technique (SMOTE) [56], we used random oversam-
pling [57], which adds random copies of the minority class
to the dataset. We were unable to use SMOTE, since it
requires vector-based features, whereas our model takes
the source code of test cases (text) as input [10, 39], as
opposed to pre-defined features like FlakeFlagger. Similar
to FlakeFlagger, we also performed our experiments using
undersampling but this led to lower accuracy. We did not
balance the testing dataset to ensure that our model is
only tested on the actual set of test cases. This prevents
overestimating the accuracy of the model and reflects real-
world scenarios where flaky test cases are rarer than non-
flaky test cases [7].

2nd Procedure (per-project validation): In this procedure,
we evaluated Flakify in a way that yields more realistic
results when we predict test cases on a new project, thus
evaluating the generalizability of Flakify across projects. To
do this, we performed a per-project validation of Flakify on
both datasets. In particular, for every project in each dataset,
we trained Flakify on the other projects and tested it on that
project. This allowed us to evaluate how accurate Flakify is
in predicting flaky test cases in one project without includ-
ing any data from that project during training. We also per-
formed this analysis for FlakeFlagger, on the FlakeFlagger
dataset, for the sake of comparison.

4.3.3 Evaluation Metrics

To evaluate the performance of our approach, we used
standard evaluation metrics for ML classifiers, including
Precision (the ability of a classification model to precisely
predict flaky test cases), Recall (the ability of a model to
predict all flaky test cases), and the F1-Score (the harmonic
mean of precision and recall) [58]. For the per-project vali-
dation of Flakify, we computed the overall precision, recall,
and F1-score using the prediction results of all projects in
the FlakeFlagger and IDoFT datasets. We also computed
these metrics individually for those projects that have both
Flaky and Non-Flaky test cases, specifically 23 FlakeFlagger

projects and 126 IDoFT projects, along with descriptive
statistics, such as mean, median, min, max, 25% and 75%
quantiles. We used Fisher’s exact test [59] to assess how sig-
nificant is the difference in proportions of correctly classified
test cases between two independent experiments. Note that
precision, recall, and F1-score are computed based on such
proportions.

In practice, test cases classified as Flaky must be ad-
dressed by re-running them multiple times or by fixing the
root causes of flakiness [6, 13, 60]. Precisely predicting flak-
iness is therefore important as otherwise time and resources
are wasted on re-running and attempting to debug many
test cases that are believed to be flaky but are not [17,
61]. According to our industry partner, Huawei Canada,
and a Google technical report [6], each flaky test case has
to be investigated and re-run by developers. Hence, when
we multiply the number of predicted flaky test cases, we
proportionally increase the resources associated with re-
running and investigating such flaky test cases. Therefore,
we assume that the wasted cost of unnecessarily re-running
and debugging test cases is inversely proportional to preci-
sion:

Test Debugging Cost ∝ 1− Precision (1)

On the other hand, it is also important not to miss too
many flaky test cases as otherwise time is bound to be
wasted on futile attempts to find and fix non-existent bugs
in the production code. Thus, we assume that the wasted
cost of unnecessarily finding and fixing non-existent bugs
in the production code is inversely proportional to recall:

Code Debugging Cost ∝ 1−Recall (2)

We acknowledge that the above metrics are surrogate
measures for cost and that there are significant differences
between individual flaky tests; however, they are reason-
able and useful approximations on large test suites for the
purpose of comparing classification techniques. We used
FlakeFlagger as baseline to compute the reduction rate of
test and code debugging costs, by dividing the difference
in cost between Flakify and FlakeFlagger by the cost of
FlakeFlagger.

4.4 Results
4.4.1 RQ1 results
Table 3 shows the prediction results (in terms of pre-
cision, recall, and F1-score) of Flakify using both the
full and pre-processed test code from the FlakeFlagger
and IDoFT datasets, based on cross-validation. Overall,
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Flakify achieved promising prediction results using both
datasets, with a precision of 70%, a recall of 90%, and an
F1-score of 79% on the FlakeFlagger dataset, and a precision
of 99%, a recall of 96%, and an F1-score of 98% on the IDoFT
dataset. The higher results achieved by Flakify on the IDoFT
dataset over those achieved on the FlakeFlagger dataset is
probably due to the fact that the IDoFT dataset contains
many more flaky test cases than FlakeFlagger, which helped
during model training. Moreover, the non-flaky test cases in
the IDoFT dataset were labeled based on developer’s fixes
addressing the causes of flakiness in the test code, unlike the
non-flaky test cases in the FlakeFlagger dataset whose labels
were based on 10,000 runs performed by Alshammari et
al. [7], which may not have been enough to fully expose test
flakiness. This also helped during model training of Flakify.

Table 4 reports the per-project prediction results of
Flakify on the FlakeFlagger dataset. Overall, as expected,
Flakify achieved slightly lower precision (72%), recall (85%),
and F1-score (73%) than the cross-validation results on the
FlakeFlagger dataset. Similarly, Flakify achieved slightly
worse precision (91%), recall (88%), and F1-score (89%) on
the IDoFT dataset. Table 5 shows descriptive statistics for
the per-project prediction results of Flakify for individual
projects of the FlakeFlagger dataset (due to space limita-
tions, we provide individual per-project prediction results of
Flakify on the IDoFT dataset in our replication package [55]).
Our analysis of individual per-project prediction results
revealed a high performance of Flakify on the majority
of projects. This result suggests that Flakify helps build
models that are generalizable across projects, thus making it
applicable to new projects where no historical information
about test flakiness exists. In short, Flakify is capable to
learn about test flakiness through data collected from other
projects to predict flaky test cases in new projects.

4.4.2 RQ2 results

Table 3 presents the prediction results of Flakify, using both
full code and pre-processed test code, and FlakeFlagger,
using both white-box and black-box versions, for the Flake-
Flagger dataset.

RQ2.1 results. For FlakeFlagger, we obtained results close to
those reported in the original study, with a slight decrease
in F1-score (1%), which is likely due to removing test cases
with missing test code. Flakify achieved much better results
with a precision of 70% (+10 pp), a recall of 90% (+18 pp),
and an F1-score of 79% (+14 pp). These results clearly show
that Flakify, though being black-box and relying exclusively
on test code, significantly surpasses FlakeFlagger in accu-
rately predicting flaky test cases. Statistically, the proportion
of correctly predicted test cases using Flakify is significantly
higher than that obtained with FlakeFlagger (Fisher-exact
p-value < 0.0001).

The number of true positives obtained by FlakeFlagger
was 574, whereas Flakify increased that number to 721.
This indicates that Flakify can potentially reduce the test
debugging cost by 10 pp, as defined above, when compared
to FlakeFlagger (a reduction rate of 25%). Similarly, Flak-
ify reduces the number of false negatives to 81 from 227
with FlakeFlagger, thus decreasing the code debugging cost
by 18 pp, as defined above (a reduction rate of 64%).

Table 5 shows the comparison of per-project prediction
results between Flakify and FlakeFlagger. Overall, Flak-
ify achieves a high accuracy, with a precision of 72% (+57
pp)), a recall of 85% (+71 pp)), and an F1-score of 73%
(+66 pp)), which, once again, significantly outperforms
FlakeFlagger. Looking at the individual prediction results
of the projects, we observe that the accuracy of Flakify is
largely consistent across projects, with a few exceptions,
whereas FlakeFlagger performed poorly on the majority of
projects. Further, Flakify performs better than FlakeFlagger
for almost all projects except two: incubator-dubbo and
spring-boot where both techniques fare poorly.

To understand the reasons behind such degraded per-
formance for these two projects, we performed a hierar-
chical clustering of the 23 projects. We used different met-
rics that capture the characteristics of each project, such
as the number of test cases, number of flaky test cases,
and frequency of test smells in each project. However,
our clustering results were inconclusive, thus revealing no
significant differences between the two projects and the
other projects. As reported by Alshammari et al. [7], each
project can have distinct characteristics, e.g., environmental
setup and testing paradigm, that make it difficult to develop
a general-purpose flaky test case predictor. For example,
the spring-boot project has the highest number of flaky
test cases among all projects, representing 20% of all flaky
test cases in the dataset. This, in turn, can influence model
training when the model was tested for spring-boot. In
addition, the variation in prediction results can be a result
of a possible mislabeling of test cases as Flaky and Non-
Flaky in some projects, since some test cases may still exhibit
flakiness behavior if executed more than 10,000 executions,
for example. Finally, test flakiness can also occur due to the
use of network APIs or dependency conflicts [18], which
were not taken into account when predicting flaky test cases.

RQ2.2 results. As shown in Table 3, we observe a con-
siderable decline in the accuracy for the black-box version
of FlakeFlagger when compared to its original, white-box
version, i.e., 39 pp less precise with a 54 pp decrease in
F1-score. Specifically, black-box FlakeFlagger correctly pre-
dicted a significantly lower proportion of test cases than
both Flakify and the original, white-box version of Flake-
Flagger (Fisher-exact p-values < 0.0001). As a possible
explanation, based on the results of FlakeFlagger regarding
the importance of features in predicting flaky test cases [7],
the majority of features having high IG values were based
on source code coverage. Hence, removing those features,
to make FlakeFlagger black-box, is expected to significantly
decrease its prediction power. The difference in accuracy
between Flakify and the black-box version of FlakeFlagger
is rather striking, with a large improvement of +49% in
F1-score (Fisher-exact p-value < 0.0001). FlakeFlagger is
therefore not a viable black-box option to predict flaky test
cases.

4.4.3 RQ3 results

With no code pre-processing, 898 (4%) of the test cases of
the FlakeFlagger dataset and 505 (13%) of the test cases of
the IDoFT dataset were truncated by CodeBERT to generate
tokens of size 512. Such arbitrary code truncation is likely
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Table 3: Results of Flakify (using full code and pre-processed) compared to FlakeFlagger (white-box and black-box versions)

Approach Dataset Model Precision Recall F1-Score

Flakify
FlakeFlagger dataset

Full code 65% 85% 74%
Pre-processed code 70% 90% 79%

IDoFT dataset
Full code 98% 95% 92%
Pre-processed code 99% 96% 98%

FlakeFlagger FlakeFlagger dataset
White-box version 60% 72% 65%
Black-box version 21% 52% 30%

Table 4: Summary of the per-project prediction results of Flakify on the FlakeFlagger and IDoFT datasets

Dataset Metric Min 25% Mean Median 75% Max

FlakeFlagger dataset
Precision 6% 58% 72% 79% 91% 100%
Recall 1% 87% 85% 95% 100% 100%
F1-Score 2% 63% 73% 83% 94% 100%

IDoFT dataset
Precision 66% 100% 91% 100% 100% 100%
Recall 14% 94% 88% 100% 100% 100%
F1-Score 25% 95% 89% 100% 100% 100%

Table 5: Results of the per-project prediction for Flakify and FlakeFlagger on the FlakeFlagger dataset. For every project,
we trained models on all other projects and tested them on that project.

Project Precision Recall F1-Score
Flakify FlakeFlagger Flakify FlakeFlagger Flakify FlakeFlagger

achilles 100% 0% 100% 0% 100% 0%
activiti 80% 2% 90% 94% 85% 4%
alluxio 99% 100% 100% 13% 99% 24%
ambari 75% 39% 95% 61% 84% 47%
assertj-core 25% 0% 100% 0% 40% 0%
commons-exec 25% 0% 100% 0% 40% 0%
elastic-job-lite 50% 0% 100% 0% 60% 0%
handlebars.java 30% 0% 100% 0% 50% 0%
hbase 79% 72% 98% 33% 88% 45%
hector 100% 0% 93% 0% 96% 0%
http-request 88% 0% 88% 0% 88% 0%
httpcore 74% 7% 90% 4% 81% 5%
incubator-dubbo 6% 7% 16% 32% 9% 12%
java-websocket 95% 0% 95% 0% 95% 0%
logback 85% 0% 81% 0% 83% 0%
ninja 100% 0% 100% 0% 100% 0%
okhttp 78% 100% 85% 2% 81% 4%
orbit 88% 0% 100% 0% 93% 0%
spring-boot 40% 9% 1% 3% 2% 4%
undertow 75% 7% 85% 43% 79% 12%
wildfly 65% 6% 91% 26% 76% 10%
wro4j 88% 1% 100% 19% 94% 3%
zxing 100% 0% 50% 0% 66% 0%

Overall 72% 15% 85% 14% 73% 7%

to affect how accurately Flakify can predict flaky test cases.
Pre-processing test cases (see Section 3.2) led to reducing the
number of test cases being truncated to only 40 (from 898)
in the FlakeFlagger dataset and 87 (from 505) in the IDoFT
dataset, a large difference. As a result, we observe in Table 3
that, with pre-processed test cases, Flakify predicted flaky
test cases with 5 pp higher F1-score on the FlakeFlagger
dataset and 6 pp higher F1-score on the IDoFT dataset. This
corresponds to a significantly higher proportion of correctly
predicted test cases (Fisher-exact p-value = 0.0008) for
the FlakeFlagger dataset. In practice, the impact of pre-
processing is expected to vary depending on the token
length distribution of test cases. This result suggests that
retaining statements related to test smells in the test code

contributed to making Flakify more accurate, which also
confirms the association of test smells with flaky test cases
reported by prior research [11].

4.5 Discussion

More accurate predictions with easily accessible informa-
tion. Our results showed that our black-box prediction of
flaky test cases performs significantly better than a white-
box, state-of-the-art approach. This not only enables test
engineers to predict flaky test cases without rerunning test
cases, but also without accessing the production code of the
system under test, a significant practical advantage in many
contexts. The highest accuracy of our Flakify was achieved
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by only retaining relevant code statements matching eight
test smells. Yet, there is still room for improvement in terms
of accuracy, which could be achieved by retaining more
relevant statements based on additional test smells. For
example, retaining code statements related to other common
flakiness causes [17], such as concurrency and randomness,
could further improve flaky test case predictions. However,
the more code statements we retain, the more tokens to be
considered by CodeBERT, which might lead to many test
cases exceeding their token length limit, thus truncating
other useful information. Hence, retaining additional code
statements is a trade-off and should carefully be performed
in balance with the resulting token length of test cases.
Moreover, building a white-box flaky test predictor, by
considering both production and test code, is not always
technically feasible, since the production code is not always
available to test engineers and, when possible, code cov-
erage can be expensive and not scalable on large systems,
especially in a continuous integration context. Considering
the production code also makes it impractical to build
language model-based predictors for flaky test cases, given
the token length limitation of language models in general,
and CodeBERT in particular. Nevertheless, future research
should assess the practicability of white-box, model-based
flaky test prediction, and should investigate further code
pre-processing methods to make the use of language models
more applicable in practice.

Practical implications of imperfect prediction results.
Though Flakify surpassed the best state-of-the-art solution
in predicting flaky test cases, both in terms of precision
and recall, a precision of 70% is still not satisfactory, since
misclassifying non-flaky test cases as flaky leads to addi-
tional, unnecessary cost, e.g., attempting to fix the test cases
incorrectly predicted as flaky. Also, with a recall of 90%, we
miss 10% of flaky test cases, leading to wasted debugging
cost. If we assume that precision should be prioritized over
recall, we can increase the former by restricting flaky test
case predictions to those test cases with highest prediction
confidence, at the expense of a lower recall. For example,
this can be achieved by adjusting the classification threshold
for flaky test cases to 0.60 or 0.70, instead of the default
threshold of 0.50. Nevertheless, given that the predicted
probabilities generated by the neural network in Flakify are
over confident due to the use of the Softmax function in the
last layer [62], i.e., probabilities are either close to 0.0 or 1.0,
we were unable to perform such analysis. Therefore, future
research should employ techniques for calibrating the pre-
dicted probabilities [63] and enable threshold adjustments
when classifying flaky test cases.

Deployment of a flaky test case predictor in practice.
Flakify can be deployed in Continuous Integration (CI)
environments to help detect flaky test cases. One could
argue that the CI build history can be used as reference
to conclude whether a test case is flaky or not. However,
regular test case executions across builds may not entirely
solve the problem, since differences in test case verdicts,
i.e., pass or fail, can be due to differences in builds rather
than flakiness. Therefore, test engineers can use the predic-
tion results obtained from Flakify to fix test cases that are
predicted as flaky, e.g., by eliminating the presence of test

smells, or otherwise rerun them a larger number of times,
using the same code version, to verify whether a test case
is actually flaky or not. More specifically, Flakify helps test
engineers focus their attention on a small subset of test cases
that are most likely to be flaky in a CI build. As our results
show, Flakify significantly reduces the cost of debugging
test and production code, both in terms of human effort and
execution time. This makes Flakify an important strategy
in practice to achieve scalability, especially when applied to
large test suites. Moreover, the test smell detection capability
of Flakify helps to inform test engineers about possible
causes of flakiness that need to be addressed.

5 THREATS TO VALIDITY

This section discusses the potential threats to the validity of
our reported results.

5.1 Construct Validity

Construct threats to validity are concerned with the degree
to which our analyses measure what we claim to analyze.
In our study, to pre-process test cases, we used heuristics to
retain code statements that match at least one of the eight
test smells shown in Table 1. However, our heuristics might
have missed some code statements having test smells and
this could have led to suboptimal results when applying
our approach. To mitigate this issue, though our approach
to identify test smells is entirely different, we relied on the
same heuristics as those used by Alshammari et al. [7]. These
heuristics assume commonly used coding conventions that
might not be followed in all test suites. For example, we as-
sumed that the test class name contains the production class
name with the word ‘Test’. However, such heuristics can
easily be adapted to other coding conventions in practice.
We also manually checked a random sample of test cases
to verify that pre-processed code contains, as expected, only
test smells-related code statements and does not dismiss any
of them. We have made the tool we developed to detect test
smells publicly available in our replication package [55].

5.2 Internal Validity

Internal threats to validity are concerned with the ability
to draw conclusions from our experimental results. In our
study, we used CodeBERT to perform a binary classification
of test cases as Flaky or Non-Flaky. However, due to the
token length limit of CodeBERT, the source code of some
test cases was truncated, possibly leading to discarding
relevant information about test flakiness. To mitigate this
issue, we pre-processed the source code of test cases to
retain only code statements related to test smells. Doing so
did not only reduce the token length of test cases, but also
improved the prediction power of our approach. However,
our pre-processing may not be perfect or complete as it can
lead to losing other relevant information. Future research
should investigate whether retaining additionally relevant
information to flaky test cases leads to improving prediction
results, e.g., statements related to common flakiness causes,
such as synchronous or platform-dependent operations.

Moreover, our prediction results were compared with
those of FlakeFlagger. But FlakeFlagger used white-box
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features, whereas our approach is black-box and the com-
parison may not be entirely meaningful. To mitigate this
issue, we also compared our results with a black-box version
of FlakeFlagger in which we removed any features requiring
access to production code. In both cases, our approach
obtained significantly higher prediction results than Flake-
Flagger. We did not compare our results with other black-
box approaches, e.g., vocabulary-based [8], since they are
project-specific and did not achieve good results on the
FlakeFlagger dataset [7].

Finally, in our analysis, the cost of debugging the produc-
tion or testing code assumes that test engineers address all
test cases predicted as flaky. However, test engineers may
choose to ignore a flaky test case, either by removing or
skipping it, thus not introducing any cost. Yet, we believe
that every flaky test case should be carefully addressed by
test engineers, since ignoring test cases can lead to other
kinds of costs, such as overlooked system faults.

5.3 External Validity

External threats are concerned with the ability to generalize
our results. Our study is based on data collected by Alsham-
mari et al. [7], which was obtained by rerunning test cases
10,000 times. Such data is of course not perfect as some test
cases that were not found to be flaky could have been if
rerun more times. To mitigate this threat, we used the same
dataset for comparing Flakify with the baseline approach,
FlakeFlagger. We also filtered out test cases which, to our
surprise, had no source code in the dataset. Further, the
FlakeFlagger and IDoFT datasets contain test cases from
projects that are exclusively written in Java, which might af-
fect the generalizability of our results. To mitigate this issue,
we used CodeBERT, which was trained on six programming
languages. Hence, we believe our approach would be appli-
cable to projects written in other programming languages as
well, given an appropriate tool to identify test smells.

Moreover, CodeBERT was pre-trained on production
source code only, i.e., source code related to test suites
was not part of pre-training, making it unable to recognize
test-specific structure and vocabulary, e.g., assertions. This
can potentially increase token length, since test-specific key
terms are decomposed into multiple tokens instead of one.
For example, CodeBERT converts assertEquals into three
tokens: assert, ##equal, and ##s, rather than just one
token. Our pre-processing of the source code of test cases
helped to mitigate the issue of token length; yet, future
work should aim at pre-training CodeBERT on test code in
addition to production code.

Finally, the IDoFT dataset has shown that a significant
number of test cases are flaky due to reasons unrelated
to the test code. In situations where this is common, this
is obviously a limitation of any black-box approach like
Flakify relying exclusively on test code. In our evaluation,
we did not consider such flaky test cases, but rather those
whose causes of flakiness were in the test code, which
were confirmed and manually fixed by developers, and thus
considered in this paper as non-flaky. This helped during
model training of Flakify on this dataset, which resulted in
a higher prediction accuracy than those on the FlakeFlagger
dataset.

6 RELATED WORK

Flaky test detection has been an active area of research
where many techniques were proposed to detect flaky test
cases [17]. Overall, these techniques can be classified into
two groups: dynamic techniques, which require executing
test cases to determine whether they are flaky or not, and
static techniques, which rely only on the source code of test
cases or the system under test. In this section, we review
the flaky test detection techniques while comparing and
contrasting them to our approach.

6.1 ML-based Flaky Test Case Prediction
A common approach to detect flaky test cases is to re-run
test cases multiple times [1, 17], which is computationally
expensive. To address this issue, recent research has pro-
posed the use of ML techniques for predicting flaky test
cases, enabling test engineers to re-run only those test cases
that are predicted to be flaky, thus reducing the cost of
unnecessary debugging of test cases or production code.

Alshammari et al. [7] proposed an innovative approach
to predict flaky test cases using dynamically computed
features capturing code coverage, execution history, and
test smells. They re-ran test cases 10,000 times to identify
whether a test case was flaky or not and thus establish a
ground truth. Their prediction model predicted flaky test
cases with an F1-score of 0.65, leaving significant room for
improvement. However, some of the significant features re-
quired access to production files which, as discussed above,
are not always accessible by test engineers or may not be
computable in a scalable way in many practical contexts.
Further, when only black-box features (see Table 2) were
used, the F1-score decreased by 35 pp. In contrast, our
approach achieved more accurate prediction results, with
an F1-score of 0.79, while using test code only, thus offering
a favorable black-box alternative.

In addition, Pontillo et al. [12] proposed an approach
to identify the most important factors associated with flaky
test cases using the iDFlakies dataset [5]. They used logistic
regression to model flaky test cases using features that
were statically computed using production code, e.g., code
coverage, and test code, e.g., test smells. They found that
code complexity (both production and test code), assertions,
and test smells are associated with test flakiness.

Another approach was proposed by Pinto et al. [8] in
which Java keywords were extracted from test code and
employed as vocabulary features to predict test flakiness.
Further, their study relied on the dataset of DeFlaker [4], in
which test cases were re-run less than 100 times to establish
the ground truth. Despite high accuracy results (F1-score =
0.95) on their dataset, their approach achieved much worse
results (F1-score = 0.19) when using the dataset provided
by Alshammari et al. [7]. In addition, their models were
language- and project-specific, since most of the significant
features for predicting flaky test cases were related to Java
keywords, e.g., throws, or specific variable names, e.g., id.In
contrast, while our approach relies exclusively on test code,
it builds a generic model to predict flakiness, based on
features that are neither language- nor project-dependent,
and achieved much better prediction results when using the
FlakeFlagger dataset used by Alshammari et al. [7].
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Moreover, Haben et al. [16] and Camara et al. [64] repli-
cated the study by Pinto et al. using other datasets contain-
ing projects written in other programming languages, e.g.,
Python. They found that vocabulary-based approaches are
not generalizable, especially when performing inter-project
flaky test case predictions, since new vocabulary is needed
for any new project or programming language. Haben et al.
also showed that combining the vocabulary-based features
with code coverage features does not significantly improve
the prediction accuracy of such an approach.

In summary, unlike the ML-based approaches above,
our approach is generic, black-box, and language model-
based, thus not requiring access to production code or pre-
definition of features. Instead, our approach relies solely on
test code to predict whether a test case is flaky or not.

6.2 Flaky Test Case Prediction using Test Smells
Camara et al. [9] proposed an approach for predicting test
flakiness using test smells as prediction features. These
features require access to the production code and can be
extracted using tsDetect [47], a tool for detecting test smells,
that was applied to the DeFlaker dataset [4]. Their study
yielded a relatively high prediction accuracy (F1-score =
0.83). Alshammari et al. [7] also relied on test smells as part
of their features for predicting flaky test cases. However,
the information gain of test smell features tended to be
much lower than code coverage features, suggesting they
are less significant flaky test case predictors. In Flakify,
we also relied on the test smells used by Alshammari et
al. [7]. However, they were not used as features but to ex-
clusively retain relevant test code statements for fine-tuning
our CodeBERT model. Doing so improved the accuracy of
Flakify, thus reducing the cost of rerunning or debugging
test cases.

6.3 Flaky Test Detection at Run Time
Memon et al. [65] used a simple dynamic pattern matching
approach to detect flaky test cases at GOOGLE by simply
searching for certain textual patterns in test execution logs,
e.g., pass-fail-pass, to identify whether a test case is flaky or
not. The accuracy of detecting flaky test cases using this
approach was 90%. Similarly, Kowalczyk et al. [66] detected
flaky test cases at APPLE by analyzing the behavior of test
cases using two scores: Flip rate, which measures the rate
at which a test case alternates between pass and fail, and
Entropy, which quantifies the uncertainty of a test case. An
aggregated value of these two scores was used to generate
flakiness ranks for test cases, which were then used to
represent test flakiness, distributed across the test cases in
different services at APPLE. This technique marked 44% of
test failures as flaky with less than 1% loss in fault detection.
The above approaches require test cases to be executed
many times to determine whether they are flaky, which is
often not practical for large industrial projects. Unlike these
approaches, Flakify is able to predict flaky test cases without
executing them, relying exclusively on test code.

Bell et al. [4] proposed DeFlaker, a tool for detecting flaky
test cases using coverage information about code changes.
In particular, a test case is labeled as flaky if it fails and does
not cover any changed code. Out of 4,846 test failures, De-
Flaker was able to label 39 pp of them as flaky, with a 95.5%

recall and a false positive rate of 1.5%, outperforming the
default way of detecting flaky test cases, i.e., by rerunning
test cases using Maven [67]. Different from DeFlaker, Lam
et al. [5] proposed iDFlakies, which detects test flakiness by
re-running test cases in random orders. This framework was
used to construct a dataset containing 422 flaky test cases,
with almost half of them being order-dependent.

The above approaches either depend on rerunning test
cases multiple times, execution history (not available for
new test cases), or production code, e.g., coverage informa-
tion. In contrast, Flakify does not require repeated execu-
tions of test cases or any information about the production
code, including code coverage.

7 CONCLUSION

In this paper, we proposed Flakify, a black-box solution for
predicting flaky test cases using only the source code of test
cases, as opposed to the system under test. Further, it does
not require to rerun test cases multiple times and does not
entail the definition of features for ML prediction.

We used CodeBERT, a pre-trained language model, and
fine-tuned it to classify test cases as flaky or not based
exclusively on test source code. We evaluated our work
on two distinct datasets, namely the FlakeFlagger and ID-
oFT datasets, using two different evaluation procedures:
(1) cross-validation and (2) per-project validation, i.e., pre-
diction on new projects. In addition, we pre-processed
this source code by retaining only code statements that
match eight test smells, which are expected to be associated
with test flakiness. This aimed at addressing a limitation
of CodeBERT (and related language models), which can
only process 512 tokens per test case. We evaluated our
approach in comparison with both white-box and black-box
versions of FlakeFlagger, the best state-of-the-art, ML-based
flaky test case predictor. The main results of our study are
summarized as follows:

• Flakify achieves promising results on two different
datasets (FlakeFlagger and IDoFT) and under two
different evaluation procedures, one assuming Flak-
ify predicts test cases from a new project and the
other one simply relying on cross-validation.

• When predicting test cases in new projects, the ac-
curacy of Flakify is slightly lower but still close to
cross-validation results.

• With cross-validation, Flakify reduces by 10 pp and
18 pp of the cost bound to be wasted by the original,
white-box version of FlakeFlagger due to unneces-
sarily debugging test cases and production code,
respectively.

• Similar to cross-validation results, Flakify also sig-
nificantly outperforms FlakeFlagger when predicting
flaky test cases in new projects, for which the model
was not trained.

• A black-box version of FlakeFlagger is not a viable
option to predict flaky test cases as it is too inaccu-
rate.

• When retaining only code statements related to test
smells, Flakify predicted flaky test cases with 5 pp
and 6 pp higher F1-score on the FlakeFlagger and
IDoFT datasets, respectively.
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Overall, existing public datasets [4, 5, 7, 16] are not fully
adequate to appropriately evaluate flaky test case prediction
approaches, since the ratio of flaky test cases tends to be
very low. In addition, flaky test cases in these datasets
were detected by rerunning test cases numerous times while
monitoring their behavior across executions, a technique
that may be inaccurate. Further, many open source projects
nowadays adopt Continuous Integration (CI), which pro-
vides extensive test execution histories. Given the frequency
of test executions in CI and the high workload on CI servers,
test cases might expose further flakiness behaviors due to
causes that may not be revealed when running test cases on
machines dedicated to test execution [68, 69]. Therefore, we
plan in the future to build a larger dataset of flaky test cases
in a CI context.

Last, a significant proportion of flaky tests can be due to
problems in the production code and cannot be addressed
by black-box models. Therefore, in the future, we need to
devise light-weight and scalable approaches to address such
causes of flakiness.
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