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Flapping Flight for Biomimetic Robotic Insects:
Part II—Flight Control Design

Xinyan Deng, Luca Schenato, and Shankar Sastry

Abstract— In this paper we present the design of the flight
control algorithms for flapping wing micromechanical flying
insects (MFIs). Inspired by the sensory feedback and neuromotor
structure of insects, we propose a similar top-down hierarchical
architecture to achieve high performance despite the MFIs’
limited on-board computational resources. The flight stabilization
problem is formulated as high frequency periodic control of an
underactuated system. In particular, we provide a methodology
to approximate the time-varying dynamics caused by the aerody-
namic forces with a time-invariant model using averaging theory
and a biomimetic parametrization of the wing trajectories. This
approximation leads to a simpler dynamical model that can be
identified using experimental data from the on-board sensors and
the voltage inputs to the wing actuators. The overall control law is
a periodic proportional output feedback. Simulations, including
sensor and actuator models, demonstrate stable flight in hovering
mode.

Index Terms— flapping flight, micro aerial vehicles, bio-
mimetic, periodic control, averaging.

I. INTRODUCTION

The recent interest in micro aerial vehicles (MAVs) [1],

largely motivated by the need for aerial reconnaissance ro-

bots inside buildings and confined spaces, has galvanized

the development of inch-size flapping wing MAVs that could

mimic insect flight. This is a challenging endeavor for several

reasons. First, aerodynamics for inch-size flapping robots

differ substantially from manmade fixed or rotary-winged

vehicles [2]. Second, size constraints forbid the use of rotary

electric motors and commercial inertial navigation systems

(INS), global positioning systems (GPS) and current cameras.

Finally, a flapping frequency beyond 100Hz requires sensors

and processing algorithms with bandwidth and sensitivity at

least one order of magnitude higher than those usually found in

today’s aircrafts. Nonetheless, recent technological advances,

together with better understanding of insect aerodynamics and

mechanisms have promoted projects aimed at the design of

Micromechanical Flying Insects (MFIs) [3].

The goal of this paper is to develop a general framework

to design a control unit for MFIs which would enable them

to accomplish complex autonomous tasks such as search-

ing, surveillance and monitoring. This paper builds upon a

companion paper [4] where comprehensive modeling of MFI

This work was funded by ONR MURI N00014-98-1-0671,ONR DURIP
N00014-99-1-0720 and DARPA.

Xinyan Deng is with Department of Mechanical Engineering, University
of Delaware, 126 Spencer Lab. Newark, DE 19716, United States, Tel: +1-
302-831-2421, Fax: +1-302-831-3619, E-mail: deng@me.udel.edu.

Luca Schenato is with the Department of Information Engineering, Univer-
sity of Padova, Italy, Via Gradenigo 6/b, 35131 Padova, Italy, Tel: +39-049-
827-7925, Fax: +39-049-827-7699, E-mail: schenato@dei.unipd.it.

WShankar Sastry is with the Department of Electrical Engineering and
Computer Sciences, University of California at Berkeley, Cory Hall, Berkeley,
CA 94720, United States, Tel: +1-510-6642-1857, Fax: +1-510-643-2356, E-
mail: sastry@dei.unipd.it.

aerodynamics, body dynamics, sensors, and electromechanical

actuation is presented together with a list of references to

relevant research. In this paper we focus on the control aspects

of flapping flight. In particular, we propose a hierarchical

architecture for the control unit that mimics the sensory

feedback and neuromotor structure of insects to achieve high

performance while satisfying MFIs physical and computa-

tional limitations. One of the main contributions of this paper

is to approximate the time-varying (TV) dynamics of insect

flight caused by the flapping wings with a time-invariant (TI)

system based on which feedback controllers can be designed.

This approximation relies on two ideas that can be formalized

within the framework of high-frequency control theory. The

first idea is that the frequency of the aerodynamic forces

acting on the insect is much higher than the bandwidth of the

body dynamics, therefore only the mean aerodynamic forces

and torques over one wingbeat affect the insect dynamics.

The second idea is to parameterize the wing trajectory using

biologically inspired wing kinematic parameters which affect

the distribution of aerodynamic forces within one wingbeat,

thus modulating the total forces and torques acting on the

insect. These parameters appear as virtual inputs in the TI

approximation of flight dynamics. Finally, we show how the

parameters of the TI approximation can be identified directly

from sensors measurements and actuators input voltages ob-

tained from experiments from the original TV system. This

approach is particularly suitable for flapping flight since it

does not require the knowledge of exact aerodynamics models,

which are particularly complex. Also, it provides a model

for uncertainty caused by sensor and actuator nonlinearities

and external disturbances that can be used to design robust

controllers.

The paper is organized as follows. In Section II, we briefly

review biological literature about insect flight control mecha-

nisms, focusing on the interaction between the sensory system

and the neuromotor architecture. In Section III the hierarchical

architecture of flight control observed in insects and the

helicopter attitude-based navigation are used as a model for the

design of an equivalent control system for MFIs. In Section

IV we highlight analogies and differences between flapping

flight and helicopter flight. In Section V we propose a formal

approach to approximate the time-varying insect dynamics

with a time invariant dynamics based on averaging theory

and wing trajectory parametrization. Section VI presents the

design of the input voltage to the actuators that is required

to track a desired wing trajectory. In Section VII we model

insect dynamics as a discrete-time dynamical system where the

inputs are the kinematic parameters defined in the previous

section. Closed-loop identification is then implemented to

estimate the discrete-time system. The identified model is then

used to design LQR-based feedback laws for hovering. Finally,



2

in Section VIII, conclusions and future research directions are

presented.

II. INSECT FLIGHT SENSORS AND CONTROL

MECHANISMS

Flies have inhabited our planet for over 300 million years,

and today they account for more than 125,000 different

species, so that, by now, roughly every tenth known species

is a fly [5]. This evolutionary success might spring from

their insuperable maneuverability and agility to survive, which

enable them, for example, to chase mates at turning velocities

of more than 3000os−1 with delay times of less than 30 ms.

The extraordinary maneuverability exhibited by flying in-

sects is the result of a sophisticated neuromotor control sys-

tem combined with highly specialized sensors. These sensors

comprise of the pressure sensilla, the halteres, the ocelli, and

the compound eyes.

Pressure force sensilla are present along the wing surface,

the wing base, the halteres, and other parts of the body.

Although their functionality in flight control is not clear, they

might play an important role in estimating the instantaneous

air flow around the wing and in controlling the wing trajectory

[6].

The halteres, two oscillating club-shaped appendices, are

the biological equivalence of a gyroscope, and they are used

to estimate the body angular velocities [7].

The ocelli, a sensor system composed of three wide-angle

photoreceptors oriented in a tetrahedron configuration, can

estimate insect orientation relative to the horizon by comparing

the light intensity from different regions of the sky [8].

The compound eyes serve the purpose of estimating large-

field optical flow, small-field object fixation, and object recog-

nition [9] [10] [11]. The large-field optical flow estimated

from the compound eyes can provide information about the

orientation, the angular velocity, and the linear velocity. The

compound eyes combined with ocelli and halteres, play the

role of the inertial navigation system (INS) in insect flight,

and can guarantee good performance [12] [13]. Furthermore,

compound eyes can also perform specialized visual processing

for object fixation and landmark recognition, which is used to

navigate the environment and estimate proximity of obstacles

and targets.

A more detailed description for these sensors from a flight

control perspective can be found in [13] [4] and in the

references therein.

At present, still little is known about the flight control

mechanisms and neuromotor physiology in insects [14] [15]

[5] [16]. Experimental evidence suggests the existence of

at least two levels of control, as shown in Fig. 1. At the

lower level the halteres and the ocelli control the wing

muscles directly in order to keep stable flight orientation.

This level of control seems to be reactive, since it mediates

corrective reflexes to compensate for external disturbances

and to maintain a stable flight posture. At the higher level,

the brain, stimulated by visual and physiological stimuli,

plays the role of a navigation planner, which plans the flight

trajectory based on its ultimate goal, such as foraging or

chasing a mate. Different from the haltere-ocelli system, the

visual system is not directly connected to the wing muscles,

instead it provides excitatory input to the haltere muscles

Fig. 1. Neuromotor control physiology in flying insect.

[14]. Therefore, this level of control indirectly affects the

flight behavior by biasing the motion of the halteres, thus

creating an external disturbance that the lower level of control

would try to compensate. This hierarchical architecture in

insects might reflect the evolution of the halteres from the

hindwings; neurons from the visual system were connected

to the muscles of both the forewings and hindwings, and

continued to do so when the later evolved into halteres;

neurons interconnected the forewing and hindwing pairs so

as to permit their synchronization, and continued to do so

when the hindwings were reduced to halteres. Therefore, a

hierarchical architecture appears to be an efficient solution to

resolve the conflict between flight stability reflexes and goal-

orientated maneuvers. In fact, a similar structure is also present

between the vestibular-ocular reflexes and active head rotation

in vertebrates [17]. This typical biological neuromotor control

architecture is shown in the left side of Fig. 2. Without some

appropriate inhibiting mechanism, the haltere-mediated equi-

librium reflexes would always counter goal-oriented motions.

To resolve this potential conflict, the nervous system must

contain the means of attenuating equilibrium reflexes during

the generation of controlled maneuvers.
Another sublevel, as part of the reactive control system,

might be present and associated with the pressure sensors

which innervate the wings and the haltere. This bottom level

reactive control can adjust wing motion within a single wing-

beat to improve aerodynamic efficiency and compensate for

local turbulence [18].
The hierarchical structure of neuromotor control in true

insects has been adopted as a guiding model for the design

of the control unit for MFIs, as described in the next section.

III. HIERARCHICAL CONTROL ARCHITECTURE

The hierarchical architecture, partially inspired by insects

and autonomous aerial robots research [19], decomposes the

original flight control problem into a set of hierarchical

modules, each responsible for a specific task. This way, the

controllers in each module can be designed independently of

those on higher levels, thus allowing the possibility to incre-

mentally build more and more articulated control structures.

Fig. 2 shows the architecture proposed for the MFI control

unit. It is possible to identify three main levels: the navigation

planner, the flight mode stabilizer and the wing trajectory

controller. The top level is a voluntary one since planning
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is determined by MFI’s goal, and the two lower levels are

more reactive since the purpose of the flight mode stabilizers

and the wing kinematic generator is to maintain the desired

flight posture and the desired wing trajectory in the presence of

external disturbances, respectively. Each of these three levels

in the control unit receives specific sensory information from

different sensors.
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CONTROL
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CONTROL
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Wing Trajectory Controller

MFI
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Desired wing trajectory

Force sensors

at wing base

Fig. 2. Design architecture for the control unit of the MFI compared
to the neuromotor control architecture present in most animals.

At the top level of the control unit there is the navigation

planner. Besides sensory input from the visual system, this

unit can receive commands from a communication link and

information from application-specific sensors such as chemical

or temperature sensors. The purpose of this module is to

choose a sequence of appropriate flight modes for the flight

mode stabilizer level, which enables the MFI to safely navigate

the environment and achieve the desired task such as territory

exploration, target localization and tracking.

The middle level is the flight mode stabilizer which is

responsible for stabilizing different flight modes available to

the MFI, such as take off, hovering, cruising, steer left, steer

right, climb, dive, and land. Each flight mode is achieved by

a dedicated controller that uses as inputs the signals from the

halteres, the ocelli, the large-field optical flow estimates, and

a magnetic compass. Based on this information, the controller

chooses the appropriate values for the desired torques and

forces that must be applied to MFI body to compensate

possible disturbances and to maintain the desired flight mode.

The desired torques and forces are then mapped directly into

the corresponding wing trajectory for the next wingbeat, as

shown in Section V-C.

The bottom level is the wing trajectory controller which

is responsible for generating the electrical signals for the

actuators in order to track the desired wing motion generated

by the flight mode stabilizer module. The set of possible wing

trajectories is parameterized according to some biokinematic

parameters, as described in Section V-C. These parameters are

chosen based on biomimetic principles, i.e. by changing them

it is possible to replicate most of the wing trajectories observed

in insects. The most important biokinematic parameters are the

stroke angle amplitude and offset, timing of rotation, mean

angle of attack, and upstroke-to-downstroke wing speed ratio.

The active change of these parameters by insects have been

observed to be directly correlated to specific maneuvers and

flight modes [20]. Then every wing trajectory is mapped to the

corresponding actuator voltages via another map, as described

in Section VI. The wing trajectory controller receives input

information from force sensors placed at the wing’s base.

This sensory information can be directly used to estimate

the instantaneous position and velocity of the wing, thus

improving wing motion control through feedback.

IV. INSECT VERSUS HELICOPTER FLIGHT

Similar to aerial vehicles that are based on rotary wings such

as helicopters, flying insects control their flight by controlling

their attitude and the magnitude of the vertical thrust [20].

Position and velocity control is achieved via attitude control,

in fact forces acting on a plane parallel to the ground can

be generated by tilting and banking the body. For example,

pitching down would result in a forward thrust, while rolling

sideward would result in a lateral acceleration. Altitude control

is achieved via mean lift modulation, for example, by increas-

ing the vertical force it would result in an upward acceleration

and vice versa.

However, there are some particular differences that prevent

one from directly applying successful flight control techniques

developed for helicopters to insect flight [21]. The first differ-

ence is the lateral asymmetry of helicopter flight. For example,

the spinning of the rotor blade induces a reaction yaw torque

on the helicopter body that would make the body to rotate in

the opposite direction if not compensated by the tail rotor.

On the other hand, the tail rotor generates a lateral thrust

that needs to be compensated by tilting the helicopter body

sideways. This problem is not present in insect flight since the

wings oscillate almost symmetrically on the opposite side of

the insect body, therefore lateral inertial forces cancel out over

the course of a wingbeat. Moreover, when the helicopter moves

forward, the blade is advancing on one side and retreating on

the opposite side; the blade on the advancing side experiences

a larger flow, while the one on the retreating side experiences

a smaller or even reverse flow, thus causing lateral imbalance

and instability, called dynamic stall, which needs to be actively

compensated [22]. In insect flight, however, the motion of two

wings is very symmetric and coupling between lateral and

longitudinal dynamics is probably less pronounced.

Another difference is the highly time-varying nature of the

aerodynamic forces in insect flight. As shown in Fig. 5 the

aerodynamic forces and torques generated by the wings can

change substantially during a wingbeat. However, the wing

motions cannot change dramatically from one wingbeat to the

next, since the wings need to oscillate to maintain sufficient

lift to sustain the insect weight. Moreover, in insect flight the

two wings can be actively controlled to follow asymmetric

trajectories. This allows the insects to generate large angular

accelerations by modulating the distribution of the aerody-

namic forces within a wingbeat without substantially affecting

the mean lift generation. The dependence of torque generation

on wing motion in insects has also recently been considered

in [23] [24].

Finally, it is not clear whether the insect forward flight

and hovering flight dynamics are intrinsically stable. Recent



4

theoretical [25] and experimental [26] research by Taylor et al.

on forward flight in desert locusts and numerical analysis by

Sun et al. [27] on hovering flight in bumblebees, suggest that

the insect longitudinal flight dynamics possess some unstable

modes. However, these modes have a timescale much slower

than the wingbeat frequency, therefore it is reasonable to

propose that they can be actively compensated for by the flight

control system.

These similarities and differences lead us to consider the

following strategy when designing a robust stabilizing hover-

ing controller. First, we will model the insect dynamics as a

Discrete Time Linear Time Invariant (DTLTI) system based on

the average forces and torques over a wingbeat. This approach

is based on high frequency control theory that guarantees good

approximation error between the original time-varying system

and averaged system, assuming that the wingbeat frequency is

sufficiently high [28]. Moreover, the design for the controller

is based on a MFI dynamics model obtained through an

identification procedure that includes the approximation errors

due to the time-varying nature of the dynamics.

Second, we parameterize the wing kinematics with four

parameters such that they can be mapped uniquely into the

three mean torques (roll, pitch, yaw) and mean lift. This

approach allows direct control of the torques and lift gen-

eration, thus simplifying the control design for the attitude

and altitude of the MFI. The dynamics of the insect is then

linearized about the hovering condition and the original MIMO

system were decoupled into four SISO subsystems. Finally,

the controller is based on robust output feedback using linear-

quadratic regulator (LQR) design.

V. HIGH FREQUENCY INSECT FLIGHT CONTROL

A. Insect dynamics

As shown in [4], the insect dynamics can be written as:

Θ̈ = (IW )−1[τ ba(t) −W Θ̇ × IW Θ̇ − IẆ Θ̇]

p̈ = −
b

m
ṗ − g +

1

m
Rf ba(t) (1)

where τ ba ∈ R
3 and f ba ∈ R

3 are the torque and force vectors

generated by wing aerodynamics applied to the insect center

of mass. The vector Θ = [η θ ψ]T represents the ZY X
Euler angles (roll,pitch,yaw) relative to the inertia coordinates,

W = W (Θ) is the transformation matrix from body angular

velocity, ωb, to Euler angular velocity in inertia frame, Θ̇, i.e.

Θ̇ = Wωb. I is the insect moment of inertia relative to the

body frame, p is the positions of the center of mass relative

to the inertia frame, g = [0 0 − g]T is the gravity vector, b
is the linear damping coefficient, and R = eẑψeŷθex̂η is the

rotation matrix. This notation is commonly found in spacecraft

and helicopter dynamics literature [29] [21].

The wrench, i.e. the forces and torques applied to the center

of mass, is based on a quasi-steady state model for the insect

aerodynamics. It is a nonlinear function of the instantaneous

position and velocity of the wing stroke(flapping) angle φ and

the angle of attack α of both wings, but it does not depend

explicitly on time. The aerodynamic forces and torques can

be written as:

f ba(t) = f ba(φr, φl, ϕr, ϕl, φ̇r, φ̇l, ϕ̇r, ϕ̇l) = f ba(u, u̇)

τ ba(t) = τ ba(φr, φl, ϕr, ϕl, φ̇r, φ̇l, ϕ̇r, ϕ̇l) = τ ba(u, u̇) (2)
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Fig. 3. Definition of wing kinematic parameters: (left) 3D view of
insect body and left wing, (right) top view of insect stroke plane.

where u = (φr, φl, ϕr, ϕl), and the lower scripts r, l stand

for right and left wing, respectively. The stroke angle φ is the

angle between the wing radial axis and the y-axis of the stroke

plane. The rotation angle ϕ is defined as the angle between the

vertical plane and the wing profile, which corresponds to the

complement of the angle of attack α, i.e. α = 90o − |ϕ| (see

Fig. 3). The explicit expression of aerodynamics forces and

torques as a function of wing kinematics can be found in [4].

The aerodynamic forces and torque are the only time-varying

element in Equation (1), otherwise the insect dynamics would

be very similar to the time-invariant nonlinear dynamics of a

helicopter. On the other hand, the wingbeat period is much

smaller than the responsiveness of the insect body, therefore,

intuitively speaking, only mean forces and torques are relevant.

In fact, this approximation has been formalized by averaging

theory [28] and has been widely used in different applica-

tions including helicopter aerodynamics [30] [22]. Recently,

averaging theory and high-frequency periodic control has been

successfully paired with tools from geometric control theory

[31] [32] for trajectory tracking and approximate stabilization

of fish and snake-like vehicles [33] [34] [35] [36] [37] [38]

[39]. In particular, these tools model the system dynamics

as an affine system of the form ẋ = f0(x) +
∑m
i=1

fi(x)ui,
where ui are the control inputs. Moreover, these systems

are underactuated, i.e., the number of available inputs ui is

smaller than the degrees of freedom. A classical example

of an underactuated system is a car-like vehicle; in fact

even if only steering and forward velocity can be controlled,

the car can be steered to any desired configuration, i.e. x-y

position and orientation. One of the goals of geometric control

theory is to design suitable stabilizing time-varying inputs

ui = gi(x, t) directly from the structure of the flow of the

dynamics, i.e. from the vectors fi(x). For driftless systems, i.e.

for f0(x) = 0, such conditions have been found and a number

of stabilizing algorithms exists [40] [41] [31]. However, the

dynamics of most biological locomotion such as fish and

eel swimming include a drift term. The drift term greatly

complicates the controllability analysis and controller design.

Only a few tools are available to systematically synthesize

the control laws for such systems and they are mainly limited

to mechanical systems with specific geometric properties [42]

[43]. This is a very active research area, but it is beyond the

scope of this paper to review it. We address the interested

reader to the textbooks [31] and [32] for a general discussion

on geometric control theory and to the review paper [44] for
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its application to fish swimming.
Although insect flight belongs to the class of underactuated

control systems, we do not directly apply these tools because

of the complexity of the aerodynamic forces and torques,

and thus the complexity of the vector flow described as a

function of the wing angles and velocities u. In principle,

the geometrical properties of insect flight could be analyzed

numerically and then control algorithms could be designed

by applying the aforementioned tools. However, this is not a

straightforward method since insect aerodynamics are highly

nonlinear. Moreover, this purely mathematical approach gives

rise to a very complex description of controllers which is

hard to relate to the flight control mechanisms adopted by

insect. Therefore, this direction is not pursued further here.

Instead, we propose to parameterize the wing motion based

on biomimetic principles to design our periodic inputs, i.e.

we propose u = g(v, t). Then, by applying averaging theory

to approximate the complex time-varying dynamics with the

average time-invariant dynamics, we show that there is a direct

map between the proposed kinematic parameters and the mean

forces and torques. The kinematic parameters appear as virtual

inputs in the averaged dynamics. The averaged dynamics is

then suitable to standard controller design, similarly to those

found in helicopter control.

B. Averaging

Averaging theory and high frequency control encompass

several results and they have been applied in different scientific

areas. Recently, these results have been applied specifically to

insect flight [45]. Here we report only some of the results that

we will use for the flight controller design.

Theorem 1 ([45]). Let us consider the following systems:










ẋ = f(x, u, u̇)
u = g(v, t)
v = h(x)
g(v, t) = g(v, t+ T )

(3)







˙̄x = f̄(x̄, v̄)

f̄(x, v) = 1

T

∫ T

0
f(x, g(v, t), ġ(v, t))dt

v̄ = h(x̄)

(4)

where x, x̄ ∈ R
n, u ∈ R

m, v ∈ R
p, and all functions and their

partial derivatives are continuous up to second order.

If x̄ = 0 is an exponentially stable equilibrium point for

the averaged system (4), then there exists k > 0 such that

||x(t)− x̄(t)|| < kT for all t ∈ [0,∞). Moreover the original

system (3) has a unique, exponentially stable, T-periodic orbit

xT (t) with the property ||xT (t)|| < kT .

In our setting, T is the wingbeat period, and the system

f(x, u) is given by Equations (1) and (2), where the vector

u = (φr, φl, ϕr, ϕl) represents the right and left wing angles.

The theorem is an application of singular perturbation theory

[46] [28], which studies the behavior of the dynamical system

ẋ = ǫf(x, t, ǫ), where the vector flow f is T -periodic in

t and ǫ is a small parameter. In fact, after the change of

timescale τ = t/T the Equations (3) can be written as
dx
dτ

= Tf(x, g(h(x), T τ), ġ(h(x), T τ)) = T f̃(x, τ), where f̃
is 1-periodic in its second argument. Therefore, the period

T plays the role of the perturbation parameter ǫ, and should

not be confused with the period T .

As will be shown in the next section, the wing trajectories

are chosen to be T -periodic functions and are parameterized

by a parameter vector v, i.e. u = g(v, t). The parameter

vector v can be interpreted as a vector of virtual inputs.

Therefore, as suggested by the theorem, we will focus on the

averaged dynamics given by Equations (1) where the time-

varying wrench (f ba(t), τ
b
a(t)) is substituted with its average:

f̄ ba(v)
∆
=

1

T

∫ T

0

f ba(g(v, t), ġ(v, t))dt

τ̄ ba(v)
∆
=

1

T

∫ T

0

τ ba(g(v, t), ġ(v, t))dt (5)

The averaged wrench is time-independent and depends only

on the virtual input vector v. The use of periodic control

inputs parameterized by a set of virtual input is not new,

and it has been used extensively in geometric control theory

and averaging [47] [34] [37] [43] [42]. We will then look

for exponentially stabilizing control feedback law v = h(x)
for the averaged systems. If such a function exists, then the

original time-varying system will have a bounded error from

the desired equilibrium point if the wingbeat period T is

sufficiently small. Although this approach does not guarantee

asymptotic stability for the original system, we will show that

the error bound kT is very small for insect flight as observed

in true insects, and therefore irrelevant from a practical point

of view.

C. Wing Kinematic Parametrization

Although it is currently unclear how true insects accomplish

the control of their flight and maneuvering capabilities, recent

experimental work on true and robotic models has found that

by modulating a few kinematic parameters on each wing, such

as wing rotation timing at the stroke reversals and the wing

blade angle of attack, the insect can readily apply torques on

the body and, therefore, control its attitude and position [48]

[2] [20] [24]. Similar considerations has also been observed

also in fish-like swimming [49], where the modulation of few

fin kinematic parameters can generate large torques and forces.

Based on these observations, it was suggested that a small set

of wing kinematics might be sufficient to generate all possible

flight modes, and the key point for designing any of these

modes is the capability to control the MFI’s attitude [50].
In particular, the research done by Dickinson and his group

[2] [24] has suggested that the following kinematic parameters

may suffice to generate any flight maneuver: timing of rotation,

mean angle of attack, stroke angle amplitude, stroke angle

offset, downstroke deviation. There is a strong evidence that

if these parameters can be controlled independently, then it

is possible to control the torque and force generation during

flapping. For example, a large (small) stroke angle amplitude

would generate a large (small) lift. An advanced (delayed)

timing of rotation at the end of the downstroke results in a

nose-up (nose-down) pitch torque. A larger (smaller) angle of

attack during the downstroke relative to the upstroke produces

a backward (forward) thrust. Most true insects flap their wings

along a symmetric trajectory with a stroke angle amplitude

around 120o and mean angle of attack of 45o on both down-

stroke and upstroke [51] [5]. However, during saccades and

other maneuvers, they modify the wing trajectory by changing

the kinematic parameters described above [52].
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Based on these biologically inspired arguments, the problem

to solve then is how to parameterize the wing trajectory to be

able to mimic the real insects by independently controlling

some of the biokinematic parameters described above. We

will then show how the parameters map directly to the mean

torques and forces, thus simplifying the design of a flight

stabilizer. More specifically, the wing trajectory during a

wingbeat is described using the stroke angle, φ and the rotation

angle ϕ. In particular, we parameterize the wing motion of

each wing within a wingbeat period as follows:

φ(υ, t) = gφ(t) + v1 g1(t) (6)

ϕ(υ, t) = gϕ(t) + v2 g2(t) (7)

where the functions gi(t) are T -periodic function, i.e. gi(t +
T ) = gi(t), (v1, v2) are the kinematic parameters, and T
is the wingbeat period. These functions are chosen based

on the considerations above. In particular, gϕ(t) and gφ(t)
generate a symmetric motion with maximum lift production,

g1(t) modifies only the stroke angle amplitude, g2(t) modifies

the timing of rotation of the angle of attack at the end of the

downstroke. Based on observations of true insect flight we

choose the following functions:

gφ(t) =
π

3
cos(

2π

T
t)

gϕ(t) =
π

4
sin(

2π

T
t)

g1(t) =
π

15
sin3(

π

T
t)

g2(t) = g1(t) (8)

shown in Fig. 4, which are defined on the interval t ∈ [0, T )
and extended by periodicity so that gi(t + T ) = gi(t).
The rationale behind the choice of functions g1, g2 was the

necessity of finding smooth curves that could modify wing

trajectory amplitude and timing of rotation as described above.

Fig. 5 shows a pictorial representation of wing motion and

corresponding aerodynamic forces for different choices of the

kinematic parameter v1 and v2. Note how these parameters

affect the distribution of forces along the whole wingbeat

period.

The wing parametrization given by Equations (8) is not

unique and might not be optimal either, however it gives

rise to wing trajectories that mimic some of the trajectories

observed in true insects. In fact, a positive (negative) value for

v1 results in a large (small) stroke angle amplitude; a positive

(negative) value for β results in a delayed (advanced) timing

of rotation at the end of the downstroke. If this parametrization

above is replicated for both wings, the wings kinematics

u = (φr, φl, ϕr, ϕl) can be written in terms of the parameters

v = (vr1, v
l
1, v

r
2, v

l
2) as follows:

u(v, t) = g(t) +G(t)v (9)

g =







gφ
gφ
gϕ
gϕ






, G =







g1 0 0 0
0 g1 0 0
0 0 g2 0
0 0 0 g2







where g(t) and G(t) are a T -periodic vector and matrix,

respectively, whose entries are defined in Equations (8).

It is now possible to study the effect of the chosen parame-

trization on the mean wrench. In fact, if we substitute Equation

0   0.25T 0.5T 0.75T T   
−60

−40

−20

0

20

40

60

Time ( T units) 

A
n
g
le

s
 (

 d
e
g
s
)

gψ(t)

gφ(t)

g
v

1

(t),g
v

2

(t)

Fig. 4. Wing kinematic parameterizing functions given in Equa-
tions (8).

(9) into Equations (5), we obtain a static map Π : R
4 → R

6

from the wings parameters v ∈ R
4 to the mean wrench

(f̄ ba, τ̄
b
a) ∈ R

6:
[

f̄ ba
τ̄ ba

]

= Π(v) (10)

This is a nonlinear map and cannot be computed analytically

since the aerodynamic force and torque are complex functions

of wing position and velocity (see Section IV in [4]). However,

one could look for an affine approximation around the origin

of the wings parameters:
[

f̄ ba
τ̄ ba

]

= π0 + Πlv + δ(v) (11)

where π0 ∈ R
6, Πl ∈ R

6×4, and δ(v) is the approximation

error. Although, it is not possible to linearize analytically

Equation (11) to obtain π0 and Πl directly, it is possible to

randomly select different values for the parameter vector v,

substitute it into the parametrization given by Equation (9), and

finally compute the true mean wrench (f̄ ba, τ̄
b
a) via simulations

using the exact wing aerodynamics. The approximating π0

and Πl can then be found by rewriting Equation (11) as a

least square (LS) problem where (π0,Πl) are the unknowns.

Simulations are performed based on the aerodynamic model

described in [4], and on the morphological body parameter

of a typical blowfly, which is the MFI target model. The

approximating affine map is found to be as follows:

π0 =

26664 0
0

mg
0
0
0

37775 , Πl = 0.1mg

266664 0 0 −1.0 −1.0
0 0 0.3 −0.3

0.9 0.9 0 0
0.4L −0.4L −0.1L 0.1L

−0.2L −0.2L −0.4L −0.4L
0 0 −0.5L 0.5L

377775
(12)

where m is the mass of the insect, L is the length of the wing,

and the zero entries correspond to estimated values negligible

relative to the largest entries in the matrix. This approximation

is quite accurate for kinematic parameters smaller than unity,

||v||∞ ≤ 1. Fig. 6 shows that the estimated mean wrench,
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60 40 20 0 −20 −40 −60

symmetric  motion

t=0 t=0.5T 

t=0.5T t=T 

DOWN−STROKE 

UP−STROKE 

60 40 20 0 −20 −40 −60

advanced rotation

60 40 20 0 −20 −40 −60

large stroke amplitude

60 40 20 0 −20 −40 −60

delayed rotation

φ (degs) 
60 40 20 0 −20 −40 −60

small stroke amplitude

(degs) φ 

Fig. 5. Pictorial sequence of the side view of wing motions and the corresponding aerodynamic forces for different choice of kinematic
parameters. Symmetric motion: v1 = 0, v2 = 0. Advanced rotation: v1 = 0, v2 = 1. Delayed rotation: v1 = 0, v2 = −1. Large stroke
amplitude: v1 = 1, v2 = 0. Small stroke amplitude: v1 = −1, v2 = 0. Symmetric motion is defined as a wing trajectory for which downstroke
and upstroke of a single wing are identical, i.e. the wing motion is symmetrical with respect to time instant 0.5T . The vector fa represents
the aerodynamic force acting on the center of pressure of the wing.

w = π0 +Πlv, predicts quite accurately the true mean wrench

obtained from simulations, thus validating our approach.

The particular structure of this map is a consequence of

the parametrization based on the biological insights described

at the beginning of this section. In fact, as we expect, any

component of the wrench depends additively or differen-

tially on two parameters, depending if the wings are moving

symmetrically or anti-symmetrically. Note that along the z-

component, the symmetrical wing motions generate a vertical

lift sufficient to balance insect body weight. The magnitude of

the coefficients in the map are considerable. In fact, besides the

force necessary to balance its weight, the insect can generate

forward or vertical thrust in excess of in the order of f̄ ba ≈
0.1−0.2mg, and angular torques of order τ̄ ba = 0.1−0.2mLg.

In other words, considering that the moment of inertia of a

true insect along one of its principal axis is on the order of

I ≈ 0.1mL2 [51] and that our target wing size is L = 10mm,

this is equivalent to saying that the insect can generate linear

accelerations of about alin = f̄ ba/m = 0.2g ≈ 2m/s2

and angular accelerations of about aang = τ̄a/I = g/L ≈
105deg/s2, which are comparable with those observed in true

insects.

By inspecting the structure of this parameters-to-wrench

map, it is apparent that the three mean torques and the vertical

thrust can be controlled almost independently by appropriately

choosing the values for the four wing parameters v. However,

there are small but non-negligible couplings between some of

the wrench components. For example, a positive (negative)

pitch torque is always associated with a positive (negative)

forward thrust. Similarly, a positive (negative) yaw torque

is associate with a small positive (negative) roll torque and

a small negative (positive) lateral force. Although this is

undesirable, it does not undermine the stabilizability of flight

modes, as we will show in the next section.

This section can be summarized by saying that, although it

is not possible to instantaneously control the insect wrench,

there exist wing motions that can independently control the

mean forces along the z-axis and the torques about all three

axes. We also showed that the affine parametrization of wing

motions given by Equations (9), based on biomimetic prin-

ciples, gives rise to a simple affine map between the mean

wrench and the kinematic parameters. The inspection of the

map shows that the three mean torque components and the

vertical thrust can be controlled independently. The input vec-

tor u and virtual input v as defined in Theorem 1, correspond

in our setting to the wing angles u = (φr, φl, ϕr, ϕl) and

kinematic parameters v = (vr1, v
l
1, v

r
2, v

l
2). In the next section,

we will show how to design stabilizing controllers for the
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Fig. 6. Predicted mean wrench w = π0 + Πlv (x-axis) versus
the exact mean wrench (y-axis) obtained from simulations for 100
random values of the wings parameter vector v in the unit box,
i.e. ||v||∞ ≤ 1. The spreading around diagonal lines quantifies the
modeling errors.

linearized averaged dynamics. By Theorem 1, these controllers

are also guaranteed to stabilize the original nonlinear time-

varying dynamics. It is also important to remark that insect

flight control is being studied from a fully dynamic point of

view, although the control inputs, which are parameterized

relative to the wing kinematics, might induce the thought that

the control is based only on a kinematic model.

VI. WING TRAJECTORY TRACKING AND ACTUATOR

CONTROL

The previous section described how to design wing trajec-

tories that can generate the desired mean forces and torques

during a wingbeat period. However, the wing trajectory cannot

be controlled directly, and appropriate input voltages to the

thorax actuators must be devised to track the desired wing

trajectory. As described in [4], the dynamics of the thorax-

wing structure can be approximated as a stable two degree-of-

freedom second-order system. Given a desired wing trajectory

(φd(t), ϕd(t)), we can calculate the corresponding steady-state

input voltages by substitution:�
V1,d(t)
V2,d(t)

�
=T

−1

0

�
M0

�
φ̈d(t)
ϕ̈d(t)

�
+B0

�
φ̇d(t)
ϕ̇d(t)

�
+K0

�
φd(t)
ϕd(t)

��
(13)

where T0,M0, B0,K0 ∈ R
2×2 are constant matrices, and

V1, V2 are the input voltages to the wing actuators. Let V =
(V l1 , V

r
1 , V

l
2 , V

r
2 ) be the input voltages for the two wings, and

u = (φr, φl, ϕr, ϕl), then the wing-thorax dynamics for both

wings can be rewritten as follows:

Mü+Bu̇+Ku = V (14)

where M,B,K are matrices that depend on T0,M0, B0,K0,

and the dynamics is stable. As we will show in the next

Section, the flight mode stabilizer is assumed to be able

to select a new wing trajectory at the beginning of every

wingbeat, from among those defined by the parametrization in

Equations (7) and (8). This is equivalent to saying that given
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x 10
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V
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Fig. 7. Actuator voltage profile as defined in Equation (18) for 10
random values of parameter vector v with ||v||∞ ≤ 1. The solid line
corresponds to v = 0, i.e. Vd(t) = h(t). Note that ||Vd(t)||∞ ≤
10µN for all ||v||∞ ≤ 1.

any sequence {vn}
∞

n=0, where v = (vr1, v
l
1, v

r
2, v

l
2) is the wing

kinematics parameter vector as defined in the previous section,

the wing trajectory controller must track the trajectory:

ud(t) = g(t) +G(t)v(t), (15)

v(t) = vn, t ∈ [nT, (n+ 1)T ) (16)

where g(t) and G(t) are defined in Equation (9). Note that the

matrix G(t) defined in Equations (8) was specifically chosen

to have the additional property

G(0) = Ġ(0) = G̈(0) = G(T ) = Ġ(T ) = G̈(T ) = 0 (17)

and, therefore, the trajectory ud(t) ∈ C2 is continuous up to

its second derivative for any sequence {vn}. If we substitute

Equation (15) into Equation (14) we formally obtain:

Vd(t) = h(t) +H(t)v(t) (18)

v(t) = vn, t ∈ [nT, (n+ 1)T ) (19)

h(t) = Mg̈(t) +Bġ(t) +Kg(t)

H(t) = MG̈(t) +BĠ(t) +KG(t)

where h(t) and H(t) are a T -periodic vector and matrix,

respectively. Since H(t) is simply a linear combination of

G(t) and its first and second derivatives, then it follows from

Equation (17) that H(0) = H(T ) = 0. This implies that the

input voltage vector Vd(t) ∈ C0 is continuous for any sequence

{vn}.

Let us consider a desired wing trajectory vector ud(t)
defined by Equations (9) and the corresponding feasible input

voltage vector Vd(t) defined by Equations (18). We define the

wing trajectory tracking error to be eu = u − ud, and apply

input voltage Vd(t), then we have:

Mëu = −Bėu −Keu

ėu(0) = u̇(0) − u̇d(0), eu(0) = u(0) − ud(0)

where we used Equation (14) and the fact üd(t) = −Bu̇d(t)−
Kud(t) + Vd(t) for all t ∈ [0,∞). Since the system above
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Fig. 8. Simulation of actuator control given in Equations (18) showing
asymptotically tracking of desired trajectory for a random sequence of
kinematic parameters {vn}, where v = (v1, v2), and random initial
condition of actuator state vector, for one wing. From bottom to top:
actuator voltages V1, V2 as given by Equation (18) (bottom). Rotation
angle, ϕ, (center), and stroke angle, φ, (top), given by Equation
(14). The error between desired and true wing trajectory decays after
approximately 3 wingbeat periods.

is stable, we have that limt→∞ eu(t) = 0, or equivalently

limt→∞ u(t) = ud(t) for any initial condition. The rate

of decay, 1/τdecay, is set by the poles of the wing-thorax

mechanical system. The time constant τdecay is approximately

1 to 2 wingbeat periods for the target MFI design. This

property guarantees that even if we cannot directly control

the wing trajectory, any initial perturbation would disappear

within a few wingbeats and the wing trajectory would converge

exponentially to the steady-state solution, as shown in Fig. 8.

The wing trajectory tracking approach developed in this sec-

tion is equivalent to a feed-forward control of wing trajectory

during a single wingbeat. In fact, it allows trajectory changes

only at the beginning of every wingbeat, in such a way that

this transition is smooth and there is no error between desired

wing trajectory and actual wing trajectory. This is equivalent

to saying that there is no error between the desired and actual

mean wrench during the following wingbeat. This approach

has two main advantages. The first advantage is that we can

assume to have direct control of the wing trajectory, and we

can neglect the wing-thorax dynamics since any perturbation

would die off within a few wingbeats. The second advantage

is that it naturally leads to a discrete time (DT) system, since

the wing kinematic parameters v are updated every T seconds,

i.e. at the beginning of every wingbeat. We will exploit these

two properties in the next Section by modelling the insect

dynamics as a discrete time system where the inputs are the

wing kinematic parameters v and the state is the mean value

of the body linear and angular position and velocity within the

previous wingbeat.

VII. FLIGHT CONTROL IN HOVER

Following the guidelines described in the previous section,

we can now look for a stabilizing controller for hovering by

designing a feedback law v = h(x) such that the origin of the

averaged system is exponentially stable.

A. Identification

The analysis in the previous section provides a torque

decoupling scheme together with a set of virtual control

inputs, i.e. the wing kinematic parameters v, which enters

into the averaged system in a affine fashion. Since we are

interested in the insect dynamics close to the hovering regime

where angular deviations and angular velocities are small,

we linearize the averaged system dynamics near hover. We

approximate the continuous-time nonlinear system, with a

DTLTI model in the following form:

x(n+ 1) = Ax(n) +Bv(n) + δ(n)
y(n) = x(n) + η(n)

(20)

where x = [η̄x θ̄y ψ̄z ω̄x ω̄y ω̄z p̄x p̄y p̄z v̄x v̄y v̄z]
T

is the vector of average roll, pitch, and yaw angles, angular

velocities, positions and linear velocities over one wingbeat,

respectively; δ(n) represents the unmodeled dynamics as

well as external disturbances which appear as an external

noise to the linear model. This term includes both process

noise as well as unmodeled non-linearities. The input vector

v = [vr1 v
l
1 v

r
2 v

l
2]
T are the wing kinematic parameters, which

appear as virtual control inputs. The measurement vector

y = [ȳo2 ȳ
o
1 ȳ

c ȳh1 ȳ
h
2 ȳ

h
3 ; ȳe1 ȳ

e
2 ȳ

e
3 ȳ

e
4 ȳ

e
5 ȳ

e
6]
T is the vector of

measured outputs from the ocelli, halteres, magnetic compass,

and compound eyes, with additional measurement noise η(n).
As described in [4], these measurements correspond to an

estimate of the insect true state, i.e. y = x̂.

The matrices [A,B] can be obtained analytically from MFI

morphological parameters such as mass, moment of inertia,

center of mass, etc. However, these parameters are difficult

to obtain in practice. Moreover, this approach cannot model

the effect of the time varying part of the aerodynamic forces.

Another approach would be to substitute the parameter-to-

wrench map into the original nonlinear dynamics and linearize

it. Here we adopted the system identification approach, i.e., run

a large number of experiments and record the pair [y(n), v(n)]
of sensor measurements and kinematic parameters, and then

find the matrices [A,B] that best fit the data. Moreover,

further investigation into the particular structure of the insect

dynamics given in Equation (20) results in the following

approximate linear system to be identified:

A =







I3×3 TI3×3 03×3 03×3

03×3 A22 03×3 03×3

03×3 03×3 I3×3 TI3×3

A41 03×3 03×3 A44






, B =







03×3

B21

03×3

B41







where T is the wingbeat period, the matrices A22 and A44

account for angular and linear damping, and the matrix A41

accounts for the linear accelerations due to tilted body orien-

tation. This structure is typically used in helicopter dynamics

identification [53] [54].

We first estimate a model in open loop where only data

for the first several wingbeats are recorded. Since the sensor

measurements provide an estimate for all the entries of the



10

0 10 20 30 40 50
−10

−5

0

5

10

Position (mm)

PEM−model
exact 
LS−model

x 

0 10 20 30 40 50
−10

−5

0

5

10
Orientation (degs)

ro
ll,

 η
0 10 20 30 40 50

−10

−5

0

5

10

y 

0 10 20 30 40 50
−10

0

10 

p
it
c
h
, 

θ

0 10 20 30 40 50
−10

−5

0

5

10

time (T units)

z 

0 10 20 30 40 50

−10

0

10

y
a
w

, ψ

time (T units)
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those simulated using exact model over 50 consecutive wingbeats.

state vector, the model identification problem can be recast

into a least square solution to an over-determined set of

linear equations as Ez = d, where z = [ai,j , ..., bk,h]
T is

the vector of system parameters to be estimated, and ai,j
and bk,h are the nonzero entries of the matrices A and B
respectively. The matrix E = E (y(·), u(·)) and d = d (y(·))
are matrices whose entries depend on the experimental data.

The least-squared solution which minimizes the norm of the

error ||e||2 = ||d − Ez||2 is given by z = E(ETE)−1ET d.

The experiments were performed on the Virtual Insect Flight

Simulator (VIFS), developed by the authors to provide a

software testbed for insect flight [4]. The experimental data

was generated with random inputs and initial conditions near

the hovering equilibrium.
Based on this least-squared-based model [A,B], a stabi-

lizing state feedback control based on pole placement was

designed and tuned, first on the nominal LTI model, and

then verified on the fully nonlinear continuous time dynamics

provided by VIFS. Although least-squared identification is

simple and straightforward, it does not exploit the structure of

the dynamics present in Equation (20), nor does it provide a

systematic way to estimate process and output noise. However,

it does provide a stabilizing controller which can be used suc-

cessively to perform closed loop system identification through

prediction error method (PEM) [55]. The prediction error

method cannot be applied directly to the system (20), since the

system is unstable, which is why least-square identification is

performed first. The PEM-based identified model performed

better than the least-squared-based one in predicting insect

dynamics as shown in Fig. 9. Moreover, the estimated process

and measurement noise variances and biases can be used to

design better robust controllers.

B. Controller design

In order to address the trade off between regulation perfor-

mance and control effort to avoid control input saturation, and

also to take into account process disturbances and measure-

ment noise in Equation (20), we employed a Linear Quadratic

Gaussian (LQG) optimal controller design.
As a first step, a state feedback LQR regulator v = −Kx

was designed to minimize the following quadratic cost func-

tion

J = lim
N→∞

E(

N
∑

n=1

x(n)TQx(n) + v(n)TRv(n)) (21)

where Q ≥ 0 and R > 0 are the weighting matrices that define

the trade-off between regulation performance and control

effort. The controller was designed with standard discrete-

time LQG software, and the diagonal entries in the weighting

matrices are iteratively tuned to ensure a good transient

response without saturating the control inputs. The above LQR

optimal state feedback v = −Kx is then substituted with a

more realistic output feedback:

v(n) = −Ky(n), (22)

where the output y is given by the sensors measurements. As

described earlier, the simplified DTLTI system (20) provides

a feedback scheme to select the wing kinematic parameter

for the next wingbeat period. The true feedback control

from sensor measurements to actuator voltages is obtained by

combining Equation (22) with Equation (18) to give:

Vd(t) = h(t) +H(t)v(t) = h(t) +H(t)Ky(t)

= h(t) + K̃(t)y(t) (23)

y(t) = y(nT ), t ∈ [nT, (n+ 1)T ) (24)

where the sensors measurements are sampled at the beginning

of each wingbeat, and K̃(t) is simply a proportional T -

periodic matrix gain. It is remarkable that a simple propor-

tional T -periodic feedback scheme is sufficient to stabilize

the complex time-varying nonlinear insect dynamics includ-

ing nonlinear sensor measurements, actuator dynamics, and

process and output noise. More importantly, this gain can be

computed off-line and easily stored on the computation unit

of the MFI.
The LQR controller was finally tested on the fully non-

linear time-varying model which includes the MFI dynam-

ics of Equation (1), the wing-thorax dynamics of Equations

(13), and the sensor models described in [4]. The simu-

lations are based on a target MFI of 100mg and 10mm-

wingspan with wingbeat frequency f = 150Hz. Fig. 10

shows a simulation for hovering stabilization from the initial

condition x = (ηx, θ, ψ, ωx, ωy, ωz, px, py, pz, vx, vy, vz) =
(25o,−25o, 20o, 0, 0, 0, 35mm,−25mm, 25mm, 0, 0, 0), and

wing state (u, u̇) = (φr, φl, ϕr, ϕl, φ̇r, φ̇l, ϕ̇r, ϕ̇l) = 0. Our

proposed controller design successfully achieved stabilization

despite sensor and process noise. The initial condition corre-

sponds to an offset from the desired position of about 3 body-

lengths. The steady state error during hovering is < 1/10 of

the body-length for the position and < 5o for the orientation.

The MFI requires about 50 wingbeat periods to reach the final

configuration, which corresponds to about 2/3rds of a second

for a wingbeat frequency of 150Hz.

C. Single channel identification and control design

Based on the particular structure of the mean wrench map

given in Equation (12), where it appears that the mean torque
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Fig. 10. Simulation of hovering control with sensor feedback and actuators dynamics. From top to bottom: insect true state and sensors
measurements (row 1-3); kinematics parameters given by Equation (22) (row 4); actuators voltage given by Equation (23)(row 5) during the
first 25 wingbeats.

and the vertical thrust can be controlled almost independently

by combining, symmetrically or anti-symmetrically, the kine-

matic parameters v = (vr1, v
l
1, v

r
2, v

l
2), we can reformulate the

flight control problem of the 6 DOF system similar to that

of helicopter control, where we have decoupled the system

dynamics into longitudinal, lateral, heave, and yaw dynamics

[21] [54]. In fact, if we redefine the kinematic parameters as

follows:

ṽ = (ṽ1, ṽ2, ṽ3, ṽ4) = (vr
1−v

l
1, v

r
2+v

l
2, v

r
2−v

l
2, v

r
1+v

l
1) = Fv (25)

and we use these parameters as inputs for the system (20) and

repeat the identification process, then we obtain the following

matrices:

A41 =

[

0 a4 0
−a4 0 0

0 0 0

]

,
A22 = diag{a1, a2, a3},

A44 = 03×3,

B21 =

[

b1 0 ∗ 0
0 b2 0 ∗
0 0 b3 0

]

, B41 =

[

0 ∗ 0 0
0 0 ∗ 0
0 0 0 b4

]

(26)

where the zeros entries are entries that were much smaller

than the other entries in the same row, and the asterisks, ∗’s,

indicate non-negligible entries. If the ∗’s are neglected, it is

clear that each virtual parameter ṽi controls independently one

of the three angular accelerations and the vertical acceleration,

thus justifying the single channel controller design scheme as

typically done for a helicopter. The advantage of this approach

is that the feedback matrix gain is given by:

Kṽ = diag{Klong,Klat,Kheav,Kyaw} (27)

where the matrices Klong,Klat,Kheav,Kyaw are the smaller

size proportional gain matrices obtained from the decoupled

insect flight dynamics, thus reducing the computational burden

when computing the feedback ṽ = Kṽy. Fig. 11 shows a

comparison between the full channel controller design and the

single channel design. The performance using single channel

design degrades somewhat, but it is less computationally

demanding than the full channel design, which is a clear

advantage for the limited computational unit available to MFIs.

VIII. CONCLUSION

In this paper we presented a framework for flapping flight

control and navigation in biomimetic robotic insects. We
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Fig. 11. Comparison of single channel design vs full channel design.

started by reviewing the neuromotor architecture present in

true flying insects, and highlighting analogies and differences

between insect flapping flight and helicopter flight. Inspired by

true insect neuromotor organization of flight control mecha-

nisms, we proposed a three-layered hierarchical control struc-

ture that simplified flight control design while preserving

the high maneuverability and the agile navigation capability

exhibited by true insects. The first major contribution of

this paper was to propose a suitable parametrization of wing

motion during the course of a full wingbeat and to combine

it with averaging theory arguments, thus showing that the

insect time-varying dynamics can be well approximated by

a discrete-time linear time-invariant (DTLTI) system where

the wing kinematic parameters appear as virtual inputs. The

second major contribution was to propose an identification-

based LQR controller design which does not require the

knowledge of an accurate model for the insect morphological

parameters, such as moment of inertia and mechanical part’s

sizes, nor an accurate model of the aerodynamics. As a result,

hovering flight mode can be stabilized with a simple affine

T -periodic proportional feedback from sensor measurements

to actuator voltages. This is very important considering the

limited computational resources available to MFIs. Although

in this paper we focused on hovering, it has been shown that

other flight modes like cruising and steering can be stabilized

using a affine T -periodic proportional feedback [56].

Several research directions can be explored. The most

important one is probably in regard to the wing parametriza-

tion, which in this paper was based on the observations of

true insect wing motions. However, different wing kinematic

parameters could be chosen. Therefore, a more systematic

methodology to optimize the wing trajectory parametrization

with respect to some metrics, such as aerodynamic power or

maximum torque production, is sought.

Another important direction emerges from wing trajectory

tracking. One of the major assumptions in our approach

was the linearity of the actuator dynamics, so that wing

trajectory tracking could be easily solved using a pseudo-

inverse method to compute the control input to the actuators.

This assumption is true only to the first order, as shown in

[57], and nonlinearities become particularly important as rapid

wing rotations at the end of the half-strokes are necessary for

aggressive flight maneuvers.

Finally, the methodologies proposed here need to be vali-

dated against experimental data from from MFI prototypes.
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