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Abstract
Contemporary labeled property graph databases are either schema-less or schema-
optional to support frequent changes in the structure of data found in domains 
requiring high flexibility. However, the lack of structure impacts data transformation 
and loading operations from heterogeneous sources into graph databases. We pre-
sent a formal algebra FLASc for specifying and generating graph schema for labeled 
property graph databases. We formally define FLASc and demonstrate the use of 
FLASc generated graph schemas to systematically transform and load data-sets 
related to domains of cyber-physical systems, big data analytics and tourism. Find-
ings from three disparate case studies show that FLASc-generated schemas assist 
in enforcing integrity constraints that reduce the chance of data corruption, hence 
assuring data consistency and integrity.

Keywords  Graph schema · Labeled property graph databases · ETL · Data 
transformation and loading · Neo4j · Cypher

1  Introduction

Labeled property graph database henceforth graph database are storage systems that 
allow modeling of real-world entities as nodes and relationships between entities 
as edges Angles et al. (2018). Nodes and edges in a graph database have associated 
labels. Data is stored inside nodes and edges as properties that exist in the form of 
key-value pairs Angles et al. (2017); Angles and Gutierrez (2008). Graph databases 
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are efficient in storing and managing highly interconnected data-sets related to 
domains such as transportation networks, social media, bioinformatics, chemistry 
and astronomy (Angles and Gutierrez 2008; Angles 2012; Angles et al. 2017; Bell 
et  al. 2009; Tetko et  al. 2016). Graph databases suit big data applications as they 
provide a better alternative for modeling and handling complex information (Rodri-
guez and Neubauer 2010, 2012). Graph databases are more efficient than relational 
databases for extracting information from highly interconnected data-sets (Sharma 
et al. 2019; Sharma and Sinha 2019; Sharma 2020; Sharma et al. 2021).

The interconnections between data represent the underlying meaning of a graph 
data-set. Therefore, maintaining data consistency and integrity is vital in graph data-
bases (Angles and Gutierrez 2008; Kunii 1987). Obtaining a database that is sound 
and consistent requires embracing good database modeling principles (Badia and 
Lemire 2011). In contrast to relational databases, modeling principles for graph 
databases are ad-hoc and not well-grounded (Park et al. 2014). Contemporary graph 
databases lack mechanisms to ensure data consistency and integrity, especially 
when the data being stored comes from multiple heterogeneous sources (Reina et al. 
2020). A primary reason is that graph databases are either schema-less or schema-
optional (Reina et al. 2020). A schema represents the overall structure of a data-set 
and assists in understanding data semantics (Pokornỳ 2016). Furthermore, schemas 
aid in defining integrity constraints that are sets of rules for ensuring consistency 
and integrity in the database that conforms to the schema (Codd 2002; Ghrab et al. 
2014). The lack of schema and integrity constraints poses significant challenges in 
ensuring data consistency and integrity (Khan et al. 2012), in performing advanced 
analytics (Sharma 2021) and achieving data interoperability (Sciore et al. 1994), and 
for data integration, query optimization and processing (Frozza et al. 2020).

Traditional database modeling consists of three stages conceptual, logical and 
physical modeling (Badia and Lemire 2011). In graph databases, the conceptual 
modeling stage represents gathering requirements of a given problem domain 
that are then used for defining entities and relationships between them. The logi-
cal modeling stage represents the enforcement of integrity constraints, including 
mandatory, optional and unique properties associated with entities and relation-
ships defined in the conceptual modeling stage. The physical modeling stage rep-
resents the realization of graph schema formulated at the conceptual and logical 
modeling stage into database creation scripts.

An open problem in graph database design is that practitioners do not have 
proper guidelines for designing conceptual models (Pokornỳ 2016; Badia and 
Lemire 2011) that can facilitate systematic transformation and loading of data 
from heterogeneous sources into graph databases. Conceptual modeling stage 
is not used in the majority of graph database solutions (Fitzgerald et  al. 1999; 
Brodie and Liu 2010). Graph databases lack abstraction tools Angles and Gutier-
rez (2008) and most current research is primarily focused on logical and physical 
modeling (Reina et al. 2020; Pokornỳ et al. 2017; Pokorny 2017). These observa-
tions lead us to the following research questions: 
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RQ1	 What are the key strengths and limitations of existing approaches used for 
modeling graph databases?

RQ2	 What mechanisms can be designed to formulate conceptual and logical graph 
schemas for labeled property graph databases?

RQ3	 In order to ensure data consistency, how can the graph schema generated 
by RQ2 be used to systematically import data from heterogeneous sources into a 
labeled property graph database? 

RQ3.1	 How can the Extract-Transfrom-Load design pattern be extended 
in order to support loading data-sets for heterogeneous sources into graph 
database?

We answered these research questions using a mixed-methods research methodol-
ogy (Johnson et al. 2007). Firstly, for addressing RQ1 a literature review was carried 
out to identify existing evidence and gaps in the literature related to the research 
question. We addressed RQ2 by proposing an algebra FLASc which is based on 
conceptual graphs introduced by (Sowa 2008, 1992, 1999). The three operators of 
JOIN, DETACH and DELETE_NODE provided by FLASc serve as mechanisms for 
formulating conceptual graph schemas which are further extended to logical graph 
schemas. The three FLASc operators presented in this research paper can be used 
for designing schema generation and manipulation algorithms. Hence a major util-
ity of FLASc is that it serves as a formal basis for designing future data defini-
tion languages for graph databases. For addressing RQ3 and RQ3.1, we illustrate the 
integration of FLASc with the well known Extract-Transform-Load (ETL) design 
pattern. The graph schemas generated by FLASc can be used to enforce integrity 
constraints and assist in the systematic generation of database creation scripts hence 
ensuring data consistency. To demonstrate the utility of our approach we consider 
three distinct case studies related to industrial cyber-physical systems (Sharma 
et al. 2019), big data analytics (Khalajzadeh et al. 2019, 2020) and tourism (Airbnb 
2018; Sharma and Sinha 2019). We generate graph schemas for the heterogeneous 
data-sets provided in the three case studies and produce database creation scripts in 
������ using the FLASc integrated ETL design pattern.

The critical contributions of this work include: 

1.	 We formulate FLASc a formal algebra for constructing a labeled property graph 
schema that can capture data semantics of any given problem domain. We define 
operators of FLASc that assist in constructing a graph schema.

2.	 We demonstrate the use of graph schemas formulated via FLASc to enforce integ-
rity constraints that ensure data consistency in contemporary labeled property 
graph databases such as Neo4j.

3.	 We illustrate how FLASc can be integrated with the Extract-Transform-Load 
design pattern for loading data-sets from heterogeneous sources into Neo4j.

Two case studies related to tourism and cyber physical systems, presented in 
Sects.  5.2 and 5.4 , have been adopted from our previously published research 
(Sharma et al. 2019; Sharma and Sinha 2019 and Sharma et al. 2021) respectively. 
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The formalism for labeled property graph schemas presented in Sharma and Sinha 
(2019) and Sharma et  al. (2021) is foundational for designing our algebra ����� . 
The work presented in this research paper empowers users of ����� to design robust 
graph schemas for labeled property graph databases.

The rest of this article is organized as follows. Section  2 presents background 
information and related work. The gaps identified in Sect. 2 are used to build FLASc 
which is presented in Sect. 3. In Sect. 4 we illustrate how the conceptual and logi-
cal graph schema formulated using FLASc can be used to enforce several integrity 
constraints in Neo4j graph database. In Sect. 5 we present the integration of FLASc 
with ETL design pattern and experimentally demonstrate its use for data transforma-
tion and loading of heterogeneous data-sets into Neo4j graph database. Finally, in 
Sect. 6 we summarize our major findings, key contributions and future directions of 
this work.

2 � Background and related work

This section enables us to address RQ1. We present a brief survey of the existing 
approaches that have been proposed for modeling graph databases.

2.1 � Graph database design and modeling

Graph databases use graphs consisting of nodes and edges as elementary data struc-
tures for modeling any problem domain (Angles 2012; Angles et al. 2017; Angles 
and Gutierrez 2008). All graph databases use slight variations of the basic graph 
data structure. For example, graph databases proposed in academia such as GOOD 
(Gyssens et  al. 1994), Gram (Amann and Scholl 1993), GraphDB (Güting 1994), 
GDM (Hidders 2003; Paredaens et al. 1995) and (Graves et al. 1995) use directed 
labeled graphs. Graph database such as hyper log (Levene and Poulovassilis 1990; 
Levene and Loizou 1995) use hyper node and hyper edge based graphs. Resource 
Description Framework (RDF) proposed by W3C (W3C 2021) use directed labeled 
graphs while Neo4j (2021), Oracle (2021) use directed, labeled and attributed graphs 
which are also known as property graphs (Angles 2018). There are three main stages 
of modeling a graph database: conceptual, logical and physical.

2.1.1 � Conceptual modeling

Conceptual modeling represents the initial stage in which knowledge is collected 
in the form of requirements and specifications related to a problem domain. Using 
graphs for representing knowledge was first proposed by Sowa (2008, 1992, 1976, 
1999). Subsequent works (Kunii 1987; Chein and Mugnier 2008; Mugnier and 
Chein 1992) also propose the use of graphs to represent knowledge at the concep-
tual modeling stage. Graphs provide a natural and intuitive interface for under-
standing the semantics of data (Sowa 2008; Badia and Lemire 2011). Knowing the 
semantics of data is vital for understanding the overall structure of the database 
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(Pokornỳ 2016) that aids in creating, modifying and retrieving data. Schemas 
created at the conceptual modeling stage provide a level of abstraction that aids 
in the natural modeling of data (Angles 2012). Conceptual graph schemas are 
used to define entities that belong to the database and relationships between those 
entities (Badia and Lemire 2011). Moreover, determining nodes, edges, and the 
direction of edges are vital for conceptual modeling (Griffith 1982).

2.1.2 � Logical modeling

Logical modeling is used to define integrity constraints on entities and relations 
of conceptual graph schema. Integrity constraints serve as mechanisms to ensure 
data consistency and integrity. They are broadly classified into two categories: 
graph entity integrity and semantic constraints (Ghrab et al. 2016). Graph entity 
integrity constraints are related to basic database design principles. These include 
constraints such as node/edge property uniqueness (Angles and Gutierrez 2008; 
Pokornỳ et  al. 2017; Angles 2012; Ghrab et  al. 2016; Barik et  al. 2016), label 
uniqueness (Angles and Gutierrez 2008; Pokornỳ 2016; Angles 2012; Ghrab 
et al. 2016; Pokornỳ et al. 2017), property data type (Pokornỳ 2016; Barik et al. 
2016) and mandatory property constraints (Ghrab et  al. 2014; Pokornỳ 2016). 
Enforcing semantic constraints require knowledge of the problem domain cap-
tured in the conceptual graph schema. These constraints are used to guarantee the 
conformity of graph database with domain specific rules and require intervention 
from end users. These include edge pattern (Barik et al. 2016; Ghrab et al. 2016, 
2014; Reina et al. 2020; Pokornỳ et al. 2017), graph pattern (Barik et al. 2016; 
Ghrab et al. 2016; Angles 2012; Ghrab et al. 2014) and path pattern constraints 
(Barik et al. 2016). Other constraints discussed in literature include type checking 
(Angles and Gutierrez 2008; Angles 2012; Ghrab et  al. 2014), node/edge prop-
erty value constraints (Reina et al. 2020), cardinality constraints (Pokornỳ 2016; 
Barik et al. 2016; Angles 2012; Ghrab et al. 2016; Reina et al. 2020; Šestak et al. 
2021, 2016) and functional dependencies (Angles and Gutierrez 2008; Pokornỳ 
2016; Angles 2012; Levene and Poulovassilis 1991; Yu and Heflin 2011; Megid 
et al. 2018).

2.1.3 � Physical modeling

Physical modeling represents the realization of the graph schema designed dur-
ing conceptual and logical modeling into actual database (Finkelstein et al. 1988). 
There are two approaches discussed in literature for physical modeling: integrated 
and layered (Šestak et  al. 2016). In the integrated approach, mechanisms to sup-
port the enforcement of integrity constraints are directly deployed on the database. 
These mechanisms are developed by altering and/or modifying the source code of a 
database system. In the layered approach, APIs specific to the database platform are 
used to create an additional layer that communicates with the database. This consist 
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of wrappers written in programming languages such as Java, Python that contains 
database creation scripts and logic to enforce the integrity constraints.

2.1.4 � Integration of logical and physical modeling

There exist many studies to support the integration of logical and physical mod-
eling aspects of graph databases. For instance, Ghrab et al. (2016) follow a layered 
approach and propose the construction of a wrapper that can be used to enforce 
integrity constraints, including graph and path pattern constraints over Neo4j graph 
database. An integrated approach to extend the source code of OrientDB to support 
the enforcement of integrity constraints, including uniqueness, key, cardinality, and 
edge degree constraints, has been studied in Reina et al. (2020). Similarly, the exten-
sion of Cypher query language to support additional integrity constraints such as 
uniqueness, node property, edges pattern, and mandatory properties is presented in 
Pokornỳ et al. (2017), de Sousa and Cura (2018). A layered approach to demonstrate 
the enforcement of uniqueness integrity constraint on two different graph databases 
Neo4j and Apache Tinkerpop, is proposed in Šestak et al. (2016). The use of inte-
grated and layered approach together to perform graph database manipulation opera-
tions on Neo4j graph database is proposed in Barik et al. (2016). Authors in Daniel 
et al. (2016) propose the model-driven engineering based approach for converting 
and loading of UML diagrams into tinkerpop blueprints.1

2.2 � Gaps in current literature

Several studies have been proposed in the last decade that address the problem of 
modeling graph databases. These studies mainly focus on the integration of logical 
and physical modeling aspects. A primary reason of this due to the emergence of 
several graph data models such as resource description framework (RDF) (Lassila 
et al. 1998; Pérez et al. 2006), labeled property graphs (LPG) (Angles 2018; Sharma 
et al. 2019; Sharma and Sinha 2019; Sharma 2020, 2021) and creation of query lan-
guages such as SPARQL (2013), Cypher (Neo4j) 2021, Gremlin (Apache) (2021), 
PGQL (Oracle) (2021) and GSQL (TigerGraph) (2020) to support data modeling 
and retrieval. More recently, projects such as ISO/IEC 39,075,2 openCypher (2018) 
and Linked Data Benchmark Council (LDBC) Alex and Norbert (2013) have been 
proposed for developing a standard query language for the labeled property graph 
data model. Most of these studies focus on extending the existing query languages 
to support logical and physical modeling while conceptual modeling is done in an 
ad-hoc manner. Authors in Ghrab et al. (2016), Roy-Hubara et al. (2017), Hartig and 
Hidders (2019) present a formal approach for logical modeling of graph databases. 
However, physical modeling in these research papers are not discussed in detail 

1  https://​github.​com/​tinke​rpop/​bluep​rints.
2  https://​www.​iso.​org/​stand​ard/​76120.​html.

https://github.com/tinkerpop/blueprints
https://www.iso.org/standard/76120.html
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(Šestak et al. 2021) and application of the proposed formalisms on real-world data-
sets are considered as future work.

To obtain a robust graph database that captures semantics of the problem domain 
conceptual modeling stage is vital. A sound conceptual graph schema ensures that 
logical and physical modeling stages are also robust (Mior et al. 2017). The graph 
data modeling approaches proposed so far do not provide the means to create robust 
conceptual graph schemas. Authors in Park et al. (2014), Roy-Hubara et al. (2017), 
Daniel et al. (2016) propose the use of existing visual modeling tools such as entity 
relationships diagrams (ERD) and unified modeling language (UML) for creat-
ing conceptual and logical graph schemas. The schemas generated by visual mod-
els such as UML diagrams are based on node-labeled graphs (Sharma and Sinha 
2019) where only the nodes can have properties associated with them. According to 
Chen (1976), ERDs are based on node and edge labeled graphs where edges are also 
attributed. However, in order to support the creation of relational databases, attrib-
uted edges in ERDs have to be represented as strong and weak entities (or attrib-
uted nodes)3. Modeling tools such as ERD and UML are generic and while they can 
be used to model LPG schema, they do not capture subtleties like edge labels and 
attributes without carefully considered extensions. Our algebra ����� directly sup-
ports LPG schemas that have labels and properties associated with nodes and edges 
(Sharma and Sinha 2019; Sharma et al. 2021). Both UML and ERD are semi-for-
mal modeling tools whereas FLASc provides a formal basis for LPG schemas. This 
opens up the opportunity to define a FLASc-driven schema-generation language 
based on formal languages such as conjuntive queries and first order logic Sharma 
(2021). However, such extensions of FLASc are not in the scope of this research 
paper.

In this research, we present FLASc a formal tool that assists in the formulation of 
robust conceptual and logical graph schemas which is an advancement over existing 
studies in graph database modeling. The majority of integrity constraints presented 
in the existing studies can be specified in graph schemas generated by FLASc. Fur-
thermore, syntax and semantics of FLASc presented in this study assist in its imple-
mentation at the physical modeling stage. FLASc assists in the integration of con-
ceptual, logical and physical modeling stages which currently is lacking in graph 
database research.

3 � FLASc: formal algebra for conceptual and logical graph schema

This section addresses RQ2, we present the formal algebra FLASc that assists in 
formulating conceptual and logical graph schemas for labeled property graph data-
bases. We use the concepts from Sowa’s conceptual graphs identified in Sect. 2.1.1 
to propose the operators of FLASc. We use a formal approach for constructing 
FLASc which assures the robustness of its design (Marciniak 1994; Clarke and 
Wing 1996). FLASc has sound mathematical basis that enables a user to precisely 

3  Interested readers can refer to Chen’s research paper Chen (1976) for further clarification.
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define: (i) connections between entities of a graph database (intensional informa-
tion) and (ii) properties associated with entities and relations in a graph database 
(extensional information) (Sowa 1976, 1992, 1999, 2008).

We consider a data-set from Airbnb Sharma and Sinha (2019); Sharma et  al. 
(2021) as our first case study related to the tourism domain that assists in illustrating 
various definitions and concepts of FLASc. This data-set consists of three CSV files 
that contain information related to property listings, reviews and calendar data. This 
data-set is highly interconnected, making it a prime candidate for graph database 
design and implementation (Sharma et al. 2021; Sharma 2021).

3.1 � Basic terminology

Definition 1  (Directed Multigraph) A directed multigraph G = (N, E,S, T) is 
a tuple where N  is a set of nodes and E is a set of edges. Two associated func-
tions, S ∶ E → N  and T ∶ E → N  , map each edge to its source and target nodes, 
respectively.

Each edge in a directed multigraph has unique source and target nodes. Edges with 
same source and target nodes are allowed (hence the term multigraph. We use the 
short hand ni → nj to represent an edge ek where S(ek) = ni and T(ek) = nj.

Graph can contain labels over nodes and edges. Given a set of node labels LN  
and a set of edge labels LE such that LN ∩ LE = � . A labeling is simply a map 
f ∶ S1 → S2 such that for every element a ∈ S1 , there is a unique element f (a) ∈ S2 . 
We can define an edge- labeled graph as follows.

Definition 2  (Edge-Labeled Graph) A graph G = (N, E, �,S, T) is called an edge-
labeled graph if there exists a labeling � ∶ E → LE which maps all edges to labels 
in a set of edge labels LE . We use the short-hand ek = ni

l
���→ nj for any ek ∈ E and 

�(ek) = l.

Similarly, we can define a node labeled graph.

Definition 3  (Node-Labeled Graph) A graph G = (N, E, �,S, T) is called a node-
labeled graph if there exists a labeling � ∶ N → LN  which maps all nodes to labels 
in a set of node labels LN  for any ni ∈ N  and l ∈ LN  if l is mapped to ni then 
�(ni) = l.

3.2 � Conceptual graph schema

A conceptual graph schema is used to capture intensional information. Conceptual 
modeling is easier for the user to understand and contribute. Therefore, a concep-
tual graph schema must be closer to the semantics of natural languages like English. 
It must reflect real-world entities, and relations that are not directly represented by 
the conceptual graph schema must be accessible to infer (Sowa 1992; Mugnier and 
Chein 1992). As discussed in Sharma and Sinha (2019) to define relationships, we 
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use the (subject,predicate,object) format from semantics web (Bern-
ers-Lee et al. 2001) where the subject can be a noun, the predicate can be a verb, and 
an object can also be a noun.

Definition 4  (Conceptual graph schema)
Given a set of node labels LN  and a set of edge labels LE , conceptual graph 

schema Gs is a tuple (Ns, Es, �s, �s,LN ,LE ,Ss, Ts) where,

•	 Ns is a finite set of nodes and Es is a finite set of edges of the graph schema.
•	 (Ns, Es,Ss, Ts) is a directed multigraph.
•	 �s ∶ Ns → LN  is a node labeling function and �s ∶ Es → LE is an edge labeling 

function.

We use the shorthand notation Gs = (Ns, Es, �s, �s,Ss, Ts) to represent the concep-
tual graph schema.

Example 1  The conceptual graph schema generated for Airbnb case study as dis-
cussed in Sharma and Sinha (2019) is presented in Fig. 1. The graph schema con-
sists of six labels including ������, ����, ���� and ������� and four edge labels 
�����, ������_���, ��� and ���� . In the Airbnb data-set (2018) a person using 
Airbnb service can write a review for a listing that was recently visited by him or 
her. A conceptual graph schema in such a scenario consists of entities such as user 
and review. Relationships can be of the form (users,wrote,review) where 
users is the subject, wrote is the verb and review is the object.

Fig. 1   Conceptual graph schema generated for Airbnb case study
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3.2.1 � Basic conceptual graph schema

Basic conceptual graph schemas are restricted form of conceptual graph schemas. 
They serve as building blocks for formulating conceptual graph schemas. Formally 
basic conceptual graph schemas are defined as follows.

Definition 5  (Basic conceptual graph schema) Given sets of node and edge labels 
LN  and LE , a basic conceptual graph schema Gb is a tuple (Nb, Eb, �b, �b,Sb, Tb) 
where

•	 Nb = {ni, nj} is a set of two nodes.
•	 Eb = {ek} ∪ � can either be a singleton set or an empty set.
•	 (Nb, Eb,Sb, Tb) is a restricted from of directed multigraph supporting only one 

directed edge between two nodes.
•	 �b ∶ Nb → LN  is a node labeling function and �b ∶ Eb → LE is an edge labeling 

function.

Example 2  The Airbnb data-set consists of several basic conceptual 
graph schemas including Gb1 =

(
{n1, n2}, {n1

�����
���������������������→ n2}, �1, �1

)
 such that 

�b1(n1) = ���� , �1(n2) = ������ and �1(n1
�����
���������������������→ n2) = ����� . Simi-

larly Gb2 =
(
{n2, n3}, {n2

������_���
�����������������������������������������→ n3}, �2, �2

)
 such that �2(n2) = ������ , 

�2(n3) = ������� and �2(n2
review_for
����������������������������������→ n3) . The basic conceptual graph schema is 

used to represent the intensional information that a review was written by a user and 
review was written for a listing.

Basic conceptual graph schemas serve as a starting point for a database designer 
and assist in conceptual modeling. A basic conceptual graph schema can contain 
nodes that are not connected to one another by an edge. A designer can create sepa-
rate basic conceptual graph schemas for each requirement and/or use case. We now 
present our algebra FLASc for creating robust conceptual graph schemas from basic 
conceptual graph schemas.

3.2.2 � Syntax and semantics of FLASc

An algebra consists of sets, constants that belong to the sets and some functions or 
operators that are used to manipulate data stored inside the sets (Tucker and Ste-
phenson 2003). Our algebra FLASc is defined as follows:

Definition 6  ( FLASc ) An algebra defined over a finite set of basic conceptual 
graph schemas GB , is a tuple ⟨GB,G,F⟩ where:

•	 G is the set of all conceptual graph schemas over GB , with GB ⊂ G.
•	 F  is a set containing three operators:
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1.	 JOIN: G × G → G is a binary operator such that if G1,G2 ∈ G then JOIN ( G1,G2 ) 
is a conceptual graph schema formed by the union of two conceptual graph sche-
mas. Let G1 = (N1, E1, �1, �1,S1, T1) where LN1

 is a set of node labels and LE1 is a 
set of edge labels associated with G1 . Let G2 = (N2, E2, �2, �2,S2, T2) where LN2

 
is a set of node labels and LE2 is a set of edge labels associated with G2 . Then 
����(G1,G2) = G3 =

(
N3, E3, �3, �3,S3, T3

)
 such that

–	 N3 = N1 ∪N2 and E3 = E1 ∪ E2.
–	 �3 = �1 ∪ �2 where �3 ∶ (N1 ∪N2) → (LN1

∪ LN2
) such that

If n
i
∈ N1 then �3(ni) = �1(ni) = ln1 and ln1 ∈ LN1

.
If ni ∈ N2 then �3(ni) = �2(ni) = ln1 and ln1 ∈ LN2

.
If ni ∈ (N1 ∩N2) then �3(ni) = �1(ni) = �2(ni) = ln1 and ln1 ∈ (LN1

∩ LN2
).

–	 �3 = �1 ∪ �2 where �3 ∶ (E1 ∪ E2) → (LE1 ∪ LE2) such that that

If ei ∈ E1 then �3(ei) = �1(ei) = le1 and le1 ∈ LE1.
If ei ∈ E2 then �3(ei) = �2(ei) = le1 and le1 ∈ LE2.
If ei ∈ (E1 ∩ E2) then �3(ei) = �1(ei) = �2(ei) = le1 and le1 ∈ (LE1 ∩ LE2).

–	 S3 = S1 ∪ S2 where S3 ∶ (E1 ∪ E2) → (N1 ∪N2) such that

If ei ∈ E1 then S3(ei) = S1(ei) = ni and ni ∈ N1.
If ei ∈ E2 then S3(ei) = S2(ei) = ni and ni ∈ N2.
If ei ∈ (E1 ∩ E2) then S3(ei) = S1(ei) = S2(ei) = ni and ni ∈ (N1 ∩N2).

–	 T3 = T1 ∪ T2 where T3 ∶ (E1 ∪ E2) → (N1 ∪N2) such that

If ei ∈ E1 then T3(ei) = T1(ei) = nj and nj ∈ N1.
If ei ∈ E2 then T3(ei) = T2(ei) = nj and nj ∈ N2.
If ei ∈ (E1 ∩ E2) then T3(ei) = T1(ei) = T2(ei) = nj and nj ∈ (N1 ∩N2).

2.	 DETACH: G × G → G is a binary operator such that if G1,G2 ∈ G then DETACH 
( G1,G2 ) is a conceptual graph schema formed by applying ring sum over the edge 
sets of G1 and G2 . Let G1 = (N1, E1, �1, �1,S1, T1) where LN1

 is a set of node labels 
and LE1 is a set of edge labels associated with G1 . Let G2 = (N2, E2, �2, �2,S2, T2) 
where LN2

 is a set of node labels and LE2 is a set of edge labels associated with 
G2 . The resultant conceptual graph schema consists of all the nodes present in 
graphs G1 and G2 that is (N1 ∪N2) . While the ring sum operator is only applied 
over the edge sets of two graphs that is (E1 ⊕ E2) = (E1 ∪ E2) − (E1 ∩ E2) . 
������(G1,G2) = G3 =

(
N3, E3, �3, �3,S3, T3

)
 such that

–	 N3 = N1 ∪N2 and E3 = E1 ⊕ E2 if E1 ∩ E2 = � then E3 = E1 ∪ E2
–	 �3 = �1 ∪ �2 where �3 ∶ (N1 ∪N2) → (LN1

∪ LN2
) such that

If ni ∈ N1 then �3(ni) = �1(ni) = ln1 and ln1 ∈ LN1
.

If ni ∈ N2 then �3(ni) = �2(ni) = ln1 and ln1 ∈ LN2
.

If ni ∈ (N1 ∩N2) then �3(ni) = �1(ni) = �2(ni) = ln1 and ln1 ∈ (LN1
∩ LN2

).

–	 �3 is defined as 𝜉3 ∶ (E1 ⊕ E2) → (LE1 ⊕ LE2 ) such that

If E1 ∩ E2 ≠ � and ei ∈ (E1 ∩ E2) then �3(ei) = �.
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Otherwise if ei ∈ E1 then �3(ei) = �1(ei) = le1 and le1 ∈ LE1 . If ei ∈ E2 then 
�3(ei) = �2(ei) = le1 and le1 ∈ LE2.

–	 S3 is defined as S3 ∶ (E1 ⊕ E2) → (N1 ∪N2) such that

If (E1 ∩ E2) ≠ � and ei ∈ (E1 ∩ E2) then S3(ei) = �.
Otherwise if ei ∈ E1 then S3(ei) = S1(ei) = ni and ni ∈ N1 . If ei ∈ E2 then 

S3(ei) = S2(ei) = ni and ni ∈ N2.

–	 T3 is defined as T3 ∶ (E1 ⊕ E2) → (N1 ∪N2) such that

If (E1 ∩ E2) ≠ � and ei ∈ (E1 ∩ E2) then T3(ei) = �.
Otherwise if ei ∈ E1 then T3(ei) = T1(ei) = ni and ni ∈ N1 . If ei ∈ E2 then 

T3(ei) = T2(ei) = ni and ni ∈ N2.

3.	 DELETE_NODE: G × G → G is a binary operator such that if G1,Gd ∈ G then 
DELETE_NODE(G1,Gd ) is a conceptual graph schema formed by applying ring 
sum over the node sets of G1 and Gd . Let G1 = (N1, E1, �1, �1,S1, T1) where LN1

 
is a set of node labels and LE1 is a set of edge labels associated with G1 . Let 
Gd = (Nd, Ed, �d,Sd, Td) is a node labeled graph where LNd

 is a set of node labels 
associated with Gd . Furthermore, the graph Gd has no edges associated with it 
that is Ed = � subsequently, Sd = � and Td = � . Then the resultant conceptual 
graph schema after applying the DELETE_NODE operator consist of nodes that 
are formed by applying the ring sum over the node sets of two graphs that is 
(N1 ⊕Nd) = (N1 ∪Nd) − (N1 ∩Nd) . The set of edges in the conceptual graph 
schema DELETE_NODE(G1,Gd ) is equal to the set of edges in G1 that is E1 . 
DELETE_NODE(G1,Gd ) = G3 = (N3, E3, �3, �3,S3, T3) such that

–	 N3 = (N1 ⊕Nd) if (N1 ∩Nd) = � then N3 = (N1 ∪Nd) and E3 = E1.
–	 �3 is defined as 𝜂3 ∶ (N1 ⊕Nd) → (LN1

⊕ LNd
) such that

If (N1 ∩Nd) ≠ � and ni ∈ (N1 ∩Nd) then �3(ni) = �

Otherwise, if ni ∈ N1 then �3(ni) = �1(ni) = lni and lni ∈ LN1
 . If ni ∈ Nd then 

�3(ni) = �d(ni) = lni and lni ∈ LNd
.

–	 �3 = �1 such that �3 ∶ E1 → LE1.
–	 S3 = S1 such that S3 ∶ E1 → N1.
–	 T3 = T1 such that T3 ∶ E1 → N1.

FLASc provides JOIN, DETACH and DELETE_NODE operators over basic 
conceptual graph schemas to formulate composite conceptual graph schemas. 
We can now discuss the semantics of these three operators and provide some 
examples.
JOIN is used to combine together two or more conceptual graph sche-

mas. We follow the similar notion of join compatible mapping as discussed 
in Angles et  al. (2017); Castro and Soto (2017); Pérez et  al. (2006). Two con-
ceptual graph schemas are join compatible if they share common nodes. That 
is G1 = (N1, E1, �1, �1,S1, T1) and G2 = (N2, E2, �2, �2,S2, T2) are join compat-
ible if ∃ei ∈ E1 and ∃ej ∈ E2 such that either S1(ei) = T2(ej) or T1(ei) = S2(ej) or 
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S1(ei) = S2(ej) or T1(ei) = T2(ej) . Furthermore, if S1(ei) or T1(ei) = ni and S2(ej) or 
T2(ej) = nj then �1(ni) = �2(nj).

Example 3  The basic conceptual graph schemas presented in Example  2 are join 
compatible because both graphs share a common node n2 that have the node label 
review. Figure  2 shows that applying the JOIN operator over basic conceptual 
graph schemas Gb1 = (N1, E1, �1, �1,S1, T1) and Gb2 = (N2, E2, �2, �2,S2, T2) creates 
a conceptual graph schema Gb3 = JOIN ( Gb1,Gb2 ). Graphs Gb1 and Gb2 are join com-
patible because the target node of edge e1 ∈ E1 that is T1(e1) and source node of edge 
e2 ∈ E2 that is S2(e2) are same. Moreover the node labels associated with these two 
nodes are also same that is �1(T1(e1)) = �2(S2(e2)) = ������.

Two join compatible conceptual graphs share common nodes. This assists in 
connecting smaller graphs. When two conceptual graph schemas are not join 
compatible, then application of the JOIN operator creates a union of two discon-
nected conceptual graph schemas.
DETACH is used to delete edges from a conceptual graph schema. This opera-

tor is useful if a database designer wishes to delete existing relationships in a 
conceptual graph schema. The graph produced after applying a DETACH operator 
over two conceptual graph schemas contain nodes from both the graphs. While 
edges of the new conceptual graph schema are calculated by applying the ring 
sum operator over the edges of conceptual graph schemas that provided as input 
to the DETACH operator. Applying the DETACH operator over two conceptual 
graph schemas Gb1 = (N1, E1, �1, �1,S1, T1) and Gb2 = (N2, E2, �2, �2,S2, T2) creates 
a conceptual graph schema Gb3 = DETACH ( Gb1,Gb2 ). If one graph is a sub-graph 
of another conceptual graph schema then applying DETACH operator over such 

Fig. 2   The application of JOIN 
operator to connect two concep-
tual graph schemas

Fig. 3   The application of 
DETACH operator to delete an 
edge from a conceptual graph 
schemas
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graph represents set difference of the edge set. An edge can only be deleted using 
DETACH if (E1 ∩ E2) ≠ � which means that both conceptual graph schema must 
share some common edges. Furthermore, the labels associated with these edges 
must be same that is, ∃e1 ∈ E1 and ∃e2 ∈ E2 such that �1(e1) = �2(e2) . The applica-
tion of DETACH removes existing edges from a conceptual graph schema. The 
resulting conceptual graph schemas after the application of DETACH may contain 
disconnected nodes.

Example 4  Edges can be deleted from a conceptual graph schema by using DETACH. 
As shown in Figure 3 applying DETACH between conceptual graph schemas Gb1 and 
Gb3 results in conceptual graph schema Gb4 that only contains an edge between node 
n2 and n3 . That is Gb4 = DETACH ( Gb1,Gb3 ) such that �(n1) = ����, �(n2) = ������ 
and �(n3) = ������� . Furthermore, node n1 is not the source and target of any edge 
in the conceptual graph schema.

DELETE_NODE is used to delete disconnected nodes in a conceptual graph 
schema. This operator is useful if a database designer wishes to delete existing 
nodes that are not connected to any other nodes in a conceptual graph schema. 
That is nodes that are neither the source nor the target of any edge in a conceptual 
graph schema. As mentioned in Definition 6 the set of nodes in G3 = DELETE_
NODE(G1,Gd ) is N3 = (N1 ⊕Nd) . A node ni ∈ N1 can only be deleted by using 
the DELETE_NODE operator if ∀e ∈ E1 and E1 ∈ G1 , S1(e) ≠ ni, T1(e) ≠ ni moreo-
ver, (N1 ∩Nd) ≠ � . This means that both graph must share common nodes, fur-
thermore ∀ni ∈ N1 and ∀nd ∈ Nd such that �1(ni) = �d(nd) which means that both 
nodes must have same node label. Otherwise, all nodes in Nd shall be added to 
the conceptual graph schema resulting from DELETE_NODE(G1,Gd).

Example 5  Disconnected nodes can be deleted from a conceptual graph schema by 
using the DELETE_NODE. As shown in Fig. 4 applying the DELETE_NODE opera-
tor between conceptual graph schemas Gb4 and Gd results in a conceptual graph 
schema Gb7 that only consists of nodes n2, n3 and an edge connecting nodes n2 and 
n3 . The resulting graph does not contain any disconnected node. That is Gb7 = 
DELETE_NODE(Gb4,Gd ) such that �(n2) = ������ and �(n3) = ������� . The 

Fig. 4   The application of DELETE_NODE operator to delete a node from a conceptual graph schemas
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graph Gd only consists of a node n1 such that �(n1) = ���� and this node has been 
removed from the conceptual graph schema Gb4.

Using JOIN and DETACH together become helpful if the label and/or direc-
tion of edges in a conceptual graph schema have to be altered or changed. These 
operators, when used together, enables a designer to alter intensional information 
stored in a conceptual graph schema.

Example 6  For instance if a designer wishes to alter the label and direction of 
an edge between node n1 labeled as user and node n2 labeled as review in 
the conceptual graph schema Gb3 presented in Example  3. As shown in Fig.  5 
a designer can apply DETACH between graphs Gb1 and Gb3 which results in graph 
Gb4 = ������(Gb3,Gb1) . The designer can now define a basic conceptual graph 
schema Gb5 where �(n1) = ���� and �(n2) = ������ . Applying the JOIN operator 
between graphs Gb4 and Gb5 results in conceptual graph schema Gb6 = ����(Gb4,Gb5) 
as shown in Figure 5.

3.3 � Logical graph schema

A logical graph schema is used to capture extensional information of the entities and 
relations stored in a graph database. A logical graph schema is formed by enforc-
ing integrity constraints on conceptual graph schema. Label uniqueness constraints 
are automatically enforced in the logical graph schema since the node, and edge 
labels used in conceptual graph schema are unique. For defining property-based 
constraints, we first define properties that can exist in graph databases. Properties 
in graph databases exist as key-value pairs where property values are atomic entities 
and have an associated data type. Logical graph schema stores properties as key-type 
format. Properties can be mandatory as well as optional for instance, properties such 
as ids must be unique. This information must be stored in a logical graph schema.

Let �s be a set of infinite keys (e.g., id, name, age, etc.) and �s be a finite set of 
data types (e.g., String, Integer, etc.) We define a set of properties �s ⊆ (�s × �s) . 
The property set is of two types (i) mandatory property set ( �m ) and (ii) optional 

Fig. 5   The application of JOIN 
and DETACH operators to alter 
an existing edge
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property set ( �o ) such that �s = �m ∪ �o . Mandatory property set can have some 
properties that have unique values associated with them. Let � be a set of Boolean 
values, we define a uniqueness function U ∶ �m → � that maps elements from man-
datory property set to TRUE or FALSE signifying that some values associated with a 
mandatory property must be unique.

Edges in a graph schema also have semantic information such as cardinal-
ity associated with them which refers to total number of edges that can exist 
between any two given nodes of a graph database. Cardinality of an edge repre-
sents a range where the minimum value of cardinality refers to minimum number 
of edges that must exist between any two nodes of a graph databases. Similarly, 
maximum value of cardinality refers to maximum number of edges that can exist 
between any two nodes in a graph database.

Let ��� ∈ � represent a minimum cardinality set which belongs to a set of 
whole numbers. Let ��� ∈ ℕ represents a maximum cardinality set which belongs 
to a set of natural numbers. We define a set of cardinalities as � ⊆ (��� × ���) 
with a condition that if min ∈ ��� and max ∈ ��� then min ≤ max. This means 
that minimum cardinality can never be greater than maximum cardinality. The 
minimum cardinality belongs to a set of whole numbers which means that mini-
mum cardinality can be zero. On the other hand maximum cardinality belongs to 
a set of natural numbers therefore, the smallest value that can be associated with 
maximum cardinality is 1. Furthermore, in such a scenario minimum cardinality 
can be either 0 or 1.

A logical graph schema extends the conceptual graph schema discussed in 
Definition 4 by labeling the nodes and edges with mandatory and optional proper-
ties. Moreover, in a logical graph schema edges are labeled with cardinality val-
ues. Formally, a logical graph schema is defined as follows:

Definition 7  (Logical graph schema) A logical graph schema Gl is a tuple 
(Ns, Es, �m, �o, �s, �s, �s,Ss, Ts,Δm,Δo, �s) where,

•	 (Ns, Es, �s, �s,Ss, Ts ) is a conceptual graph schema as presented in Definition 4.
•	 �s is a set of cardinalities such that �s ⊆ (��� × ���) where ��� ∈ � and 

��� ∈ ℕ.
•	 Δm ∶ (Ns ∪ Es) → P+(�m) is a mandatory property labeling function that maps 

all nodes and edges to the non empty subset of the mandatory property set 
where P+(�m) represents the powerset of mandatory property set excluding the 
empty set.

•	 Δo ∶ (Ns ∪ Es) → P(�o) is an optional property labeling function that maps all 
nodes and edges to the powerset, represented as P(�o) , of the optional prop-
erty set.

•	 �s ∶ Es → �s is a cardinality labeling function that maps all edges to a set of 
cardinalities such that ∀e ∈ Es, the cardinality function �s(e) = (���, ���) 
returns a minimum and maximum value pair such that ��� ≤ ��� , ��� ∈ ��� 
and ��� ∈ ��� . Given an edge e ∈ Es , let ni, nj ∈ Ns such that Ss(e) = ni and 
Ts(e) = nj then the following conditions hold:
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–	 The minimum number of edges belonging to the edge label �s(e) that can 
exist between nodes of label �s(ni) and �(nj) is min.

–	 The maximum number of edges belonging to the edge label �s(e) that can 
exist between nodes of label �s(ni) and �(nj) is max.

–	 The total number of edges belonging to edge label �s(e) that can exist 
between nodes of label �s(ni) and �s(nj) in a graph database must not be less 
than min and more than max.

Example 7  By using Definition  7 the logical graph schema generated for Airbnb 
case study is presented in Fig. 6. The logical graph schema’s topology is the same as 
the conceptual graph schema presented in Fig. 1.

Based in Definition  7 we can observe that a logical graph schema extends the 
conceptual graph schema by defining the property labeling functions over the nodes 
and edges of conceptual graph schema. Therefore, the intensional information cap-
tured in the conceptual graph schema is maintained in the logical graph schema. 
Additionally, the logical graph schema consists of extensional information as 
unique, mandatory, optional properties and edge cardinalities (Angles et al. 2021). 
Furthermore, the data type associated with each property is also captured in the log-
ical graph schema.

Example 8  Figure 6 shows the properties associated with nodes and edges of the log-
ical graph schema. For instance, the node labeled as host consists of a mandatory 
and an optional property. The mandatory property host_id is of data type Integer 
and must be unique. The value associated with the Boolean flag being TRUE signi-
fies the uniqueness constraint. The optional property name is of data type String 
and does not contain the uniqueness constraint. As discussed in Definition 7 edges 
of the logical graph schema contain information about the cardinality. For instance, 
the edge between node labeled as host and listing is labeled as owns and the 

Fig. 6   Logical graph schema generated for Airbnb case study
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cardinality associated in (1,n). This means that a host can own multiple listings 
and a listing can be associated with a single host. In the cardinality n represents a 
place holder for a natural number that can be calculated while creating the database 
creation script.

In our approach, the combination of conceptual and logical graph schema mod-
eling stages represent the four steps of database design as suggested by Chen (1976). 
Information such as entity set, relationship set and organization of data into enti-
ties and relationships is covered in conceptual graph schema modeling stage (Angles 
et al. 2021). In the logical graph schema modeling stage semantic information such 
as cardinality of edges and properties associated with nodes and edges are defined 
(Angles et al. 2021).

3.3.1 � ����� operators for designing logical graph schemas

The three operators, JOIN, DETACH and DELETE_NODE can also be used for 
designing and manipulating the logical graph schema. As mentioned in Definition 7 
a logical graph schema is an extension of conceptual graph schema. Therefore, 
node and edge labeling functions as well as source and target function are valid in a 
logical graph schema. The semantics associated with these functions are also same. 
A logical graph schema consists of additional functions such as mandatory and 
optional property labeling and edge cardinality functions. The use of ����� opera-
tors namely JOIN, DETACH and DELETE_NODE is constrained due the additional 
labeling functions at the logical graph schema modeling stage. We now discuss the 
application of ����� operators for logical graph schema modeling:
JOIN: The application of JOIN on two given logical graph schemas works in 

the similar manner as for source, target, node and edge labeling functions as pre-
sented in Definition 6. The additional mappings are required for property and cardi-
nality labeling functions which are discussed as follows:

Definition 8  (JOIN on Logical Graph Schema) Given two logical graph 
schemas Gl1 = (Ns1, Es1, �m1, �o1, �s1, �s1, �s1,Ss1, Ts1,Δm1,Δo1, �s1) and 
Gl2 = (Ns2, Es2, �m2, �o2, �s2, �s2, �s2,Ss2, Ts2,Δm2,Δo2, �s2) then ����(Gl1,Gl2) = Gl3 
= 
(
Ns3, Es3, �m3, �o3, �s3, �s3, �s3,Ss3, Ts3,Δm3,Δo3, �s3

)
 where:

•	
(
Ns3, Es3, �s3, �s3,Ss3, Ts3

)
 is a conceptual graph schema as discussed in Defini-

tion  4. The node and edge labeling functions, source and target functions are 
defined as in Definition 6.

•	 Δm3 = Δm1 ∪ Δm2 where Δm3 ∶ (Ns1 ∪Ns2 ∪ Es1 ∪ Es2) → P+(�m1 ∪ �m2) such 
that

–	 If nei ∈ (Ns1 ∪ Es1) then Δm3(nei) = Δm1(nei).
–	 If nei ∈ (Ns2 ∪ Es2) then Δm3(nei) = Δm2(nei).
–	 If nei ∈

(
(Ns1 ∪ Es1) ∩ (Ns2 ∪ Es2)

)
 then Δm3(nei) = Δm1(nei) = Δm2(nei).

•	 Δo3 = Δo1 ∪ Δo2 where Δo3 ∶ (Ns1 ∪Ns2 ∪ Es1 ∪ Es2) → P(�o1 ∪ �o2) such that
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–	 If nei ∈ (Ns1 ∪ Es1) then Δo3(nei) = Δo1(nei).
–	 If nei ∈ (Ns2 ∪ Es2) then Δo3(nei) = Δo2(nei).
–	 If nei ∈

(
(Ns1 ∪ Es1) ∩ (Ns2 ∪ Es2)

)
 then Δo3(nei) = Δo1(nei) = Δo2(nei).

•	 �s3 = �s1 ∪ �s2 where �s3 ∶ (Es1 ∪ Es2) → (�s1 ∪ �s2) such that

–	 If e ∈ Es1 then �s3(e) = �s1(e).
–	 If e ∈ Es2 then �s3(e) = �s2(e).
–	 If e ∈ Es1 ∩ Es2 then �s3(e) = �s2(e) = �s1(e).

The notion of two logical graph schemas being join compatible is same as dis-
cussed for conceptual graph schemas as discussed in Sect. 3.2.2. With respect to 
the properties two logical graph schemas are join compatible if nodes have same 
mandatory and optional properties that is, ∃n1 ∈ Ns1 and ∃n2 ∈ Ns2 such that 
Δm1(n1) = Δm2(n2) and Δo1(n1) = Δo2(n2) . In such a scenario we say that nodes n1 
and n2 of two logical graph schemas are join compatible.
DETACH: The DETACH operator can be utilized by a database designer to 

delete an existing edge from a logical graph schema. Deleting an existing edge 
from a logical graph schema requires checking that the two conceptual graphs 
share some common edge with same labels as discussed in Sect. 3.2.2. Addition-
ally, deleting edges in logical graph schemas also requires that the edge proper-
ties and cardinalities must be same. In order to formalize the notion of DETACH 
operator at the logical schema level we further divide the set of mandatory and 
optional properties into node and edge properties. Let ��m and ��m be two sets 
containing mandatory properties specific to nodes and edge respectively such that 
�m = ��m ∪ ��m . Similarly, let ��o and ��o be two sets containing optional proper-
ties specific to nodes and edge respectively then �o = ��o ∪ ��o

Definition 9  (DETACH on logical graph schema) Given two logical graph schema 
Gl1 = (Ns1, Es1, (��m1 ∪ ��m1), (��o1 ∪ ��o1), �s1, �s1, �s1,Ss1, Ts1,Δm1,Δo1, �s1) and 
Gl2 = (Ns2, Es2, (��m2 ∪ ��m2), (��o2 ∪ ��o2), �s2, �s2, �s2,Ss2, Ts2,Δm2,Δo2, �s2) then 
������(Gl1,Gl2) = Gl3 = (N

s3, Es3, (��m3 ∪ ��
m3, (��o3 ∪ ��

o3), �s3, �s3, �s3,Ss3, Ts3,Δm3,Δo3, �s3

) 
where:

•	
(
Ns3, Es3, �s3, �s3,Ss3, Ts3

)
 is a conceptual graph schema as discussed in Defini-

tion 4. The node and edge labeling functions, source and target functions are 
defined as in Definition 6.

•	 ��m3 ∪ ��m3 =
(
��m1 ∪ ��m2 ∪ (��m1 ⊕ ��m2)

)
.

•	 ��o3 ∪ ��o3 =
(
��o1 ∪ ��o2 ∪ (��o1 ⊕ ��o2)

)
.

•	 Δm3 is defined as Δm3 ∶ (Ns1 ∪Ns2 ∪ (Es1 ⊕ Es2)) → P+(��m3 ∪ ��m3) such that

–	 If (Es1 ∩ Es2) ≠ � and nei ∈ (Es1 ∩ Es2) then Δm3(nei) = �.
–	 Otherwise

If nei ∈ (Ns1 ∪ Es1) then Δm3(nei) = Δm1(nei).
If nei ∈ (Ns2 ∪ Es2) then Δm3(nei) = Δm2(nei).
If nei ∈

(
(Ns1 ∪ Es1) ∩ (Ns2 ∪ Es2)

)
 then Δm3(nei) = Δm2(nei) = Δm1(nei).

•	 Δo3 is defined as Δo3 ∶ (Ns1 ∪Ns2 ∪ (Es1 ⊕ Es2)) → P(��o3 ∪ ��o3) such that
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–	 If (Es1 ∩ Es2) ≠ � and nei ∈ (Es1 ∩ Es2) then Δo3(nei) = �.
–	 Otherwise

If nei ∈ (Ns1 ∪ Es1) then Δo3(nei) = Δo1(nei).
If nei ∈ (Ns2 ∪ Es2) then Δo3(nei) = Δo2(nei).
If nei ∈

(
(Ns1 ∪ Es1) ∩ (Ns2 ∪ Es2)

)
 then Δo3(nei) = Δo2(nei) = Δo1(nei).

•	 �s3 is defined as 𝜁s3 ∶ (Es1 ⊕ Es2) → (�s1 ⊕ �s2) such that

–	 If e ∈ (Es1 ∩ Es2) and (Es1 ∩ Es2) ≠ � then �s3(e) = �.
–	 Otherwise if e ∈ Es1 then �s3(e) = �s1(e) . If e ∈ Es2 then �s3(e) = �s2(e).

In order to delete existing edges by using the DETACH operator there must 
exist some edges that are common between two logical graph schemas that is 
(Es1 ∩ Es2) ≠ � . This means that labels for both edges must be the same. Additionally, 
the properties and cardinalities associated with the common edges must be same as 
well that is ∃e1 ∈ Es1 and ∃e2 ∈ Es2 such that Δm1(e1) = Δm2(e2),Δo1(e1) = Δo2(e2) 
and �s1(e1) = �s2(e2).
DELETE_NODE: The DELETE_NODE operator can be utilized by a database 

designer to delete disconnected nodes from a logical graph schema. As discussed 
in Sect. 3.2.2 in order to delete an existing disconnected node the two logical graph 
schemas must contain common nodes. As mentioned in Definition 6 the node labe-
ling must be same. Additionally the mandatory and optional properties must be the 
same as well.

Definition 10  (DELETE_NODE on logical graph schema) Given two logical graph sche-
mas Gl1 = (Ns1, Es1, (��m1 ∪ ��m1), (��o1 ∪ ��o1), �s1, �s1, �s1,Ss1, Ts1,Δm1,Δo1, �s1) 
and Gl2 = (Ns2, Es2, ��m2, ��o2, �s2,Ss2, Ts2,Δm2,Δo2) is a 
node labeled property graph such that Es2 = � and subse-
quently Ss2 = � and Ts2 = � . Then ������_����(Gl1,Gl2) = Gl3 = (
Ns3, Es3, (��m3 ∪ ��m3), (��o3 ∪ ��o3), �s1, �s3, �s3,Ss3, Ts3,Δm3,Δo3, �s3

)
 where:

•	
(
Ns3, Es3, �s3, �s3,Ss3, Ts3

)
 is a conceptual graph schema as discussed in Defini-

tion  4. The node and edge labeling functions, source and target functions are 
defined as in Definition 6.

•	 ��m3 ∪ ��m3 =
(
(��m1 ⊕ ��m2) ∪ ��m1).

•	 ��o3 ∪ ��o3 =
(
(��o1 ⊕ ��o2) ∪ ��o1).

•	 Δm3 is defined as Δm3 ∶
(
(Ns1 ⊕Ns2) ∪ Es1

)
→ P+(��m3 ∪ ��m3) such that

–	 If (Ns1 ∩Ns2) ≠ � and nei ∈ Ns1 ∩Ns2 then Δm3(nei) = �.
–	 Otherwise if nei ∈ (Ns1 ∪ Es1) then Δm3(nei) = Δm1(nei) . If nei ∈ Ns2 then 

Δm3(nei) = Δm2(nei).

•	 Δo3 is defined as Δo3 ∶
(
(Ns1 ⊕Ns2) ∪ Es1

)
→ P(��o3 ∪ ��o3) such that

–	 If (Ns1 ∩Ns2) ≠ � and nei ∈ Ns1 ∩Ns2 then Δo3(nei) = �.
–	 Otherwise if nei ∈ (Ns1 ∪ Es1) then Δo3(nei) = Δo1(nei) . If nei ∈ Ns2 then 

Δo3(nei) = Δo2(nei).

•	 �s3 = �s1 such that �s3 ∶ Es1 → �s1.
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In order to delete existing nodes by using the DELETE_NODE operator there 
must exist some nodes that are common between two logical graph schemas that is 
(Ns1 ∩Ns2 ≠ �) . This means that labels for both nodes must be the same. Addition-
ally, the mandatory and optional properties associated with the common nodes must 
be same as well that is ∃n1 ∈ Ns1 and ∃n2 ∈ Ns2 such that Δm1(n1) = Δm2(n2) and 
Δo1(n1) = Δo2(n2).

3.3.2 � Axiomatic specifications of ����� operators

The axiomatic specifications of any algebra enable us to check its completeness 
(Tucker and Stephenson 2003). In order to show the axiomatic specification we 
use infix notation for the operators in ����� . As such we use the (⊔) notation for 
the JOIN operator, (◊) notation for the DETACH operator and (∇) notation for the 
DELETE_NODE operator.

The axiomatic specification of FLASc operators is presented in Table  1. For 
defining the identity axiom, we define an identity graph IG = (�, �) which means that 
the identity graph does not contain any nodes and edges. We can observe that JOIN, 
DETACH and DELETE_NODE operators follow associativity, commutativity, idem-
potent and identity axioms.

The distributive axioms for the JOIN, DETACH and DELETE_NODE operators is 
presented in Table 2. The axiomatic specification of FLASc operators enable us to 

Table 1   Axiomatic specifications of operators in FLASc 

⊔ = JOIN operator
◊ = DETACH operator
∇ = DELETE_NODE operator

Axioms JOIN DETACH DELETE_NODE

Associativity ∀G1,G2,G3 ∈ G

[(G1 ⊔ G2) ⊔ G3 = G1 ⊔ (G2 ⊔ G3)]

∀G1,G2,G3 ∈ G

[(G1◊G2)◊G3 = G1◊(G2◊G3)]

∀G1,G2,G3 ∈ G

[(G1∇G2)∇G3 = G1∇(G2∇G3)]

Commutativity ∀G1,G2 ∈ G

[G1 ⊔ G2 = G2 ⊔ G1]

∀G1,G2 ∈ G

[G1◊G2 = G2◊G1]

∀G1,G2 ∈ G

[G1∇G2 = G2∇G1]

Identity ∀G1 ∈ G [G1 ⊔ IG = G1] ∀G1 ∈ G [G1◊IG = G1] ∀G1 ∈ G [G1∇IG = G1]

Idempotent ∀G1 ∈ G [G1 ⊔ G1 = G1] ∀G1 ∈ G [G1◊G1 = G1] ∀G1 ∈ G [G1∇G1 = G1]

Table 2   Distributive axiom of FLASc operators

⊔ = JOIN operator
◊ = DETACH operator
∇ = DELETE_NODE operator

FLASc operators Axiomatic Specification

JOIN and DETACH ∀G1,G2,G3 ∈ G [G1 ⊔ (G2◊G3) = (G1 ⊔ G2)◊(G1 ⊔ G3)]

JOIN and DELETE_NODE ∀G1,G2,G3 ∈ G [G1 ⊔ (G2∇G3) = (G1 ⊔ G2)∇(G1 ⊔ G3)]

DETACH and DELETE_NODE ∀G1,G2,G3 ∈ G [G1◊(G2∇G3) = (G1◊G2)∇(G1◊G3)]
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use FLASc for generating new graph schemas from existing logical and conceptual 
graph schemas.

The integrity constraints that can be enforced by a logical graph schema pre-
sented in Definition 7 include graph entity integrity constraints such as property 
uniqueness, label uniqueness, property data type and mandatory property con-
straints. The enforcement of these constraints and semantics constraints such as 
edge pattern, graph pattern, and path pattern constraints can be done at the physi-
cal modeling stage by using database-specific query languages. Following the 
graph schema to generate database creation scripts at the physical modeling stage 
ensures data consistency.

3.3.3 � Schema instance consistency

The schema instance consistency is used to ensure that the labeled property 
graph database constructed at the physical modeling stage adheres to the logical 
graph schema generated by using ����� . A labeled property graph database uses 
a graph structure for storing and managing data, allowing the modeling of real 
world entities as nodes and edges (Angles et al. 2018; Sharma and Sinha 2019). 
Nodes are used to store data and relationships or interactions between nodes are 
stored as edges (Angles et  al. 2017; Sharma et  al. 2019). Nodes and edges in 
a graph database can have properties associated with them. Let �d be a set of 
infinite keys (e.g., id, name, age, etc.), �d be a set of infinite values (e.g., 345, 
James, 33, etc.) and �d be a set of finite data types (e.g., String, Integer etc.) we 
define a function Υ ∶ �d → �d that maps values in set �d to their respective data 
types in the set �d . The set of properties associated with the nodes and edges of 
a graph database are defined as �d ⊆ (�d × �d) such that each pd ∈ �d is a key-
value pair where each value has a data type. To accommodate the existence of 
mandatory and optional properties the set of properties can be further written as 
�d = �dm ∪ �do . Formally a labeled property graph database is defined as follows:

Definition 11  (Labeled Property Graph Database) A labeled property 
graph database Gd is a tuple (Nd, Ed, �dm, �do, �d, �d,Sd, Td,Δdm,Δdo) where,

•	 Nd is a finite set of nodes and Ed is a finite set of edges of the graph database
•	 (Nd , Ed,Sd, Td ) a directed multigraph as discussed in Definition 1.
•	 �dm and �do are mandatory and optional property sets associated with the graph 

database.
•	 �d ∶ Nd → LN  is a node labeling function which maps all nodes to labels in 

the set of node labels LN .
•	 �d ∶ Ed → LE is an edge labeling function which maps all edges to labels in the 

set of edge labels LE.
•	 Δdm ∶ (Nd ∪ Ed) → P+(�dm) is a property labeling function which maps all 

nodes and/or edges to all subsets (excluding the empty set) of the mandatory 
property set �dm.
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•	 Δdo ∶ (Nd ∪ Ed) → P(�do) is a property labeling function which maps all nodes 
and/or edges to all subsets (including the empty set) of the optional property 
set �do.

The notion of schema instance consistency implies that a labeled property 
graph database adheres to the structural restrictions established by a labeled prop-
erty graph schema (2018). Such a notion can be formally defined as follows:

Definition 12  (Schema Instance Consistency) Given a labeled 
property graph database Gd = (Nd, Ed, �dm, �do, �d, �d,Sd, Td,Δdm,Δdo) 
as defined in Definition  11 and a labeled property graph schema 
Gl = (Ns, Es, �sm, �so, �s, �s, �s,Ss, Ts,Δsm,Δso, �s) as defined in Definition 7. We say 
that Gd is consistent with Gl when:

•	 For each node n ∈ Nd , there must exist a corresponding node in graph schema 
where n� ∈ Ns such that �d(n) = �s(n

�).
•	 For each edge ei ∈ Gd there must exist a corresponding edge in graph schema 

that is e�
i
∈ Gl such that �d(Sd(ei)) = �s(Ss(e

�
i
)) , �d(Td(ei)) = �s(Ts(e

�
i
)) and 

�d(ei) = �s(e
�
i
).

•	 For each ni ∈ Nd (or ei ∈ Ed ), there exists n�
i
∈ Ns (or e�

i
∈ Es ) such that

–	 If Δdm(ni) = kdm × vd where kdm ∈ �d and vd ∈ �d.
–	 If Δsm(n

�
i
) = ksm × ts where ksm ∈ �s and ts ∈ �s.

–	 Then, ksm × ts = kdm × Υ(vd) that is, the key and data type of value stored in 
node (or edge) of graph database is same as the key and data type of node (or 
edge) in the graph schema.

•	 For each ni ∈ Nd (or ei ∈ Ed ), there exists n�
i
∈ Ns (or e�

i
∈ Es ) such that

–	 If Δdo(ni) = kdo × vd where kdo ∈ �d and vd ∈ �d.
–	 If Δso(n

�
i
) = kso × ts where kso ∈ �s and ts ∈ �s.

–	 Then, kso × ts = kdo × Υ(vd) that is, the key and data type of value stored in 
node (or edge) of graph database is same as the key and data type of node (or 
edge) in the graph schema.

•	 The total number of edges of a certain label generated in the labeled property 
graph database must be between the minimum and maximum cardinality values 
associated with edges of same label in the graph schema.

Cardinality can be enforced programatically at the physical modeling stage by 
using the logical graph schema generated by ����� . Similarly, the adherence to node 
and edge labeling, property (optional and mandatory) labeling can be enforced at the 
physical modeling stage. The logical graph schema is independent of the underlying 
implementations. Moreover, the graph schema can be used in both integrated and 
layered physical modeling approaches. To support our claim in the following two 
sections, we experimentally demonstrate the use of graph schema to transform and 
load data-sets by using both approaches for physical modeling for graph databases. 
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However, while demonstrating the integrated approach we do not make any changes 
to the source code of graph database system and consider this as future work.

4 � Using FLASc to enforce integrity constraints

In this section, we demonstrate the use of graph schema generated by FLASc for 
enforcing integrity constraints, which are essential for ensuring data consistency 
in graph databases. We illustrate the manual integration of conceptual, logical and 
physical modeling stages. We design the database creation scripts using the logi-
cal graph schema generated by FLASc for Airbnb data-set as shown in Fig. 6. We 
do not make any changes to the source code of Neo4j; however, the formulation of 
database creation scripts in Cypher is driven by the logical graph schema. We then 
execute these scripts directly over the Neo4j graph database.

As discussed in Sharma and Sinha (2019) Airbnb data-set consists of three CSV 
files containing information related to listings, review and calendar data. The listing 
file contains information, such as hosts that own the listings, amenities provided in 
the listings, location of the listing etc. The reviews file contains information related 
to the users who have stayed in the listings and provided feedback in reviews. The 
calendar file contains information related to booking details such as pricing and 
occupancy. These files contain multiple lines (rows) of data, where each row con-
tains a comma-separated list of values. For instance, a CSV file containing informa-
tion related to listings from Airbnb’s data is shown in Table 3.

4.1 � Manual generation of database creation scripts

The logical graph schema generated by FLASc for Airbnb data-set contains inten-
sional and extensional information that assists a database designer for enforcing 
integrity constraints in the database scripts.

4.1.1 � Enforcement of graph entity integrity constraints

Graph entity integrity constraints are used to enforce restrictions on properties asso-
ciated with nodes and edges in a graph database. The extensional information cap-
tured in the logical graph schema as discussed in Definition  7 is used to enforce 
such constraints. We discuss the enforcement of graph entity integrity constraints 
for transforming and loading Airbnb data-set into Neo4j graph database by using 
Cypher query language.

Node property uniqueness constraint The sample listing file as shown in Table 3 
has Listing ID associated with each listing. Furthermore, in the logical graph 
schema shown in Fig. 6 listing_id field the uniqueness flag is set to be True 
which means that the listing_id must be unique. Therefore, before creating 
the listing nodes in the Neo4j graph database, the uniqueness constraint must be 
established to reduce data corruption chances. This is achieved by running Query 1 
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in Cypher. The mechanism to enforce uniqueness constraint is predefined in Neo4j 
graph database.

Query 1 Cypher query to enforce node property uniqueness constraint
CREATE CONSTRAINT unique listing id IF NOT EXISTS ON (list:listing)
ASSERT list.listing id IS UNIQUE

The uniqueness constraint specified in Query  1 ensures that multiple nodes 
with same listing_id are not created in the Neo4j graph database. The use of 
IF NOT EXISTS clause is used to ensure that the constraint is enforced at most 
once. The next constraints to be enforced are the mandatory node and edge property 
constraints.

Mandatory node property constraint The sample listing file also contains infor-
mation about the host_id and in the logical graph schema as shown in Fig. 6, the 
host_id is a mandatory field. Therefore, additional constraints must be enforced 
on the listing nodes. This can be achieved by running the following query in Cypher.

Query 2 Cypher query to enforce mandatory node property constraint
CREATE CONSTRAINT listing host id IF NOT EXISTS ON (list:listing)
ASSERT EXISTS list.host id

The node property existence constraint specified in Query 2 ensures that listing 
nodes must always have a value assigned to the property host_id the ASSERT 
EXISTS clause is used to enforce such a condition.

Mandatory edge property constraint The mandatory property constraints can also 
be specified on the edges that have to be created in the graph database. The logi-
cal graph schema as discussed in Definition 7 helps in enforcing this constraint in 
two ways; first, it provides details about the edge labels. Second, it also provides 
details about mandatory, unique and optional properties associated with the edges. 
For example, as shown in Fig. 6 the edge labeled as owns has a mandatory property 
since which can be enforced by running the following Cypher query.

Query 3 Cypher query to enforce mandatory edge property constraint
1. CREATE CONSTRAINT owns edge id IF NOT EXISTS ON ()-[owns:OWNS]->()
2. ASSERT EXISTS owns.id

The mandatory edge property constraint shown in Query 3 is used to ensure that 
their is always a value assigned to id of every edge labeled as OWNS in the graph 
database.

Node key constraint This constraint can be applied over a set of node properties. 
This constraint combines the functionality provided by uniqueness and mandatory 
property constraints. For example, the node labeled as host has two mandatory 
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and unique properties user_id and name. This constraint can be enforced in the 
Neo4j graph database by using Query 4.

Query 4 Cypher query to enforce node key property constraint
1. CREATE CONSTRAINT ON (u:user)
2. ASSERT u.user id, u.name IS NODE KEY

As shown in Query  4 the use of IS NODE KEY keywords along with the 
ASSERT clause is used to enforce that the properties user_id and name are 
unique and must have a value associated with them in the graph database.

Property data type constraint Logical graph schema is used to enforce property 
data type constraint over the node and edge properties. As discussed in Definition 7 
a logical graph schema contains properties that have a data type associated with 
them. Therefore, database creation scripts are designed by utilizing this informa-
tion. For instance, in the logical graph schema shown in Fig. 6 listing_id and 
host_id are of Integer data type the Cypher query to enforce this constraint is 
presented as Query 5.

Query 5 Cypher query to enforce property data type and edge pattern
constraint
1. LOAD CSV WITH HEADERS FROM "http://data.insideairbnb.com/australia/
vic/melbourne/2021-01-10/visualisations/listings.csv" AS row
2. WITH DISTINCT row.id AS listing id,
3. row.host id AS host id
4. row.name AS listing name,
5. row.host name AS host name,
6. row AS row
7. MERGE(list:listing{listing id:toInteger(listing id),
host id:toInteger(host id),name: CASE WHEN listing name IS NOT NULL
8. THEN listing name
9. ELSE ‘System’ END})
10. MERGE(host:host{host id:toInteger(host id), name: CASE WHEN host name
IS NOT NULL
11. THEN host name
12. ELSE ‘System’ END})
13. WITH DISTINCT list AS l, host AS h, row AS row
14. WHERE l.host id = h.host id
15. AND l.listing id = toInteger(row.id)
16. AND h.host id = toInteger(row.host id)
17. CREATE (h)-[:owns{date:datetime(row.last review)}]->(l)

The property data type constraint is enforced by using the inbuilt toInteger() 
function in Cypher, as shown in lines 7 and 10 of Query 5. The use of this func-
tion is due to the specification in logical graph schema that the data type associated 
with listing_id and host_id must of Integer data type. In Query 5 the use of 
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Cypher’s MERGE clauses in lines 7 and 10, represents the creation of two nodes that 
is a listing node and a host node. This also illustrates the combination of conceptual 
and logical modeling stages where a basic conceptual graph schema containing two 
disconnected nodes as discussed in Definition 5 is further labeled with node proper-
ties, representing the use of node labeling function (�) as discussed in Definition 7. 
Additionally, Cypher also supports the use of CASE statements as illustrated in lines 
7–12 of Query 5. The CASE statements are used to ensure that if there exists some 
missing value in the csv files, then those values are loaded as a user defined values 
such as ‘System’ in our case.

Other graph entity integrity constraints such as node and edge label uniqueness 
are by default maintained by the logical graph schema generated using FLASc. By 
Definition 7 a node/edge can only have one label associated with it. On the other 
hand, Neo4j allows a node to be associated with more than one label (Bonifati et al. 
2018; Neo4j 2021). FLASc does not support this for the sake of simplicity. Such 
features are not present in all graph database systems and tend to make the defi-
nitions of graph schema and graph databases complex (Angles et al. 2020, 2019). 
Constraints such as edge property uniqueness can be specified in FLASc however, 
such constraints cannot be enforced in Neo4j.

4.1.2 � Enforcement of semantic integrity constraints

Semantic integrity constraints are used to enforce a topological restriction on the 
graph database. The intensional information captured in the graph schema during the 
conceptual modeling stage becomes useful to enforce semantic integrity constraints.

Edge pattern constraint To enforce edge pattern constraint the topological infor-
mation stored in the logical graph schema is used while creating the database crea-
tion scripts. For instance, Query  5 is also used to create edges between nodes of 
label host and listing. Each edge created by using Query 5 is labeled as owns 
and represents a valid edge in the logical graph schema shown in Fig. 6. According 
to the Neo4j Cypher manual 4 MERGE clause serves as a combination of MATCH and 
CREATE clauses. Therefore, in Query 5 the MERGE clause in lines 7 and 10 is used 
to first create and then match the host and listing nodes. The WITH clause as 
presented in line 13 of Query 5 allows query parts to be chained together,5 therefore, 
the host and listing nodes created in lines 7-12 are passed by using the WITH 
clause to facilitate the creation of edges between host and listing node types, 
that is in lines 13-17 of Query 5. The DISTINCT clause along with the WITH clause 
is used to ensure the removal of duplicate nodes in Query 5. The WHERE clause in 
line 14-16 at is used to define some constraints to filter results based on the values 
obtained from the csv files. The CREATE clause at line 17 in Query 5 represents the 
creation of a graph containing two nodes and an edge connecting them as discussed 
in Definition 5. The edge of the graph is further labeled with edge properties further 
representing the use of edge labeling function (�) as discussed in Definition 7.

4  https://​neo4j.​com/​docs/​cypher-​manual/​curre​nt/​claus​es/​merge/.
5  https://​neo4j.​com/​docs/​cypher-​manual/​curre​nt/​claus​es/​with/.

https://neo4j.com/docs/cypher-manual/current/clauses/merge/
https://neo4j.com/docs/cypher-manual/current/clauses/with/


1 3

Automated Software Engineering (2022) 29:37	 Page 29 of 45  37

Graph pattern constraint Enforcing graph pattern constraints require knowledge 
about the topology of the data-set, which is captured by logical graph schema. These 
constraints check for the existence of certain graph structure in the database before 
any new node or edge can be created. Graph pattern constraint in Cypher is pre-
sented as Query 6 which ensures that listing nodes that have been reviewed 
by a user are attached to booking_detail nodes by edges that are labeled as 
has.

Query 6 Cypher query to enforce graph pattern constraint
1. :auto USING PERIODIC COMMIT
2. LOAD CSV WITH HEADERS FROM "http://data.insideairbnb.com/australia/
vic/melbourne/2021-01-10/visualisations/calendar.csv" AS row
3. MATCH (u:user)-[:wrote]->(r:review), (r)-[:review for]->(l:listing)
4. WHERE l.listing id = toInteger(row.listing id)
5. WITH DISTINCT row AS row, l AS l
6. CREATE (l)-[:has{id:toInteger(row.id)}]->(b:booking detail)

In Query 6 the MATCH clause in line 3 is used to check if graph pattern exists or 
not. This graph pattern (Angles et al. 2017) is built by using the intensional informa-
tion in the logical graph schema presented in Fig. 6 that assists in formulating valid 
graph patterns for enforcing such constraints. The MATCH clause in this query con-
nects two graph patterns which are join compatible (Sharma et al. 2021). The CRE-
ATE clause in line 6 is used to combine the graph obtained from the MATCH clause 
with a logical graph schema specified in the CREATE clause. This represents the use 
of JOIN operator. The two logical graph schemas are join compatible since they 
share the node l labeled as listing. Query 6 also illustrates the use of :auto 
USING PERIODIC COMMIT clause in line 1, which is used to handle the large 
amount of data being processed.

Path pattern constraint These constraints check for the existence of certain paths 
in a graph database before a new node or edge can be created. Query languages 
for graph databases use the formalism of conjunctive two-way regular path queries 
(C2RPQs) and nested regular expressions (NREs) to express and then search for 
path patterns (Florescu et  al. 1998; Wood 2012; Angles et  al. 2014; Bagan et  al. 
2015; Barceló et al. 2011, 2012, 2016; Reutter 2013; Barceló et al. 2012). Further-
more, other expressive formalism such as conjunctive queries and union of con-
junctive queries extended with Tarski’s relation algebra (CQT/UCQT) proposed in 
Sharma et al. (2021) can also be used to enforce path constraints. In these formal-
isms regular expressions defined over the edge labels of the graph database are used 
to describe path patterns (Angles et al. 2017). The intensional information captured 
in logical graph schema assists in creating valid path patterns. Query 7 illustrates 
the enforcement of path pattern constraint in Cypher. Very similar to Query 6 the 
use of CREATE clause in the query represents the use of JOIN operator to combine 
the graph obtained from the MATCH clause at line 3 with the logical graph schema 
specified in the CREATE clause in line 6.
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Query 7 Cypher query to enforce path pattern constraint
1. :auto USING PERIODIC COMMIT
2. LOAD CSV WITH HEADERS FROM "http://data.insideairbnb.com/australia/
vic/melbourne /2021-01-10/visualisations/calendar.csv" AS row
3. MATCH (u:user)-[:wrote]->()-[review for]->(l:listing)
4. WHERE l.listing id = toInteger(row.listing id)
5. WITH row AS row, l AS l
6. CREATE (l)-[:HAS{id:toInteger(row.id)}]->
(a:amenity{amenity type:row.amenity type})

In Query 7 the path pattern constraint is specified in the MATCH clause, which 
represents the regular expression (wrote.review_for) formed by applying 
concatenation operator over the edge labels wrote, review_for and has. 
Other regular expressions operators such as union and Kleene star can also be 
used to form more expressions. However, Cypher only provides limited support 
for regular expressions as the Kleene star operator’s use over the concatenation of 
two more edge labels is not allowed in Cypher (Angles et al. 2017; Sharma et al. 
2021). Further modifications can be done to the query language by using formal-
ism such as Tarski’s algebra instead of regular expressions for increasing their 
expressiveness (Sharma et al. 2021).

Other Constraints such as schema instance consistency are ensured since the 
generation of database creation scripts is driven by the logical graph schema. 
Constraints such as functional dependencies are not easy to enforce in graph 
databases (Angles and Gutierrez 2008); however, in order to enforce func-
tional dependencies while modeling graph databases, a designer can follow the 
approach proposed in Park et al. (2014). This approach states that every non-key 
property must only provide information about the associated nodes and edges. 
Constraints such as edge identify uniqueness and cardinality constraints cannot 
be directly enforced in Neo4j. However, enforcing such constraints can be done 
by writing a wrapper in programming languages such as Java, Python that can be 
used to ensure that edge ids must be unique.

The logical graph schema generated by FLASc enables us to enforce several 
practical integrity constraints. FLASc assists in the generation of robust con-
ceptual and logical graph schemas. FLASc can be integrated with the existing 
Extract-Transform-load process for ensuring data consistency when data from 
heterogeneous sources is being loaded into a graph database such as Neo4j. The 
manual approach presented in this section has limitations. Firstly this approach 
requires a database designer to possess knowledge of graph database query lan-
guage such as Cypher. Secondly, creating the database creation scripts manually 
can be cumbersome and error-prone, making the process less maintainable, scal-
able and manageable. Finally, Cypher does not support loading data from het-
erogeneous sources into the Neo4j graph database. Therefore, to mitigate such 
limitations in the next section, we present our layered approach.
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5 � A layered approach for data transformation and loading using 
FLASc

Graph databases are schema-less or schema optional; therefore, maintain-
ing data consistency and integrity is not easy. A graph database can be easily 
altered unless the database’s underlying source code is not amended to support 
the enforcement of all integrity constraints. Hence in this section, we propose a 
layered approach that incorporates the development of an additional wrapper to 
ensure data consistency. While following the layered approach, we use the APIs 
provided by Neo4j to access the graph database. We illustrate how FLASc can be 
used to assist the transformation and loading of data from heterogeneous sources 
into graph databases hence addresses RQ3 and RQ3.1.

5.1 � Schema driven layered approach

Overview The overall physical view of our layered approach is presented in 
Fig.  7, that consists of three main components (i) FLASc  which serves as a 
graph schema generator, (ii) an importing subsystem and (iii) a graph database 
such as Neo4j.

The importing subsystem takes source files and a graph schema generated by 
FLASc as inputs. The subsystem then creates database creation scripts in ������ 
by following the intensional and extensional information captured in the graph 
schema. The subsystem then interacts with the Neo4j graph database by using the 
APIs and executes the database creation scripts on the graph database.

Fig. 7   Physical view of Schema driven layered approach

Fig. 8   Process view of Schema driven layered approach
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Importing subsystem design The importing subsystem is based on the Extract-
Transform-Load (ETL) design pattern. As shown in Fig.  8 the Extract stage is 
used to fetch data from a source and consolidated it into a repository. The trans-
form stage is used to apply appropriate transformation rules over the repository 
data. The transform stage uses the graph schema generated by FLASc to apply 
the transformation rules and create the database creation scripts. The load stage 
is finally used to execute the scripts on the database. In the load stage, database is 
accessed by using the specific API calls.

Technology stack The subsystem is developed as a Java Maven project where the 
front end is designed using Java Swing library.6 The subsystem uses Neo4j librar-
ies for establishing a connection with the Neo4j graph database. Maven is used for 
handling API specific external dependencies. Neo4j’s Cypher language is used for 
querying and creating the database.

5.2 � Airbnb case study

Transforming and loading data in CSV format is straight forward in Neo4j and 
������ . Furthermore, the Airbnb data-set exists in the form of denormalized rela-
tional tables as such connection between nodes can be established based on primary 
key foreign key relationships. As shown in Query 6, the clause LOAD CSV WITH 
HEADERS FROM represents the extract stage. In Query 6 the data is being fetched 
from the Airbnb website as shown in line 2. The data is stored in a repository rep-
resented by the “row” variable in the query. The transform stage in Query 6 is rep-
resented in lines 3–6 where the MATCH clause is used to search for the existence 
of patterns, WHERE clause is used to restrict the result set based on some condi-
tions and WITH clause serves as a medium to deliver the data (listings and row) to 
the CREATE clause. Finally the CREATE clause is used to create the edge between 
node labeled as listing and booking_details. The transform stage is also 
responsible for ensuring that the integrity constraints are enforced, which is done by 
using the graph schema. In a layered approach, the load stage is responsible for cre-
ating a connection with the Neo4j graph database by making appropriate API calls. 
The additional wrapper written in Java is used to execute the entire query on Neo4j 
finally.

The main advantage of using the layered approach is that additional logic can be 
written to ensure data consistency. For instance, ������ does not provide inbuilt 
mechanisms to enforce the uniqueness constraints on edges. A layered approach 
is beneficial in such scenarios as additional logic can be written in programming 
languages to generate unique values for a particular edge property. The layered 
approach’s advantage is evident when data in formats other than CSV are to be 
loaded into the Neo4j graph database. To illustrate this, we present the use of our 
layered approach to transform and load data-set related to big data analytics case 
study.

6  The source code is available for download at https://​github.​com/​emsof​taut/​FLASc_​ASE.

https://github.com/emsoftaut/FLASc_ASE
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5.3 � ������ case study

Implementing large-scale big data projects requires ongoing collaborations and 
monitoring by multiple stakeholders who have differing concerns. BiDaML  (Big 
Data Analytics Modelling Languages) (Khalajzadeh et al. 2019) is a domain-specific 
language for planning, specifying, monitoring and designing big data analytics pro-
jects. ������ suite presents different graph-based diagrams with highly interrelated 
data. The ������ diagrams considered in this case study consists of five diagrams 
brainstorming, process, technique, data, and deployment that provide different levels 
of abstractions. These diagrams are generated for National Bowel Cancer Screening 
Program (NBCSP) in Australia (AGD of Health 2017).

The ������ suite currently lacks the necessary automation and tooling required 
to allow individual users to view customised information specific to their needs and 
preferences within these diagrams. Importing data-sets from highly structured tools, 
such as the current HTML based implementation of ������ diagrams into graph 
databases such as Neo4j, is a challenge. This is due to the reason that Neo4j does 
not provides clauses for importing HTML data. We illustrate the use of our schema 
driven approach for transforming and loading ������ diagrams into Neo4j.

5.3.1 � ������ diagrams data‑set

The ������ data-set consists of five diagrams generated by the ������ suite. Brain-
storming diagram provides an overview of a data analytics project and all the tasks 
and sub-tasks involved in designing the solution at a very high level. Users can 
include comments and extra information for the other stakeholders. Process diagram 
specifies the analytics process, which includes sequencing the tasks identified in the 
brainstorming diagram and relating these tasks to participants or stakeholders. Tech-
nique diagrams show how tasks from the brainstorming/process diagrams are elabo-
rated further by applying specific techniques. Data diagrams document the data and 
artefacts produced in each of the above diagrams at a low level, i.e. the technical AI-
based layer. They also define the outputs associated with different tasks like output 
information, reports, results, visualisations, and outcomes. And finally, deployment 
diagrams depicts the run-time configuration, i.e. the system hardware, the software 
installed on it, and the middle-ware connecting different machines for development 
related tasks.

The graph schema generated by using FLASc for ������ diagrams is presented 
in Fig.  9 where the node labeled as TASK allows edges that are available in dif-
ferent diagrams, including outgoing edges to other tasks allowed in brainstorming, 
process and technique diagrams. These edges are distinguished from each other via 
additional edge labels. For instance, edges between task nodes in brainstorming dia-
grams are labeled as TT. Edges between task nodes in process diagrams are labeled 
by PR. The schema also allows other node labels like ROOT in brainstorming dia-
grams, START, END and CONDITION in process diagrams and INFRASTRU​CTU​
RE node labels in deployment diagrams. In ������ , technique and data diagrams 
can have techniques and data artefacts that are used as nodes in deployment dia-
grams. For simplicity of the graph schema, we classify techniques, artefacts, etc., 
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as nodes of label OTHER. As shown in Fig. 9 graph schema also captures the exten-
sional information such as mandatory, unique and optional properties related to 
nodes and edges of ������ diagrams. For example, the node labeled as TASK has 
nine associated properties where id,diagram_type and name are mandatory proper-
ties. The id property must be unique and properties including type,activity_type and 
organization are optional.

5.3.2 � Importing subsystem for ������ diagrams data‑set

To transform and load ������ diagram data-set into Neo4j we still use the same 
ETL design pattern with slight modification to each stage. As shown in Fig. 10 data 
files in HTML format are passed to the Extract stage that consists of two processes: 
Parse-HTML and Data builder. The HTML file contains information about nodes 
and edges of ������ graphs using map tags as well as additional properties such 
as id, name, type, sub-type, activity-type, stakeholder, comments and organization. 
Parse-HTML process reads the entire HTML file by using the JSoup library Hedley 
(2020) and creates a repository containing all the nodes and edges, which is then 
passed on to the Data Builder for further processing.

The Data builder process first removes duplicate elements in the repository. The 
builder then converts the repository into a list of edges (and nodes) that need to 
be stored in the graph database. In the Transform stage, the Cypher Query Builder 
takes the edge list from the extract stage and graph schema generated using FLASc 
as inputs to generate ������ queries for loading data into Neo4j. This stage also 
ensures that appropriate integrity constraints captured in the graph schema are 
enforced.

The final load stage consists of a Database Connector process and a Neo4j graph 
database interface. The Database Connector process establishes a connection with 
the Neo4j graph database using the Neo4j interface. A session is created between the 

Fig. 9   Logical graph schema for ������ diagrams
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subsystem and the Neo4j database. The Cypher query constructed in the transform 
stage is packaged into a create query and then executed. This process also ensures 
that nodes are not duplicated, especially if some of the imported nodes were already 
present in the database.

The time at which each node or edge is created during the ETL operations or 
during subsequent editing of the diagrams, is stored as a time stamp attribute within 
each updated element. Additional information, such as clustering of tasks in brain-
storming diagrams and mapping tasks to specific stakeholders, is all stored as attrib-
utes of the corresponding nodes.

5.4 � P2660.1 case study

Designing robust Industrial Cyber-Physical Systems (ICPS) largely depends upon 
identifying industrial agents, that provide complex and harmonious control mecha-
nisms at the software level. These industrial agents practices are used to develop 
more extensive and feature-rich ICPS. IEEE Standardization projects such as 
P2660.1 aim at identifying industrial agent practices that can suit the requirements 
of future ICPS. A key challenge with this project is the identification of industrial 
agent practices based on some user-defined criteria. This case study is based on a 
tool (IASelect7) developed for IEEE standardization project P2660.1 (P2660.1 
2020) that assists in selecting best fit industrial agent practices for ICPS (Sharma 
et al. 2019).

5.4.1 � P2660.1 data‑set

The P2660.1 data-set consists of two practices OnDevice and Hybrid. Each 
practice is of two types Tightly-coupled and loosely-coupled. Practices have an 
associated set of qualities, which make these practices suitable to use in specific 
contexts. Hence, selecting the best-fit practices requires identifying the associ-
ated qualities. P2660.1 working group identifies four kinds of qualities Domain, 
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Fig. 10   ETL stages shown as Data flow diagram to upload ������ diagram data-set into Neo4j

7  The source code is available for download at https://​github.​com/​chand​anNap​ster/​
INDIN_​Neo4j_​Web.

https://github.com/chandanNapster/INDIN_Neo4j_Web
https://github.com/chandanNapster/INDIN_Neo4j_Web
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Function, Maintenance and Performance efficiency. Each quality has an associ-
ated type; for instance, Domain has three associated types, including Factory 
Automation, Building Automation and Energy. Similarly, quality Function has 
three associated types Monitoring, Control and Simulation. The P2660.1 data-
set exists in the form of an adjacency matrix where an ICPS expert assigns a 
score to a combination of practice and associated quality.

The graph schema generated by using FLASc for P2660.1 data-set is pre-
sented in Fig.  11 which consist of two practice nodes and four quality nodes. 
Each practice node is connected to a quality node by an edge labeled as has_
score. This signifies that every practice to be stored in the graph database 
must connect with a quality, which represents the intensional information asso-
ciated with the data-set. The extensional information is captured by node and 
edge properties. All nodes and edges have an associated property id which is 
a mandatory property, is of Integer data type and value associated with this 
property must be unique. Property such as type is mandatory but may not be 
unique. All edges have a unique and mandatory property id. The score property 
is mandatory but is not unique, and this is because the same score value can be 
assigned to different practice-quality pair by an ICPS expert. All edges contain 
an optional property assignedOn with an associated data type date-time.

Fig. 11   Logical graph schema for P2660.1 data-set
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5.4.2 � Importing subsystem for P2660.1 data‑set

To transform and load the P2660.1 data-set into Neo4j, we use the ETL design pat-
tern with slight modifications. As shown in Fig. 12 data in XLS file format contain-
ing an adjacency matrix is passed to the Extract stage that consists of two processes 
Parse-AM and Data builder.

The Parse-AM process is used to reads the entire XLS file by using the Apache 
POI library (Apache 2020) and converts it into a repository. The other process 
required to transform and load the P2660.1 data-set into Neo4j are similar to the 
processes used in the ������ diagram case study presented in Sect. 5.3.2.

5.5 � Lessons learned from the case studies

The formal basis for FLASc and its integration with the ETL design pattern suggests 
that the data from heterogeneous sources can be transformed and loaded into sev-
eral graph database by using our approach. We consider three case studies related to 
cyber-physical systems, big data analytics and tourism as presented in Sects. 5.2, 5.3 
and 5.4 respectively. The only factor that differs in loading these three diverse data-
sets is the Extract phase’s parse process.

As shown in Figs. 13 and 14 the parse process uses different APIs for reading 
data from heterogeneous sources. All other stages for loading data into the Neo4j 
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Fig. 12   ETL stages shown as Data flow diagram to upload P2660.1 data-set into Neo4j
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graph database remain the same. Similarly, suppose data has to be transformed and 
loaded into a database other than Neo4j. In that case, only the Load stage needs to 
be altered so that APIs specific to the database platform can be utilized. The trans-
form stage in all the scenarios as mentioned above remains the same and consistent. 
This demonstrates the generalizability of our approach, since by using the FLASc 
integrated ETL design pattern can be used to load data-sets from heterogeneous 
sources into a graph database. Furthermore, our approach is not limited to a specific 
data-set format and a particular graph database.

The use of FLASc for loading data-sets from heterogeneous sources becomes 
more evident when using the layered approach. As shown in Table 4 only a limited 
number of integrity constraints can be enforced in a layered approach without using 
FLASc. As shown in Table 3 structured data-sets such as provided in the Airbnb case 
study exist in the form of CSV files and contain intensional information as primary 
and foreign keys. However, semi-structured data provided in ������ and P2660.1 
data-sets require predefined structural information for systematic transformation and 
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Fig. 14   ETL stages shown as Data flow diagram to upload P2660.1 data-set into Neo4j

Table 4   Coverage of integrity constraints

Integrity constraints Integrated 
FLASc

Layered 
FLASc

Layered 
without 
FLASc

Graph entity Node Property Uniqueness ✓ ✓ ✓

Node/Edge Label Uniqueness ✓ ✓ ×

Edge property uniqueness × ✓ ×

Mandatory Node property ✓ ✓ ✓

Mandatory Edge property ✓ ✓ ✓

Property data type ✓ ✓ ×

Semantic Edge pattern ✓ ✓ ×

Graph pattern ✓ ✓ ×

Path pattern ✓ ✓ ×

Others Type checking ✓ ✓ ×

Edge Cardinality × ✓ ×

Relationship Type × × ×



1 3

Automated Software Engineering (2022) 29:37	 Page 39 of 45  37

loading. The intensional information is facilitated by using FLASc hence ensuring 
data consistency and integrity while using the layered approach.

6 � Discussion, conclusion and future work

In this research, we present a formal algebra FLASc for generating robust graph 
schema for labeled property graph databases. We illustrate the integration of FLASc 
with the Extract-Transform-Load design pattern that assists in systematic transfor-
mation and loading of data-sets from heterogeneous sources into graph databases 
such as Neo4j. Graph schemas generated by FLASc assist in specifying integrity 
constraints in the database creation scripts, ensuring data consistency and integrity.

Our approach presents the integration of conceptual, logical and physical mod-
eling stages for graph databases. FLASc enables users to capture requirements of 
any given problem domain as basic conceptual graph schemas. The JOIN, DETACH 
and DELETE_NODE operators provided by FLASc can then be used to construct 
robust conceptual graph schemas from basic conceptual graph schemas. Proper-
ties associated with nodes and edges of graph schema are specified at the logical 
modeling stage. Finally, in the physical modeling stage, the enforcement of integrity 
constraints and design of database creation scripts are driven by FLASc generated 
graph schemas.

The integration of FLASc with the Extract-Transform-Load design pattern illus-
trates the practical application of our approach. This is demonstrated by using three 
diverse case studies related to cyber-physical systems, big data analytics and tourism 
that also illustrates the generalizability of our approach. The intensional and exten-
sional information captured in the graph schema assists in the transform stage of the 
data loading process. This information can be used to enforce several integrity con-
straints on the data-sets being loaded into a graph database.

As shown in Table  4, FLASc facilitates the enforcement of several integrity con-
straints. We can observe that FLASc generated graph schemas are useful in enforc-
ing semantic constraints because such constraints require knowledge of relation-
ships between entities in data-sets. Semantic constraints such as edge, graph and 
path pattern constraints cannot be enforced without knowledge about relationships 
in the data-set. As shown in Table 4 graph entity integrity constraints such as edge 
property uniqueness constraint cannot be enforced in the integrated approach due to 
the limitations in the Neo4j graph database. Furthermore, FLASc generated logi-
cal graph schema also enable a database designer to specify cardinality constraints 
on the edges of a graph schema. However, due to the limitations in Neo4j graph 
database cardinality constraints cannot be enforced in the integrated approach. Such 
challenges can be mitigated in the layered approach by writing additional logic in 
programming languages such as Java, Python for specifying edge uniqueness and 
cardinality constraints.

The use of FLASc for loading data from heterogeneous sources becomes more 
evident while using the layered approach. As shown in Table 4 only a limited number 
of integrity constraints can be enforced in a layered approach without using FLASc. 
The support for integrity constraints such as node property uniqueness, mandatory 
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node and edge property constraints are by default provided by Neo4j. Other con-
straints cannot be enforced without the intensional and extensional information cap-
tured in the graph schemas generated by FLASc. In the absence of robustly defined 
graph schema, the capability to enforce integrity constraints depends on the underly-
ing engine associated with a graph database .

6.1 � Limitations

As shown in Table  4 graph schemas generated by FLASc provide the ability to 
enforce several useful integrity constraints. However, other constraints such as 
relationship types is not covered in our approach. Relationship types represent the 
nature of relationships such as inheritance, association, composition and realisation, 
between nodes of a graph database. The enforcement of such constraints is not sup-
ported by FLASc in its current state. Furthermore, FLASc cannot be compared with 
other conceptual modeling tools such as entity-relationship diagrams (ERD) and 
unified modeling language (UML) diagrams as these tools support the specification 
of relationship types.

The main motive of FLASc is to assist in the design of robust conceptual graph 
schemas so that the soundness of logical and physical graph schemas can be ensured. 
FLASc generated conceptual graph schemas can preciously capture the intensional 
information. Relationship types are edge related properties (Angles 2018); hence 
can be classified as extensional information. These properties can be easily captured 
in the logical graph schema. For instance, by altering Definition 7, the logical graph 
schema can be enriched to support extensional information such as relationship 
types.

6.2 � Conclusion and future work

The scope of our study is limited to the Neo4j graph database. Therefore, the per-
formance evaluation of using our approach for transforming and loading data-sets 
into other graph databases is not discussed. We consider this as future work where 
FLASc can be utilised for evaluating the coverage of integrity constraints offered by 
other graph databases provided by vendors such as Oracle (2021), Apache Tinker-
pop (2021) and TigerGraph (2020). We intend to work on extending FLASc to sup-
port other integrity constraints such as relationship types and functional dependen-
cies. The support of such constraints can enable FLASc to represent visual models 
expressed in languages such as Entity relationship diagram (ERD), Unified Mod-
eling Language (UML) and System Modeling Language (SysML).

Moreover, using the FLASc extended ETL design pattern, visual models 
expressed as ERD, UML or SysML diagrams related to software development pro-
jects can be imported into graph databases. Storing software development visual 
models in graph databases provides the additional advantages of tractability and 
efficient database manageability, such as automatically identifying inconsistencies 
across all project diagrams.
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In its current state our formal algebra FLASc supports the creation of robustly 
defined graph schemas that captures the intensional and extensional information. A 
natural extension to this work is the proposal of a formal schema creation language. 
We intend to combine our novel query language proposed in Sharma et al. (2021) 
with FLASc to propose a graph schema creation language. In Sharma et al. (2021) 
we propose the novel formalims of conjunctive queries and union of conjunctive 
queries extended with Tarksi’s algebra (CQT/UCQT) for extracting data stored in a 
graph database. This language can be further combined with FLASc for creating a 
novel graph schema creation language. A main advantage of such an approach is the 
ability to use restricted form of first-order logic (conjunctive queries) while defining 
a graph schema which also makes our approach compatible with object role mod-
eling language proposed in Halpin (2005). This will further assist in the industry 
wide initiative of standardizing query language for graph databases.
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