
Vol.:(0123456789)

Automated Software Engineering (2022) 29:37
https://doi.org/10.1007/s10515-022-00336-y

1 3

FLASc: a formal algebra for labeled property graph
schema

Chandan Sharma1,2  · Roopak Sinha2

Received: 31 March 2021 / Accepted: 3 March 2022 / Published online: 2 April 2022
© The Author(s) 2022

Abstract
Contemporary labeled property graph databases are either schema-less or schema-
optional to support frequent changes in the structure of data found in domains
requiring high flexibility. However, the lack of structure impacts data transformation
and loading operations from heterogeneous sources into graph databases. We pre-
sent a formal algebra FLASc for specifying and generating graph schema for labeled
property graph databases. We formally define FLASc and demonstrate the use of
FLASc generated graph schemas to systematically transform and load data-sets
related to domains of cyber-physical systems, big data analytics and tourism. Find-
ings from three disparate case studies show that FLASc-generated schemas assist
in enforcing integrity constraints that reduce the chance of data corruption, hence
assuring data consistency and integrity.

Keywords  Graph schema · Labeled property graph databases · ETL · Data
transformation and loading · Neo4j · Cypher

1  Introduction

Labeled property graph database henceforth graph database are storage systems that
allow modeling of real-world entities as nodes and relationships between entities
as edges Angles et al. (2018). Nodes and edges in a graph database have associated
labels. Data is stored inside nodes and edges as properties that exist in the form of
key-value pairs Angles et al. (2017); Angles and Gutierrez (2008). Graph databases

 *	 Chandan Sharma
	 chandan.sharma@ddn.upes.ac.in; chandan202.alive@gmail.com

	 Roopak Sinha
	 roopak.sinha@aut.ac.nz

1	 Cybernetics Cluster, School of Computer Science, University of Petroleum and Energy Studies,
Dehra Dun, Uttrakhand, India

2	 Department of Computer Science and Software Engineering, Auckland University
of Technology, Auckland, New Zealand

http://orcid.org/0000-0002-7864-7088
http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-022-00336-y&domain=pdf

	 Automated Software Engineering (2022) 29:37

1 3

37  Page 2 of 45

are efficient in storing and managing highly interconnected data-sets related to
domains such as transportation networks, social media, bioinformatics, chemistry
and astronomy (Angles and Gutierrez 2008; Angles 2012; Angles et al. 2017; Bell
et al. 2009; Tetko et al. 2016). Graph databases suit big data applications as they
provide a better alternative for modeling and handling complex information (Rodri-
guez and Neubauer 2010, 2012). Graph databases are more efficient than relational
databases for extracting information from highly interconnected data-sets (Sharma
et al. 2019; Sharma and Sinha 2019; Sharma 2020; Sharma et al. 2021).

The interconnections between data represent the underlying meaning of a graph
data-set. Therefore, maintaining data consistency and integrity is vital in graph data-
bases (Angles and Gutierrez 2008; Kunii 1987). Obtaining a database that is sound
and consistent requires embracing good database modeling principles (Badia and
Lemire 2011). In contrast to relational databases, modeling principles for graph
databases are ad-hoc and not well-grounded (Park et al. 2014). Contemporary graph
databases lack mechanisms to ensure data consistency and integrity, especially
when the data being stored comes from multiple heterogeneous sources (Reina et al.
2020). A primary reason is that graph databases are either schema-less or schema-
optional (Reina et al. 2020). A schema represents the overall structure of a data-set
and assists in understanding data semantics (Pokornỳ 2016). Furthermore, schemas
aid in defining integrity constraints that are sets of rules for ensuring consistency
and integrity in the database that conforms to the schema (Codd 2002; Ghrab et al.
2014). The lack of schema and integrity constraints poses significant challenges in
ensuring data consistency and integrity (Khan et al. 2012), in performing advanced
analytics (Sharma 2021) and achieving data interoperability (Sciore et al. 1994), and
for data integration, query optimization and processing (Frozza et al. 2020).

Traditional database modeling consists of three stages conceptual, logical and
physical modeling (Badia and Lemire 2011). In graph databases, the conceptual
modeling stage represents gathering requirements of a given problem domain
that are then used for defining entities and relationships between them. The logi-
cal modeling stage represents the enforcement of integrity constraints, including
mandatory, optional and unique properties associated with entities and relation-
ships defined in the conceptual modeling stage. The physical modeling stage rep-
resents the realization of graph schema formulated at the conceptual and logical
modeling stage into database creation scripts.

An open problem in graph database design is that practitioners do not have
proper guidelines for designing conceptual models (Pokornỳ 2016; Badia and
Lemire 2011) that can facilitate systematic transformation and loading of data
from heterogeneous sources into graph databases. Conceptual modeling stage
is not used in the majority of graph database solutions (Fitzgerald et al. 1999;
Brodie and Liu 2010). Graph databases lack abstraction tools Angles and Gutier-
rez (2008) and most current research is primarily focused on logical and physical
modeling (Reina et al. 2020; Pokornỳ et al. 2017; Pokorny 2017). These observa-
tions lead us to the following research questions:

1 3

Automated Software Engineering (2022) 29:37	 Page 3 of 45  37

RQ1	 What are the key strengths and limitations of existing approaches used for
modeling graph databases?

RQ2	 What mechanisms can be designed to formulate conceptual and logical graph
schemas for labeled property graph databases?

RQ3	 In order to ensure data consistency, how can the graph schema generated
by RQ2 be used to systematically import data from heterogeneous sources into a
labeled property graph database?

RQ3.1	 How can the Extract-Transfrom-Load design pattern be extended
in order to support loading data-sets for heterogeneous sources into graph
database?

We answered these research questions using a mixed-methods research methodol-
ogy (Johnson et al. 2007). Firstly, for addressing RQ1 a literature review was carried
out to identify existing evidence and gaps in the literature related to the research
question. We addressed RQ2 by proposing an algebra FLASc which is based on
conceptual graphs introduced by (Sowa 2008, 1992, 1999). The three operators of
JOIN, DETACH and DELETE_NODE provided by FLASc serve as mechanisms for
formulating conceptual graph schemas which are further extended to logical graph
schemas. The three FLASc operators presented in this research paper can be used
for designing schema generation and manipulation algorithms. Hence a major util-
ity of FLASc is that it serves as a formal basis for designing future data defini-
tion languages for graph databases. For addressing RQ3 and RQ3.1, we illustrate the
integration of FLASc with the well known Extract-Transform-Load (ETL) design
pattern. The graph schemas generated by FLASc can be used to enforce integrity
constraints and assist in the systematic generation of database creation scripts hence
ensuring data consistency. To demonstrate the utility of our approach we consider
three distinct case studies related to industrial cyber-physical systems (Sharma
et al. 2019), big data analytics (Khalajzadeh et al. 2019, 2020) and tourism (Airbnb
2018; Sharma and Sinha 2019). We generate graph schemas for the heterogeneous
data-sets provided in the three case studies and produce database creation scripts in
������ using the FLASc integrated ETL design pattern.

The critical contributions of this work include:

1.	 We formulate FLASc a formal algebra for constructing a labeled property graph
schema that can capture data semantics of any given problem domain. We define
operators of FLASc that assist in constructing a graph schema.

2.	 We demonstrate the use of graph schemas formulated via FLASc to enforce integ-
rity constraints that ensure data consistency in contemporary labeled property
graph databases such as Neo4j.

3.	 We illustrate how FLASc can be integrated with the Extract-Transform-Load
design pattern for loading data-sets from heterogeneous sources into Neo4j.

Two case studies related to tourism and cyber physical systems, presented in
Sects. 5.2 and 5.4 , have been adopted from our previously published research
(Sharma et al. 2019; Sharma and Sinha 2019 and Sharma et al. 2021) respectively.

	 Automated Software Engineering (2022) 29:37

1 3

37  Page 4 of 45

The formalism for labeled property graph schemas presented in Sharma and Sinha
(2019) and Sharma et al. (2021) is foundational for designing our algebra ����� .
The work presented in this research paper empowers users of ����� to design robust
graph schemas for labeled property graph databases.

The rest of this article is organized as follows. Section 2 presents background
information and related work. The gaps identified in Sect. 2 are used to build FLASc
which is presented in Sect. 3. In Sect. 4 we illustrate how the conceptual and logi-
cal graph schema formulated using FLASc can be used to enforce several integrity
constraints in Neo4j graph database. In Sect. 5 we present the integration of FLASc
with ETL design pattern and experimentally demonstrate its use for data transforma-
tion and loading of heterogeneous data-sets into Neo4j graph database. Finally, in
Sect. 6 we summarize our major findings, key contributions and future directions of
this work.

2 � Background and related work

This section enables us to address RQ1. We present a brief survey of the existing
approaches that have been proposed for modeling graph databases.

2.1 � Graph database design and modeling

Graph databases use graphs consisting of nodes and edges as elementary data struc-
tures for modeling any problem domain (Angles 2012; Angles et al. 2017; Angles
and Gutierrez 2008). All graph databases use slight variations of the basic graph
data structure. For example, graph databases proposed in academia such as GOOD
(Gyssens et al. 1994), Gram (Amann and Scholl 1993), GraphDB (Güting 1994),
GDM (Hidders 2003; Paredaens et al. 1995) and (Graves et al. 1995) use directed
labeled graphs. Graph database such as hyper log (Levene and Poulovassilis 1990;
Levene and Loizou 1995) use hyper node and hyper edge based graphs. Resource
Description Framework (RDF) proposed by W3C (W3C 2021) use directed labeled
graphs while Neo4j (2021), Oracle (2021) use directed, labeled and attributed graphs
which are also known as property graphs (Angles 2018). There are three main stages
of modeling a graph database: conceptual, logical and physical.

2.1.1 � Conceptual modeling

Conceptual modeling represents the initial stage in which knowledge is collected
in the form of requirements and specifications related to a problem domain. Using
graphs for representing knowledge was first proposed by Sowa (2008, 1992, 1976,
1999). Subsequent works (Kunii 1987; Chein and Mugnier 2008; Mugnier and
Chein 1992) also propose the use of graphs to represent knowledge at the concep-
tual modeling stage. Graphs provide a natural and intuitive interface for under-
standing the semantics of data (Sowa 2008; Badia and Lemire 2011). Knowing the
semantics of data is vital for understanding the overall structure of the database

1 3

Automated Software Engineering (2022) 29:37	 Page 5 of 45  37

(Pokornỳ 2016) that aids in creating, modifying and retrieving data. Schemas
created at the conceptual modeling stage provide a level of abstraction that aids
in the natural modeling of data (Angles 2012). Conceptual graph schemas are
used to define entities that belong to the database and relationships between those
entities (Badia and Lemire 2011). Moreover, determining nodes, edges, and the
direction of edges are vital for conceptual modeling (Griffith 1982).

2.1.2 � Logical modeling

Logical modeling is used to define integrity constraints on entities and relations
of conceptual graph schema. Integrity constraints serve as mechanisms to ensure
data consistency and integrity. They are broadly classified into two categories:
graph entity integrity and semantic constraints (Ghrab et al. 2016). Graph entity
integrity constraints are related to basic database design principles. These include
constraints such as node/edge property uniqueness (Angles and Gutierrez 2008;
Pokornỳ et al. 2017; Angles 2012; Ghrab et al. 2016; Barik et al. 2016), label
uniqueness (Angles and Gutierrez 2008; Pokornỳ 2016; Angles 2012; Ghrab
et al. 2016; Pokornỳ et al. 2017), property data type (Pokornỳ 2016; Barik et al.
2016) and mandatory property constraints (Ghrab et al. 2014; Pokornỳ 2016).
Enforcing semantic constraints require knowledge of the problem domain cap-
tured in the conceptual graph schema. These constraints are used to guarantee the
conformity of graph database with domain specific rules and require intervention
from end users. These include edge pattern (Barik et al. 2016; Ghrab et al. 2016,
2014; Reina et al. 2020; Pokornỳ et al. 2017), graph pattern (Barik et al. 2016;
Ghrab et al. 2016; Angles 2012; Ghrab et al. 2014) and path pattern constraints
(Barik et al. 2016). Other constraints discussed in literature include type checking
(Angles and Gutierrez 2008; Angles 2012; Ghrab et al. 2014), node/edge prop-
erty value constraints (Reina et al. 2020), cardinality constraints (Pokornỳ 2016;
Barik et al. 2016; Angles 2012; Ghrab et al. 2016; Reina et al. 2020; Šestak et al.
2021, 2016) and functional dependencies (Angles and Gutierrez 2008; Pokornỳ
2016; Angles 2012; Levene and Poulovassilis 1991; Yu and Heflin 2011; Megid
et al. 2018).

2.1.3 � Physical modeling

Physical modeling represents the realization of the graph schema designed dur-
ing conceptual and logical modeling into actual database (Finkelstein et al. 1988).
There are two approaches discussed in literature for physical modeling: integrated
and layered (Šestak et al. 2016). In the integrated approach, mechanisms to sup-
port the enforcement of integrity constraints are directly deployed on the database.
These mechanisms are developed by altering and/or modifying the source code of a
database system. In the layered approach, APIs specific to the database platform are
used to create an additional layer that communicates with the database. This consist

	 Automated Software Engineering (2022) 29:37

1 3

37  Page 6 of 45

of wrappers written in programming languages such as Java, Python that contains
database creation scripts and logic to enforce the integrity constraints.

2.1.4 � Integration of logical and physical modeling

There exist many studies to support the integration of logical and physical mod-
eling aspects of graph databases. For instance, Ghrab et al. (2016) follow a layered
approach and propose the construction of a wrapper that can be used to enforce
integrity constraints, including graph and path pattern constraints over Neo4j graph
database. An integrated approach to extend the source code of OrientDB to support
the enforcement of integrity constraints, including uniqueness, key, cardinality, and
edge degree constraints, has been studied in Reina et al. (2020). Similarly, the exten-
sion of Cypher query language to support additional integrity constraints such as
uniqueness, node property, edges pattern, and mandatory properties is presented in
Pokornỳ et al. (2017), de Sousa and Cura (2018). A layered approach to demonstrate
the enforcement of uniqueness integrity constraint on two different graph databases
Neo4j and Apache Tinkerpop, is proposed in Šestak et al. (2016). The use of inte-
grated and layered approach together to perform graph database manipulation opera-
tions on Neo4j graph database is proposed in Barik et al. (2016). Authors in Daniel
et al. (2016) propose the model-driven engineering based approach for converting
and loading of UML diagrams into tinkerpop blueprints.1

2.2 � Gaps in current literature

Several studies have been proposed in the last decade that address the problem of
modeling graph databases. These studies mainly focus on the integration of logical
and physical modeling aspects. A primary reason of this due to the emergence of
several graph data models such as resource description framework (RDF) (Lassila
et al. 1998; Pérez et al. 2006), labeled property graphs (LPG) (Angles 2018; Sharma
et al. 2019; Sharma and Sinha 2019; Sharma 2020, 2021) and creation of query lan-
guages such as SPARQL (2013), Cypher (Neo4j) 2021, Gremlin (Apache) (2021),
PGQL (Oracle) (2021) and GSQL (TigerGraph) (2020) to support data modeling
and retrieval. More recently, projects such as ISO/IEC 39,075,2 openCypher (2018)
and Linked Data Benchmark Council (LDBC) Alex and Norbert (2013) have been
proposed for developing a standard query language for the labeled property graph
data model. Most of these studies focus on extending the existing query languages
to support logical and physical modeling while conceptual modeling is done in an
ad-hoc manner. Authors in Ghrab et al. (2016), Roy-Hubara et al. (2017), Hartig and
Hidders (2019) present a formal approach for logical modeling of graph databases.
However, physical modeling in these research papers are not discussed in detail

1  https://​github.​com/​tinke​rpop/​bluep​rints.
2  https://​www.​iso.​org/​stand​ard/​76120.​html.

https://github.com/tinkerpop/blueprints
https://www.iso.org/standard/76120.html

1 3

Automated Software Engineering (2022) 29:37	 Page 7 of 45  37

(Šestak et al. 2021) and application of the proposed formalisms on real-world data-
sets are considered as future work.

To obtain a robust graph database that captures semantics of the problem domain
conceptual modeling stage is vital. A sound conceptual graph schema ensures that
logical and physical modeling stages are also robust (Mior et al. 2017). The graph
data modeling approaches proposed so far do not provide the means to create robust
conceptual graph schemas. Authors in Park et al. (2014), Roy-Hubara et al. (2017),
Daniel et al. (2016) propose the use of existing visual modeling tools such as entity
relationships diagrams (ERD) and unified modeling language (UML) for creat-
ing conceptual and logical graph schemas. The schemas generated by visual mod-
els such as UML diagrams are based on node-labeled graphs (Sharma and Sinha
2019) where only the nodes can have properties associated with them. According to
Chen (1976), ERDs are based on node and edge labeled graphs where edges are also
attributed. However, in order to support the creation of relational databases, attrib-
uted edges in ERDs have to be represented as strong and weak entities (or attrib-
uted nodes)3. Modeling tools such as ERD and UML are generic and while they can
be used to model LPG schema, they do not capture subtleties like edge labels and
attributes without carefully considered extensions. Our algebra ����� directly sup-
ports LPG schemas that have labels and properties associated with nodes and edges
(Sharma and Sinha 2019; Sharma et al. 2021). Both UML and ERD are semi-for-
mal modeling tools whereas FLASc provides a formal basis for LPG schemas. This
opens up the opportunity to define a FLASc-driven schema-generation language
based on formal languages such as conjuntive queries and first order logic Sharma
(2021). However, such extensions of FLASc are not in the scope of this research
paper.

In this research, we present FLASc a formal tool that assists in the formulation of
robust conceptual and logical graph schemas which is an advancement over existing
studies in graph database modeling. The majority of integrity constraints presented
in the existing studies can be specified in graph schemas generated by FLASc. Fur-
thermore, syntax and semantics of FLASc presented in this study assist in its imple-
mentation at the physical modeling stage. FLASc assists in the integration of con-
ceptual, logical and physical modeling stages which currently is lacking in graph
database research.

3 � FLASc: formal algebra for conceptual and logical graph schema

This section addresses RQ2, we present the formal algebra FLASc that assists in
formulating conceptual and logical graph schemas for labeled property graph data-
bases. We use the concepts from Sowa’s conceptual graphs identified in Sect. 2.1.1
to propose the operators of FLASc. We use a formal approach for constructing
FLASc which assures the robustness of its design (Marciniak 1994; Clarke and
Wing 1996). FLASc has sound mathematical basis that enables a user to precisely

3  Interested readers can refer to Chen’s research paper Chen (1976) for further clarification.

	 Automated Software Engineering (2022) 29:37

1 3

37  Page 8 of 45

define: (i) connections between entities of a graph database (intensional informa-
tion) and (ii) properties associated with entities and relations in a graph database
(extensional information) (Sowa 1976, 1992, 1999, 2008).

We consider a data-set from Airbnb Sharma and Sinha (2019); Sharma et al.
(2021) as our first case study related to the tourism domain that assists in illustrating
various definitions and concepts of FLASc. This data-set consists of three CSV files
that contain information related to property listings, reviews and calendar data. This
data-set is highly interconnected, making it a prime candidate for graph database
design and implementation (Sharma et al. 2021; Sharma 2021).

3.1 � Basic terminology

Definition 1  (Directed Multigraph) A directed multigraph G = (N, E,S, T) is
a tuple where N is a set of nodes and E is a set of edges. Two associated func-
tions, S ∶ E → N and T ∶ E → N  , map each edge to its source and target nodes,
respectively.

Each edge in a directed multigraph has unique source and target nodes. Edges with
same source and target nodes are allowed (hence the term multigraph. We use the
short hand ni → nj to represent an edge ek where S(ek) = ni and T(ek) = nj.

Graph can contain labels over nodes and edges. Given a set of node labels LN
and a set of edge labels LE such that LN ∩ LE = � . A labeling is simply a map
f ∶ S1 → S2 such that for every element a ∈ S1 , there is a unique element f (a) ∈ S2 .
We can define an edge- labeled graph as follows.

Definition 2  (Edge-Labeled Graph) A graph G = (N, E, �,S, T) is called an edge-
labeled graph if there exists a labeling � ∶ E → LE which maps all edges to labels
in a set of edge labels LE . We use the short-hand ek = ni

l
���→ nj for any ek ∈ E and

�(ek) = l.

Similarly, we can define a node labeled graph.

Definition 3  (Node-Labeled Graph) A graph G = (N, E, �,S, T) is called a node-
labeled graph if there exists a labeling � ∶ N → LN which maps all nodes to labels
in a set of node labels LN for any ni ∈ N and l ∈ LN if l is mapped to ni then
�(ni) = l.

3.2 � Conceptual graph schema

A conceptual graph schema is used to capture intensional information. Conceptual
modeling is easier for the user to understand and contribute. Therefore, a concep-
tual graph schema must be closer to the semantics of natural languages like English.
It must reflect real-world entities, and relations that are not directly represented by
the conceptual graph schema must be accessible to infer (Sowa 1992; Mugnier and
Chein 1992). As discussed in Sharma and Sinha (2019) to define relationships, we

1 3

Automated Software Engineering (2022) 29:37	 Page 9 of 45  37

use the (subject,predicate,object) format from semantics web (Bern-
ers-Lee et al. 2001) where the subject can be a noun, the predicate can be a verb, and
an object can also be a noun.

Definition 4  (Conceptual graph schema)
Given a set of node labels LN and a set of edge labels LE , conceptual graph

schema Gs is a tuple (Ns, Es, �s, �s,LN ,LE ,Ss, Ts) where,

•	 Ns is a finite set of nodes and Es is a finite set of edges of the graph schema.
•	 (Ns, Es,Ss, Ts) is a directed multigraph.
•	 �s ∶ Ns → LN is a node labeling function and �s ∶ Es → LE is an edge labeling

function.

We use the shorthand notation Gs = (Ns, Es, �s, �s,Ss, Ts) to represent the concep-
tual graph schema.

Example 1  The conceptual graph schema generated for Airbnb case study as dis-
cussed in Sharma and Sinha (2019) is presented in Fig. 1. The graph schema con-
sists of six labels including ������, ����, ���� and ������� and four edge labels
�����, ������_���, ��� and ���� . In the Airbnb data-set (2018) a person using
Airbnb service can write a review for a listing that was recently visited by him or
her. A conceptual graph schema in such a scenario consists of entities such as user
and review. Relationships can be of the form (users,wrote,review) where
users is the subject, wrote is the verb and review is the object.

Fig. 1   Conceptual graph schema generated for Airbnb case study

	 Automated Software Engineering (2022) 29:37

1 3

37  Page 10 of 45

3.2.1 � Basic conceptual graph schema

Basic conceptual graph schemas are restricted form of conceptual graph schemas.
They serve as building blocks for formulating conceptual graph schemas. Formally
basic conceptual graph schemas are defined as follows.

Definition 5  (Basic conceptual graph schema) Given sets of node and edge labels
LN and LE , a basic conceptual graph schema Gb is a tuple (Nb, Eb, �b, �b,Sb, Tb)
where

•	 Nb = {ni, nj} is a set of two nodes.
•	 Eb = {ek} ∪ � can either be a singleton set or an empty set.
•	 (Nb, Eb,Sb, Tb) is a restricted from of directed multigraph supporting only one

directed edge between two nodes.
•	 �b ∶ Nb → LN is a node labeling function and �b ∶ Eb → LE is an edge labeling

function.

Example 2  The Airbnb data-set consists of several basic conceptual
graph schemas including Gb1 =

(
{n1, n2}, {n1

�����
���������������������→ n2}, �1, �1

)
 such that

�b1(n1) = ���� , �1(n2) = ������ and �1(n1
�����
���������������������→ n2) = ����� . Simi-

larly Gb2 =
(
{n2, n3}, {n2

������_���
���→ n3}, �2, �2

)
 such that �2(n2) = ������ ,

�2(n3) = ������� and �2(n2
review_for
����������������������������������→ n3) . The basic conceptual graph schema is

used to represent the intensional information that a review was written by a user and
review was written for a listing.

Basic conceptual graph schemas serve as a starting point for a database designer
and assist in conceptual modeling. A basic conceptual graph schema can contain
nodes that are not connected to one another by an edge. A designer can create sepa-
rate basic conceptual graph schemas for each requirement and/or use case. We now
present our algebra FLASc for creating robust conceptual graph schemas from basic
conceptual graph schemas.

3.2.2 � Syntax and semantics of FLASc

An algebra consists of sets, constants that belong to the sets and some functions or
operators that are used to manipulate data stored inside the sets (Tucker and Ste-
phenson 2003). Our algebra FLASc is defined as follows:

Definition 6  (FLASc) An algebra defined over a finite set of basic conceptual
graph schemas GB , is a tuple ⟨GB,G,F⟩ where:

•	 G is the set of all conceptual graph schemas over GB , with GB ⊂ G.
•	 F is a set containing three operators:

1 3

Automated Software Engineering (2022) 29:37	 Page 11 of 45  37

1.	 JOIN: G × G → G is a binary operator such that if G1,G2 ∈ G then JOIN ( G1,G2 )
is a conceptual graph schema formed by the union of two conceptual graph sche-
mas. Let G1 = (N1, E1, �1, �1,S1, T1) where LN1

 is a set of node labels and LE1 is a
set of edge labels associated with G1 . Let G2 = (N2, E2, �2, �2,S2, T2) where LN2

is a set of node labels and LE2 is a set of edge labels associated with G2 . Then
����(G1,G2) = G3 =

(
N3, E3, �3, �3,S3, T3

)
 such that

–	 N3 = N1 ∪N2 and E3 = E1 ∪ E2.
–	 �3 = �1 ∪ �2 where �3 ∶ (N1 ∪N2) → (LN1

∪ LN2
) such that

If n
i
∈ N1 then �3(ni) = �1(ni) = ln1 and ln1 ∈ LN1

.
If ni ∈ N2 then �3(ni) = �2(ni) = ln1 and ln1 ∈ LN2

.
If ni ∈ (N1 ∩N2) then �3(ni) = �1(ni) = �2(ni) = ln1 and ln1 ∈ (LN1

∩ LN2
).

–	 �3 = �1 ∪ �2 where �3 ∶ (E1 ∪ E2) → (LE1 ∪ LE2) such that that

If ei ∈ E1 then �3(ei) = �1(ei) = le1 and le1 ∈ LE1.
If ei ∈ E2 then �3(ei) = �2(ei) = le1 and le1 ∈ LE2.
If ei ∈ (E1 ∩ E2) then �3(ei) = �1(ei) = �2(ei) = le1 and le1 ∈ (LE1 ∩ LE2).

–	 S3 = S1 ∪ S2 where S3 ∶ (E1 ∪ E2) → (N1 ∪N2) such that

If ei ∈ E1 then S3(ei) = S1(ei) = ni and ni ∈ N1.
If ei ∈ E2 then S3(ei) = S2(ei) = ni and ni ∈ N2.
If ei ∈ (E1 ∩ E2) then S3(ei) = S1(ei) = S2(ei) = ni and ni ∈ (N1 ∩N2).

–	 T3 = T1 ∪ T2 where T3 ∶ (E1 ∪ E2) → (N1 ∪N2) such that

If ei ∈ E1 then T3(ei) = T1(ei) = nj and nj ∈ N1.
If ei ∈ E2 then T3(ei) = T2(ei) = nj and nj ∈ N2.
If ei ∈ (E1 ∩ E2) then T3(ei) = T1(ei) = T2(ei) = nj and nj ∈ (N1 ∩N2).

2.	 DETACH: G × G → G is a binary operator such that if G1,G2 ∈ G then DETACH
( G1,G2 ) is a conceptual graph schema formed by applying ring sum over the edge
sets of G1 and G2 . Let G1 = (N1, E1, �1, �1,S1, T1) where LN1

 is a set of node labels
and LE1 is a set of edge labels associated with G1 . Let G2 = (N2, E2, �2, �2,S2, T2)
where LN2

 is a set of node labels and LE2 is a set of edge labels associated with
G2 . The resultant conceptual graph schema consists of all the nodes present in
graphs G1 and G2 that is (N1 ∪N2) . While the ring sum operator is only applied
over the edge sets of two graphs that is (E1 ⊕ E2) = (E1 ∪ E2) − (E1 ∩ E2) .
������(G1,G2) = G3 =

(
N3, E3, �3, �3,S3, T3

)
 such that

–	 N3 = N1 ∪N2 and E3 = E1 ⊕ E2 if E1 ∩ E2 = � then E3 = E1 ∪ E2
–	 �3 = �1 ∪ �2 where �3 ∶ (N1 ∪N2) → (LN1

∪ LN2
) such that

If ni ∈ N1 then �3(ni) = �1(ni) = ln1 and ln1 ∈ LN1
.

If ni ∈ N2 then �3(ni) = �2(ni) = ln1 and ln1 ∈ LN2
.

If ni ∈ (N1 ∩N2) then �3(ni) = �1(ni) = �2(ni) = ln1 and ln1 ∈ (LN1
∩ LN2

).

–	 �3 is defined as 𝜉3 ∶ (E1 ⊕ E2) → (LE1 ⊕ LE2) such that

If E1 ∩ E2 ≠ � and ei ∈ (E1 ∩ E2) then �3(ei) = �.

	 Automated Software Engineering (2022) 29:37

1 3

37  Page 12 of 45

Otherwise if ei ∈ E1 then �3(ei) = �1(ei) = le1 and le1 ∈ LE1 . If ei ∈ E2 then
�3(ei) = �2(ei) = le1 and le1 ∈ LE2.

–	 S3 is defined as S3 ∶ (E1 ⊕ E2) → (N1 ∪N2) such that

If (E1 ∩ E2) ≠ � and ei ∈ (E1 ∩ E2) then S3(ei) = �.
Otherwise if ei ∈ E1 then S3(ei) = S1(ei) = ni and ni ∈ N1 . If ei ∈ E2 then

S3(ei) = S2(ei) = ni and ni ∈ N2.

–	 T3 is defined as T3 ∶ (E1 ⊕ E2) → (N1 ∪N2) such that

If (E1 ∩ E2) ≠ � and ei ∈ (E1 ∩ E2) then T3(ei) = �.
Otherwise if ei ∈ E1 then T3(ei) = T1(ei) = ni and ni ∈ N1 . If ei ∈ E2 then

T3(ei) = T2(ei) = ni and ni ∈ N2.

3.	 DELETE_NODE: G × G → G is a binary operator such that if G1,Gd ∈ G then
DELETE_NODE(G1,Gd ) is a conceptual graph schema formed by applying ring
sum over the node sets of G1 and Gd . Let G1 = (N1, E1, �1, �1,S1, T1) where LN1

is a set of node labels and LE1 is a set of edge labels associated with G1 . Let
Gd = (Nd, Ed, �d,Sd, Td) is a node labeled graph where LNd

 is a set of node labels
associated with Gd . Furthermore, the graph Gd has no edges associated with it
that is Ed = � subsequently, Sd = � and Td = � . Then the resultant conceptual
graph schema after applying the DELETE_NODE operator consist of nodes that
are formed by applying the ring sum over the node sets of two graphs that is
(N1 ⊕Nd) = (N1 ∪Nd) − (N1 ∩Nd) . The set of edges in the conceptual graph
schema DELETE_NODE(G1,Gd ) is equal to the set of edges in G1 that is E1 .
DELETE_NODE(G1,Gd ) = G3 = (N3, E3, �3, �3,S3, T3) such that

–	 N3 = (N1 ⊕Nd) if (N1 ∩Nd) = � then N3 = (N1 ∪Nd) and E3 = E1.
–	 �3 is defined as 𝜂3 ∶ (N1 ⊕Nd) → (LN1

⊕ LNd
) such that

If (N1 ∩Nd) ≠ � and ni ∈ (N1 ∩Nd) then �3(ni) = �

Otherwise, if ni ∈ N1 then �3(ni) = �1(ni) = lni and lni ∈ LN1
 . If ni ∈ Nd then

�3(ni) = �d(ni) = lni and lni ∈ LNd
.

–	 �3 = �1 such that �3 ∶ E1 → LE1.
–	 S3 = S1 such that S3 ∶ E1 → N1.
–	 T3 = T1 such that T3 ∶ E1 → N1.

FLASc provides JOIN, DETACH and DELETE_NODE operators over basic
conceptual graph schemas to formulate composite conceptual graph schemas.
We can now discuss the semantics of these three operators and provide some
examples.
JOIN is used to combine together two or more conceptual graph sche-

mas. We follow the similar notion of join compatible mapping as discussed
in Angles et al. (2017); Castro and Soto (2017); Pérez et al. (2006). Two con-
ceptual graph schemas are join compatible if they share common nodes. That
is G1 = (N1, E1, �1, �1,S1, T1) and G2 = (N2, E2, �2, �2,S2, T2) are join compat-
ible if ∃ei ∈ E1 and ∃ej ∈ E2 such that either S1(ei) = T2(ej) or T1(ei) = S2(ej) or

1 3

Automated Software Engineering (2022) 29:37	 Page 13 of 45  37

S1(ei) = S2(ej) or T1(ei) = T2(ej) . Furthermore, if S1(ei) or T1(ei) = ni and S2(ej) or
T2(ej) = nj then �1(ni) = �2(nj).

Example 3  The basic conceptual graph schemas presented in Example 2 are join
compatible because both graphs share a common node n2 that have the node label
review. Figure 2 shows that applying the JOIN operator over basic conceptual
graph schemas Gb1 = (N1, E1, �1, �1,S1, T1) and Gb2 = (N2, E2, �2, �2,S2, T2) creates
a conceptual graph schema Gb3 = JOIN ( Gb1,Gb2 ). Graphs Gb1 and Gb2 are join com-
patible because the target node of edge e1 ∈ E1 that is T1(e1) and source node of edge
e2 ∈ E2 that is S2(e2) are same. Moreover the node labels associated with these two
nodes are also same that is �1(T1(e1)) = �2(S2(e2)) = ������.

Two join compatible conceptual graphs share common nodes. This assists in
connecting smaller graphs. When two conceptual graph schemas are not join
compatible, then application of the JOIN operator creates a union of two discon-
nected conceptual graph schemas.
DETACH is used to delete edges from a conceptual graph schema. This opera-

tor is useful if a database designer wishes to delete existing relationships in a
conceptual graph schema. The graph produced after applying a DETACH operator
over two conceptual graph schemas contain nodes from both the graphs. While
edges of the new conceptual graph schema are calculated by applying the ring
sum operator over the edges of conceptual graph schemas that provided as input
to the DETACH operator. Applying the DETACH operator over two conceptual
graph schemas Gb1 = (N1, E1, �1, �1,S1, T1) and Gb2 = (N2, E2, �2, �2,S2, T2) creates
a conceptual graph schema Gb3 = DETACH ( Gb1,Gb2 ). If one graph is a sub-graph
of another conceptual graph schema then applying DETACH operator over such

Fig. 2   The application of JOIN
operator to connect two concep-
tual graph schemas

Fig. 3   The application of
DETACH operator to delete an
edge from a conceptual graph
schemas

	 Automated Software Engineering (2022) 29:37

1 3

37  Page 14 of 45

graph represents set difference of the edge set. An edge can only be deleted using
DETACH if (E1 ∩ E2) ≠ � which means that both conceptual graph schema must
share some common edges. Furthermore, the labels associated with these edges
must be same that is, ∃e1 ∈ E1 and ∃e2 ∈ E2 such that �1(e1) = �2(e2) . The applica-
tion of DETACH removes existing edges from a conceptual graph schema. The
resulting conceptual graph schemas after the application of DETACH may contain
disconnected nodes.

Example 4  Edges can be deleted from a conceptual graph schema by using DETACH.
As shown in Figure 3 applying DETACH between conceptual graph schemas Gb1 and
Gb3 results in conceptual graph schema Gb4 that only contains an edge between node
n2 and n3 . That is Gb4 = DETACH ( Gb1,Gb3 ) such that �(n1) = ����, �(n2) = ������
and �(n3) = ������� . Furthermore, node n1 is not the source and target of any edge
in the conceptual graph schema.

DELETE_NODE is used to delete disconnected nodes in a conceptual graph
schema. This operator is useful if a database designer wishes to delete existing
nodes that are not connected to any other nodes in a conceptual graph schema.
That is nodes that are neither the source nor the target of any edge in a conceptual
graph schema. As mentioned in Definition 6 the set of nodes in G3 = DELETE_
NODE(G1,Gd ) is N3 = (N1 ⊕Nd) . A node ni ∈ N1 can only be deleted by using
the DELETE_NODE operator if ∀e ∈ E1 and E1 ∈ G1 , S1(e) ≠ ni, T1(e) ≠ ni moreo-
ver, (N1 ∩Nd) ≠ � . This means that both graph must share common nodes, fur-
thermore ∀ni ∈ N1 and ∀nd ∈ Nd such that �1(ni) = �d(nd) which means that both
nodes must have same node label. Otherwise, all nodes in Nd shall be added to
the conceptual graph schema resulting from DELETE_NODE(G1,Gd).

Example 5  Disconnected nodes can be deleted from a conceptual graph schema by
using the DELETE_NODE. As shown in Fig. 4 applying the DELETE_NODE opera-
tor between conceptual graph schemas Gb4 and Gd results in a conceptual graph
schema Gb7 that only consists of nodes n2, n3 and an edge connecting nodes n2 and
n3 . The resulting graph does not contain any disconnected node. That is Gb7 =
DELETE_NODE(Gb4,Gd ) such that �(n2) = ������ and �(n3) = ������� . The

Fig. 4   The application of DELETE_NODE operator to delete a node from a conceptual graph schemas

1 3

Automated Software Engineering (2022) 29:37	 Page 15 of 45  37

graph Gd only consists of a node n1 such that �(n1) = ���� and this node has been
removed from the conceptual graph schema Gb4.

Using JOIN and DETACH together become helpful if the label and/or direc-
tion of edges in a conceptual graph schema have to be altered or changed. These
operators, when used together, enables a designer to alter intensional information
stored in a conceptual graph schema.

Example 6  For instance if a designer wishes to alter the label and direction of
an edge between node n1 labeled as user and node n2 labeled as review in
the conceptual graph schema Gb3 presented in Example 3. As shown in Fig. 5
a designer can apply DETACH between graphs Gb1 and Gb3 which results in graph
Gb4 = ������(Gb3,Gb1) . The designer can now define a basic conceptual graph
schema Gb5 where �(n1) = ���� and �(n2) = ������ . Applying the JOIN operator
between graphs Gb4 and Gb5 results in conceptual graph schema Gb6 = ����(Gb4,Gb5)
as shown in Figure 5.

3.3 � Logical graph schema

A logical graph schema is used to capture extensional information of the entities and
relations stored in a graph database. A logical graph schema is formed by enforc-
ing integrity constraints on conceptual graph schema. Label uniqueness constraints
are automatically enforced in the logical graph schema since the node, and edge
labels used in conceptual graph schema are unique. For defining property-based
constraints, we first define properties that can exist in graph databases. Properties
in graph databases exist as key-value pairs where property values are atomic entities
and have an associated data type. Logical graph schema stores properties as key-type
format. Properties can be mandatory as well as optional for instance, properties such
as ids must be unique. This information must be stored in a logical graph schema.

Let �s be a set of infinite keys (e.g., id, name, age, etc.) and �s be a finite set of
data types (e.g., String, Integer, etc.) We define a set of properties �s ⊆ (�s × �s) .
The property set is of two types (i) mandatory property set ( �m ) and (ii) optional

Fig. 5   The application of JOIN
and DETACH operators to alter
an existing edge

	 Automated Software Engineering (2022) 29:37

1 3

37  Page 16 of 45

property set ( �o ) such that �s = �m ∪ �o . Mandatory property set can have some
properties that have unique values associated with them. Let � be a set of Boolean
values, we define a uniqueness function U ∶ �m → � that maps elements from man-
datory property set to TRUE or FALSE signifying that some values associated with a
mandatory property must be unique.

Edges in a graph schema also have semantic information such as cardinal-
ity associated with them which refers to total number of edges that can exist
between any two given nodes of a graph database. Cardinality of an edge repre-
sents a range where the minimum value of cardinality refers to minimum number
of edges that must exist between any two nodes of a graph databases. Similarly,
maximum value of cardinality refers to maximum number of edges that can exist
between any two nodes in a graph database.

Let ��� ∈ � represent a minimum cardinality set which belongs to a set of
whole numbers. Let ��� ∈ ℕ represents a maximum cardinality set which belongs
to a set of natural numbers. We define a set of cardinalities as � ⊆ (��� × ���)
with a condition that if min ∈ ��� and max ∈ ��� then min ≤ max. This means
that minimum cardinality can never be greater than maximum cardinality. The
minimum cardinality belongs to a set of whole numbers which means that mini-
mum cardinality can be zero. On the other hand maximum cardinality belongs to
a set of natural numbers therefore, the smallest value that can be associated with
maximum cardinality is 1. Furthermore, in such a scenario minimum cardinality
can be either 0 or 1.

A logical graph schema extends the conceptual graph schema discussed in
Definition 4 by labeling the nodes and edges with mandatory and optional proper-
ties. Moreover, in a logical graph schema edges are labeled with cardinality val-
ues. Formally, a logical graph schema is defined as follows:

Definition 7  (Logical graph schema) A logical graph schema Gl is a tuple
(Ns, Es, �m, �o, �s, �s, �s,Ss, Ts,Δm,Δo, �s) where,

•	 (Ns, Es, �s, �s,Ss, Ts ) is a conceptual graph schema as presented in Definition 4.
•	 �s is a set of cardinalities such that �s ⊆ (��� × ���) where ��� ∈ � and

��� ∈ ℕ.
•	 Δm ∶ (Ns ∪ Es) → P+(�m) is a mandatory property labeling function that maps

all nodes and edges to the non empty subset of the mandatory property set
where P+(�m) represents the powerset of mandatory property set excluding the
empty set.

•	 Δo ∶ (Ns ∪ Es) → P(�o) is an optional property labeling function that maps all
nodes and edges to the powerset, represented as P(�o) , of the optional prop-
erty set.

•	 �s ∶ Es → �s is a cardinality labeling function that maps all edges to a set of
cardinalities such that ∀e ∈ Es, the cardinality function �s(e) = (���, ���)
returns a minimum and maximum value pair such that ��� ≤ ��� , ��� ∈ ���
and ��� ∈ ��� . Given an edge e ∈ Es , let ni, nj ∈ Ns such that Ss(e) = ni and
Ts(e) = nj then the following conditions hold:

1 3

Automated Software Engineering (2022) 29:37	 Page 17 of 45  37

–	 The minimum number of edges belonging to the edge label �s(e) that can
exist between nodes of label �s(ni) and �(nj) is min.

–	 The maximum number of edges belonging to the edge label �s(e) that can
exist between nodes of label �s(ni) and �(nj) is max.

–	 The total number of edges belonging to edge label �s(e) that can exist
between nodes of label �s(ni) and �s(nj) in a graph database must not be less
than min and more than max.

Example 7  By using Definition 7 the logical graph schema generated for Airbnb
case study is presented in Fig. 6. The logical graph schema’s topology is the same as
the conceptual graph schema presented in Fig. 1.

Based in Definition 7 we can observe that a logical graph schema extends the
conceptual graph schema by defining the property labeling functions over the nodes
and edges of conceptual graph schema. Therefore, the intensional information cap-
tured in the conceptual graph schema is maintained in the logical graph schema.
Additionally, the logical graph schema consists of extensional information as
unique, mandatory, optional properties and edge cardinalities (Angles et al. 2021).
Furthermore, the data type associated with each property is also captured in the log-
ical graph schema.

Example 8  Figure 6 shows the properties associated with nodes and edges of the log-
ical graph schema. For instance, the node labeled as host consists of a mandatory
and an optional property. The mandatory property host_id is of data type Integer
and must be unique. The value associated with the Boolean flag being TRUE signi-
fies the uniqueness constraint. The optional property name is of data type String
and does not contain the uniqueness constraint. As discussed in Definition 7 edges
of the logical graph schema contain information about the cardinality. For instance,
the edge between node labeled as host and listing is labeled as owns and the

Fig. 6   Logical graph schema generated for Airbnb case study

	 Automated Software Engineering (2022) 29:37

1 3

37  Page 18 of 45

cardinality associated in (1,n). This means that a host can own multiple listings
and a listing can be associated with a single host. In the cardinality n represents a
place holder for a natural number that can be calculated while creating the database
creation script.

In our approach, the combination of conceptual and logical graph schema mod-
eling stages represent the four steps of database design as suggested by Chen (1976).
Information such as entity set, relationship set and organization of data into enti-
ties and relationships is covered in conceptual graph schema modeling stage (Angles
et al. 2021). In the logical graph schema modeling stage semantic information such
as cardinality of edges and properties associated with nodes and edges are defined
(Angles et al. 2021).

3.3.1 � ����� operators for designing logical graph schemas

The three operators, JOIN, DETACH and DELETE_NODE can also be used for
designing and manipulating the logical graph schema. As mentioned in Definition 7
a logical graph schema is an extension of conceptual graph schema. Therefore,
node and edge labeling functions as well as source and target function are valid in a
logical graph schema. The semantics associated with these functions are also same.
A logical graph schema consists of additional functions such as mandatory and
optional property labeling and edge cardinality functions. The use of ����� opera-
tors namely JOIN, DETACH and DELETE_NODE is constrained due the additional
labeling functions at the logical graph schema modeling stage. We now discuss the
application of ����� operators for logical graph schema modeling:
JOIN: The application of JOIN on two given logical graph schemas works in

the similar manner as for source, target, node and edge labeling functions as pre-
sented in Definition 6. The additional mappings are required for property and cardi-
nality labeling functions which are discussed as follows:

Definition 8  (JOIN on Logical Graph Schema) Given two logical graph
schemas Gl1 = (Ns1, Es1, �m1, �o1, �s1, �s1, �s1,Ss1, Ts1,Δm1,Δo1, �s1) and
Gl2 = (Ns2, Es2, �m2, �o2, �s2, �s2, �s2,Ss2, Ts2,Δm2,Δo2, �s2) then ����(Gl1,Gl2) = Gl3
=
(
Ns3, Es3, �m3, �o3, �s3, �s3, �s3,Ss3, Ts3,Δm3,Δo3, �s3

)
 where:

•	
(
Ns3, Es3, �s3, �s3,Ss3, Ts3

)
 is a conceptual graph schema as discussed in Defini-

tion 4. The node and edge labeling functions, source and target functions are
defined as in Definition 6.

•	 Δm3 = Δm1 ∪ Δm2 where Δm3 ∶ (Ns1 ∪Ns2 ∪ Es1 ∪ Es2) → P+(�m1 ∪ �m2) such
that

–	 If nei ∈ (Ns1 ∪ Es1) then Δm3(nei) = Δm1(nei).
–	 If nei ∈ (Ns2 ∪ Es2) then Δm3(nei) = Δm2(nei).
–	 If nei ∈

(
(Ns1 ∪ Es1) ∩ (Ns2 ∪ Es2)

)
 then Δm3(nei) = Δm1(nei) = Δm2(nei).

•	 Δo3 = Δo1 ∪ Δo2 where Δo3 ∶ (Ns1 ∪Ns2 ∪ Es1 ∪ Es2) → P(�o1 ∪ �o2) such that

1 3

Automated Software Engineering (2022) 29:37	 Page 19 of 45  37

–	 If nei ∈ (Ns1 ∪ Es1) then Δo3(nei) = Δo1(nei).
–	 If nei ∈ (Ns2 ∪ Es2) then Δo3(nei) = Δo2(nei).
–	 If nei ∈

(
(Ns1 ∪ Es1) ∩ (Ns2 ∪ Es2)

)
 then Δo3(nei) = Δo1(nei) = Δo2(nei).

•	 �s3 = �s1 ∪ �s2 where �s3 ∶ (Es1 ∪ Es2) → (�s1 ∪ �s2) such that

–	 If e ∈ Es1 then �s3(e) = �s1(e).
–	 If e ∈ Es2 then �s3(e) = �s2(e).
–	 If e ∈ Es1 ∩ Es2 then �s3(e) = �s2(e) = �s1(e).

The notion of two logical graph schemas being join compatible is same as dis-
cussed for conceptual graph schemas as discussed in Sect. 3.2.2. With respect to
the properties two logical graph schemas are join compatible if nodes have same
mandatory and optional properties that is, ∃n1 ∈ Ns1 and ∃n2 ∈ Ns2 such that
Δm1(n1) = Δm2(n2) and Δo1(n1) = Δo2(n2) . In such a scenario we say that nodes n1
and n2 of two logical graph schemas are join compatible.
DETACH: The DETACH operator can be utilized by a database designer to

delete an existing edge from a logical graph schema. Deleting an existing edge
from a logical graph schema requires checking that the two conceptual graphs
share some common edge with same labels as discussed in Sect. 3.2.2. Addition-
ally, deleting edges in logical graph schemas also requires that the edge proper-
ties and cardinalities must be same. In order to formalize the notion of DETACH
operator at the logical schema level we further divide the set of mandatory and
optional properties into node and edge properties. Let ��m and ��m be two sets
containing mandatory properties specific to nodes and edge respectively such that
�m = ��m ∪ ��m . Similarly, let ��o and ��o be two sets containing optional proper-
ties specific to nodes and edge respectively then �o = ��o ∪ ��o

Definition 9  (DETACH on logical graph schema) Given two logical graph schema
Gl1 = (Ns1, Es1, (��m1 ∪ ��m1), (��o1 ∪ ��o1), �s1, �s1, �s1,Ss1, Ts1,Δm1,Δo1, �s1) and
Gl2 = (Ns2, Es2, (��m2 ∪ ��m2), (��o2 ∪ ��o2), �s2, �s2, �s2,Ss2, Ts2,Δm2,Δo2, �s2) then
������(Gl1,Gl2) = Gl3 = (N

s3, Es3, (��m3 ∪ ��
m3, (��o3 ∪ ��

o3), �s3, �s3, �s3,Ss3, Ts3,Δm3,Δo3, �s3

)
where:

•	
(
Ns3, Es3, �s3, �s3,Ss3, Ts3

)
 is a conceptual graph schema as discussed in Defini-

tion 4. The node and edge labeling functions, source and target functions are
defined as in Definition 6.

•	 ��m3 ∪ ��m3 =
(
��m1 ∪ ��m2 ∪ (��m1 ⊕ ��m2)

)
.

•	 ��o3 ∪ ��o3 =
(
��o1 ∪ ��o2 ∪ (��o1 ⊕ ��o2)

)
.

•	 Δm3 is defined as Δm3 ∶ (Ns1 ∪Ns2 ∪ (Es1 ⊕ Es2)) → P+(��m3 ∪ ��m3) such that

–	 If (Es1 ∩ Es2) ≠ � and nei ∈ (Es1 ∩ Es2) then Δm3(nei) = �.
–	 Otherwise

If nei ∈ (Ns1 ∪ Es1) then Δm3(nei) = Δm1(nei).
If nei ∈ (Ns2 ∪ Es2) then Δm3(nei) = Δm2(nei).
If nei ∈

(
(Ns1 ∪ Es1) ∩ (Ns2 ∪ Es2)

)
 then Δm3(nei) = Δm2(nei) = Δm1(nei).

•	 Δo3 is defined as Δo3 ∶ (Ns1 ∪Ns2 ∪ (Es1 ⊕ Es2)) → P(��o3 ∪ ��o3) such that

	 Automated Software Engineering (2022) 29:37

1 3

37  Page 20 of 45

–	 If (Es1 ∩ Es2) ≠ � and nei ∈ (Es1 ∩ Es2) then Δo3(nei) = �.
–	 Otherwise

If nei ∈ (Ns1 ∪ Es1) then Δo3(nei) = Δo1(nei).
If nei ∈ (Ns2 ∪ Es2) then Δo3(nei) = Δo2(nei).
If nei ∈

(
(Ns1 ∪ Es1) ∩ (Ns2 ∪ Es2)

)
 then Δo3(nei) = Δo2(nei) = Δo1(nei).

•	 �s3 is defined as 𝜁s3 ∶ (Es1 ⊕ Es2) → (�s1 ⊕ �s2) such that

–	 If e ∈ (Es1 ∩ Es2) and (Es1 ∩ Es2) ≠ � then �s3(e) = �.
–	 Otherwise if e ∈ Es1 then �s3(e) = �s1(e) . If e ∈ Es2 then �s3(e) = �s2(e).

In order to delete existing edges by using the DETACH operator there must
exist some edges that are common between two logical graph schemas that is
(Es1 ∩ Es2) ≠ � . This means that labels for both edges must be the same. Additionally,
the properties and cardinalities associated with the common edges must be same as
well that is ∃e1 ∈ Es1 and ∃e2 ∈ Es2 such that Δm1(e1) = Δm2(e2),Δo1(e1) = Δo2(e2)
and �s1(e1) = �s2(e2).
DELETE_NODE: The DELETE_NODE operator can be utilized by a database

designer to delete disconnected nodes from a logical graph schema. As discussed
in Sect. 3.2.2 in order to delete an existing disconnected node the two logical graph
schemas must contain common nodes. As mentioned in Definition 6 the node labe-
ling must be same. Additionally the mandatory and optional properties must be the
same as well.

Definition 10  (DELETE_NODE on logical graph schema) Given two logical graph sche-
mas Gl1 = (Ns1, Es1, (��m1 ∪ ��m1), (��o1 ∪ ��o1), �s1, �s1, �s1,Ss1, Ts1,Δm1,Δo1, �s1)
and Gl2 = (Ns2, Es2, ��m2, ��o2, �s2,Ss2, Ts2,Δm2,Δo2) is a
node labeled property graph such that Es2 = � and subse-
quently Ss2 = � and Ts2 = � . Then ������_����(Gl1,Gl2) = Gl3 = (
Ns3, Es3, (��m3 ∪ ��m3), (��o3 ∪ ��o3), �s1, �s3, �s3,Ss3, Ts3,Δm3,Δo3, �s3

)
 where:

•	
(
Ns3, Es3, �s3, �s3,Ss3, Ts3

)
 is a conceptual graph schema as discussed in Defini-

tion 4. The node and edge labeling functions, source and target functions are
defined as in Definition 6.

•	 ��m3 ∪ ��m3 =
(
(��m1 ⊕ ��m2) ∪ ��m1).

•	 ��o3 ∪ ��o3 =
(
(��o1 ⊕ ��o2) ∪ ��o1).

•	 Δm3 is defined as Δm3 ∶
(
(Ns1 ⊕Ns2) ∪ Es1

)
→ P+(��m3 ∪ ��m3) such that

–	 If (Ns1 ∩Ns2) ≠ � and nei ∈ Ns1 ∩Ns2 then Δm3(nei) = �.
–	 Otherwise if nei ∈ (Ns1 ∪ Es1) then Δm3(nei) = Δm1(nei) . If nei ∈ Ns2 then

Δm3(nei) = Δm2(nei).

•	 Δo3 is defined as Δo3 ∶
(
(Ns1 ⊕Ns2) ∪ Es1

)
→ P(��o3 ∪ ��o3) such that

–	 If (Ns1 ∩Ns2) ≠ � and nei ∈ Ns1 ∩Ns2 then Δo3(nei) = �.
–	 Otherwise if nei ∈ (Ns1 ∪ Es1) then Δo3(nei) = Δo1(nei) . If nei ∈ Ns2 then

Δo3(nei) = Δo2(nei).

•	 �s3 = �s1 such that �s3 ∶ Es1 → �s1.

1 3

Automated Software Engineering (2022) 29:37	 Page 21 of 45  37

In order to delete existing nodes by using the DELETE_NODE operator there
must exist some nodes that are common between two logical graph schemas that is
(Ns1 ∩Ns2 ≠ �) . This means that labels for both nodes must be the same. Addition-
ally, the mandatory and optional properties associated with the common nodes must
be same as well that is ∃n1 ∈ Ns1 and ∃n2 ∈ Ns2 such that Δm1(n1) = Δm2(n2) and
Δo1(n1) = Δo2(n2).

3.3.2 � Axiomatic specifications of ����� operators

The axiomatic specifications of any algebra enable us to check its completeness
(Tucker and Stephenson 2003). In order to show the axiomatic specification we
use infix notation for the operators in ����� . As such we use the (⊔) notation for
the JOIN operator, (◊) notation for the DETACH operator and (∇) notation for the
DELETE_NODE operator.

The axiomatic specification of FLASc operators is presented in Table 1. For
defining the identity axiom, we define an identity graph IG = (�, �) which means that
the identity graph does not contain any nodes and edges. We can observe that JOIN,
DETACH and DELETE_NODE operators follow associativity, commutativity, idem-
potent and identity axioms.

The distributive axioms for the JOIN, DETACH and DELETE_NODE operators is
presented in Table 2. The axiomatic specification of FLASc operators enable us to

Table 1   Axiomatic specifications of operators in FLASc 

⊔ = JOIN operator
◊ = DETACH operator
∇ = DELETE_NODE operator

Axioms JOIN DETACH DELETE_NODE

Associativity ∀G1,G2,G3 ∈ G

[(G1 ⊔ G2) ⊔ G3 = G1 ⊔ (G2 ⊔ G3)]

∀G1,G2,G3 ∈ G

[(G1◊G2)◊G3 = G1◊(G2◊G3)]

∀G1,G2,G3 ∈ G

[(G1∇G2)∇G3 = G1∇(G2∇G3)]

Commutativity ∀G1,G2 ∈ G

[G1 ⊔ G2 = G2 ⊔ G1]

∀G1,G2 ∈ G

[G1◊G2 = G2◊G1]

∀G1,G2 ∈ G

[G1∇G2 = G2∇G1]

Identity ∀G1 ∈ G [G1 ⊔ IG = G1] ∀G1 ∈ G [G1◊IG = G1] ∀G1 ∈ G [G1∇IG = G1]

Idempotent ∀G1 ∈ G [G1 ⊔ G1 = G1] ∀G1 ∈ G [G1◊G1 = G1] ∀G1 ∈ G [G1∇G1 = G1]

Table 2   Distributive axiom of FLASc operators

⊔ = JOIN operator
◊ = DETACH operator
∇ = DELETE_NODE operator

FLASc operators Axiomatic Specification

JOIN and DETACH ∀G1,G2,G3 ∈ G [G1 ⊔ (G2◊G3) = (G1 ⊔ G2)◊(G1 ⊔ G3)]

JOIN and DELETE_NODE ∀G1,G2,G3 ∈ G [G1 ⊔ (G2∇G3) = (G1 ⊔ G2)∇(G1 ⊔ G3)]

DETACH and DELETE_NODE ∀G1,G2,G3 ∈ G [G1◊(G2∇G3) = (G1◊G2)∇(G1◊G3)]

	 Automated Software Engineering (2022) 29:37

1 3

37  Page 22 of 45

use FLASc for generating new graph schemas from existing logical and conceptual
graph schemas.

The integrity constraints that can be enforced by a logical graph schema pre-
sented in Definition 7 include graph entity integrity constraints such as property
uniqueness, label uniqueness, property data type and mandatory property con-
straints. The enforcement of these constraints and semantics constraints such as
edge pattern, graph pattern, and path pattern constraints can be done at the physi-
cal modeling stage by using database-specific query languages. Following the
graph schema to generate database creation scripts at the physical modeling stage
ensures data consistency.

3.3.3 � Schema instance consistency

The schema instance consistency is used to ensure that the labeled property
graph database constructed at the physical modeling stage adheres to the logical
graph schema generated by using ����� . A labeled property graph database uses
a graph structure for storing and managing data, allowing the modeling of real
world entities as nodes and edges (Angles et al. 2018; Sharma and Sinha 2019).
Nodes are used to store data and relationships or interactions between nodes are
stored as edges (Angles et al. 2017; Sharma et al. 2019). Nodes and edges in
a graph database can have properties associated with them. Let �d be a set of
infinite keys (e.g., id, name, age, etc.), �d be a set of infinite values (e.g., 345,
James, 33, etc.) and �d be a set of finite data types (e.g., String, Integer etc.) we
define a function Υ ∶ �d → �d that maps values in set �d to their respective data
types in the set �d . The set of properties associated with the nodes and edges of
a graph database are defined as �d ⊆ (�d × �d) such that each pd ∈ �d is a key-
value pair where each value has a data type. To accommodate the existence of
mandatory and optional properties the set of properties can be further written as
�d = �dm ∪ �do . Formally a labeled property graph database is defined as follows:

Definition 11  (Labeled Property Graph Database) A labeled property
graph database Gd is a tuple (Nd, Ed, �dm, �do, �d, �d,Sd, Td,Δdm,Δdo) where,

•	 Nd is a finite set of nodes and Ed is a finite set of edges of the graph database
•	 (Nd , Ed,Sd, Td ) a directed multigraph as discussed in Definition 1.
•	 �dm and �do are mandatory and optional property sets associated with the graph

database.
•	 �d ∶ Nd → LN is a node labeling function which maps all nodes to labels in

the set of node labels LN .
•	 �d ∶ Ed → LE is an edge labeling function which maps all edges to labels in the

set of edge labels LE.
•	 Δdm ∶ (Nd ∪ Ed) → P+(�dm) is a property labeling function which maps all

nodes and/or edges to all subsets (excluding the empty set) of the mandatory
property set �dm.

1 3

Automated Software Engineering (2022) 29:37	 Page 23 of 45  37

•	 Δdo ∶ (Nd ∪ Ed) → P(�do) is a property labeling function which maps all nodes
and/or edges to all subsets (including the empty set) of the optional property
set �do.

The notion of schema instance consistency implies that a labeled property
graph database adheres to the structural restrictions established by a labeled prop-
erty graph schema (2018). Such a notion can be formally defined as follows:

Definition 12  (Schema Instance Consistency) Given a labeled
property graph database Gd = (Nd, Ed, �dm, �do, �d, �d,Sd, Td,Δdm,Δdo)
as defined in Definition 11 and a labeled property graph schema
Gl = (Ns, Es, �sm, �so, �s, �s, �s,Ss, Ts,Δsm,Δso, �s) as defined in Definition 7. We say
that Gd is consistent with Gl when:

•	 For each node n ∈ Nd , there must exist a corresponding node in graph schema
where n� ∈ Ns such that �d(n) = �s(n

�).
•	 For each edge ei ∈ Gd there must exist a corresponding edge in graph schema

that is e�
i
∈ Gl such that �d(Sd(ei)) = �s(Ss(e

�
i
)) , �d(Td(ei)) = �s(Ts(e

�
i
)) and

�d(ei) = �s(e
�
i
).

•	 For each ni ∈ Nd (or ei ∈ Ed ), there exists n�
i
∈ Ns (or e�

i
∈ Es ) such that

–	 If Δdm(ni) = kdm × vd where kdm ∈ �d and vd ∈ �d.
–	 If Δsm(n

�
i
) = ksm × ts where ksm ∈ �s and ts ∈ �s.

–	 Then, ksm × ts = kdm × Υ(vd) that is, the key and data type of value stored in
node (or edge) of graph database is same as the key and data type of node (or
edge) in the graph schema.

•	 For each ni ∈ Nd (or ei ∈ Ed ), there exists n�
i
∈ Ns (or e�

i
∈ Es ) such that

–	 If Δdo(ni) = kdo × vd where kdo ∈ �d and vd ∈ �d.
–	 If Δso(n

�
i
) = kso × ts where kso ∈ �s and ts ∈ �s.

–	 Then, kso × ts = kdo × Υ(vd) that is, the key and data type of value stored in
node (or edge) of graph database is same as the key and data type of node (or
edge) in the graph schema.

•	 The total number of edges of a certain label generated in the labeled property
graph database must be between the minimum and maximum cardinality values
associated with edges of same label in the graph schema.

Cardinality can be enforced programatically at the physical modeling stage by
using the logical graph schema generated by ����� . Similarly, the adherence to node
and edge labeling, property (optional and mandatory) labeling can be enforced at the
physical modeling stage. The logical graph schema is independent of the underlying
implementations. Moreover, the graph schema can be used in both integrated and
layered physical modeling approaches. To support our claim in the following two
sections, we experimentally demonstrate the use of graph schema to transform and
load data-sets by using both approaches for physical modeling for graph databases.

	 Automated Software Engineering (2022) 29:37

1 3

37  Page 24 of 45

However, while demonstrating the integrated approach we do not make any changes
to the source code of graph database system and consider this as future work.

4 � Using FLASc to enforce integrity constraints

In this section, we demonstrate the use of graph schema generated by FLASc for
enforcing integrity constraints, which are essential for ensuring data consistency
in graph databases. We illustrate the manual integration of conceptual, logical and
physical modeling stages. We design the database creation scripts using the logi-
cal graph schema generated by FLASc for Airbnb data-set as shown in Fig. 6. We
do not make any changes to the source code of Neo4j; however, the formulation of
database creation scripts in Cypher is driven by the logical graph schema. We then
execute these scripts directly over the Neo4j graph database.

As discussed in Sharma and Sinha (2019) Airbnb data-set consists of three CSV
files containing information related to listings, review and calendar data. The listing
file contains information, such as hosts that own the listings, amenities provided in
the listings, location of the listing etc. The reviews file contains information related
to the users who have stayed in the listings and provided feedback in reviews. The
calendar file contains information related to booking details such as pricing and
occupancy. These files contain multiple lines (rows) of data, where each row con-
tains a comma-separated list of values. For instance, a CSV file containing informa-
tion related to listings from Airbnb’s data is shown in Table 3.

4.1 � Manual generation of database creation scripts

The logical graph schema generated by FLASc for Airbnb data-set contains inten-
sional and extensional information that assists a database designer for enforcing
integrity constraints in the database scripts.

4.1.1 � Enforcement of graph entity integrity constraints

Graph entity integrity constraints are used to enforce restrictions on properties asso-
ciated with nodes and edges in a graph database. The extensional information cap-
tured in the logical graph schema as discussed in Definition 7 is used to enforce
such constraints. We discuss the enforcement of graph entity integrity constraints
for transforming and loading Airbnb data-set into Neo4j graph database by using
Cypher query language.

Node property uniqueness constraint The sample listing file as shown in Table 3
has Listing ID associated with each listing. Furthermore, in the logical graph
schema shown in Fig. 6 listing_id field the uniqueness flag is set to be True
which means that the listing_id must be unique. Therefore, before creating
the listing nodes in the Neo4j graph database, the uniqueness constraint must be
established to reduce data corruption chances. This is achieved by running Query 1

1 3

Automated Software Engineering (2022) 29:37	 Page 25 of 45  37

Ta
bl

e 
3  

S
am

pl
e

da
ta

 fr
om

 li
sti

ng
.c

sv
 in

 th
e

A
irb

nb
 d

at
a-

se
t

H
os

t n
am

e
Li

sti
ng

 ID
Li

sti
ng

 n
am

e
Ro

om
 ty

pe
St

re
et

H
os

t I
D

M
an

ju
98

35
B

ea
ut

ifu
l r

oo
m

 &
 H

ou
se

Pr
iv

at
e

ro
om

B
ul

le
en

, V
IC

, A
us

tra
lia

33
05

7
Li

nd
sa

y
10

80
3

Ro
om

 in
 C

oo
l D

ec
o

A
pa

rtm
en

t i
n

B
ru

n-
sw

ic
k

Ea
st

Pr
iv

at
e

ro
om

B
ru

ns
w

ic
k

Ea
st,

 V
IC

, A
us

tra
lia

38
90

1

El
en

i
15

24
6

La
rg

e
pr

iv
at

e
ro

om
-c

lo
se

 to
 c

ity
Pr

iv
at

e
ro

om
Th

or
nb

ur
y,

 V
IC

, A
us

tra
lia

59
78

6
El

en
i

68
48

2
C

ha
rm

in
g

ho
us

e
in

ne
r M

el
bo

ur
ne

En
tir

e
ho

m
e/

ap
t

Th
or

nb
ur

y,
 V

IC
, A

us
tra

lia
59

78
6

	 Automated Software Engineering (2022) 29:37

1 3

37  Page 26 of 45

in Cypher. The mechanism to enforce uniqueness constraint is predefined in Neo4j
graph database.

Query 1 Cypher query to enforce node property uniqueness constraint
CREATE CONSTRAINT unique listing id IF NOT EXISTS ON (list:listing)
ASSERT list.listing id IS UNIQUE

The uniqueness constraint specified in Query 1 ensures that multiple nodes
with same listing_id are not created in the Neo4j graph database. The use of
IF NOT EXISTS clause is used to ensure that the constraint is enforced at most
once. The next constraints to be enforced are the mandatory node and edge property
constraints.

Mandatory node property constraint The sample listing file also contains infor-
mation about the host_id and in the logical graph schema as shown in Fig. 6, the
host_id is a mandatory field. Therefore, additional constraints must be enforced
on the listing nodes. This can be achieved by running the following query in Cypher.

Query 2 Cypher query to enforce mandatory node property constraint
CREATE CONSTRAINT listing host id IF NOT EXISTS ON (list:listing)
ASSERT EXISTS list.host id

The node property existence constraint specified in Query 2 ensures that listing
nodes must always have a value assigned to the property host_id the ASSERT
EXISTS clause is used to enforce such a condition.

Mandatory edge property constraint The mandatory property constraints can also
be specified on the edges that have to be created in the graph database. The logi-
cal graph schema as discussed in Definition 7 helps in enforcing this constraint in
two ways; first, it provides details about the edge labels. Second, it also provides
details about mandatory, unique and optional properties associated with the edges.
For example, as shown in Fig. 6 the edge labeled as owns has a mandatory property
since which can be enforced by running the following Cypher query.

Query 3 Cypher query to enforce mandatory edge property constraint
1. CREATE CONSTRAINT owns edge id IF NOT EXISTS ON ()-[owns:OWNS]->()
2. ASSERT EXISTS owns.id

The mandatory edge property constraint shown in Query 3 is used to ensure that
their is always a value assigned to id of every edge labeled as OWNS in the graph
database.

Node key constraint This constraint can be applied over a set of node properties.
This constraint combines the functionality provided by uniqueness and mandatory
property constraints. For example, the node labeled as host has two mandatory

1 3

Automated Software Engineering (2022) 29:37	 Page 27 of 45  37

and unique properties user_id and name. This constraint can be enforced in the
Neo4j graph database by using Query 4.

Query 4 Cypher query to enforce node key property constraint
1. CREATE CONSTRAINT ON (u:user)
2. ASSERT u.user id, u.name IS NODE KEY

As shown in Query 4 the use of IS NODE KEY keywords along with the
ASSERT clause is used to enforce that the properties user_id and name are
unique and must have a value associated with them in the graph database.

Property data type constraint Logical graph schema is used to enforce property
data type constraint over the node and edge properties. As discussed in Definition 7
a logical graph schema contains properties that have a data type associated with
them. Therefore, database creation scripts are designed by utilizing this informa-
tion. For instance, in the logical graph schema shown in Fig. 6 listing_id and
host_id are of Integer data type the Cypher query to enforce this constraint is
presented as Query 5.

Query 5 Cypher query to enforce property data type and edge pattern
constraint
1. LOAD CSV WITH HEADERS FROM "http://data.insideairbnb.com/australia/
vic/melbourne/2021-01-10/visualisations/listings.csv" AS row
2. WITH DISTINCT row.id AS listing id,
3. row.host id AS host id
4. row.name AS listing name,
5. row.host name AS host name,
6. row AS row
7. MERGE(list:listing{listing id:toInteger(listing id),
host id:toInteger(host id),name: CASE WHEN listing name IS NOT NULL
8. THEN listing name
9. ELSE ‘System’ END})
10. MERGE(host:host{host id:toInteger(host id), name: CASE WHEN host name
IS NOT NULL
11. THEN host name
12. ELSE ‘System’ END})
13. WITH DISTINCT list AS l, host AS h, row AS row
14. WHERE l.host id = h.host id
15. AND l.listing id = toInteger(row.id)
16. AND h.host id = toInteger(row.host id)
17. CREATE (h)-[:owns{date:datetime(row.last review)}]->(l)

The property data type constraint is enforced by using the inbuilt toInteger()
function in Cypher, as shown in lines 7 and 10 of Query 5. The use of this func-
tion is due to the specification in logical graph schema that the data type associated
with listing_id and host_id must of Integer data type. In Query 5 the use of

	 Automated Software Engineering (2022) 29:37

1 3

37  Page 28 of 45

Cypher’s MERGE clauses in lines 7 and 10, represents the creation of two nodes that
is a listing node and a host node. This also illustrates the combination of conceptual
and logical modeling stages where a basic conceptual graph schema containing two
disconnected nodes as discussed in Definition 5 is further labeled with node proper-
ties, representing the use of node labeling function (�) as discussed in Definition 7.
Additionally, Cypher also supports the use of CASE statements as illustrated in lines
7–12 of Query 5. The CASE statements are used to ensure that if there exists some
missing value in the csv files, then those values are loaded as a user defined values
such as ‘System’ in our case.

Other graph entity integrity constraints such as node and edge label uniqueness
are by default maintained by the logical graph schema generated using FLASc. By
Definition 7 a node/edge can only have one label associated with it. On the other
hand, Neo4j allows a node to be associated with more than one label (Bonifati et al.
2018; Neo4j 2021). FLASc does not support this for the sake of simplicity. Such
features are not present in all graph database systems and tend to make the defi-
nitions of graph schema and graph databases complex (Angles et al. 2020, 2019).
Constraints such as edge property uniqueness can be specified in FLASc however,
such constraints cannot be enforced in Neo4j.

4.1.2 � Enforcement of semantic integrity constraints

Semantic integrity constraints are used to enforce a topological restriction on the
graph database. The intensional information captured in the graph schema during the
conceptual modeling stage becomes useful to enforce semantic integrity constraints.

Edge pattern constraint To enforce edge pattern constraint the topological infor-
mation stored in the logical graph schema is used while creating the database crea-
tion scripts. For instance, Query 5 is also used to create edges between nodes of
label host and listing. Each edge created by using Query 5 is labeled as owns
and represents a valid edge in the logical graph schema shown in Fig. 6. According
to the Neo4j Cypher manual 4 MERGE clause serves as a combination of MATCH and
CREATE clauses. Therefore, in Query 5 the MERGE clause in lines 7 and 10 is used
to first create and then match the host and listing nodes. The WITH clause as
presented in line 13 of Query 5 allows query parts to be chained together,5 therefore,
the host and listing nodes created in lines 7-12 are passed by using the WITH
clause to facilitate the creation of edges between host and listing node types,
that is in lines 13-17 of Query 5. The DISTINCT clause along with the WITH clause
is used to ensure the removal of duplicate nodes in Query 5. The WHERE clause in
line 14-16 at is used to define some constraints to filter results based on the values
obtained from the csv files. The CREATE clause at line 17 in Query 5 represents the
creation of a graph containing two nodes and an edge connecting them as discussed
in Definition 5. The edge of the graph is further labeled with edge properties further
representing the use of edge labeling function (�) as discussed in Definition 7.

4  https://​neo4j.​com/​docs/​cypher-​manual/​curre​nt/​claus​es/​merge/.
5  https://​neo4j.​com/​docs/​cypher-​manual/​curre​nt/​claus​es/​with/.

https://neo4j.com/docs/cypher-manual/current/clauses/merge/
https://neo4j.com/docs/cypher-manual/current/clauses/with/

1 3

Automated Software Engineering (2022) 29:37	 Page 29 of 45  37

Graph pattern constraint Enforcing graph pattern constraints require knowledge
about the topology of the data-set, which is captured by logical graph schema. These
constraints check for the existence of certain graph structure in the database before
any new node or edge can be created. Graph pattern constraint in Cypher is pre-
sented as Query 6 which ensures that listing nodes that have been reviewed
by a user are attached to booking_detail nodes by edges that are labeled as
has.

Query 6 Cypher query to enforce graph pattern constraint
1. :auto USING PERIODIC COMMIT
2. LOAD CSV WITH HEADERS FROM "http://data.insideairbnb.com/australia/
vic/melbourne/2021-01-10/visualisations/calendar.csv" AS row
3. MATCH (u:user)-[:wrote]->(r:review), (r)-[:review for]->(l:listing)
4. WHERE l.listing id = toInteger(row.listing id)
5. WITH DISTINCT row AS row, l AS l
6. CREATE (l)-[:has{id:toInteger(row.id)}]->(b:booking detail)

In Query 6 the MATCH clause in line 3 is used to check if graph pattern exists or
not. This graph pattern (Angles et al. 2017) is built by using the intensional informa-
tion in the logical graph schema presented in Fig. 6 that assists in formulating valid
graph patterns for enforcing such constraints. The MATCH clause in this query con-
nects two graph patterns which are join compatible (Sharma et al. 2021). The CRE-
ATE clause in line 6 is used to combine the graph obtained from the MATCH clause
with a logical graph schema specified in the CREATE clause. This represents the use
of JOIN operator. The two logical graph schemas are join compatible since they
share the node l labeled as listing. Query 6 also illustrates the use of :auto
USING PERIODIC COMMIT clause in line 1, which is used to handle the large
amount of data being processed.

Path pattern constraint These constraints check for the existence of certain paths
in a graph database before a new node or edge can be created. Query languages
for graph databases use the formalism of conjunctive two-way regular path queries
(C2RPQs) and nested regular expressions (NREs) to express and then search for
path patterns (Florescu et al. 1998; Wood 2012; Angles et al. 2014; Bagan et al.
2015; Barceló et al. 2011, 2012, 2016; Reutter 2013; Barceló et al. 2012). Further-
more, other expressive formalism such as conjunctive queries and union of con-
junctive queries extended with Tarski’s relation algebra (CQT/UCQT) proposed in
Sharma et al. (2021) can also be used to enforce path constraints. In these formal-
isms regular expressions defined over the edge labels of the graph database are used
to describe path patterns (Angles et al. 2017). The intensional information captured
in logical graph schema assists in creating valid path patterns. Query 7 illustrates
the enforcement of path pattern constraint in Cypher. Very similar to Query 6 the
use of CREATE clause in the query represents the use of JOIN operator to combine
the graph obtained from the MATCH clause at line 3 with the logical graph schema
specified in the CREATE clause in line 6.

	 Automated Software Engineering (2022) 29:37

1 3

37  Page 30 of 45

Query 7 Cypher query to enforce path pattern constraint
1. :auto USING PERIODIC COMMIT
2. LOAD CSV WITH HEADERS FROM "http://data.insideairbnb.com/australia/
vic/melbourne /2021-01-10/visualisations/calendar.csv" AS row
3. MATCH (u:user)-[:wrote]->()-[review for]->(l:listing)
4. WHERE l.listing id = toInteger(row.listing id)
5. WITH row AS row, l AS l
6. CREATE (l)-[:HAS{id:toInteger(row.id)}]->
(a:amenity{amenity type:row.amenity type})

In Query 7 the path pattern constraint is specified in the MATCH clause, which
represents the regular expression (wrote.review_for) formed by applying
concatenation operator over the edge labels wrote, review_for and has.
Other regular expressions operators such as union and Kleene star can also be
used to form more expressions. However, Cypher only provides limited support
for regular expressions as the Kleene star operator’s use over the concatenation of
two more edge labels is not allowed in Cypher (Angles et al. 2017; Sharma et al.
2021). Further modifications can be done to the query language by using formal-
ism such as Tarski’s algebra instead of regular expressions for increasing their
expressiveness (Sharma et al. 2021).

Other Constraints such as schema instance consistency are ensured since the
generation of database creation scripts is driven by the logical graph schema.
Constraints such as functional dependencies are not easy to enforce in graph
databases (Angles and Gutierrez 2008); however, in order to enforce func-
tional dependencies while modeling graph databases, a designer can follow the
approach proposed in Park et al. (2014). This approach states that every non-key
property must only provide information about the associated nodes and edges.
Constraints such as edge identify uniqueness and cardinality constraints cannot
be directly enforced in Neo4j. However, enforcing such constraints can be done
by writing a wrapper in programming languages such as Java, Python that can be
used to ensure that edge ids must be unique.

The logical graph schema generated by FLASc enables us to enforce several
practical integrity constraints. FLASc assists in the generation of robust con-
ceptual and logical graph schemas. FLASc can be integrated with the existing
Extract-Transform-load process for ensuring data consistency when data from
heterogeneous sources is being loaded into a graph database such as Neo4j. The
manual approach presented in this section has limitations. Firstly this approach
requires a database designer to possess knowledge of graph database query lan-
guage such as Cypher. Secondly, creating the database creation scripts manually
can be cumbersome and error-prone, making the process less maintainable, scal-
able and manageable. Finally, Cypher does not support loading data from het-
erogeneous sources into the Neo4j graph database. Therefore, to mitigate such
limitations in the next section, we present our layered approach.

1 3

Automated Software Engineering (2022) 29:37	 Page 31 of 45  37

5 � A layered approach for data transformation and loading using
FLASc

Graph databases are schema-less or schema optional; therefore, maintain-
ing data consistency and integrity is not easy. A graph database can be easily
altered unless the database’s underlying source code is not amended to support
the enforcement of all integrity constraints. Hence in this section, we propose a
layered approach that incorporates the development of an additional wrapper to
ensure data consistency. While following the layered approach, we use the APIs
provided by Neo4j to access the graph database. We illustrate how FLASc can be
used to assist the transformation and loading of data from heterogeneous sources
into graph databases hence addresses RQ3 and RQ3.1.

5.1 � Schema driven layered approach

Overview The overall physical view of our layered approach is presented in
Fig. 7, that consists of three main components (i) FLASc which serves as a
graph schema generator, (ii) an importing subsystem and (iii) a graph database
such as Neo4j.

The importing subsystem takes source files and a graph schema generated by
FLASc as inputs. The subsystem then creates database creation scripts in ������
by following the intensional and extensional information captured in the graph
schema. The subsystem then interacts with the Neo4j graph database by using the
APIs and executes the database creation scripts on the graph database.

Fig. 7   Physical view of Schema driven layered approach

Fig. 8   Process view of Schema driven layered approach

	 Automated Software Engineering (2022) 29:37

1 3

37  Page 32 of 45

Importing subsystem design The importing subsystem is based on the Extract-
Transform-Load (ETL) design pattern. As shown in Fig. 8 the Extract stage is
used to fetch data from a source and consolidated it into a repository. The trans-
form stage is used to apply appropriate transformation rules over the repository
data. The transform stage uses the graph schema generated by FLASc to apply
the transformation rules and create the database creation scripts. The load stage
is finally used to execute the scripts on the database. In the load stage, database is
accessed by using the specific API calls.

Technology stack The subsystem is developed as a Java Maven project where the
front end is designed using Java Swing library.6 The subsystem uses Neo4j librar-
ies for establishing a connection with the Neo4j graph database. Maven is used for
handling API specific external dependencies. Neo4j’s Cypher language is used for
querying and creating the database.

5.2 � Airbnb case study

Transforming and loading data in CSV format is straight forward in Neo4j and
������ . Furthermore, the Airbnb data-set exists in the form of denormalized rela-
tional tables as such connection between nodes can be established based on primary
key foreign key relationships. As shown in Query 6, the clause LOAD CSV WITH
HEADERS FROM represents the extract stage. In Query 6 the data is being fetched
from the Airbnb website as shown in line 2. The data is stored in a repository rep-
resented by the “row” variable in the query. The transform stage in Query 6 is rep-
resented in lines 3–6 where the MATCH clause is used to search for the existence
of patterns, WHERE clause is used to restrict the result set based on some condi-
tions and WITH clause serves as a medium to deliver the data (listings and row) to
the CREATE clause. Finally the CREATE clause is used to create the edge between
node labeled as listing and booking_details. The transform stage is also
responsible for ensuring that the integrity constraints are enforced, which is done by
using the graph schema. In a layered approach, the load stage is responsible for cre-
ating a connection with the Neo4j graph database by making appropriate API calls.
The additional wrapper written in Java is used to execute the entire query on Neo4j
finally.

The main advantage of using the layered approach is that additional logic can be
written to ensure data consistency. For instance, ������ does not provide inbuilt
mechanisms to enforce the uniqueness constraints on edges. A layered approach
is beneficial in such scenarios as additional logic can be written in programming
languages to generate unique values for a particular edge property. The layered
approach’s advantage is evident when data in formats other than CSV are to be
loaded into the Neo4j graph database. To illustrate this, we present the use of our
layered approach to transform and load data-set related to big data analytics case
study.

6  The source code is available for download at https://​github.​com/​emsof​taut/​FLASc_​ASE.

https://github.com/emsoftaut/FLASc_ASE

1 3

Automated Software Engineering (2022) 29:37	 Page 33 of 45  37

5.3 � ������ case study

Implementing large-scale big data projects requires ongoing collaborations and
monitoring by multiple stakeholders who have differing concerns. BiDaML (Big
Data Analytics Modelling Languages) (Khalajzadeh et al. 2019) is a domain-specific
language for planning, specifying, monitoring and designing big data analytics pro-
jects. ������ suite presents different graph-based diagrams with highly interrelated
data. The ������ diagrams considered in this case study consists of five diagrams
brainstorming, process, technique, data, and deployment that provide different levels
of abstractions. These diagrams are generated for National Bowel Cancer Screening
Program (NBCSP) in Australia (AGD of Health 2017).

The ������ suite currently lacks the necessary automation and tooling required
to allow individual users to view customised information specific to their needs and
preferences within these diagrams. Importing data-sets from highly structured tools,
such as the current HTML based implementation of ������ diagrams into graph
databases such as Neo4j, is a challenge. This is due to the reason that Neo4j does
not provides clauses for importing HTML data. We illustrate the use of our schema
driven approach for transforming and loading ������ diagrams into Neo4j.

5.3.1 � ������ diagrams data‑set

The ������ data-set consists of five diagrams generated by the ������ suite. Brain-
storming diagram provides an overview of a data analytics project and all the tasks
and sub-tasks involved in designing the solution at a very high level. Users can
include comments and extra information for the other stakeholders. Process diagram
specifies the analytics process, which includes sequencing the tasks identified in the
brainstorming diagram and relating these tasks to participants or stakeholders. Tech-
nique diagrams show how tasks from the brainstorming/process diagrams are elabo-
rated further by applying specific techniques. Data diagrams document the data and
artefacts produced in each of the above diagrams at a low level, i.e. the technical AI-
based layer. They also define the outputs associated with different tasks like output
information, reports, results, visualisations, and outcomes. And finally, deployment
diagrams depicts the run-time configuration, i.e. the system hardware, the software
installed on it, and the middle-ware connecting different machines for development
related tasks.

The graph schema generated by using FLASc for ������ diagrams is presented
in Fig. 9 where the node labeled as TASK allows edges that are available in dif-
ferent diagrams, including outgoing edges to other tasks allowed in brainstorming,
process and technique diagrams. These edges are distinguished from each other via
additional edge labels. For instance, edges between task nodes in brainstorming dia-
grams are labeled as TT. Edges between task nodes in process diagrams are labeled
by PR. The schema also allows other node labels like ROOT in brainstorming dia-
grams, START, END and CONDITION in process diagrams and INFRASTRU​CTU​
RE node labels in deployment diagrams. In ������ , technique and data diagrams
can have techniques and data artefacts that are used as nodes in deployment dia-
grams. For simplicity of the graph schema, we classify techniques, artefacts, etc.,

	 Automated Software Engineering (2022) 29:37

1 3

37  Page 34 of 45

as nodes of label OTHER. As shown in Fig. 9 graph schema also captures the exten-
sional information such as mandatory, unique and optional properties related to
nodes and edges of ������ diagrams. For example, the node labeled as TASK has
nine associated properties where id,diagram_type and name are mandatory proper-
ties. The id property must be unique and properties including type,activity_type and
organization are optional.

5.3.2 � Importing subsystem for ������ diagrams data‑set

To transform and load ������ diagram data-set into Neo4j we still use the same
ETL design pattern with slight modification to each stage. As shown in Fig. 10 data
files in HTML format are passed to the Extract stage that consists of two processes:
Parse-HTML and Data builder. The HTML file contains information about nodes
and edges of ������ graphs using map tags as well as additional properties such
as id, name, type, sub-type, activity-type, stakeholder, comments and organization.
Parse-HTML process reads the entire HTML file by using the JSoup library Hedley
(2020) and creates a repository containing all the nodes and edges, which is then
passed on to the Data Builder for further processing.

The Data builder process first removes duplicate elements in the repository. The
builder then converts the repository into a list of edges (and nodes) that need to
be stored in the graph database. In the Transform stage, the Cypher Query Builder
takes the edge list from the extract stage and graph schema generated using FLASc
as inputs to generate ������ queries for loading data into Neo4j. This stage also
ensures that appropriate integrity constraints captured in the graph schema are
enforced.

The final load stage consists of a Database Connector process and a Neo4j graph
database interface. The Database Connector process establishes a connection with
the Neo4j graph database using the Neo4j interface. A session is created between the

Fig. 9   Logical graph schema for ������ diagrams

1 3

Automated Software Engineering (2022) 29:37	 Page 35 of 45  37

subsystem and the Neo4j database. The Cypher query constructed in the transform
stage is packaged into a create query and then executed. This process also ensures
that nodes are not duplicated, especially if some of the imported nodes were already
present in the database.

The time at which each node or edge is created during the ETL operations or
during subsequent editing of the diagrams, is stored as a time stamp attribute within
each updated element. Additional information, such as clustering of tasks in brain-
storming diagrams and mapping tasks to specific stakeholders, is all stored as attrib-
utes of the corresponding nodes.

5.4 � P2660.1 case study

Designing robust Industrial Cyber-Physical Systems (ICPS) largely depends upon
identifying industrial agents, that provide complex and harmonious control mecha-
nisms at the software level. These industrial agents practices are used to develop
more extensive and feature-rich ICPS. IEEE Standardization projects such as
P2660.1 aim at identifying industrial agent practices that can suit the requirements
of future ICPS. A key challenge with this project is the identification of industrial
agent practices based on some user-defined criteria. This case study is based on a
tool (IASelect7) developed for IEEE standardization project P2660.1 (P2660.1
2020) that assists in selecting best fit industrial agent practices for ICPS (Sharma
et al. 2019).

5.4.1 � P2660.1 data‑set

The P2660.1 data-set consists of two practices OnDevice and Hybrid. Each
practice is of two types Tightly-coupled and loosely-coupled. Practices have an
associated set of qualities, which make these practices suitable to use in specific
contexts. Hence, selecting the best-fit practices requires identifying the associ-
ated qualities. P2660.1 working group identifies four kinds of qualities Domain,

Source
Parse-HTML Data Builder

Cypher Query
Builder

Database
Connector

Neo4j
Interface

EXTRACT

Repository

TRANSFORMLOAD

Data Files

Cypher StringCypher Query

Edgelist

Graph Schema

FLASK

Fig. 10   ETL stages shown as Data flow diagram to upload ������ diagram data-set into Neo4j

7  The source code is available for download at https://​github.​com/​chand​anNap​ster/​
INDIN_​Neo4j_​Web.

https://github.com/chandanNapster/INDIN_Neo4j_Web
https://github.com/chandanNapster/INDIN_Neo4j_Web

	 Automated Software Engineering (2022) 29:37

1 3

37  Page 36 of 45

Function, Maintenance and Performance efficiency. Each quality has an associ-
ated type; for instance, Domain has three associated types, including Factory
Automation, Building Automation and Energy. Similarly, quality Function has
three associated types Monitoring, Control and Simulation. The P2660.1 data-
set exists in the form of an adjacency matrix where an ICPS expert assigns a
score to a combination of practice and associated quality.

The graph schema generated by using FLASc for P2660.1 data-set is pre-
sented in Fig. 11 which consist of two practice nodes and four quality nodes.
Each practice node is connected to a quality node by an edge labeled as has_
score. This signifies that every practice to be stored in the graph database
must connect with a quality, which represents the intensional information asso-
ciated with the data-set. The extensional information is captured by node and
edge properties. All nodes and edges have an associated property id which is
a mandatory property, is of Integer data type and value associated with this
property must be unique. Property such as type is mandatory but may not be
unique. All edges have a unique and mandatory property id. The score property
is mandatory but is not unique, and this is because the same score value can be
assigned to different practice-quality pair by an ICPS expert. All edges contain
an optional property assignedOn with an associated data type date-time.

Fig. 11   Logical graph schema for P2660.1 data-set

1 3

Automated Software Engineering (2022) 29:37	 Page 37 of 45  37

5.4.2 � Importing subsystem for P2660.1 data‑set

To transform and load the P2660.1 data-set into Neo4j, we use the ETL design pat-
tern with slight modifications. As shown in Fig. 12 data in XLS file format contain-
ing an adjacency matrix is passed to the Extract stage that consists of two processes
Parse-AM and Data builder.

The Parse-AM process is used to reads the entire XLS file by using the Apache
POI library (Apache 2020) and converts it into a repository. The other process
required to transform and load the P2660.1 data-set into Neo4j are similar to the
processes used in the ������ diagram case study presented in Sect. 5.3.2.

5.5 � Lessons learned from the case studies

The formal basis for FLASc and its integration with the ETL design pattern suggests
that the data from heterogeneous sources can be transformed and loaded into sev-
eral graph database by using our approach. We consider three case studies related to
cyber-physical systems, big data analytics and tourism as presented in Sects. 5.2, 5.3
and 5.4 respectively. The only factor that differs in loading these three diverse data-
sets is the Extract phase’s parse process.

As shown in Figs. 13 and 14 the parse process uses different APIs for reading
data from heterogeneous sources. All other stages for loading data into the Neo4j

Source
Parse-AM Data Builder

Cypher Query
Builder

Database
Connector

Neo4j
Interface

EXTRACT

Repository

TRANSFORMLOAD

Data Files

Cypher StringCypher Query

Edgelist

Graph Schema

FLASK

Fig. 12   ETL stages shown as Data flow diagram to upload P2660.1 data-set into Neo4j

Source
Parse-HTML Data Builder

Cypher Query
Builder

Database
Connector

Neo4j
Interface

EXTRACT

Repository

TRANSFORMLOAD

Data Files

Cypher StringCypher Query

Edgelist

Graph Schema

FLASK

Fig. 13   ETL stages shown as Data flow diagram to upload ������ diagram data-set into Neo4j

	 Automated Software Engineering (2022) 29:37

1 3

37  Page 38 of 45

graph database remain the same. Similarly, suppose data has to be transformed and
loaded into a database other than Neo4j. In that case, only the Load stage needs to
be altered so that APIs specific to the database platform can be utilized. The trans-
form stage in all the scenarios as mentioned above remains the same and consistent.
This demonstrates the generalizability of our approach, since by using the FLASc
integrated ETL design pattern can be used to load data-sets from heterogeneous
sources into a graph database. Furthermore, our approach is not limited to a specific
data-set format and a particular graph database.

The use of FLASc for loading data-sets from heterogeneous sources becomes
more evident when using the layered approach. As shown in Table 4 only a limited
number of integrity constraints can be enforced in a layered approach without using
FLASc. As shown in Table 3 structured data-sets such as provided in the Airbnb case
study exist in the form of CSV files and contain intensional information as primary
and foreign keys. However, semi-structured data provided in ������ and P2660.1
data-sets require predefined structural information for systematic transformation and

Source
Parse-AM Data Builder

Cypher Query
Builder

Database
Connector

Neo4j
Interface

EXTRACT

Repository

TRANSFORMLOAD

Data Files

Cypher StringCypher Query

Edgelist

Graph Schema

FLASK

Fig. 14   ETL stages shown as Data flow diagram to upload P2660.1 data-set into Neo4j

Table 4   Coverage of integrity constraints

Integrity constraints Integrated
FLASc

Layered
FLASc

Layered
without
FLASc

Graph entity Node Property Uniqueness ✓ ✓ ✓

Node/Edge Label Uniqueness ✓ ✓ ×

Edge property uniqueness × ✓ ×

Mandatory Node property ✓ ✓ ✓

Mandatory Edge property ✓ ✓ ✓

Property data type ✓ ✓ ×

Semantic Edge pattern ✓ ✓ ×

Graph pattern ✓ ✓ ×

Path pattern ✓ ✓ ×

Others Type checking ✓ ✓ ×

Edge Cardinality × ✓ ×

Relationship Type × × ×

1 3

Automated Software Engineering (2022) 29:37	 Page 39 of 45  37

loading. The intensional information is facilitated by using FLASc hence ensuring
data consistency and integrity while using the layered approach.

6 � Discussion, conclusion and future work

In this research, we present a formal algebra FLASc for generating robust graph
schema for labeled property graph databases. We illustrate the integration of FLASc
with the Extract-Transform-Load design pattern that assists in systematic transfor-
mation and loading of data-sets from heterogeneous sources into graph databases
such as Neo4j. Graph schemas generated by FLASc assist in specifying integrity
constraints in the database creation scripts, ensuring data consistency and integrity.

Our approach presents the integration of conceptual, logical and physical mod-
eling stages for graph databases. FLASc enables users to capture requirements of
any given problem domain as basic conceptual graph schemas. The JOIN, DETACH
and DELETE_NODE operators provided by FLASc can then be used to construct
robust conceptual graph schemas from basic conceptual graph schemas. Proper-
ties associated with nodes and edges of graph schema are specified at the logical
modeling stage. Finally, in the physical modeling stage, the enforcement of integrity
constraints and design of database creation scripts are driven by FLASc generated
graph schemas.

The integration of FLASc with the Extract-Transform-Load design pattern illus-
trates the practical application of our approach. This is demonstrated by using three
diverse case studies related to cyber-physical systems, big data analytics and tourism
that also illustrates the generalizability of our approach. The intensional and exten-
sional information captured in the graph schema assists in the transform stage of the
data loading process. This information can be used to enforce several integrity con-
straints on the data-sets being loaded into a graph database.

As shown in Table 4, FLASc facilitates the enforcement of several integrity con-
straints. We can observe that FLASc generated graph schemas are useful in enforc-
ing semantic constraints because such constraints require knowledge of relation-
ships between entities in data-sets. Semantic constraints such as edge, graph and
path pattern constraints cannot be enforced without knowledge about relationships
in the data-set. As shown in Table 4 graph entity integrity constraints such as edge
property uniqueness constraint cannot be enforced in the integrated approach due to
the limitations in the Neo4j graph database. Furthermore, FLASc generated logi-
cal graph schema also enable a database designer to specify cardinality constraints
on the edges of a graph schema. However, due to the limitations in Neo4j graph
database cardinality constraints cannot be enforced in the integrated approach. Such
challenges can be mitigated in the layered approach by writing additional logic in
programming languages such as Java, Python for specifying edge uniqueness and
cardinality constraints.

The use of FLASc for loading data from heterogeneous sources becomes more
evident while using the layered approach. As shown in Table 4 only a limited number
of integrity constraints can be enforced in a layered approach without using FLASc.
The support for integrity constraints such as node property uniqueness, mandatory

	 Automated Software Engineering (2022) 29:37

1 3

37  Page 40 of 45

node and edge property constraints are by default provided by Neo4j. Other con-
straints cannot be enforced without the intensional and extensional information cap-
tured in the graph schemas generated by FLASc. In the absence of robustly defined
graph schema, the capability to enforce integrity constraints depends on the underly-
ing engine associated with a graph database .

6.1 � Limitations

As shown in Table 4 graph schemas generated by FLASc provide the ability to
enforce several useful integrity constraints. However, other constraints such as
relationship types is not covered in our approach. Relationship types represent the
nature of relationships such as inheritance, association, composition and realisation,
between nodes of a graph database. The enforcement of such constraints is not sup-
ported by FLASc in its current state. Furthermore, FLASc cannot be compared with
other conceptual modeling tools such as entity-relationship diagrams (ERD) and
unified modeling language (UML) diagrams as these tools support the specification
of relationship types.

The main motive of FLASc is to assist in the design of robust conceptual graph
schemas so that the soundness of logical and physical graph schemas can be ensured.
FLASc generated conceptual graph schemas can preciously capture the intensional
information. Relationship types are edge related properties (Angles 2018); hence
can be classified as extensional information. These properties can be easily captured
in the logical graph schema. For instance, by altering Definition 7, the logical graph
schema can be enriched to support extensional information such as relationship
types.

6.2 � Conclusion and future work

The scope of our study is limited to the Neo4j graph database. Therefore, the per-
formance evaluation of using our approach for transforming and loading data-sets
into other graph databases is not discussed. We consider this as future work where
FLASc can be utilised for evaluating the coverage of integrity constraints offered by
other graph databases provided by vendors such as Oracle (2021), Apache Tinker-
pop (2021) and TigerGraph (2020). We intend to work on extending FLASc to sup-
port other integrity constraints such as relationship types and functional dependen-
cies. The support of such constraints can enable FLASc to represent visual models
expressed in languages such as Entity relationship diagram (ERD), Unified Mod-
eling Language (UML) and System Modeling Language (SysML).

Moreover, using the FLASc extended ETL design pattern, visual models
expressed as ERD, UML or SysML diagrams related to software development pro-
jects can be imported into graph databases. Storing software development visual
models in graph databases provides the additional advantages of tractability and
efficient database manageability, such as automatically identifying inconsistencies
across all project diagrams.

1 3

Automated Software Engineering (2022) 29:37	 Page 41 of 45  37

In its current state our formal algebra FLASc supports the creation of robustly
defined graph schemas that captures the intensional and extensional information. A
natural extension to this work is the proposal of a formal schema creation language.
We intend to combine our novel query language proposed in Sharma et al. (2021)
with FLASc to propose a graph schema creation language. In Sharma et al. (2021)
we propose the novel formalims of conjunctive queries and union of conjunctive
queries extended with Tarksi’s algebra (CQT/UCQT) for extracting data stored in a
graph database. This language can be further combined with FLASc for creating a
novel graph schema creation language. A main advantage of such an approach is the
ability to use restricted form of first-order logic (conjunctive queries) while defining
a graph schema which also makes our approach compatible with object role mod-
eling language proposed in Halpin (2005). This will further assist in the industry
wide initiative of standardizing query language for graph databases.

Funding  Open Access funding enabled and organized by CAUL and its Member Institutions.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

AGD of Health: National Bowel Cancer Screening Program (2017). https://​www1.​health.​gov.​au/​inter​net/​
main/​publi​shing.​nsf/​Conte​nt/​nbcsp.​htm

Airbnb: Inside Airbnb: Adding data to the debate. Accessed: 2019-02-03 (2018). http://​insid​eairb​nb.​com/​
get-​the-​data.​html

Alex, A., Norbert, M.: LDBC Use case analysis and choke point analysis. Accessed: 2019-03-01 (2013).
http://​ldbco​uncil.​org/​sites/​defau​lt/​files/​LDBC_​D3.3.​1.​pdf

Amann, B., Scholl, M.: Gram: a graph data model and query languages. In: Proceedings of the ACM
Conference on Hypertext, pp. 201–211 (1993)

Angles, R., Arenas, M., Barceló, P., Boncz, P., Fletcher, G., Gutierrez, C., Lindaaker, T., Paradies, M.,
Plantikow, S., Sequeda, J., et al.: G-core: A core for future graph query languages. In: Proceedings
of the 2018 International Conference on Management of Data, pp. 1421–1432 (2018). ACM

Angles, R., Bonifati, A., Dumbrava, S., Fletcher, G., Hare, K.W., Hidders, J., Lee, V.E., Li, B., Libkin,
L., Martens, W., et al.: Pg-keys: Keys for property graphs. In: Proceedings of the 2021 International
Conference on Management of Data, pp. 2423–2436 (2021)

Angles, R., Thakkar, H., Tomaszuk, D.: Rdf and Property Graphs Interoperability: Status and Issues
(2019)

Angles, R.: A comparison of current graph database models. In: 2012 IEEE 28th International Confer-
ence on Data Engineering Workshops, pp. 171–177 (2012). IEEE

Angles, R.: The property graph database model. In: AMW (2018)
Angles, R., Gutierrez, C.: Survey of graph database models. ACM Computing Surveys (CSUR) 40(1),

1–39 (2008)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www1.health.gov.au/internet/main/publishing.nsf/Content/nbcsp.htm
https://www1.health.gov.au/internet/main/publishing.nsf/Content/nbcsp.htm
http://insideairbnb.com/get-the-data.html
http://insideairbnb.com/get-the-data.html
http://ldbcouncil.org/sites/default/files/LDBC_D3.3.1.pdf

	 Automated Software Engineering (2022) 29:37

1 3

37  Page 42 of 45

Angles, R., Boncz, P., Larriba-Pey, J., Fundulaki, I., Neumann, T., Erling, O., Neubauer, P., Martinez-
Bazan, N., Kotsev, V. and Toma, I.: The linked data benchmark council: a graph and rdf industry
benchmarking effort. SIGMOD Record 43(1): 27 (2014)

Angles, R., Arenas, M., Barceló, P., Hogan, A., Reutter, J., Vrgoč, D.: Foundations of modern query lan-
guages for graph databases. ACM Computing Surveys (CSUR) 50(5), 1–40 (2017)

Angles, R., Thakkar, H., Tomaszuk, D.: Mapping rdf databases to property graph databases. IEEE Access
8, 86091–86110 (2020)

Apache: ”Apache java library for parsing XLS document”. Accessed: 2021-01-17 (2020). https://​mvnre​
posit​ory.​com/​artif​act/​org.​apache.​poi/​poi

Apache: Apache TinkerPop. Accessed: 2021-01-02 (2021). https://​tinke​rpop.​apache.​org/
Apache: Gremlin query language Apache TinkerPop. Accessed: 2021-01-02. https://​tinke​rpop.​apache.​

org/​docs/​curre​nt/​tutor​ials/​greml​in-​langu​age-​varia​nts/
Badia, A., Lemire, D.: A call to arms: revisiting database design. ACM SIGMOD Record 40(3), 61–69

(2011)
Bagan, G., Bonifati, A., Ciucanu, R., Fletcher, G.H., Lemay, A., Advokaat, N.: Controlling diversity in

benchmarking graph databases. arXiv preprint arXiv:​1511.​08386 (2015)
Barceló, P., Libkin, L., Reutter, J.L.: Querying graph patterns. In: Proceedings of the Thirtieth ACM

SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 199–210 (2011)
Barceló, P., Libkin, L., Lin, A.W., Wood, P.T.: Expressive languages for path queries over graph-struc-

tured data. ACM Transactions on Database Systems (TODS) 37(4), 31 (2012)
Barceló, P., Pérez, J., Reutter, J.L.: Relative expressiveness of nested regular expressions. AMW 12, 180–

195 (2012)
Barceló, P., Romero, M., Vardi, M.Y.: Semantic acyclicity on graph databases. SIAM Journal on comput-

ing 45(4), 1339–1376 (2016)
Barik, M.S., Mazumdar, C., Gupta, A.: Network vulnerability analysis using a constrained graph data

model. In: International Conference on Information Systems Security, pp. 263–282 (2016). Springer
Bell, G., Hey, T., Szalay, A.: Beyond the data deluge. Science 323(5919), 1297–1298 (2009)
Berners-Lee, T., Hendler, J., Lassila, O., et al.: The semantic web. Scientific american 284(5), 28–37

(2001)
Bonifati, A., Fletcher, G., Voigt, H., Yakovets, N.: Querying graphs. Synthesis Lectures on Data Manage-

ment 10(3), 1–184 (2018)
Brodie, M.L., Liu, J.T.: The power and limits of relational technology in the age of information ecosys-

tems. In: On the Move Federated Conferences (2010)
Castro, J., Soto, A.: A comparison between cypher and conjunctive queries. In: AMW (2017)
Chein, M., Mugnier, M.-L.: Graph-based Knowledge Representation: Computational Foundations of

Conceptual Graphs. Springer, Berlin (2008)
Chen, P.P.-S.: The entity-relationship model-toward a unified view of data. ACM Trans. Database Syst.

(TODS) 1(1), 9–36 (1976)
Clarke, E.M., Wing, J.M.: Formal methods: State of the art and future directions. ACM Computing Sur-

veys (CSUR) 28(4), 626–643 (1996)
Codd, E.F.: A relational model of data for large shared data banks. In: Software Pioneers, pp. 263–294.

Springer, ??? (2002)
Daniel, G., Sunyé, G., Cabot, J.: Umltographdb: mapping conceptual schemas to graph databases. In:

International Conference on Conceptual Modeling, pp. 430–444 (2016). Springer
de Sousa, V.M., Cura, L.M.d.V.: Logical design of graph databases from an entity-relationship concep-

tual model. In: Proceedings of the 20th International Conference on Information Integration and
Web-based Applications & Services, pp. 183–189 (2018)

Finkelstein, S., Schkolnick, M., Tiberio, P.: Physical database design for relational databases. ACM
Transactions on Database Systems (TODS) 13(1), 91–128 (1988)

Fitzgerald, G., Philippides, A., Probert, S.: Information systems development, maintenance and enhance-
ment: findings from a uk study. Int. J. Inf. Manage. 19(4), 319–328 (1999)

Florescu, D., Levy, A., Suciu, D.: Query containment for conjunctive queries with regular expressions.
In: PODS, vol. 9, pp. 139–148 (1998)

Frozza, A.A., Jacinto, S.R., dos Santos Mello, R.: An approach for schema extraction of nosql graph data-
bases. In: 2020 IEEE 21st International Conference on Information Reuse and Integration for Data
Science (IRI), pp. 271–278 (2020). IEEE

Ghrab, A., Romero, O., Skhiri, S., Vaisman, A., Zimányi, E.: Grad: On graph database modeling. arXiv
preprint arXiv:​1602.​00503 (2016)

https://mvnrepository.com/artifact/org.apache.poi/poi
https://mvnrepository.com/artifact/org.apache.poi/poi
https://tinkerpop.apache.org/
https://tinkerpop.apache.org/docs/current/tutorials/gremlin-language-variants/
https://tinkerpop.apache.org/docs/current/tutorials/gremlin-language-variants/
http://arxiv.org/abs/1511.08386
http://arxiv.org/abs/1602.00503

1 3

Automated Software Engineering (2022) 29:37	 Page 43 of 45  37

Ghrab, A., Romero, O., Skhiri, S., Zimányi, E.: Analytics-Aware Graph Database Modeling. Technical
report, Technical report (2014)

Graves, M., Bergeman, E.R., Lawrence, C.B.: A graph-theoretic data model for genome mapping data-
bases. In: Proceedings of the Twenty-Eighth Annual Hawaii International Conference on System
Sciences, vol. 5, pp. 32–41 (1995). IEEE

Griffith, R.L.: Three principles of representation for semantic networks. ACM Transactions on Database
Systems (TODS) 7(3), 417–442 (1982)

Güting, R.H.: Graphdb: Modeling and querying graphs in databases. In: VLDB, vol. 94, pp. 12–15
(1994). Citeseer

Gyssens, M., Paredaens, J., Van den Bussche, J., Van Gucht, D.: A graph-oriented object database model.
IEEE Transactions on knowledge and Data Engineering 6(4), 572–586 (1994)

Halpin, T.: Orm 2. In: OTM Confederated International Conferences" On the Move to Meaningful Inter-
net Systems", pp. 676–687 (2005). Springer

Hartig, O., Hidders, J.: Defining schemas for property graphs by using the graphql schema definition lan-
guage. In: Proceedings of the 2nd Joint International Workshop on Graph Data Management Expe-
riences & Systems (GRADES) and Network Data Analytics (NDA), pp. 1–11 (2019)

Hedley, J.: jsoup: Java HTML Parser. Accessed: 2020-04-05 (2020). https://​jsoup.​org/
Hidders, J.: Typing graph-manipulation operations. In: International Conference on Database Theory, pp.

394–409 (2003). Springer
Johnson, R.B., Onwuegbuzie, A.J., Turner, L.A.: Toward a definition of mixed methods research. Journal

of mixed methods research 1(2), 112–133 (2007)
Khalajzadeh, H., Abdelrazek, M., Grundy, J., Hosking, J., He, Q.: Bidaml: A suite of visual languages for

supporting end-user data analytics. In: 2019 IEEE International Congress on Big Data (BigData-
Congress), pp. 93–97 (2019). IEEE

Khalajzadeh, H., Simmons, A., Abdelrazek, M., Grundy, J., Hosking, J., He, Q.: An end-to-end model-
based approach to support big data analytics development. J. Comput. Lang. 58, 100964 (2020)

Khan, A., Wu, Y., Yan, X.: Emerging graph queries in linked data. In: 2012 IEEE 28th International Con-
ference on Data Engineering, pp. 1218–1221 (2012). IEEE

Kunii, H.S.: Dbms with graph data model for knowledge handling. In: Proceedings of the 1987 Fall Joint
Computer Conference on Exploring Technology: Today and Tomorrow, pp. 138–142 (1987)

Lassila, O., Swick, R.R., et al.: Resource description framework (rdf) model and syntax specification.
World Wide Web (1998)

Levene, M., Poulovassilis, A.: The hypernode model and its associated query language. In: Proceedings
of the 5th Jerusalem Conference on Information Technology, 1990.’Next Decade in Information
Technology’, pp. 520–530 (1990). IEEE

Levene, M., Loizou, G.: A graph-based data model and its ramifications. IEEE Transactions on Knowl-
edge and Data Engineering 7(5), 809–823 (1995)

Levene, M., Poulovassilis, A.: An object-oriented data model formalised through hypergraphs. Data &
Knowledge Engineering 6(3), 205–224 (1991)

Marciniak, J.J.: Encyclopedia of Software Engineering. Wiley-Interscience, New York (1994)
Megid, Y.A., El-Tazi, N., Fahmy, A.: Using functional dependencies in conversion of relational databases

to graph databases. In: International Conference on Database and Expert Systems Applications, pp.
350–357 (2018). Springer

Mior, M.J., Salem, K., Aboulnaga, A., Liu, R.: Nose: Schema design for nosql applications. IEEE Trans-
actions on Knowledge and Data Engineering 29(10), 2275–2289 (2017)

Mugnier, M.-L., Chein, M.: Conceptual graphs: fundamental notions. Revue d’intelligence artificielle
6(4), 365–406 (1992)

Neo4j: Neo4j. Accessed: 2021-02-27 (2021). https://​neo4j.​com/
OpenCypher: OpenCypher. Accessed: 2018-10-01 (2018). https://​www.​openc​ypher.​org/
Oracle: Oracle. Accessed: 2021-02-27 (2021). https://​www.​oracle.​com/​middl​eware/​techn​ologi​es/​paral​lel-​

graph-​analy​tix.​html
P2660.1: ”Recommended practices on industrial agents: Integration of software agents and low level

automation functions.”. Accessed: 2021-03-16 (2020). https://​stand​ards.​ieee.​org/​stand​ard/​2660_1-​
2020.​html

Paredaens, J., Peelman, P., Tanca, L.: G-log: A graph-based query language. IEEE Transactions on
Knowledge and Data Engineering 7(3), 436–453 (1995)

https://jsoup.org/
https://neo4j.com/
https://www.opencypher.org/
https://www.oracle.com/middleware/technologies/parallel-graph-analytix.html
https://www.oracle.com/middleware/technologies/parallel-graph-analytix.html
https://standards.ieee.org/standard/2660_1-2020.html
https://standards.ieee.org/standard/2660_1-2020.html

	 Automated Software Engineering (2022) 29:37

1 3

37  Page 44 of 45

Park, Y., Shankar, M., Park, B.-H., Ghosh, J.: Graph databases for large-scale healthcare systems: A
framework for efficient data management and data services. In: 2014 IEEE 30th International Con-
ference on Data Engineering Workshops, pp. 12–19 (2014). IEEE

Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of sparql. In: International Semantic Web
Conference, pp. 30–43 (2006). Springer

Pokornỳ, J.: Conceptual and database modelling of graph databases. In: Proceedings of the 20th Interna-
tional Database Engineering & Applications Symposium, pp. 370–377 (2016)

Pokorny, J.: Modelling of graph databases. Journal of Advanced Engineering and Computation 1(1),
04–17 (2017)

Pokornỳ, J., Valenta, M., Kovačič, J.: Integrity constraints in graph databases. Procedia Computer Sci-
ence 109, 975–981 (2017)

Reina, F., Huf, A., Presser, D., Siqueira, F.: Modeling and enforcing integrity constraints on graph data-
bases. In: International Conference on Database and Expert Systems Applications, pp. 269–284
(2020). Springer

Reutter, J.L.: Containment of nested regular expressions. arXiv preprint arXiv:​1304.​2637 (2013)
Rodriguez, M.A., Neubauer, P.: The graph traversal pattern. In: Graph Data Management: Techniques

and Applications, pp. 29–46. IGI Global, ??? (2012)
Rodriguez, M.A., Neubauer, P.: Constructions from dots and lines. Bulletin of the American Society for

Information Science and Technology 36(6), 35–41 (2010)
Roy-Hubara, N., Rokach, L., Shapira, B., Shoval, P.: Modeling graph database schema. IT Professional

19(6), 34–43 (2017)
Sciore, E., Siegel, M., Rosenthal, A.: Using semantic values to facilitate interoperability among heter-

ogeneous information systems. ACM Transactions on Database Systems (TODS) 19(2), 254–290
(1994)

Šestak, M., Rabuzin, K., Novak, M.: Integrity constraints in graph databases–implementation challenges.
In: Proceedings of Central European Conference on Information and Intelligent Systems, pp. 23–30
(2016)

Šestak, M., Heričko, M., Družovec, T.W., Turkanović, M.: Applying k-vertex cardinality constraints on a
neo4j graph database. Future Generation Computer Systems 115, 459–474 (2021)

Sharma, C., Sinha, R., Johnson, K.: Practical and comprehensive formalisms for modeling contemporary
graph query languages. Inf. Syst. 102, 101816 (2021)

Sharma, C., Sinha, R., Leitao, P.: Iaselect: Finding best-fit agent practices in industrial cps using graph
databases. In: 2019 IEEE 17th International Conference on Industrial Informatics (INDIN), vol. 1,
pp. 1558–1563 (2019). IEEE

Sharma, C., Sinha, R.: A schema-first formalism for labeled property graph databases: Enabling struc-
tured data loading and analytics. In: Proceedings of the 6th IEEE/ACM International Conference on
Big Data Computing, Applications and Technologies, pp. 71–80 (2019)

Sharma, C.: Design of formal query languages and schemas for graph databases. PhD thesis, Auckland
University of Technology (2021)

Sharma, C.: Flux: From sql to gql query translation tool. In: 2020 35th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE), pp. 1379–1381 (2020). IEEE

Sowa, J.: Conceptual graphs: Draft proposed american national standard. In: International Conference on
Conceptual Structures, pp. 1–65 (1999). Springer

Sowa, J.F.: Conceptual graphs for a data base interface. IBM Journal of Research and Development 20(4),
336–357 (1976)

Sowa, J.F.: Conceptual graphs summary. Conceptual Structures: current research and practice 3, 66
(1992)

Sowa, J.F.: Conceptual graphs. Foundations of Artificial Intelligence 3, 213–237 (2008)
Tetko, I.V., Engkvist, O., Koch, U., Reymond, J.-L., Chen, H.: Bigchem: challenges and opportunities for

big data analysis in chemistry. Mol. Inf. 35(11–12), 615–621 (2016)
TigerGraph: A Modern graph query language. Accessed: 2020-28-06 (2020). https://​www.​tiger​graph.​

com/​gsql/
Tucker, J., Stephenson, K.: Data, syntax and semantics. Citeseer (2003)
W3C: Resource Description Framework. Accessed: 2021-02-27 (2021). https://​www.​w3.​org/​RDF/
W3C: SPARQL 1.1 Query Language W3C Recommendation. Accessed: 2021-01-02 (2013). https://​

www.​w3.​org/​TR/​2013/​REC-​sparq​l11-​query-​20130​321/#​pp-​langu​age
Wood, P.T.: Query languages for graph databases. ACM Sigmod Record 41(1), 50–60 (2012)

http://arxiv.org/abs/1304.2637
https://www.tigergraph.com/gsql/
https://www.tigergraph.com/gsql/
https://www.w3.org/RDF/
https://www.w3.org/TR/2013/REC-sparql11-query-20130321/#pp-language
https://www.w3.org/TR/2013/REC-sparql11-query-20130321/#pp-language

1 3

Automated Software Engineering (2022) 29:37	 Page 45 of 45  37

Yu, Y., Heflin, J.: Extending functional dependency to detect abnormal data in rdf graphs. In: Interna-
tional Semantic Web Conference, pp. 794–809 (2011). Springer

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	FLASc: a formal algebra for labeled property graph schema
	Abstract
	1 Introduction
	2 Background and related work
	2.1 Graph database design and modeling
	2.1.1 Conceptual modeling
	2.1.2 Logical modeling
	2.1.3 Physical modeling
	2.1.4 Integration of logical and physical modeling

	2.2 Gaps in current literature

	3 FLASc: formal algebra for conceptual and logical graph schema
	3.1 Basic terminology
	3.2 Conceptual graph schema
	3.2.1 Basic conceptual graph schema
	3.2.2 Syntax and semantics of FLASc

	3.3 Logical graph schema
	3.3.1 operators for designing logical graph schemas
	3.3.2 Axiomatic specifications of operators
	3.3.3 Schema instance consistency

	4 Using FLASc to enforce integrity constraints
	4.1 Manual generation of database creation scripts
	4.1.1 Enforcement of graph entity integrity constraints
	4.1.2 Enforcement of semantic integrity constraints

	5 A layered approach for data transformation and loading using FLASc
	5.1 Schema driven layered approach
	5.2 Airbnb case study
	5.3 case study
	5.3.1 diagrams data-set
	5.3.2 Importing subsystem for diagrams data-set

	5.4 P2660.1 case study
	5.4.1 P2660.1 data-set
	5.4.2 Importing subsystem for P2660.1 data-set

	5.5 Lessons learned from the case studies

	6 Discussion, conclusion and future work
	6.1 Limitations
	6.2 Conclusion and future work

	References

