
FLASH MEMORY FOR UBIQUITOUS HARDWARE

SECURITY FUNCTIONS

A Thesis

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Master of Science

by

Yinglei Wang

January 2014

c© 2014 Yinglei Wang

ALL RIGHTS RESERVED

ABSTRACT

We demonstrate that unmodified commercial Flash memory can provide three

important security functions: true random number generation, digital finger-

printing and information hiding. Use of random telegraph noise (a type of

quantum noise source in highly scaled Flash memory cells) enables high qual-

ity true random number generation at a rate up to 10Kbits / second. A scheme

based on partial programming exploits process variation in threshold voltages

to allow quick generation of unique fingerprints that can be used for identifica-

tion and authentication. Aging-induced biases can hide data within the analog

characteristic of Flash as the program time of individual bits. Because the tech-

nique uses inherent behavior, normal Flash memory operations are not affected

and hidden information is invisible in the data stored in the memory. Even if an

attacker checks a Flash chip’s analog characteristics, experimental results indi-

cate that the hidden information is difficult to distinguish from inherent man-

ufacturing variation or normal wear on the device. Moreover, the hidden data

can survive erasure of the Flash memory data. All schemes require no change

to Flash chips or interfaces, and do not require additional hardware.

BIOGRAPHICAL SKETCH

Yinglei Wang attended Peking(Beijing) University in China as an EECS under-

graduate student from year 2006 to 2010. She entered the MS/PHD program

in ECE, Cornell University in Fall, 2010. She worked with Prof. Edwin C. Kan,

Prof. G. Edward Suh and Prof. Christopher Batten on flash memory security

and on-chip network. She will work as a software engineer at Oracle from Jan-

uary 2014.

iii

This document is dedicated to my parents and my husband Xuetian Weng,

who is now a PHD student in Computer Science Department, Stony Brook

University.

iv

ACKNOWLEDGEMENTS

Upon leaving Cornell and Ithaca after three and half years, I have to admit it is

an unexpected ending. Nevertheless, it is invaluable experience which taught

me a lot of things: knowledge, research, relationships and life.

First, I would like to express the deepest appreciation and gratitude to my

advisor, Prof. Edwin C. Kan. He has supported me throughout graduate school,

and provided the vision and advise necessary to finish my dissertation. More

importantly, he gives me the freedom to explore new things and tries his best

to support me. I would also like to express sincere thanks to my committee

member, Prof. G. Edward Suh. He has given me so much guidance and help on

my research. What’s more, he tried to help me in my most difficult days, and

I really appreciate it. Special thanks to my committee member, Prof. Christo-

pher Batten. His computer architecture course is the first computer architec-

ture/organaization course I took and I was deeply attracted to it. I also learned

a lot, both technical skills and the methodology of engineering, when working

with him. I would also like to take this opporutnity to express my sincere thanks

to one of my course instructors, Prof. Jose F. Martinez. In addition to his inter-

esting lectures, he is concerned with my situation and I could feel free to tell him

my efforts, worries, concerns and feelings. I really appreciate his advice and his

attitude towards work and life.

Throughout the years, I have the honor to work with several brilliant grad-

uate and undergradute students. I would like to thank KK Yu, Greg Malysa

and Shuo Wu for their help and contribution to this topic. I would also like to

thank the group memebers, especially Kshitij Auluck, Yunfei Ma, and Shreesha

Srinath for their inspiring discussions and friendship.

v

I wish to thank my parents, Deming Wang and Chunhua Wang. Their un-

conditional love always gives me the warmth and courage to carry on. I love

them forever. I also hope to thank my husband, Xuetian Weng, who is now a

PHD student in Computer Science, Stony Brook Unviersity. He can always tol-

erate my bad temper and complaints. He also encourages me to think about the

good things about life and being a happy person. I’m so lucky to have his love

in my life and I love him. Best wishes to his PHD career.

Sincere thanks and best wishes to all my friends at Cornell.

vi

TABLE OF CONTENTS

Biographical Sketch . iii
Dedication . iv
Acknowledgements . v
Table of Contents . vii
List of Tables . ix
List of Figures . x

1 Introduction 1
1.1 Overview . 1
1.2 Quantum Random Number Generation 2
1.3 Device Fingerprint . 3
1.4 Information Hiding . 5

2 Flash Memory Background 9
2.1 Floating Gate Transistors . 9
2.2 Flash Organization and Operation 10
2.3 Aging . 11
2.4 Partial Programming . 11

3 Random Number Generation 13
3.1 Theory and Implementation . 13

3.1.1 Random Telegraph Noise (RTN) 13
3.1.2 Noise Extraction from Digital Interface 14
3.1.3 Random Number Generation Algorithms 17

3.2 Experimental Results . 23
3.2.1 Evaluation Setup . 23
3.2.2 Randomness . 24
3.2.3 Performance . 27
3.2.4 Temperature Variations . 29
3.2.5 Aging . 30

3.3 Application Scenarios . 33
3.4 Related Work . 34

4 Device Fingerprints 36
4.1 Theory and Implementation . 36

4.1.1 Sources of Uniqueness . 36
4.1.2 Extracting Fingerprints . 36
4.1.3 Comparing Fingerprints . 37
4.1.4 Fingerprints in Binary Numbers 38

4.2 Evaluation . 40
4.2.1 Uniqueness . 41
4.2.2 Robustness . 43

vii

4.2.3 Temperature Variations and Aging 45
4.2.4 Security . 47
4.2.5 Applicability to Multiple Flash Chips 48

4.3 Application Scenarios . 49
4.4 Related Work . 52

5 Hiding Information in Flash Memory 53
5.1 Overview . 53

5.1.1 Threat Model . 53
5.1.2 Flash Interface Requirements 55

5.2 Information Hiding Algorithm . 55
5.2.1 Overview . 55
5.2.2 Hiding Algorithm . 60
5.2.3 Recovery Algorithm . 62

5.3 Evaluation . 64
5.3.1 Evaluation Setup . 65
5.3.2 Robustness - Bit Error Rate 67
5.3.3 Performance . 71
5.3.4 Detectability . 73
5.3.5 Retrieval without the Hiding Key 89
5.3.6 Erase Tolerance . 89
5.3.7 Different Flash Models . 90

5.4 Related Work . 91
5.4.1 Steganography . 92
5.4.2 Flash Based Security . 93
5.4.3 Physical Unclonable Functions 94

6 Conclusion 95

Bibliography 97

viii

LIST OF TABLES

3.1 Tested Flash chips. 24
3.2 Summary of the NIST test suite . 26
3.3 Performance of bits with pure RTN behavior. 28
3.4 Performance of bits with both RTN and thermal noise. 28
3.5 Performance summary of RTN in stressed pages 32

5.1 Tested Flash chips. 66
5.2 Retention characteristics of the hidden message. 71

ix

LIST OF FIGURES

2.1 Flash memory cell based on a floating gate transistor. 10

3.1 Thermal noise in Flash memory (time domain). 15
3.2 RTN with thermal noise in Flash memory. (a) Time domain. (b)

Moving average of 29 points on the time domain. 16
3.3 RTN in Flash memory (time domain). 17
3.4 (a) Distribution of time in the programmed state. (b) Distribution

of time in the erased state. 18
3.5 Overall Flash RNG algorithm . 19
3.6 Determine whether there is RTN in a bit 20
3.7 Program selected bits to proper levels where RTN could be ob-

served. 21
3.8 Convert the raw data to binary random sequence. 21
3.9 Flash test board. 23
3.10 NIST test suite results for bits with RTN and thermal noise. . . . 27
3.11 Throughputs under room temperature. 31
3.12 Throughput at -5 C. 31
3.13 Throughputs at -80 C. 32

4.1 Extract the order in which bits in a page reach the programmed
state. 37

4.2 Scatter plot for fingerprints extracted on (a) the same page and
(b) different chips. 39

4.3 Generate a binary signature from the partial programming order
information. 40

4.4 Histogram of correlation coefficients for pages compared to the
same page on a different chip (total 66,240 comparisons). 42

4.5 Histogram of correlation coefficients for every page compared to
every other page at room temp (total 1,656,000 comparisons). . . 42

4.6 Histogram of correlation coefficients for all intra-chip compar-
isons (total 25,920 comparisons). 43

4.7 Average, minimum, and maximum correlation coefficients for
intra-chip comparisons between different ambient temperatures. 46

4.8 Average, minimum, and maximum correlation coefficients for
comparisons between fresh and stressed Flash. 46

4.9 Device authentication through a challenge-response protocol. . . 50

5.1 The overview of the information hiding operation. 54
5.2 Raw partial program number for each bit in an example page. . . 56
5.3 Partial program time distribution for bits in a page. 57
5.4 The distribution of the average program time of a group with a

correct key. 59
5.5 The distribution of the average program time of a incorrect group. 60

x

5.6 An algorithm to encode (hide) a payload into Flash memory pro-
gram time. 61

5.7 An algorithm to decode (recover) a payload from Flash memory
program time. 63

5.8 Flash test board. 65
5.9 Influence of hiding stress on BER. 67
5.10 Influence of group size on BER. 68
5.11 Influence of page interval on BER. 69
5.12 Influence of initial stress level on BER. 70
5.13 Program time for pages within a block. 76
5.14 Program time histogram for three stress levels. 77
5.15 Erase time for 20 blocks within a chip. 78
5.16 Erase time histogram for three stress levels (across 4 chips). . . . 79
5.17 SVM accuracy for detecting hidden information (per-page anal-

ysis). 80
5.18 SVM accuracy for detecting hidden information (per-block anal-

ysis). 81
5.19 Partial program number distribution curve averaged over 5 blocks. 84
5.20 SVM accuracy for detecting pages with hidden information (us-

ing raw data). 86
5.21 SVM accuracy for detecting pages with hidden information (us-

ing statistical moments). 86
5.22 Receiver operating characteristic curve for data set including

2500 hiding PE and 128 normal PE stresses. 87
5.23 BER as a function of the percentage of correct group members. . 88
5.24 Influence of post hiding PE cycles. 90

xi

CHAPTER 1

INTRODUCTION

1.1 Overview

Flash memory has gained a ubiquitous place in the computing landscape today.

Virtually all mobile devices such as smartphones and tablets rely on Flash mem-

ory as their non-volatile storage. Flash memory is also moving into laptop and

desktop computers, intending to replace the mechanical hard drive. Floating-

gate non-volatile memory is even more broadly used in electronic applications

with a small amount of non-volatile memory. For example, even 8-bit or 16-

bit microcontrollers for embedded systems commonly have on-chip EEPROMs

to store instructions and data. Many people also carry Flash memory as stan-

dalone storage medium as in USB memory sticks and SD cards.

We propose to utilize analog behaviors of off-the-shelf Flash memory to en-

able hardware-based security functions in a wide range of electronic devices

without requiring custom hardware. More specifically, we show that a stan-

dard Flash memory interface can be used to generate true random numbers

from quantum and thermal noises and to produce device fingerprints based on

manufacturing variations. This thesis also introduces a technique to hide infor-

mation in analog characteristics of Flash memory in a way that the hidden bits

are not visible at all from the viewpoint of normal Flash memory content. Our

technique encodes a hidden bit in the program time of a group of Flash cells; a

fast program time encodes bit ’1’ and a slow program time encodes bit ’0’. We

found that writing 0 into a Flash cell incurs more stress on the cell than writing

1, which in turn results in a larger decrease in the program time of the corre-

1

sponding cell. While the program time of individual cells cannot be accurately

controlled, our experiments demonstrate that bits can be reliably encoded in

the program time using many cells collectively. The techniques can be applied

to any floating-gate non-volatile memory in general, and does not require any

hardware modifications to todays Flash memory chips, allowing them to be

widely deployed.

1.2 Quantum Random Number Generation

Hardware random number generators (RNGs) provides important foundations

in building secure systems. For example, true randomness is a critical ingredient

in many cryptographic primitives and security protocols; random numbers are

often required to generate secret keys or prevent replays in communications.

While pseudo-random number generators are often used in todays systems,

they cannot provide true randomness if a seed is reused or predictable. As an

example, a recent study showed that reuse of virtual machine (VM) snapshots

can break the Transport Level Security (TLS) protocol due to predictable ran-

dom numbers [1]. Given the importance of a good source of randomness, high

security systems typically rely on hardware RNGs. Instead of requiring custom

hardware modules for RNGs, we found that analog noise in Flash memory bits

can be used to reliably generate true random numbers. An interesting finding

is that the standard Flash chip interface can be used to put a memory bit in

partially programmed state so that the internal noise can be observed through

the digital interface. There exist two sources of true randomness in Flash bits,

Random Telegraph Noise (RTN) and thermal noise. While both sources can be

leveraged for RNGs, our scheme focuses on RTN, which is quantum noise. Un-

2

like thermal noise, which can be reduced significantly at extremely low temper-

atures, RTN behavior continues at all temperature ranges. Moreover, the quan-

tum uncertainty nature of RTN provides a better entropy source than system

level noises which rely on the difficulty of modeling complex yet deterministic

systems. Our algorithm automatically selects bits with RTN behavior and con-

verts RTN into random binary bits. Experimental results demonstrate that the

RTN behavior exists in Flash memory and can be converted into random num-

bers through the standard Flash interface. The Flash-based RNG is tested using

the NIST test suite [2] and is shown to pass all tests successfully. Moreover, we

found that the RNG works even at a very low temperature (-80 C). In fact, the

RTN behavior is more visible at low temperatures. On our test platform, the

Flash RNG generates about 1K to 10K bits per second. Overall, the experiments

show that true random numbers can be generated reliably from off-the-shelf

Flash memory chips without requiring custom circuits.

1.3 Device Fingerprint

In addition to generating true random numbers, we also found that the standard

Flash interface can be used to extract fingerprints (or signatures) that are unique

for each Flash chip. For this purpose, our technique exploits inherent random

variations during Flash manufacturing processes. More specifically, we show

that the distributions of transistor threshold voltages can be measured through

the standard Flash interface using incremental partial programming. Experi-

mental results show that these threshold voltage distributions can be used as

fingerprints, as they are significantly different from chip to chip, or even from

location to location within a chip. The distributions also stay relatively stable

3

across temperature ranges and over time. Thanks to the large number of bits

(often several gigabits) in modern Flash chips, this technique can generate a

large number of independent fingerprints from each chip.

The Flash fingerprints provide an attractive way to identify and/or authen-

ticate hardware devices and generate device-specific keys, especially when no

cryptographic module is available or a large number of independent keys are

desired. For example, at a hardware component level, the fingerprints can be

used to distinguish genuine parts from counterfeit components without requir-

ing cryptography to be added to each component. The fingerprinting technique

can also be used for other authentication applications such as turning a Flash

device into a two-factor authentication token, or identifying individual nodes

in sensor networks.

While the notion of exploiting manufacturing process variations to generate

silicon device fingerprints and secret keys is not new and has been extensively

studied under the name of Physical Unclonable Functions (PUFs) [3], the Flash-

based technique in this paper represents a unique contribution in terms of its

practical applicability. Similar to true RNGs, most PUF designs require cus-

tom circuits to convert unique analog characteristics into digital bits. On the

other hand, our technique can be applied to off-the-shelf Flash without hard-

ware changes. Researchers have recently proposed techniques to exploit ex-

isting bi-stable storage elements such as SRAMs [4] or Flash cells [5] to gen-

erate device fingerprints. Unfortunately, obtaining fingerprints from bi-stable

elements requires a power cycle (power off and power on) of a device for ev-

ery fingerprint generation. The previous approach to fingerprinting Flash only

works for a certain types of Flash chips and takes long time (100 seconds for one

4

fingerprint) because it relies on rare errors called program disturbs. As an ex-

ample, we did not see any program disturbs in SLC Flash chips that we used in

experiments. To the best of our knowledge, the proposed device fingerprinting

techniques is the first that is fast (less than 1 second for a 1024-bit fingerprint)

and widely applicable without interfering with normal operation or requiring

custom hardware.

1.4 Information Hiding

This part introduces a technique to hide information in analog characteristics

of Flash memory in a way that the hidden bits are not visible at all from the

viewpoint of normal Flash memory content. More specifically, our technique

encodes a hidden bit in the program time of a group of Flash cells; a fast pro-

gram time encodes bit ’1’ and a slow program time encodes bit ’0’. We found

that writing 0 into a Flash cell incurs more stress on the cell than writing 1, which

in turn results in a larger decrease in the program time of the corresponding cell.

While the program time of individual cells cannot be accurately controlled, our

experiments demonstrate that bits can be reliably encoded in the program time

using many cells collectively.

While a number of steganography techniques have been developed previ-

ously [6, 7, 8], our Flash-based technique provides unique benefits compared to

typical digital steganography schemes where information is hidden in another

form of digital content such as images and documents. In particular, the hidden

information in Flash memory is decoupled from the Flash memory content and

instead tied to the physical object. The following summarizes the main benefits

5

of our scheme compared to digital steganography.

• Covert: The proposed technique does not change normal Flash operations

or content at all. As a result, inspecting the Flash memory content does

not reveal any hidden information. All Flash memory operations can still

be performed without any change, even with hidden information. In fact,

our experimental results suggest that even analog characteristics of Flash

memory such as page program/erase time do not change noticeably.

• Erase tolerant: The hidden information in Flash memory remains intact

even if the entire Flash memory is erased and programmed with new con-

tent. In fact, our experiments show that the hidden information can sur-

vive even hundreds of program/erase operations.

• Copy tolerant: In typical digital steganography, the cover text with hidden

information can be easily copied and stored so that it can be analyzed over

time. The hidden information in our technique, however, is tied to phys-

ical Flash memory and can only be accessed by measuring the program

time of individual memory cells while the Flash memory is in one’s pos-

session. Because modern Flash memory chips often contain tens or hun-

dreds of billions of memory cells, fully characterizing a Flash chip without

knowing the location of hidden bits is quite time consuming.

In a sense, the proposed information hiding technique is similar to physical

steganography methods where information is hidden in physical objects. For

example, people have used secret inks to write messages on blank parts of other

messages [9]. However, the proposed technique provides a couple of key bene-

fits over traditional physical steganography methods thanks to being electrical.

6

• No hardware modification: The proposed technique works on unmodi-

fied Flash chips using the standard interface. In fact, the technique can be

implemented as a software program as long as a low-level Flash interface

is exposed.

• High capacity: Thanks to the high capacity of Flash memory, our tech-

nique provides a fairly high capacity compared to traditional physical

steganography techniques. For example, even if we hide one bit for every

512 Flash cells, a 8GB Flash chip can contain 16MB of hidden information.

Given the ubiquity of Flash memory and the easy applicability of the pro-

posed scheme on commercial Flash chips, we believe that the technique can en-

able a number of interesting applications. An obvious application of the infor-

mation hiding in Flash is a secure and covert storage of data [10]. For example,

a user can hide sensitive information in the Flash memory of a smartphone with

confidence that others cannot retrieve the information even when the phone is

lost or stolen. Information hiding provides an additional layer of protection

on top of typical encryption by preventing an adversary from reading or even

copying the ciphertext.

On the other hand, the capability to covertly communicate may be misused

to bypass legitimate access control policies. For example, in the business world,

the hidden information in Flash may be misused to export trade secrets. In this

sense, this study points out the potential danger.

Another traditional application of information hiding is watermarking [11].

In particular, given that the hidden information is tied to a physical Flash mem-

ory chip, the proposed technique can be used to embed watermarking in devices

with Flash memory. For example, mobile or embedded devices may be water-

7

marked to help retrieve them when lost or stolen. Similarly, the watermarks can

be used to distinguish genuine devices from low-quality counterfeits.

8

CHAPTER 2

FLASH MEMORY BACKGROUND

This section provides background material on Flash memory and its oper-

ating principles to aid understanding of our Flash-based information hiding

scheme.

2.1 Floating Gate Transistors

Flash memory is composed of arrays of floating-gate transistors. A floating-gate

transistor is a transistor with two gates, stacked on top of each other. One gate

is electrically insulated (floating). Figure 2.1 shows an example of a floating-

gate device. The control gate is on top. An insulated conductor, surrounded by

oxide, is between the control gate and the channel. This conductor is the floating

gate. Information is stored as the presence or absence of trapped charge on the

floating gate. The trapped negative charge reduces the current flowing through

the channel when the N-type MOS transistor is on. This current difference is

sensed and translated into the appropriate binary value.

Flash cells without charge on their floating-gate allow full current flow in

the channel and hence are read as a binary “1”. The presence of charge on

the floating-gate will discourage the presence of current in the channel, making

the cell store a “0”. Effectively, the charge on the floating-gate increases the

threshold voltage (Vth) of a transistor. Single-level cells (SLC) store one bit of

information per cell by using two threshold voltage levels. Multi-level cells

(MLC) store more than one bit by more finely dividing the threshold voltage

levels: for example, four levels can be used to store two bits per cell.

9

Figure 2.1: Flash memory cell based on a floating gate transistor.

2.2 Flash Organization and Operation

At a high-level, Flash memory provides three major operations: read, erase,

and program (write). In order to read a bit in a Flash cell, the corresponding

transistor is turned on and the amount of current is detected. A write to a Flash

cell involves two steps. First, an erase operation pushes charge off the floating-

gate by applying a large negative voltage on the control gate. Then, a program

(write) operation stores charge on the floating-gate by selectively applying a

large positive voltage if the bit needs to be zero.

An important concept in Flash memory operation is that of pages and blocks.

Pages are the smallest unit in which data is read or written, and are usually

2KB to 8KB. Blocks are the smallest unit for an erase operation and made up of

several pages, usually 32 - 128 pages. Note that Flash does not provide bit-level

program or erase. To read an address from a Flash chip, the page containing the

address is read. To update a value, the block that includes the address must be

first erased. Then, the corresponding page is written with an update and other

10

pages in the block are restored.

2.3 Aging

Flash requires high voltages to store and erase information. The voltages in-

volved place great stress on the device oxide; each program operation and each

erase operation slightly damages the oxide, wearing out the device. After thou-

sands of program and erase cycles, the oxide could have sustained enough dam-

age to render the bit non-operational, leaving it in a stuck-at state or in a leaky

state that cannot reliably hold information over a period of time. Flash is usu-

ally guaranteed by the manufacturer up to a certain number of program and

erase cycles.

Even before failures, the stress causes the cell’s analog characteristics to

change. In particular, the program time that is required to flip a state from

’1’ to ’0’ for a cell tends to reduce as the number of program/erase (PE) cycles

increases for that cell. We exploit this program time shift in order to hide infor-

mation.

2.4 Partial Programming

Our information hiding scheme relies on the measurement of program time, the

time it takes to program a Flash cell, at individual cell granularity. However, the

standard Flash memory interface requires all bits in a page to be programmed

together. Normally, a program operation on a page is held for a long enough

11

time that any cell level variation within a page is overcome. Therefore, the nor-

mal program time only reveals how long programming the entire page takes,

not how long it takes to program individual bits.

To find the program time on a per-cell basis, we use a technique called “par-

tial programming” [12]. The standard Flash memory interfaces allow the “par-

tial program” of a cell by aborting a program operation before completion. If

the program operation is interrupted, the Flash cell may be in an unreliable state

that could be interpreted as 1 or 0. Further “partial programs” will accumulate

charge on the floating gate and eventually result in the cell entering a stable

programmed state, as if a full program was applied. Effectively, the number of

partial program operations to flip a bit from 1 to 0 represents the program time

for the bit. In this sense, we use the “partial programming” technique to to find

program time for individual cells. After a partial program to a page, we read the

page and record the state of each bit. When a bit changes to the programmed

state (from 1 to 0), we note the number of partial programs required to flip the

bit as the bit’s program time.

12

CHAPTER 3

RANDOM NUMBER GENERATION

This chapter first introduces random telegraph noise (RTN) which is a type

of quantum noise. We then show the noise extraction method from the digital

interface of flash memory followed by random number generation algorithms.

Experimental results and evaluation are presented. Finally, we discuss possible

application scenarios and related work.

3.1 Theory and Implementation

3.1.1 Random Telegraph Noise (RTN)

The proposed RNG uses a device effect called Random Telegraph Noise (RTN)

as the source of randomness. In general, RTN refers to the alternating capture

and emission of carriers at a defect site (trap) of a very small electronic device,

which generates discrete variation in the channel current [13]. The capture and

emission times are random and exponentially distributed. RTN behavior can be

distinguished from other noise using the power spectrum density (PSD), which

is flat at low frequencies and 1/f 2 at high frequencies. In Flash memory, the

defects that cause RTN are located in the tunnel-oxide near the substrate. The

RTN amplitude is inversely proportional to the gate area and nearly tempera-

ture independent. As Flash memory cells shrink, RTN effects become relatively

stronger and their impact on the threshold distribution of Flash memory cells,

especially for multi-level cells, can be significant. Because RTN can be a ma-

jor factor in Flash memory reliability, there have been a large number of recent

13

studies on RTN in Flash memory from a reliability perspective [14, 15, 16]. While

RTN is a challenge to overcome from the perspective of Flash memory opera-

tions, it can be an ideal source of randomness. RTN is caused by the capture

and emission of an electron at a single trap, and is a physical phenomenon with

random quantum properties. Quantum noise can be seen as the gold-standard

for random number generation because the output of quantum events cannot

be predicted. As Flash memory cells scale to smaller technology nodes, the

RTN effect will become stronger. Moreover, RTN behavior will still exist with

increasing process variation and at extremely low temperatures.

3.1.2 Noise Extraction from Digital Interface

As digital devices, Flash memory is designed to tolerate analog noise; noise

should not affect normal memory operations. In order to observe the noise for

random number generation, a Flash cell needs to be in an unreliable state be-

tween well-defined erase and program states. Interestingly, we found that Flash

cells can be put into the in-between state using the standard digital interface. In

a high level, the approach first erases a page, issues a program command, and

then issues a reset command after an appropriate time period to abort the pro-

gram. This procedure leaves a page partially programmed so that noise can

affect digital outputs. We found that the outcome of continuously reading a

partially programmed bit oscillates between 1 and 0 due to noise.

For Flash memory in practice, experiments show that two types of noise co-

exist: thermal noise and RTN. Thermal noise is white noise that exists in nearly

all electronic devices. RTN can be observed only if a surface trap exists, the

14

Figure 3.1: Thermal noise in Flash memory (time domain).

RTN amplitude is larger than that of thermal noise, and the sampling frequency

(speed for continuous reads) is high enough. If any of these three conditions is

not satisfied, only thermal noise will be observed as in Figure 3.1. In the case

of thermal noise, a bit oscillates between the two states quickly, and the power

spectral density (PSD) indicates white noise.

In the case that the RTN amplitude is comparable to thermal noise, a com-

bination of RTN and thermal noise is observed as shown in Figure 3.2. This

is reflected by the density change of 1s in the continuous reading. A moving

average on the time domain helps to visualize the density change. The PSD

of the result shows 1/f 2 spectrum at low frequencies and becomes flat at high

frequencies.

In some cases, the RTN amplitude is very high and dominates thermal noise.

As a result, only RTN behaviors are visible through digital interfaces for these

bits. As shown in Figure 3.3, continuous reads show clear clusters of 1s and 0s

in the time domain. The power spectral density (PSD) of these bit sequences

shows a clear RTN pattern of 1/f 2.

15

(a)

(b)

Figure 3.2: RTN with thermal noise in Flash memory. (a) Time domain. (b)
Moving average of 29 points on the time domain.

For a bit with nearly pure RTN behavior, we further validated that the error

pattern corresponds to RTN by plotting the distributions of up and down peri-

ods. As shown in Figure 3.4, both up time and down time nicely fit an expo-

nential distribution as expected. Overall, our experiments show that both RTN

and thermal noise exist in Flash memory and can be observed through a digital

interface. While both noise types can be used for random number generation,

we focus on RTN, which is more robust to temperature changes.

16

Figure 3.3: RTN in Flash memory (time domain).

3.1.3 Random Number Generation Algorithms

In Flash memory devices, RTN manifests as random switching between the

erased state (consecutive 1s) and programmed state (consecutive 0s). At a high-

level, our Flash random number generator (RNG) identifies bits with RTN be-

havior, either pure RTN or RTN combined with thermal noise, and uses a se-

quence of time in the erased state (called up-time) and the time in the pro-

grammed state (called down-time) from those bits. In order to produce ran-

dom binary outputs, the RNG converts the up-time and down-time sequence

into a binary number sequence, and applies the von Neumann extractor for de-

biasing. We found that thermal noise itself is random and does not need to be

filtered out.

Algorithm I shows the overall RNG algorithm. To generate random numbers

from RTN, the first step is to identify bits with RTN or both RTN and thermal

noise. To do this, one block in Flash memory is erased and then multiple incom-

plete programs with the duration of T are applied. After each partial program,

a part of the page is continuously read N times and the outcome is recorded for

17

(a)

(b)

Figure 3.4: (a) Distribution of time in the programmed state. (b) Distribu-
tion of time in the erased state.

each bit. In our experiments, we chose to read the first 80 bits (10 bytes) in a

page for 1,000 times. For each bit that has not been selected yet, the algorithm

checks if RTN exists using CheckRTN() and marks the bit location if there is

RTN. As an optimization, the algorithm also records the number of partial pro-

grams when a bit is selected. The algorithm repeats the process until all bits

are checked for RTN. The second step is to partially program all of the selected

bits to an appropriate level so that they will show RTN behavior. Finally, the

18

Algorithm I Overall Flash RNG algorithm

Erase a block;

Num = 0;
do

Partially program a page for T;
Num++;

Read Nbytes in a page N times, and record a
trace for each bit trace[bit];
For each bit in Nbytes, not selected yet

If (CheckRTN(trace[bit]) == true)
Selected[bit] = yes;
NumProgram[bit] = Num;

End for
repeat until most bits are programmed.

ProgramSelectBits(Selected);

Read selected bits M times, and record up-time and down-time;
For each bit

ConvertToBinary(rawdata);
End for

Figure 3.5: Overall Flash RNG algorithm

algorithm reads the selected bits M times, records a sequence of up-time and

down-time for each bit, and converts the raw data to a binary sequence.

The function CheckRTN() in Algorithm II determines whether there is RTN

in a bit based on a trace from N reads. The algorithm first filters out bits that

almost always (more than 98%) produce one result, either 1 or 0. For the bits

with enough noise, the algorithm uses the power spectral density (PSD) to dis-

tinguish RTN from thermal noise; PSD for RTN has a form of 1/f 2 at a high

frequency. To check this condition, the algorithm computes the PSD, and con-

verts it to a log-scale in both x and y axes. If the result has a slope less than

19

Algorithm II Determine whether there is RTN in a bit

If trace[bit] has over 98% 1/0s
Return false;

End if

Calculate the power spectrum density (PSD);
Convert PSD to the log scale in both x-y;
If PSD slope is always < Tslope for all high frequency (> Tfreq)

Return RTN
End if

If PSD slope is < Tslope at least one interval (Invl) at a high frequency (> Tfreq)
Return RTN-Thermal

End if

Figure 3.6: Determine whether there is RTN in a bit

Tslope (we use -1.5, the ideal value is -2) for all frequencies higher than Tfreq

(we use 200Hz), the algorithm categorizes the bit as RTN only. If the PSD has a

slope less than Tslope for any interval larger than than Invl (we use 0.2) at a high

frequency, the bit is categorized as a combination of RTN and thermal noise.

The function ProgramSelectBits() in Algorithm III programs selected bits to

a proper level where RTN can be observed. Essentially, the algorithm aims to

take each bit to the point near where they were identified to have RTN. The

number of partial programs that were required to reach this point before were

recorded in NumProgram[Bit]. For each selected bit, the algorithm first per-

forms partial programs with the duration of T based on the number recorded

earlier (NumProgram[Bit]-K). Then, the algorithm performs up to L more par-

tial program operations until a bit shows RTN behavior. The RTN behavior is

checked by reading the bit N times, and see if the maximum of moving averages

is greater than a threshold (TMax = 0.7) and the minimum is less than another

threshold (TMin = 0.3).

20

Algorithm III Program selected bits to proper levels
where RTN could be observed.

For each selected bit
Do (NumProgram[bit]-K) partial programs;

do {
Partially program the bit for T;

Read the bit N times;
Find Max and Min for moving averages;

If Max > TMax and Min < TMin
Break;

End if
} repeat up to L times

End for

Figure 3.7: Program selected bits to proper levels where RTN could be ob-
served.

Algorithm IV Convert the raw data to binary random sequence.

If the bit has both RTN and thermal noise
For each up/down-time in raw data

Output = LSB(up/down-time);
End for

End if

If the bit has only RTN
do {

For each up/down-time in raw data
Output = LSB(up/down-time);
Shift right up/down-time by one bit;

End for
} repeat until all up/down time are zero;

End if

Perform von Neumann de-biasing

Figure 3.8: Convert the raw data to binary random sequence.

21

Finally, the function ConvertToBinary() converts the raw data to a binary

random sequence. For bits with both RTN and thermal noise, the up-time and

down-time tend to be short. So only the LSBs of these numbers are used. Es-

sentially, for every up-time and down-time, the algorithm produces 1 if the time

is odd and 0 otherwise. Effectively, this is an even-odd scheme. For bits with

perfect RTN behavior, up-time and down-time tend to be longer and we use

more LSBs from the recorded up/down-time. In this case, we first produce a

bit based on the LSB, then the second LSB, the third LSB, and so on until all

extracted bits become 0. Finally, for both methods, we apply the von Neumann

de-biasing method. The method takes two bits at a time, throws away both bits

if they are identical, and takes the first bit if different. This process is described

in Algorithm IV.

The stability of the bits in the partially programmed state is also important.

We define the stability as how long a bit stays in the partially programmed state

where RTN behavior can be observed. This is determined by the retention time

of the Flash memory chip and the amplitude of the RTN compared to the de-

signed noise margin. Assume the amplitude of the RTN is Ar, the noise margin

of Flash memory is An, and the Flash retention time is 10 year, then the stable

time for random number generation after partial programming will be roughly

Ts = Ar/An ∗ 10 years. This means that after time Ts, a bit needs to be reset and

reprogrammed. In our experiments, the bit that is shown in Figure 3.4 was still

showing ideal RTN behavior even after 12 hours.

22

Figure 3.9: Flash test board.

3.2 Experimental Results

This section presents evaluation results for the random number generation tech-

niques for Flash memory devices. The two main metrics for random number

generation are randomness and throughput. For security, the RNG must be

able to reliably generate true random numbers across a range of environmental

conditions over time. For performance, higher throughput will be desirable.

3.2.1 Evaluation Setup

Our experiments use a custom Flash test board as shown in Figure 5.8. The

board is made entirely with commercial off-the-shelf (COTS) components with

a custom PCB. There is a socket to hold a Flash chip under test, an ARM mi-

croprocessor to issue commands and receive data from the Flash chip, and a

23

Manufacturer Part Number Size Qty Process

Hynix HY27UF084G2B 4 Gbit 10 5xnm class
SLC

Micron MT29F2G08ABA 2 Gbit 24 34nm
EAWP-IT:E4 SLC

Micron MT29F16G08CB 16 Gbit 5 –
ACAWP:C MLC

Numonyx NAND04GW 4 Gbit 3 57nm
3B2DN6 SLC

Table 3.1: Tested Flash chips.

Maxim MAX-3233 chip to provide a serial (RS-232) interface. USB support is

integrated into the ARM microcontroller. We also wrote the code to test the de-

vice. The setup represents typical small embedded platforms such as USB Flash

drives, sensor nodes, etc. This device shows that the techniques can be applied

to commercial off-the-shelf devices with no custom integrated circuits (ICs).

The experiments in this paper were performed with four types of Flash

memory chips from Numonyx, Micron and Hynix, as shown in Table 5.1.

3.2.2 Randomness

Historically, three main randomness test suites exist. The first one is from Don-

ald Knuths book The Art of computer Programming (1st edition, 1969) [17]

which is the most quoted reference in statistical testing for RNGs in literature.

Although it was a standard for many decades, it appears to be outdated in to-

days view and it allows many bad generators to pass the tests. The second one

is the diehard test suite from Florida State University. The test suite is stringent

in the sense that they are difficult to pass. However, the suite has not been main-

tained in recent years. Therefore, it was not selected as the tests for this study.

24

The third one is developed by National Institute of Standards and Technol-

ogy (NIST) which is a measurement standard laboratory and a non-regulatory

agency of the United States Department of Commerce. The NIST Statistical Test

Suite is a package consisting of 15 tests that were developed to test the ran-

domness of arbitrary long binary sequences produced by either hardware or

software. The test suite makes use of both existing algorithms from past liter-

atures and newly developed tests. The most updated version, sts-2.1.1, which

was released in August 11, 2010, is used in our randomness tests. TABLE 3.2

summarizes the 15 NIST tests [2].

Figure 3.10 shows one test result for the even-odd scheme, which only used

an LSB from the up-time and down-time, when bits with both RTN and ther-

mal noise are used. 10 sequences generated from multiple bits are tested and

each sequence consists of 600,000 bits. Note that some of the results are not

shown here due to the space constraint. NonOverlappingTemplate, RandomEx-

cursions and RandomExcursionsVariant have a lot of tests. In the result above,

the proportion in the second column shows the proportion of the sequences

which passed the test. If the proportion is greater than or equal to the threshold

value specified at the bottom of the figure (8 out of 10 or 4 out of 5), then the

data is considered random. The P-value in the first column indicates the unifor-

mity of the P-values calculated in each test. If P-value is greater than or equal

to 0.0001, the sequences can be considered to be uniformly distributed [2]. The

result indicates that the proposed RNG passes all the NIST tests.

We also tested random numbers from one bit with only RTN behavior, us-

ing multiple bits from up-time and down-time. In this case, we generated ten

200,000-bit sequences from one bit. The data passed all NIST tests with results

25

Test Name Test Description

1 The Frequency Tests proportion of zeros and
(Monobit) Test ones for the whole sequence.
2 Frequency Test Tests the proportions of ones
within a Block within M-bit Block.
3 The Run Test Tests the total number of runs in the

sequence, where a run is an uninterrupted
sequence of identical bits

4 Tests for the Longest- Tests the longest run of ones within M-bit
Run-of-Ones in a Block Block and consistency with theory
5 The Binary Matrix Tests rank of disjoint sub-matrices
Rank Test of the entire sequence and independence
6 The Discrete Fourier Tests the peak heights in the Discrete Fourier
Transform (Spectral) Test Transform of the sequence, to detect periodic

features that indicates deviation of randomness
7 The Non-overlapping Tests the number of occurrences of
Template Matching Test a pre-specified target strings
8 The Overlapping Tests the number of occurrences of a
Template Matching Test pre-specified target strings. When window

found, slide only one bit before the next search
9 Maurers Universal Tests the number of bits
Statistics Test between matching patterns
10 The Linear Tests the length of a linear feedback
Complexity Test shift register, test complexity
11 The Serial Test Tests the frequency of all

possible overlapping m-bit pattern
12 The Approximate Tests the frequency of all possible overlapping
Entropy Test m-bits pattern across the entire sequence
13 The Cumulative Tests maximal excursion from the random walk
Sums (Cusums) Test defined by the cumulative sum of adjusted

(-1, +1) digits in the sequence
14 The Random Tests the number of cycles having exactly K
Excursion Test visits in a cumulative sum random walk
15 The Random Excursions Tests the total number of times that a particular
Variant Test state is visited in a cumulative sum random walk

Table 3.2: Summary of the NIST test suite

26

Figure 3.10: NIST test suite results for bits with RTN and thermal noise.

that are similar to the above case. For the Universal test, which requires a se-

quence longer than 387,840 bits, we used five 500,000-bit sequences.

3.2.3 Performance

The throughput of the proposed RNG varies significantly depending on the

switching rate of individual bits, sampling speed and environment conditions.

Typically, only a small fraction of bits show pure RTN behavior with minimal

27

Chip Hynix Numonyx Micron Micron
SLC SLC SLC MLC

Reading speed (KHz) 46.51 45.25 43.10 17.78
Number of bits characterized 303 478 1030 134
Number of bits identified 9 16 5 0
Max throughput (bits/sec) 8.03K 5.35K 2.71K –
Ave. throughput (bits/sec) 3.27K 1.79K 848.29 –
Min throughput (bits/sec) 107.04 34.77 8.14 –

Table 3.3: Performance of bits with pure RTN behavior.

Chip Hynix Numonyx Micron Micron
SLC SLC SLC MLC

Reading speed (KHz) 46.51 45.25 43.10 17.78
Number of bits characterized 303 478 1030 134
Number of bits identified 27 81 58 28
Max throughput (bits/sec) 11.48K 9.68K 10.03K 3.83K
Ave. throughput (bits/sec) 3.28K 3.87K 3.53K 1.26K
Min throughput (bits/sec) 28.39 10.21 8.14 55.12

Table 3.4: Performance of bits with both RTN and thermal noise.

thermal noise. TABLE 3.3 shows the performance of Flash chips from four

manufacturers. The average throughput ranges from 848 bits/second to 3.37

Kbits/second. Note that the fastest switching trap that can be identified is lim-

ited by the reading speed in our experiments.

If bits with both RTN and thermal noise are also used, the percentage of bits

which can be used for RNG can be much higher. The performance of these bits

from the same Flash chips as in the pure RTN case is shown in TABLE 3.4. The

average throughputs are higher because thermal noise is high frequency noise.

In our tests, the RNG throughput is largely limited by the timing of the asyn-

chronous interface which is controlled by an ARM microcontroller with CPU

frequency of 60MHz and the 8-bit bus for a Flash chip. We believe that the

RNG performance can be much higher if data can be transferred more quickly

28

through the interface. As an example, the average for RTN transition time is re-

ported to range from 1 microsecond to 10 seconds [18]. If a 128 bytes can be read

in 6 microseconds which is the ideal random cache read speed for the Micron

SLC chips, a RTN bit with 0.1ms average transition time will give approximately

20 Kbits/second throughput. Note that one page could have multiple RTN bits

and our algorithm allows using multiple bits in parallel so that the aggregated

throughput of an RNG can be much higher. For example, if N bits can be read

at a time, in theory, that can increase the throughput by a factor of N.

3.2.4 Temperature Variations

For traditional hardware RNGs, low temperatures present a particular chal-

lenge because thermal noise, which they typically rely on, can be reduced with

the temperature. To study the effectiveness of the Flash-based RNG in low

temperatures, we tested the scheme at two low temperature settings: one in

a freezer, which is about -5C, and the other in dry ice, which is about -80C.

The generated random sequences are tested individually as well as combined

together with data from experiments at room temperature. All of them passed

the NIST test suite without a problem, showing that our technique is effective

at low temperatures.

Note that the experiments for temperature variations and aging are per-

formed with a setup where data from Flash memory are transferred from a

testbed to a PC through an USB interface. The post processing is performed on

the PC. The USB interface limits the Flash read speed to 6.67KHz. As a result,

the throughput in this setup is noticeably slower than the results in previous

29

subsections where the entire RNG operation is performed on a microcontroller.

To understand the impact of temperature variations on the Flash-based

RNG, we tested the first 80 bits of a page from a Numonyx chip. At room tem-

perature, 62 bits out of the 80 bits showed oscillations between the programmed

state and erased state. 14 bits out of the 62 bits were selected by the selection

algorithm, which identifies bits with pure RTN or both RTN and thermal com-

ponents. The throughputs of the 14 bits are shown in Figure 3.11.

Figure 3.12 and Figure 3.13 show the performance of the RNG at -5 C and

-80 C, respectively. At -5 C, 79 bits out of 80 bits showed noisy behavior and 20

out of 79 bits were selected by the RNG algorithm as ones with RTN. At -80 C,

72 bits out of 80 bits showed noise and 28 out of 72 bits were selected as the ones

with RTN. On average, we found that per-bit throughput is slightly decreased

at low temperatures, most likely because of reduced thermal noise and possibly

because of slowed RTN switching. However, the difference is not significant. In

fact, a previous study [19] claimed that RTN is temperature independent below

10 Kelvin. Interestingly, we found that the number of bits that are selected by

our algorithm as ones with RTN behavior increases at a low temperature. This

trend is likely to be because the low temperature decreases thermal noise ampli-

tude while RTN amplitude stays almost the same and the RTN traps slow down

so that they become observable at our sampling frequency.

3.2.5 Aging

Flash devices wear-out over time as more program/erase (P/E) operations are

performed. A typical SLC Flash chip has a lifetime of 1 million P/E cycles. In the

30

Figure 3.11: Throughputs under room temperature.

Figure 3.12: Throughput at -5 C.

context of RNGs, however, we do not think that wear-outs cause concerns. In

fact, aging can create new RTN traps and increase the number of bits with RTN.

To check the impact of aging on the RNG, we tested the scheme after 1,000 P/E

operations and 10,000 P/E operations as shown in TABLE 3.5. The RNG outputs

passed the NIST test suite in both cases and did not show any degradation in

performance.

31

Figure 3.13: Throughputs at -80 C.

Stress (P/E) Bits with noise Bits selected Ave. throughput (bits/sec)
1,000 64 9 303.26

10,000 70 15 239.66

Table 3.5: Performance summary of RTN in stressed pages

The table shows an interesting trend that more bits show RTN behavior after

10,000 P/E cycles. The increase in noisy bits can potentially increase the overall

RNG throughput. One possible concern with aging is a decrease in stable time

period during which each bit shows noisy behavior. In our experiments, we

found that a bit can be used for random number generation for over 12 hours

after one programming (Algorithm III). If a bit is completely worn out, charge

can leak out more quickly, requiring more frequent calibration. However, given

that Flash memory is designed to have a retention time of 10 years within its

lifetime, we do not expect the leakage to be a significant problem. We plan to

perform larger scale experiments to understand how often a bit needs to be re-

programmed for reliable random number generation. In practice, a check can

also be added to ensure that a bit oscillates between 1 and 0.

32

3.3 Application Scenarios

This section briefly discusses how the Flash memory based security functions,

namely RNGs and device fingerprints, can be used to improve security of elec-

tronic devices. We first discuss where the techniques can be deployed and

present a few use cases.

The proposed Flash-based security techniques work with commercial off-

the-shelf Flash memory chips using standard interfaces. For example, our pro-

totype design is based on the Open NAND Flash Interface (ONFI) [20], which

is used by many major Flash vendors including Intel, Hynix, Micron, and San-

Disk. Other Flash vendors such as Samsung and Toshiba also use similar in-

terfaces to their chips. The proposed techniques can be applied to any Flash or

other floating-gate non-volatile memory, as long as one can control read, pro-

gram (write), and erase operations to specific memory locations (pages and

blocks), issue the RESET command and disable internal ECC. Embedded sys-

tems typically implement a Flash memory controller in software, exposing the

low-level Flash chip interface to a software layer. Our prototype USB board in

the evaluation section is an example of such a design. While we did not have

a chance to study details, the manual for the TI OMAP processor family [21],

which is widely used in mobile phones, indicates that its External Memory In-

terface (EMI) requires software to control each phase of NAND Flash accesses.

In such platforms where Flash accesses are controlled by software, our tech-

niques can be implemented as relatively simple software changes.

For large memory components such as SSDs, the low-level interfaces to Flash

memory chips may not be exposed to a system software layer. For example, SSD

33

controllers often implement wear-leveling schemes that move data to a new

location on writes. In such devices, the device vendor needs to either expose

the Flash interfaces to higher level software or implement the security functions

in firmware.

The Flash-based random number generator (RNG) can either replace or com-

plement software pseudo random number generators in any applications that

need sources of randomness. For example, random numbers may be used as

nonces in communication protocols to prevent replays or used to generate new

cryptographic keys. Effectively, the Flash memory provides the benefits of hard-

ware RNGs for systems without requiring custom RNG circuits. For example,

with the proposed technique, low-cost embedded systems such as sensor net-

work nodes can easily generate random numbers from Flash/EEPROM. Simi-

larly, virtual machines on servers can obtain true random numbers even without

hardware RNGs.

3.4 Related Work

Hardware random number generators generate random numbers from high-

entropy sources in the physical world. Theoretically, some random physical

processes are completely unpredictable. Therefore, hardware random number

generators provide better random numbers in terms of randomness than soft-

ware based pseudo-random number generators.

Thermal noise and other system level noise are the common entropy sources

in recently proposed hardware random number generators. In [22], the phase

noise of identical ring oscillators is used as the entropy source. In [23], the dif-

34

ferences in path delays are used. In [24] and [25], the metastability of flip-flops

or two cross coupled inverters are used. Basically, the entropy source of these

RNG designs is thermal noise and circuit operational conditions. These hard-

ware random number generators can usually achieve high throughput because

the frequency of the entropy sources is high. One common characteristic of these

hardware random generators is that they all need carefully designed circuits

where process variations should be minimized so that noises from the entropy

source can be dominant. Compared to this, the random number generation in

Flash memory cells does not require specially designed circuits and is more im-

mune to process variation. Moreover, our entropy source is based on quantum

behavior and theoretically, it should still work under extremely low tempera-

tures where thermal noise or other kinds of noise decrease dramatically.

35

CHAPTER 4

DEVICE FINGERPRINTS

4.1 Theory and Implementation

This section describes techniques to generate unique fingerprints from Flash

memory devices.

4.1.1 Sources of Uniqueness

Flash memory is subject to random process variation like any other semiconduc-

tor device. Because Flash is fabricated for maximum density, small variations

can be significant. Process variation can cause each bit of a Flash memory to dif-

fer from its neighbors. While variation may affect many aspects of Flash cells,

our fingerprinting technique exploits threshold voltage variations. Variations in

doping, floating gate oxide thickness, and control-gate coupling ratio can cause

the threshold voltage of each transistor to vary. Because of this threshold volt-

age variation, different Flash cells will need different times to be programmed.

4.1.2 Extracting Fingerprints

In this paper, we introduce a fingerprinting scheme based on partial program-

ming. We repeatedly partially program a page on a Flash chip. After each par-

tial program, some bits will have been programmed enough to flip their states

from 1 to 0. For each bit in the page, we record the order in which the bit flipped.

36

Algorithm V Extract the order in which bits in a page
reach the programmed state.

Choose a partial programming time T (below the
rated program time).

Nbits = number of bits in one page
Order = 1;
Initialize BitRank[Nbits] to 0.

do {
Partially program a page for T;
For all programmed bits do

BitRank[programmed bit] = Order;
End for
Order = Order + 1;

} repeat until most (99%) bits in the page are programmed

Figure 4.1: Extract the order in which bits in a page reach the programmed
state.

Pseudo-code is provided in Algorithm V. In our experiments, T is chosen to be

29.3us. A short partial program time provide a better resolution to distinguish

different bits with the cost of increased fingerprinting time. We do not enforce

all bits to be programmed, in order to account for the possibility of faulty bits.

4.1.3 Comparing Fingerprints

The fingerprints extracted from the same page on the same chip over time are

noisy but highly correlated. To compare fingerprints extracted from the same

page/chip and different pages/chips, we use the Pearson correlation coefficient

[5], which is defined as

P (x, y) =
E[(X − µX)(Y − µY)]

σXσY

(4.1)

37

where X is the vector of program orders extracted from one experiment and

Y is another vector of program orders extracted from another experiment. µX

and σX are the mean and standard deviation of the X vector. µY and σY are the

mean and standard deviation of the Y vector.

In this way, the vector of program orders is treated as a vector of real-

izations of a random variable. For vectors extracted from the same page,

Y = aX + b + noise where a and b are constants and the noise is small. So,

X and Y are highly correlated and the correlation coefficient should be close to

1. For vectors extracted from different pages, X and Y should be nearly indepen-

dent of each other, so the correlation coefficient should be close to zero. From

another perspective, if both X[i] and Y[i] are smaller or bigger than their means,

(X[i] − µX)(Y [i] − µY) would be a positive number. If not, it would be a nega-

tive number. If X and Y are independent, it is equally likely to be positive and

negative so the correlation coefficient would approach 0.

The scatter plot of X and Y from the same page/chip and from different

chips are shown in Figure 4.2. The figure clearly demonstrates a high correla-

tion between fingerprints from the same chip over time and a low correlation

between fingerprints from different chips. Therefore, this correlation metric can

be used to compare fingerprints to determine whether they are from the same

page/chip or from different pages/chips.

4.1.4 Fingerprints in Binary Numbers

The above fingerprints are in the form of the order in which each bit was pro-

grammed. If an application requires a binary number such as in generating

38

(a)

(b)

Figure 4.2: Scatter plot for fingerprints extracted on (a) the same page and
(b) different chips.

39

Algorithm VI Generate a binary signature from the partial
programming order information.

Pick threshold t = Max(BitRank)/2
For each bit

If BitRank[bit] > t
Output 1

Else Output 0
End for

Figure 4.3: Generate a binary signature from the partial programming or-
der information.

cryptographic keys, we need to convert the recorded ordering into a binary

number.

There are a couple of ways to generate unique and unpredictable binary

numbers from the Flash fingerprints. First, we can use a threshold to convert

a fingerprint based on the programming order into a binary number as shown

in Algorithm VI. In the algorithm, we produce 1 if the program order is high, or

0 otherwise. This approach produces a 1 bit fingerprint for each Flash bit. Alter-

natively, we can obtain a similar binary fingerprint directly from Flash memory

by partially programming (or erasing) a page and reading bits (1/0) from the

Flash.

4.2 Evaluation

The experiment setup and tested devices are the same as in the previous chapter.

For fingerprinting, we are interested in uniqueness and robustness of finger-

prints. The fingerprint should be unique, which means that fingerprints from

different chips or different locations of the same chip must be significantly dif-

40

ferent the correlation coefficient should be low. The fingerprint should also be

robust, in a sense that fingerprints from a given location of a chip must stay

stable over time and even under different environmental conditions the corre-

lation coefficient should be high.

In the experiments detailed below, we used 24 chips (Micron 34nm SLC),

and 24 pages (6 pages in 4 blocks) from each chip. 10 measurements were made

from each page. Each page has 16,384 bits.

4.2.1 Uniqueness

To test uniqueness, we compared the fingerprint of a page to the fingerprints

of the same page on different chips, and recorded their correlation coefficients.

A total of 66,240 pairs were compared (24 chips choose 2) * 24 pages * 10 mea-

surements. The results are shown in Figure 4.4. The correlation coefficients are

very low, with an average of 0.0076. A Gaussian distribution fits the data well,

as shown in red.

The correlation coefficients are also very low when a page is compared not

only to the same page on different chips, but also to different pages on the same

and different chips, shown in Figure 4.5. There are 1,656,000 pairs in comparison

((24 pages * 24 chips) choose 2) * 10 measurements. This indicates that finger-

prints from different parts (pages) of a chip can be considered as two different

fingerprints and do not have much correlation. Therefore, the fingerprinting

scheme allows the generation of many independent fingerprints from a single

chip. The average correlation coefficient in this case is 0.0072.

41

Figure 4.4: Histogram of correlation coefficients for pages compared to the
same page on a different chip (total 66,240 comparisons).

Figure 4.5: Histogram of correlation coefficients for every page compared
to every other page at room temp (total 1,656,000 comparisons).

42

Figure 4.6: Histogram of correlation coefficients for all intra-chip compar-
isons (total 25,920 comparisons).

4.2.2 Robustness

To test robustness, we compared each pages measurement to the 9 other mea-

surements of the same pages fingerprint (an intra-chip measurement). The his-

togram of results for all pages is shown in Figure 4.6. The correlation coefficient

for fingerprints from the same page is very high, with an average of 0.9673.

The minimum observed coefficient is 0.9022. The results show that fingerprints

from the same page are robust over multiple measurements, and can be easily

distinguished from fingerprints of a different chip or page.

To be used in an authentication scheme, one could set a threshold correlation

coefficient t. If, when comparing two fingerprints, their correlation coefficient is

above t, then the two fingerprints are considered to have come from the same

page/chip. If their correlation coefficient is below t, then the fingerprints are

assumed to be from different pages/chips.

In such a scheme, there is a potential concern for false positives and false

43

negatives. A false negative is defined as comparing fingerprints that are actually

from two different pages/chips, but deciding that the fingerprints are from the

same page/chip. A false positive occurs when comparing fingerprints from

the same page/chip, yet deciding that the fingerprints came from two different

pages/chips. The threshold t can be selected to balance false negatives and

positives. A high value of t would minimize false negatives, but increase the

chance of false positives, and vice versa.

To estimate the chance of false positives and false negatives, we fit normal

probability mass distribution functions to the correlation coefficient distribu-

tion. A false positive would arise from a comparison of two fingerprints from

the same page being below t. The normal distribution fitted to the intra-chip

comparison data in Figure 4.6 has an average µ = 0.9722 and a std. deviation of

0.0095. For a threshold of t = 0.5, the normal distribution function estimates the

cumulative probability of a pair of fingerprints having a correlation coefficient

below 0.5 as 2.62 ∗ 10539. At t = 0.7, the probability is estimated as 7.43 ∗ 10−181.

The normal distribution function fitted to the inter-chip comparison data in

Figure 4.5 has a µ = 0.0076 and a std. deviation of 0.0083. The estimated chance

of a pair of fingerprints from different chips exceeding t = 0.5 is 4.52∗10−815. At

t = 0.3, the probability is estimated as 6.14 ∗ 10−301.

The tight inter-chip and intra-chip correlations along with low probability

estimates for false positives or negatives suggest that the size of fingerprints can

possibly be reduced. Instead of using all 16,384 bits in a page, we can generate

a fingerprint for a 1024-bit, 512-bit, or even only a 256-bit block. Experiments

show that the averages of the observed correlation coefficients remain similar

to those when using every bit in a page while the standard deviation increases

44

by a factor of 2-3. However, the worst-case false negative estimates remain low.

When using 256 bit fingerprints with the threshold t = 0.3, the estimate is 7.91 ∗

10−7. Under the same conditions, using 1024 bit fingerprints gives an estimated

3.20 ∗ 10−22 chance of a false negative.

4.2.3 Temperature Variations and Aging

To see how robust the fingerprints are across different temperatures. We ex-

tracted fingerprints from chips at two other ambient temperatures, 60 C and -5

C. We tested a subset of the chips tested at room temperature 6 pages (3 pages

in 2 blocks) in 6 chips.

Of interest is how fingerprints from the same page/chip, but taken at dif-

ferent temperatures, compare. Figure 4.7 shows the results of the intra-chip

comparison between each temperature pair. Correlations remain high for fin-

gerprints from the same page/chip, indicating that fingerprints taken at differ-

ent temperatures can still be identified as the same. The average correlation

coefficient is lower than when compared without a temperature difference, but

is still sufficiently high to have very low false positive rates.

Comparing fingerprints from the same page at the same temperature at -5

C or 60 C still yields high correlation coefficients, as expected. Comparisons of

fingerprints from different pages/chips at different temperatures give very low

correlation coefficients.

Flash chips have a limited lifetime, wearing out over many program/erase

(P/E) cycles. For a pages fingerprint to be useful over time, fingerprints taken

45

Figure 4.7: Average, minimum, and maximum correlation coefficients for
intra-chip comparisons between different ambient tempera-
tures.

Figure 4.8: Average, minimum, and maximum correlation coefficients for
comparisons between fresh and stressed Flash.

46

later in life should still give high correlation with younger fingerprints. Fig-

ure 4.8 shows the results of comparing fingerprints for the same page/chip

taken when a Flash chip is new to fingerprints taken after a different number of

P/E cycles. While the average correlation coefficient goes down noticeably, we

note that it appears to bend towards an asymptote as the chip wears out. Even

after 500,000 P/E cycles, which is beyond the typical lifetime of Flash chips, the

average coefficient is still high enough to distinguish fingerprints of the same

page/chip from fingerprints acquired from a different page/chip.

However, we found that an extreme wear-out such as 500,000 P/E cycles

can raise a non-negligible false positive concern (10−4) for short 256 or 512-bit

fingerprints. This result indicates that we need longer fingerprints if they need

to be used over a long period of time without a re-calibration.

4.2.4 Security

An attacker could attempt to store the fingerprints of a Flash device and replay

the fingerprint to convince a verifier that he has the Flash chip in question. If the

attacker cannot predict which page(s) or parts of a page (for shorter signatures)

will be fingerprinted, he would need to store the fingerprints for every page to

ensure success. The Flash chips in our experiments required about 800 partial

program cycles per fingerprint. As the fingerprint comprises the order in which

the bit was programmed, each bits ordering could be stored as a 10-bit number.

To store an entire chips fingerprints would require 10x the chip storage.

Acquiring a single fingerprint is relatively fast. Our setup could record an

entire pages fingerprint in about 10 seconds. However, there are 131,072 pages

47

on our (relatively small) test chip; characterizing one chip would take about 2

weeks. The characterization time depends on the speed of the Flash interface,

and we plan to further investigate the limit on how fast fingerprints can be char-

acterized.

4.2.5 Applicability to Multiple Flash Chips

Most of the above experimental results are obtained from the Micron SLC Flash

memory. In order to answer the question of whether the proposed techniques

are applicable to Flash memory in general, we have repeated both RNG and

fingerprinting tests on four types of Flash memory chips in Table 5.1, including

an MLC chip.

The experiments showed that RNG and fingerprinting both work on all four

types of Flash chips, with comparable performance. Detailed results are not

included as they do not add new information.

While we found that the proposed algorithm works without any change in

most cases, there was one exception where the fingerprinting algorithm needed

to be slightly modified in order to compensate for systematic variations for cer-

tain manufacturers. For example, for the Hynix and Numonyx chips, we found

that bits from the even bytes of a page tend to be programmed quicker than

bits from the odd bytes. Similarly, for the MLC chip, bits in a page divide into

two groups: a quickly programmed group and a slowly programmed group.

To accommodate such systematic behaviors, the fingerprinting algorithm was

changed to only compare programming ordering of bits within the same group.

48

4.3 Application Scenarios

One application of the Flash device fingerprints is to identify and/or authenti-

cate hardware devices themselves similar to the way that we use biometrics to

identify humans.

As an example, let us consider distinguishing genuine Flash memory chips

from counterfeits through an untrusted supply chain. Recent articles report

multiple incidents of counterfeit Flash devices in practice, such as chips from

low-end manufacturers, defective chips, and ones harvested from thrown-away

electronics, etc. [5, 26, 27]. The counterfeit chips cause a serious concern for con-

sumers in terms of reliability as well as security; counterfeits may contain mali-

cious functions. Counterfeits also damage the brand name for a manufacturer.

The Flash fingerprints can enable authentication of genuine chips without

any additional hardware modifications to todays Flash chips. In a simple pro-

tocol, a Flash manufacturer can put an identifier (ID) to a genuine chip (write to

a location in Flash memory), generate a fingerprint from the chip, and store the

fingerprint in a database along with the ID. To check the authenticity of a Flash

chip from a supply chain, a customer can regenerate a fingerprint and query the

manufacturers database to see if it matches the saved fingerprint.

In order to pass the check, a counterfeit chip needs to produce the same

fingerprint as a genuine one. Interestingly, unlike simple identifiers and keys

stored in memory, device fingerprints based on random manufacturing varia-

tions cannot be controlled even when a desired fingerprint is known. For ex-

ample, even legitimate Flash manufacturers cannot precisely control individual

transistor threshold voltages, which we use to generate fingerprints. To pro-

49

Figure 4.9: Device authentication through a challenge-response protocol.

duce specific fingerprints, one will need to create a custom chip that stores the

fingerprints and emulates Flash responses.

The authentication scheme can be strengthened against emulation attacks by

exploiting a large number of bits in Flash memory. Figure 4.9 illustrates a mod-

ified protocol that utilizes a large number of fingerprints that can be generated

from each Flash chip. Here, we consider a Flash chip as a function where a dif-

ferent set of bits that are used to generate a fingerprint is a challenge, and the

resulting fingerprint is a response. A device manufacturer, when in possession

of a genuine IC, applies randomly chosen challenges to obtain responses. Then,

these challenge-response pairs (CRP) are stored in a database for future authen-

tication operations. To check the authenticity of an IC later, a CRP that has been

previously recorded but has never been used for a check is selected from the

database, and a re-generated response from a device can be checked.

Unless an adversary can predict which CRPs will be used for authentication,

the adversary needs to measure all (or at least a large fraction) of possible fin-

50

gerprints from an authentic Flash chip and store them in an emulator. In our

prototype board, a generation of all fingerprints from a single page (16K bits)

takes about 10 seconds and requires 10 bits of storage for each Flash bit. For

a 16Gbit (2 GB) Flash chip, which is a moderate size by todays standards, this

implies that fully characterizing the chip will take hundreds of days and 20 GB

storage. In the context of counterfeiting, such costs are likely to be high enough

to make producing counterfeits economically unattractive.

The security of the authentication scheme based on Flash fingerprints can be

further improved if an additional control can be added to the Flash interface.

For example, imagine using a USB Flash memory as a two-factor authentication

token by updating its firmware to have a challenge-response interface for Flash

fingerprints. Given that authentication operations only need to be infrequent,

the USB stick can be configured to only allow a query every few seconds. If a

fingerprint is based on 1024 Flash bits, fully characterizing an 8 GB USB stick

can take tens of years.

In addition to device identification and authentication, the Flash fingerprints

can be used as a way to produce many independent secret keys without addi-

tional storage. In effect, the proposed Flash fingerprints provide unpredictable

and persistent numbers for each device. Previous studies such as fuzzy extrac-

tors [28] and Physical Unclonable Functions (PUFs) [3] have shown how sym-

metric keys (uniformly distributed random numbers) can be obtained from bio-

metric data or IC signatures from manufacturing variations by applying hash-

ing and error correction. The same approach can be applied to Flash fingerprints

in order to generate reliable cryptographic keys. A typical Flash with a few GB

can potentially produce tens of millions of 128-bit symmetric keys.

51

4.4 Related Work

Instead of conventional authentication based on a secret key and cryptographic

computation, researchers have recently proposed to use the inherent variation

in physical characteristics of a hardware device for identification and authen-

tication. Process variation in semiconductor foundries is a common source of

hardware uniqueness which is out of the control of the designer [29, 30, 31]. A

unique fingerprint can be extracted and used to identify the chip, but cannot be

used for security applications because it can be simply stored and replayed. We

also take advantage of process variation for our fingerprinting scheme. For se-

curity applications, Physical Unclonable Functions (PUFs) have been proposed.

A PUF can generate many fingerprints per device by using complex physical

systems whose analog characteristics cannot be perfectly replicated. Pappu ini-

tially proposed PUFs [32] using light scattering patterns of optically transparent

tokens. In silicon, researchers have constructed circuits which, due to random

process variation, emit unique outputs per device. Some silicon PUFs use ring

oscillators [33] or race conditions between two identical delay paths [34]. These

PUFs are usually implemented as custom circuits on the chip. Recently, PUFs

have been implemented without additional circuitry by exploiting metastable

elements such as SRAM cells, which have unique value on start-up for each

IC instance [4, 35], or in Flash memories [5]. Our authentication scheme re-

quires no new circuitry and can be done with commercially available and ubiq-

uitous Flash chips. Unlike metastable elements, authentication does not require

a power cycle. The scheme can generate many fingerprints by using more pages

in the Flash chip. Acquiring a fingerprint is also faster and more widely appli-

cable than previous Flash authentication methods.

52

CHAPTER 5

HIDING INFORMATION IN FLASH MEMORY

5.1 Overview

5.1.1 Threat Model

Figure 5.1 shows the overview of the information hiding process in Flash mem-

ory. In order to hide information in Flash, Alice (left) first adds an error cor-

recting code (ECC) to her message payload and hides the payload in the analog

characteristics in Flash memory. Later, Alice (right) can perform the reverse

operations to retrieve the hidden payload by recovering bits from the analog

characteristics and correct errors using the ECC. The information hiding and re-

covery algorithms use a secret key (hiding key) to determine where the hidden

bits are stored in Flash memory. As error correcting codes are well studied, this

paper focuses on the physical encoding and decoding of information in Flash.

As shown in the figure, an adversary (Eve) gets temporary access to the

Flash memory after Alice hides information. We assume that the adversary can

inspect and manipulate the memory through its normal interface, but do not

consider physical tampering of the memory. In the simple case, the adversary

can check normal Flash operations such as program, erase, and read operations.

The adversary may also be aware of the information hiding technique and can

specifically check analog characteristics of Flash memory that can be observed

through the standard interface.

The goal of the adversary may differ depending on the target application. In

53

Encoder

(ECC)
Payload Hiding

Algorithm

Key

Decoder

(ECC)
PayloadRecovery

Algorithm

KeyAdversary

(Eve)

Alice Alice

Figure 5.1: The overview of the information hiding operation.

particular, the adversary may try to

• Detect the existence of hidden information,

• Retrieve the hidden information, or

• Remove the hidden information.

For example, in the traditional steganography context where Alice is trying to

establish a covert communication channel, it is important that the adversary

cannot easily detect the existence of hidden information. On the other hand, in

the context of storing sensitive information, it is more important that the adver-

sary cannot retrieve information without knowing the hiding key. For water-

marking, it should be difficult to erase the hidden information.

Given an unlimited amount of time with the Flash chip, an adversary can

break the information hiding scheme by trying the retrieval algorithm on all

pages with all possible hiding key values because we assume that an adversary

knows our hiding algorithm. Therefore, the goal of the hiding technique is to

54

make the detection, retrieval, and removal of hidden information sufficiently

time consuming for an attacker.

5.1.2 Flash Interface Requirements

The proposed technique is designed to work with Flash or other floating-gate

non-volatile memory, as long as one can control read, program (write), and erase

operations to specific memory locations (pages and blocks), issue the RESET

command, and disable internal ECC (if there is any). For example, our exper-

iments use off-the-shelf Flash chips that use the Open NAND Flash Interface

(ONFI) [20], which is used by many major Flash vendors including Intel, Hynix,

Micron, and SanDisk. Other Flash vendors such as Samsung and Toshiba also

use similar interfaces to their chips. In many embedded and mobile devices, the

required interface functions are already exposed to the software layers so that

the proposed technique can be simply implemented as a software update.

5.2 Information Hiding Algorithm

This section describes the encoding (hiding) and decoding (recovery) algo-

rithms for our information hiding scheme and the rationale for them.

5.2.1 Overview

Our scheme hides information in the program time of individual bits of Flash.

The program time is the time it takes for a bit to change from the erased state

55

Figure 5.2: Raw partial program number for each bit in an example page.

(1) to the programmed state (0). Normally, a Flash memory controller performs

a program operation at a page granularity, and the latency of this program op-

eration is determined by the slowest bit in a page to be successfully written. In

order to determine the program time for each bit, which we refer to as per-bit

program time, we use the partial programming technique that is described in the

previous section.

Figure 5.2 shows per-bit program times for a page. The plot shows the num-

ber of partial program operations to flip state from 1 to 0 for each bit in a page.

Because of process variations, the program time varies widely from bit to bit

as shown in the figure. The per-bit program time distribution for the page is

shown in Figure 5.3. The wide distribution and noisy appearance of per-bit

program times suggest that small changes to each bit’s program time would go

unnoticed, and could be used to carry a covert payload.

56

Figure 5.3: Partial program time distribution for bits in a page.

However, in order to hide information using the program time, we need to

be able to intentionally change and control each bit’s program time. Interest-

ingly, in this context, previous work has observed that program time tends to

decrease as a Flash cell becomes more worn-out [36, 5]. In this work, we also

found that how worn-out each bit is can be controlled by selectively stressing a

bit. Although one can only program an entire page together, we can stress some

bits within a page more than others by controlling the value that we write. Dur-

ing an erase operation, every bit in a page is reset to an erased state (for example,

assume that the erased state represents ’1’). On a program operation, only bits

that switch to 0 experience the program stress. When these bits are later erased,

they also experience erase stress as they are reverted to the 1 state. Therefore,

bits that undergo both switches (1 to 0 and 0 to 1) see the full program and erase

stress from one program and erase cycle. However, bits that store 1 will not

be switched to the 0 state by a program operation. These bits see much less

57

program and erase stress than their counterparts which are programmed to 0

because their states do not need to change. Therefore, by deciding whether to

write a 1 or a 0 to each bit location in a page, we can control which bits are

stressed more relative to other bits in the same page.

In theory, if every bit had a similar program time without much variation,

we could hide one bit of information in every Flash bit by simply stressing or

not stressing the bit so that its program time encodes the hidden bit. However,

in practice, the program times of individual bits vary significantly due to man-

ufacturing variations, and intentional stress is often not sufficient to overcome

the inherent variations; inherently slow bits will be likely to be still slower than

inherently fast bits even after being deliberately stressed. To address this issue,

we choose to encode 1 bit of hidden information using many bits in Flash mem-

ory. For each bit to hide, we choose a group of Flash bits and program them to

the same value, either 1 or 0. Effectively, this process encodes a bit in the collec-

tive program time of the group. The averaging effect reduces variations among

different groups and allows the hidden bit to be more reliably recovered.

The use of a group also improves the security of the hiding scheme. In our

scheme, we use a key (hiding key) to select which Flash bits will be grouped

together for each hidden bit. If an attacker does not know the correct key, he

or she cannot accurately identify which bits form a group together. Because an

incorrect group is likely to contain both more stressed and less stressed bits, the

average program time of an incorrect group of bits will not show a clear bias

towards either 1 or 0.

For example, Figure 5.4 shows the distribution of the average program time

of a correct group. In the experiment, we randomly selected 5,120 groups, each

58

Figure 5.4: The distribution of the average program time of a group with
a correct key.

of which has 128 bits from a page, and hid either 1 or 0. As shown in the figure,

these is an obvious gap in the distribution between the fast and slow groups.

Therefore, the value of hidden bits can be easily recovered through a simple

thresholding.

On the other hand, Figure 5.5 shows the distribution of the average program

time when the hiding key is unknown. In this experiment, we used a randomly

selected hiding key. As shown in the figure, the average program time of a

group shows a normal distribution without any clear separation. This result

suggests that it is difficult for an adversary to recover hidden information with-

out correct groupings because each group is likely to have both more and less

stressed bits.

59

Figure 5.5: The distribution of the average program time of a incorrect
group.

5.2.2 Hiding Algorithm

Figure 5.6 describes our methodology for hiding a payload in program time of

Flash memory. The algorithm is split into two parts: (A) composing the payload

by assigning bits of the message to groups of bits in Flash, and then (B) the actual

process of writing the payload to Flash by repeated program and erase stress.

For a given message, we first choose a set of pages and blocks in which to

encode the message based on the hiding key and the number bits that need to be

hidden. Then, we divide the bits within each page into fixed size groups. Each

group is used to store one message bit. The page, block, and group selections

are based on the hiding key in a way that cannot be predicted without the key.

In our implementation, we used RC4 to choose the Flash bit locations for each

message bit.

60

Algorithm I: Encoding

Part A – Composing the message
1 For each selected page in a block
2 Generate the group for each message bit via the page hiding key
3 Assign each group 0 or 1 according to the embedded data
4 For each bit
5 If its group will represent a message ”1”
6 Set it to be programmed 0
7 Else
8 Set it to be programmed 1
9 End if
10 End for
11 End for

Part B – Writing the message to Flash
1 For each selected block
2 For i = 1, 2, .., N (N is the number of Hiding PE cycles)
3 Erase the block
4 Program every selected page
5 End for
6 End for

Figure 5.6: An algorithm to encode (hide) a payload into Flash memory
program time.

Then, the algorithm determines which value (0 or 1) needs to be written to

each bit location based on the message bit to be encoded. If a group is to store a

“1” value, we will program (write a 0) the bits in the group, and the group will

experience full program and erase stresses. If a group is to store a “0” value, the

bits in the group will be set to 1, and will see less stress.

With the payload mapped to bits in Flash memory, we perform the actual

write (program/erase) to Flash (Part B). We decide on a set number of stresses

N to exert on the Flash. N is chosen to ensure an acceptable bit error rate with-

out causing excessive stress. Each page is programmed N times in order to

imprint the payload into the Flash. In our experiments, we found that several

61

hundred to a few thousand PE cycles are sufficient for SLC chips. An even

smaller amount of PE cycles are enough for MLC chips.

5.2.3 Recovery Algorithm

Figure 5.7 describes our algorithm to decode a payload hidden by our encod-

ing algorithm in Flash bit program time. Again, the algorithm is divided into

two parts: (A) physically reading the per-bit program time from Flash, and (B)

recomposing the payload from the program time distribution.

To read the hidden information, we must measure the program times for ev-

ery bit in the pages containing the hidden bits. To do so, we use the partial pro-

gramming algorithm described in the previous section. We choose M such that

at the end of M partial programs, more than half of the bits, are programmed.

The program time of a bit is expressed as the number of partial program cycles

needed to flip the bit from 1 to 0. For the bits that do not flip after the M partial

program operations, their program times are set to be a constant above M (i.e.

M + 1).

To reconstruct the payload from the per-bit program times, we apply two

thresholding steps. First, we compute the median program time X across all bits

within each page. Then, the program time of each bit within a page is quantized

based on the median; if a bit’s program time is above half the median program

time (X/2), then its program time is set to 1; otherwise it is set to 0. (X/2) was

chosen empirically.

The bits are then divided into the groups specified by the hiding key. Within

62

Algorithm II: Decoding

Part A – Reading the program time from Flash
1 For each selected block
2 Erase the block
3 Program every bit in the block to 0
4 Erase the block
5 For each selected page
6 For i = 1, 2, ...,M
7 Partial program the page to 0 (abort a program operation after time T)
8 Read the page
9 For each bit in the page
10 If the bit changed from 1 to 0
11 Set programtime for this bit to i
12 End if
13 End for
14 End for
15 For each bit
16 If the bit did not flip
17 Set its programtime to be M + 1
18 End if
19 End for
20 End for
21 Erase the block
22 End for

Part B – Extracting the payload message
1 For each selected block
2 For each selected page
3 Calculate the median X of the program times for all the bits
4 For each bit
5 If its programtime > (X/2)
6 Set programtime to 1
7 Else
8 Set programtime to 0
9 End if
10 End for
11 Generate the group for each message bit with the page hiding key
12 For each group
13 Calculate the average program time for the group
14 If the average is less than Th
15 Recover the message bit: 1
16 Else
17 Recover the message bit: 0
18 End if
19 End for
20 End for
21 End for

Figure 5.7: An algorithm to decode (recover) a payload from Flash mem-
ory program time.

63

each group, the average of each individual bit’s program times (now consisting

of only 1 and 0) is computed, and the second thresholding step is performed.

Each bit in the payload is set to 1 if the average program time of the corre-

sponding group is below the threshold Th. Otherwise, the bit is set to 0.

In practice, with sufficient hiding PE cycles, we saw that there exists an ob-

vious gap between the average program times of the more-stressed and less-

stressed groups. As a result, it is straightforward to set the threshold Th to

distinguish the two types of groups. For each page, we first sort the average

program time of each group. Suppose the sequence of sorted program times is

X0, X1, X2, ..., XN . Then we calculate the intervals between the sorted average

program times and get X1 − X0, X2 − X1, Suppose the maximum interval

is XM − XL, then we set the threshold to be in the middle of that interval;

Th = (XM +XL)/2. In this way, we can get a per-page threshold. For the cases

with low hiding PE cycles, where there is no clear gap between the two clusters,

the threshold is set to be a constant across pages based on the histogram of the

average program times from multiple blocks.

For simplicity, we describe and evaluate the algorithm for the case where

all bits within a selected page are used to hide bits. In order to make detection

more difficult, it is also possible to only use a small subset of bits within a page.

We leave this variant for future work.

5.3 Evaluation

In this section we evaluate the proposed scheme through experiments on Flash

chips. In addition to validating correct operation of the encoding and decoding

64

Figure 5.8: Flash test board.

algorithms, we also study the robustness across various design parameters, per-

formance, detectability, recovery without the hiding key, and erase tolerance.

5.3.1 Evaluation Setup

Testbed Device

Our experiments use a custom Flash test board as shown in Figure 5.8. The

board is made entirely with commercial off-the-shelf (COTS) components with

a custom PCB. There is a socket to hold a Flash chip under test, an ARM mi-

croprocessor to issue commands and receive data from the Flash chip, and a

Maxim MAX-3233 chip to provide a serial (RS-232) interface. USB support is

integrated into the ARM microcontroller. We also wrote the code to test the de-

vice. The setup represents typical small embedded platforms such as USB Flash

65

Manufacturer Part Number Size Qty Process

Hynix HY27UF084G2B 4 Gbit 1 5xnm class
SLC

Micron MT29F2G08ABA 2 Gbit 5 34nm
EAWP-IT:E4 SLC

Micron MT29F4G08ABA 4 Gbit 15 34nm
DAWP:D SLC

Micron MT29F16G08CB 16 Gbit 1 –
ACAWP:C MLC

Numonyx NAND04GW 4 Gbit 1 57nm
3B2DN6 SLC

Table 5.1: Tested Flash chips.

drives, sensor nodes, etc. This device shows that the techniques can be applied

to commercial off-the-shelf devices with no custom integrated circuits (ICs).

Flash Memory Chips

The experiments in this paper were performed with five types of Flash memory

chips from Numonyx, Micron, and Hynix. Table 5.1 shows their details. We

primarily performed experiments with Micron 4Gbit chips. Experiments using

other models will be marked.

In most experiments, we only used the first 4,096 bits of 16,896-bit pages

to avoid performance overheads given the limited amount of memory in the

microcontroller. We will refer to the first 4,096 bits as a “page” in the following

discussion. For the analyses of per-page read/program time and per-block erase

time, we used the entire page.

66

Figure 5.9: Influence of hiding stress on BER.

5.3.2 Robustness - Bit Error Rate

In this subsection, we first study whether the proposed scheme can reliably hide

and recover bits in the program time characteristics. Here, we use the bit error

rate (BER) as the metric for measuring robustness. To measure the BER, we hid

a randomly generated message into Flash memory and compared the retrieved

message with the original.

In the baseline experiment, we used the first 4,096 bits of a page and divided

them into 32 groups (128 bits each) based on a randomly selected hiding key.

Then, we selected multiple pages and blocks across a Flash chip to form 5,120

groups, which represent 5,120 hidden bits, and stored bits using 5,000 program

and erase (PE) cycles in the encoding process. In this case, we got a bit error rate

(BER) of 0.0029 (0.29%).

67

Figure 5.10: Influence of group size on BER.

Figure 5.9 shows the BER as a function of hiding stress, which is the number

of program/erase (PE) cycles used to stress each group in the hiding process.

The blue line shows the average BER using a single Micron 4Gbit chip. For each

data point in the figure, the BER is computed over 5,120 bits of hidden informa-

tion with the group size of 128 bits. For hiding stress levels of 2,500 and 5,000 PE

cycles, we also show the statistics across 15 Flash chips; the red triangles show

the average BER and the error bars show the maximum and minimum BERs

across the 15 chips. We can see that the BER decreases as the hiding stress in-

creases. More stress increases the program time difference between bits hiding

1s and 0s. However, the incremental benefit after 5,000 PE cycles is rather small.

Note that the typical lifetime of an SLC Flash chip from the datasheet is 100,000

PE cycles.

There is also a trade-off between the robustness of the scheme and its hid-

68

Figure 5.11: Influence of page interval on BER.

ing capacity. When more physical bits are included in a group, the capacity

decreases. On the other hand, the statistical variations among groups will de-

crease as the group size increases. Therefore, the BER decreases with an increas-

ing group size, as shown in Figure 5.10. It is also observed that neighboring

pages have a strong influence on each other; stressing one page may also cause

some stress in a neighboring page. To solve this problem, only a subset of pages

with a specific interval K can be used within a block. If K is 4, then only page

0, page 4, page 8, and so on are used to hide information while the rest is not

used. The influence of this page interval on the BER is shown in Figure 5.11.

The experimental results suggest that there is not much benefit to using a group

size beyond 128 and a page interval beyond 4 for these chips. Figure 5.10 and

Figure 5.11 were generated from the 2Gbit Micron chips, but we found that the

group size of 128 and page interval of 4 also work well for the 4 Gbit chips.

69

Figure 5.12: Influence of initial stress level on BER.

The effectiveness of the method on moderately used Flash chips is also stud-

ied. The influence of the initial stress level before the encoding process on the

BER is shown in Figure 5.12. Here, we aim to simulate the normal usage of the

Flash chip. So, in each program operation for the initial stress, random data are

programmed. For example, the BER at the initial stress level of 10 PE cycles

shows the error rate when bits are hidden after 10 PE cycles of programming

random data. It can be observed that as the initial stress level increases, the

BER also increases. However, a higher initial stress level can be tolerated by in-

creasing the stress level in the encoding process. Note that the error rate is still

manageable (less than 10-15%) even after hundreds of normal PE cycles.

The retention characteristics of the hiding scheme are shown in Table 5.2.

Note that since each decoding performs 2 PE cycles, these retention characteris-

tics include impacts from additional PE cycles in addition to the time between

70

5,000 Hiding PE 10,000 Hiding PE
BER after zero retention 0.0029 0.0021
(1 post PE cycle)
BER after 2-day retention 0.0141 0.0035
(3 post PE cycles)
BER after 3-day retention 0.0187 0.0045
(5 post PE cycles)
BER after over a month 0.0178 0.0031
retention(7 post PE cycles)

Table 5.2: Retention characteristics of the hidden message.

information hiding and retrieval. In the first three rows of Table 5.2, the BER

increases as retention time and post-hiding PE cycles increase. In the last row,

the BER actually decreases a little compared to the third row. The results sug-

gest that the retention time has little effect on the BER. Intuitively, given that the

hiding scheme utilizes cell aging, this result is also supported by the fact that

a worn-out Flash memory does not recover greatly even after having been left

unattended for a long time.

5.3.3 Performance

In our experiments, when a whole page is used for hiding, it takes about 123.6

seconds to perform 5,000 PE cycles of hiding stress on a block, which embeds

2,048 bits of information in the block. The hiding throughput is around 16.6

bits/second. The upper limit of the throughput can also be calculated using

the page program time and block erase time given in the Flash memory chip

datasheet. The typical page program time is 200 microseconds and the typical

block erase time is 700 microseconds. With 2,048 hidden bits in 16 pages of a

block, the 5,000 PE cycles will take (0.2 ∗ 16 + 0.7) ∗ 5, 000/1, 000 = 19.5 seconds.

The throughput will be about 105 bits/second. This is the ideal case which

71

does not include program data transfers and microcontroller overhead. The

hiding throughput will also be higher if we use a smaller number of PE cycles

for stressing, or if we use smaller groups.

In order to read the hidden information, one needs to obtain per-bit program

times using partial programming. The characterization speed depends on the

number of partial programs, M , used in the decoding algorithm. For reading

hidden bits (decoding), we only need to perform partial programs until more

than half of the bits flip. In our experiment, M for decoding is around 30, and

it takes around 3.63 seconds to characterize 16 pages, which contain 2,048 hid-

den bits. Therefore, the read throughput is about 564 bits/second. The read

throughput will be higher if the hiding scheme uses a smaller number of Flash

bits to encode each hidden bit.

For a detailed analysis to detect hidden bits (see 5.3.4), one needs to obtain

a complete program time distribution with a large M . In our testbed, it takes

612.6 seconds to characterize a block using M = 1, 200 even if we ignore data

transfer from the microcontroller to the host computer and processing time on

the host. A 4Gbit Flash memory chip has 4,096 blocks, so obtaining the complete

program time distribution of the whole chip will take around 29 days. Higher

capacity chips will take even more time to characterize for detection and decod-

ing. For comparison, simply reading the digital content from the 4Gbit Flash

chip will take approximately 4 minutes. Therefore, fully characterizing the en-

tire Flash chip without knowing where hidden information is located is quite

time consuming.

72

5.3.4 Detectability

The previous subsection shows that the per-bit program time in Flash memory

can be controlled sufficiently to reliably store hidden information. Here, we

discuss whether an attacker with access to a Flash chip can detect the existence

of hidden information. In essence, the question is whether variations in Flash

memory characteristics due to information hiding can be distinguished from

variations due to normal use.

The proposed information hiding scheme uses per-bit program time, which

is not visible from the digital content in a Flash memory device. Also, the hid-

ing operation does not change normal Flash functions; users can still read, erase,

and write Flash memory in the expected manner. Therefore, the hidden infor-

mation cannot be detected from the inspection of digital content. Instead, an

attacker needs to rely on checking the analog properties of the Flash memory.

The following list summarizes the steps that an attacker needs to take in

order to analyze the analog properties, and in particular, the timing properties,

of Flash memory.

1. Check for anomalies in timing of normal Flash operations.

2. Pick pages/blocks for more detailed analysis.

3. Collect per-bit program time for a selected page.

4. Analyze the per-bit program time distribution of a page.

5. Repeat Steps 2 to 4.

In order to determine whether a Flash chip contains hidden information or

not, an attacker can start by checking the timing of normal Flash operations

73

such as per-page program time and per-block erase time, which can easily be

obtained from normal operation. If these operations do not show any anomaly

– their timing is within the range of timing characteristics for normal use – then

the attacker needs to obtain and analyze per-bit program time by picking a page

for detailed analysis, collecting per-bit program times through partial programs,

and then running an analysis. If there is no way to identify suspicious pages

and blocks from normal operations, in the worst case, the attacker will need to

perform the detailed analysis for every single page in Flash memory, which will

take a long time.

In the rest of the subsection, we will discuss each step that the attacker needs

to take and whether the information that is hidden can be detected in each step.

Anomalies in Normal Flash Operations

Stressing a Flash chip may affect the analog characteristics of normal memory

operations such as page read time, page program time, and block erase time. If

these characteristics change significantly due to our scheme, an attacker could

use that to detect the existence of hidden information. Therefore, we first study

the impact of information hiding and normal Flash use on the page read time,

page program time, and the block erase time.

Using the Micron 4Gbit chips, we tested six hiding PE cycle counts (625,

1,250, 2,500, 5,000, 7,500, and 10,000) and five normal PE cycle counts (0, 32, 64,

128, 256) on 4 different chips. On each chip, we used 20 blocks, each containing

64 pages. Because we hide data once every fourth pages, only 16 pages within

each block are used to hide information. A normal PE cycle is performed by

74

writing randomly generated data to every page in a block, then erasing that

block, simulating wear from normal usage.

To study the impact of information hiding on the page read time, we mea-

sured the time to read pages (after performing an erase) when they were fresh

as well as after 5,000 hiding PE cycles. The read times were virtually identical

before and after the hiding stress, showing that the read time would not be a

good indicator for the existence of hidden information.

Figure 5.13 shows the program times for individual pages in two blocks from

one chip, one fresh block and the other with hidden information. As shown in

the figure, even though our hiding algorithm only uses every fourth page in

a block, there is no visible pattern in per-page program time. The figure also

shows that the program time of a page shows distinct values. The distribution

between the distinct program times may change as a page wears out with PE

cycles. However, we found that the possible program time values for each chip

stay the same across the range of stress levels in both normal usage and infor-

mation hiding cases.

Figure 5.14 shows the program time distributions across four chips for three

different stress levels: fresh, 5,000 hiding PE cycles, and 32 normal PE cycles.

The figure again shows that the program time falls into a small set of distinct

values even though there are more distinct values across 4 chips. More impor-

tantly, pages with and without hidden information share the same set of pro-

gram time values. Also, unlike per-bit program time, the experimental results

show that the page program time does not change significantly with stress, at

least for the particular 4Gbit chips that we tested. This is likely due to the fact

that the page program time is determined by the control circuit based on the

75

Figure 5.13: Program time for pages within a block.

slowest bit within a page. Therefore, each page’s program time by itself does

not show whether the page has hidden information or not.

Figure 5.15 and Figure 5.16 illustrate the block erase time distribution within

a chip and across 4 chips, respectively. Similar to the program time, the erase

time also falls into a few distinct levels, which are common across different

stress levels. On the other hand, the figures show that the erase time tends

to increase as the stress level increases. As a result, blocks with hiding stress

are more likely to have a long erase time compared to fresh block without any

stress. In that sense, the erase time may be used to distinguish fresh pages from

blocks with hidden bits. However, because both normal PE cycles and hiding

PE cycles increase the erase time, it is unclear how to distinguish blocks with

hidden information from blocks with normal PE stress based on the erase time

distribution (see Figure 5.16). We also found that there exist fairly large chip-

76

Figure 5.14: Program time histogram for three stress levels.

77

Figure 5.15: Erase time for 20 blocks within a chip.

to-chip variations. For example, some fresh chips may have over 50% of blocks

that show a long erase time even without any PE stress.

The experimental results so far show that there is no obvious pattern in pro-

gram time and erase time distributions to distinguish pages or blocks with hid-

den information from pages or block with normal PE stress. Yet, it may be

possible that there exists a pattern that is difficult to detect in human eyes. To

further study detectability of hidden information based on normal Flash oper-

ations timings, we tried a support vector machine (SVM) to predict whether a

page or a block has hidden information. A support vector machine is a machine

learning model that is widely used to recognize patterns and classify data sets.

We used libsvm, a popular SVM software package [37].

For the SVM experiments, we constructed multiple data sets using

pages/blocks with hidden information as well as pages/blocks with normal

78

Figure 5.16: Erase time histogram for three stress levels (across 4 chips).

79

Figure 5.17: SVM accuracy for detecting hidden information (per-page
analysis).

stress, combining data from one hiding stress level and one normal stress level.

We used two hiding stress levels (2,500 and 5,000 PE cycles) and five normal

stress levels (0, 32, 64, 128, 256 PE cycles), collected from 4 Flash chips. Then,

for each data set, the SVM was trained with data from 3 chips and then tested

on data from one remaining chip. This construction represents an idealistic sce-

nario for an attacker. In practice, the attacker will need to consider all possible

stress levels for both normal uses as well as hiding, which will add more varia-

tions.

Figure 5.17 shows the prediction accuracy when the SVM is given the pro-

gram time and erase time for each page individually without a notion of blocks.

The SVM performs relatively well when distinguishing fresh pages and pages

with hiding stress. However, the accuracy drops significantly when comparing

pages with hiding stress and pages with moderate levels of normal PE stress.

80

Figure 5.18: SVM accuracy for detecting hidden information (per-block
analysis).

In such cases, the accuracy is not much better than random guesses (50%). The

SVM performs better again for cases with high normal stress levels beyond 128

PE cycles because the normal stress exceeds the hiding stress level. In essence,

the results suggest that the SVM can distinguish pages with different stress lev-

els, but not pages with hiding stress and normal stress.

Figure 5.18 shows the accuracy of another SVM construction where the in-

put vectors were organized by block. In this design, each input is a vector of

program and erase time pairs for each page within a block, allowing the SVM

to see a pattern within a block instead of handling each page separately. The

goal of this SVM is to identify blocks with hidden information. The accuracy of

this SVM was similar to that of the per-page SVM. The SVM could distinguish

more stressed blocks from less stressed blocks, but not the hiding stress from

the normal stress.

81

While not shown here, we also tested cases where data from all stress levels

were combined together to form a large data set. We found that dealing with

multiple stress levels significantly reduces SVM prediction accuracy for both the

page-granularity analysis and the block-granularity analysis. The SVM predic-

tions were no better than random guesses.

The experimental results so far show that it is difficult to distinguish

pages/blocks with hiding stress from pages/blocks with normal stress even on

one particular Flash model (Micron 4Gbit). In practice, an adversary will also

need to deal with diversity and variations among multiple Flash manufacturers

and models, which will make detecting hidden bits even more difficult.

In fact, we found that analog characteristics of Flash memory varies signifi-

cantly from model to model. For example, we tested 2Gbit Flash chips from Mi-

cron, which have an identical specification with the 4Gbit chips except for the

capacity. Surprisingly, the 2GBit chips, although only a generation apart from

the 4Gbit chips, showed a markedly different behavior compared to the 4Gbit

chips. For 2Gbit chips, the PE stress had little impact on block erase time while

noticeably changing page program time. In essence, the 2Gbit chips showed

the opposite type of behavior as the 4Gbit chips where the erase time shows a

significant shift. In both cases, we still found that it is difficult to distinguish the

impact of hiding stress from that of normal stress.

The significant variations across Flash models imply that an attacker will

need to build and train an SVM model for each Flash chip model in order to use

the SVM for determining the existence of hidden data on a particular chip. Ob-

viously, this would require a significant investment on the part of the attacker.

Even then, as we have shown above, there is no guarantee that an SVM model

82

using normal Flash operations will be able to determine the existence of hidden

data with a high probability.

Page Selection and Per-Bit Program Time Collection

The study of normal Flash operations shows that an adversary cannot simply

determine whether a Flash chip has hidden information or not based on mea-

surements of normal Flash operation times. In essence, the hiding stress can-

not be effectively distinguished from normal PE stress. As a result, an attacker

needs to perform a more detailed analysis on per-bit program times in an at-

tempt to determine the existence of hidden data, which we will discuss next.

To perform the detailed analysis of each page, the attacker will have to char-

acterize each page. However, characterizing per-bit program time for every

page is quite a time-consuming process. As discussed in Section 5.3.3, a 4 Gbit

Flash memory chip requires around 29 days to characterize. For larger chips,

which are common today, the per-bit characterization will take even longer.

To avoid expensive characterization of every page, an attacker may be able

to use normal Flash operation times to select candidate pages for the detailed

analysis. For example, for the 4Gbit Micron chips, an attacker may consider

blocks with a higher erase time to be more likely to have hidden information.

However, the study in the previous subsection suggests that pages and blocks

with hiding stress can be hidden by stressing other blocks on the chip with a

moderate number of normal PE cycles.

83

Figure 5.19: Partial program number distribution curve averaged over 5
blocks.

Per-Bit Program Time Analysis

A more detailed detectability analysis involves analyzing the partial program

time distribution for bits within a page. In normal usage, the bits are pro-

grammed 0s and 1s randomly over time. In the hiding scheme, some bits are

always programmed 0s and others are always programmed 1s. However, the

hiding scheme does not cause an obvious bimodal distribution due to large in-

trinsic variations of bits in a page. Figure 5.19 shows the partial program time

distribution averaged over 5 blocks. It can be seen that they are very similar to

each other.

To statistically analyze the distributions, we turned to support vector ma-

chines again. To train an SVM for the per-bit analysis, we prepared pages across

2 different hiding PE stress levels (2,500 and 5,000) and 8 different normal wear

84

stress levels (32, 64, 128, 256, 512, 1,024, 2,048, and 4,096 PE cycles). We used 5

blocks on each chip, 16 pages per block, for a total of 80 pages per chip, at each

stress level; i.e. on one chip, there are 80 pages with a hidden message stressed

at 2,500 hiding PE cycles, 80 pages with a hidden message stressed at 5,000 hid-

ing PE cycles, 80 pages without hidden data stressed 32 normal PE cycles, and

so on. We characterized pages across 15 different chips. Each page represents a

data point in the SVM. The SVM had access to the complete raw data for each

page: the vector representing a page and an entry for each bit, with the entry’s

value as the partial program time.

We then grouped the data from all chips into multiple sets, combining one

hiding stress level and one normal stress level. For example, one data set com-

prises the hidden data with 2,500 hiding PE cycles and the data with 128 normal

PE cycles, another data set used 5,000 PE hidden data and 4,096 normal PE cy-

cles, and so on, with a data set for each combination of hiding and normal PE

cycles.

For each data set we labeled the hidden pages and non-hidden pages appro-

priately, trained the SVM with data from chips 1-10, and then used the resulting

SVM to predict data from chips 11-15. Overall prediction accuracy of the SVM

on test data from chips 11-15 is shown in Figure 5.20 and Figure 5.21.

Each data set is represented by a point in Figure 5.20. Normal PE stress level

is shown on the X-axis. The data sets sharing 2,500 hiding PE stress are con-

nected by a solid line; the data sets sharing 5,000 hiding PE stress are connected

by a dashed line. Accuracy is shown on the Y-axis.

Overall accuracy is slightly better than random (50%) for all data sets, with

85

Figure 5.20: SVM accuracy for detecting pages with hidden information
(using raw data).

Figure 5.21: SVM accuracy for detecting pages with hidden information
(using statistical moments).

86

Figure 5.22: Receiver operating characteristic curve for data set including
2500 hiding PE and 128 normal PE stresses.

increased accuracy near the extremes of normal PE stress cycles. This matches

the expectation that a given page with a certain hiding PE stress level looks

similar to a page with a certain normal PE stress level. The further the normal

PE stress level varies from the matching hidden PE stress level, accuracy should

increase.

The data sets in Figure 5.21 show the SVM accuracy using a different rep-

resentation for page characteristics. Instead of using the partial program count

for every single bit in a page, a page was summarized by several statistical pa-

rameters: minimum, maximum, average, variance, skew, and kurtosis. We can

see that prediction accuracy is similar to the SVM using the raw bit-level data.

Figure 5.22 shows a more detailed analysis of the SVM accuracy using the

87

Figure 5.23: BER as a function of the percentage of correct group members.

data set for 2,500 hiding and 128 normal stresses levels. The receiver operating

characteristic (ROC) curve plots the true positive rate versus the false positive

rate, and gives an indication of how accurate the SVM prediction is, for a given

false positive rate. The graph shows that the SVM prediction cannot achieve a

high true positive rate without incurring a large percentage of false positives.

We also note that detecting hidden information is likely to be even more

difficult in practice. For example, the hiding scheme may only use a subset of

a page instead of every bit. Also, a classifier such as an SVM will need to deal

with multiple stress levels together. We found that SVM accuracy is lower when

a data set contains multiple stress levels.

88

5.3.5 Retrieval without the Hiding Key

Without the hiding key, one can still attempt to extract the hidden information.

By estimating (through random guessing if necessary) which bits are grouped

together, an attempt at extraction could reveal data if enough of the estimate is

correct. Figure 5.23 shows the bit error rate versus the percentage of correctly

guessed group bits.

With a large enough group and page size, it is difficult to correctly guess

enough of the group members. For our group size of 128, the probability that

10% (13) of the bits in a randomly selected group of 128 bits belong to the desired

group is approximately
(

128

13

)

∗ (1/32)13; or 0.5%. As there are 32 groups of 128

bits in a 4,096 bit page, each bit has a 1/32 chance of being in the desired group.

Even at 10%, the bit error rate is approximately 0.4. The chance of guessing 20%

of the bits in a randomly selected group drops precipitously; it is 7.3e-11%. In

addition, an attacker would have to try several group sizes.

Group size is a security parameter that one can adjust in order to provide

greater or lesser protection against brute force group selection.

5.3.6 Erase Tolerance

To test the erase tolerance of the scheme, we deliberately stress the chip after

hiding information on the chip. For this post-hiding stress, we program every

bit of the page to 0, in order to put the maximum stress on the bits. The influence

of post-hiding stress on the BER versus the number of PE cycles performed after

hiding information is shown in Figure 5.24. From the figure, we can see that

89

Figure 5.24: Influence of post hiding PE cycles.

the BER increases as the post PE stress level increases. However, the BER of

hidden information is quite reasonable, even after hundreds of post PE cycles.

For example, with 5,000 hiding PE cycles, the BER is less than 10% even after

500 post-hiding stress cycles.

5.3.7 Different Flash Models

To ensure that our scheme applies more generally, we tested several different

Flash memory models (shown in Table 5.1). On all of the chips, we were able

to successfully hide and recover information. We noticed that chips from the

same manufacturer tend to perform similarly. For the Micron 2Gbit chips, 5

chips are tested using 10,000 hiding PE stress and 128-bit groups. The mean

BER for these five chips is 0.0030. The maximum BER and minimum BER are

0.0041 and 0.0016, respectively. Chips from different manufacturers perform

90

differently. The tested Hynix chip has a similar BER, 0.0021, as the Micron chips

in the same experiment. However, for the Hynix chips, page 0 is different from

other pages in a block and, in the decoding process, a different threshold Th

is needed to convert the average program time into the final binary bit for this

page. The tested Numonyx chip has a very large gap for the group averages

with the correct hiding key, making its BER 0 in our experiment.

We also included a multi-level cell (MLC) chip in our testing, as these chips

are commonly used. MLC chips map multiple bits to each memory cell. As a

result, one needs to know the mapping of bits to Flash cells to selectively stress

certain cells. For the Micron MLC chip we tested, we only used the upper page

in a pair of pages (as specified from the datasheet). We programmed 0 to the

bits which we want to stress and 1 to the rest of the bits. Then, we programmed

all of the bits to 1. Interestingly, we found that bits within a page split into a fast

group and a slow group in this MLC chip, and only the faster programming bits

worked for information hiding. The MLC chip required significantly fewer PE

cycles to achieve the same level of BER compared to the SLC chips. For example,

we used 2,000 PE cycles for our experiments and got a BER of zero – there was

a large gap between the more stressed and less stressed groups.

5.4 Related Work

This section briefly summarizes prior work in steganography technologies and

hardware security functions, and discusses how they are related to the informa-

tion hiding technique in this paper.

91

5.4.1 Steganography

With the advent of information technology, digital steganography has become

the subject of considerable study.

A large body of work has focused on hiding information within digital files,

such as images, videos, audio files, text, and others [38, 39, 40]. These schemes

usually hide data in unused meta-data fields, or by exploiting noise in the digital

content itself; i.e. altering colors slightly in an image or frequency components

in an audio file. In all cases the hidden data is tied to the data in the digital file. A

recent proposal [41] takes a different approach: using the fragmentation pattern

of digital files in a file system as a covert channel, avoiding tampering with the

digital content itself. However, hidden data is still innately tied to the existence

of a digital file. Also, modifying hard drive firmware has been investigated as

a potential way to hide information [42]. Data is hidden in sectors marked as

unusable at the firmware level (instead of the OS or filesystem level), which

renders the sectors inaccessible to most software and complicates recovery, as it

is difficult to tell legitimately bad sectors from ones used for hiding.

Our proposed scheme for Flash memory shares the concept of exploiting

noise to hide data, in the sense that intentionally created biases are hidden in

inherent variations in Flash program time. However, unlike the above meth-

ods, in which hidden information depends upon plainly visible digital files, our

information hiding scheme uses analog properties of Flash. As a result, hidden

information is decoupled from the digital content and instead tied to a physical

object. The use of physical properties makes detecting, copying, or erasing of

hidden information difficult because it requires detailed and time-consuming

analog measurements.

92

Some steganographic techniques hide information where it is not encoded in

plainly visible digital files. For example, there exist methods to hide information

in the noise of wireless and optical transmissions by modifying the physical

layer protocol [43, 44, 45]. Our work presents a new way to hide information in

Flash memory. Unlike previous techniques, which often require special tools or

modifications to existing protocols, the proposed information hiding technique

can be applied to Flash memory chip through a standard interface without any

hardware modification.

To make the steganographic functions available in the embedded domain,

Stanescu et al. proposed to use an FPGA to efficiently process steganographic

algorithms [46]. Our technique gives embedded platforms the ability to hide

info within the device at a level not visible to the file system, and requires no

additional hardware, as Flash memory is common on embedded platforms.

5.4.2 Flash Based Security

We hide a message in the per-bit program times of Flash memory. Given the

popularity of Flash memory in computing systems, there have been studies on

analog characteristics of Flash memory [36]. While we have gained insight from

the previous work, it primarily focuses on using analog variations to build more

efficient computing systems rather than enhancing security.

Recently, there have been proposals to use noise and variations in Flash

memory for security by generating true random numbers and unique chip fin-

gerprints [5, 12]. We use the partial programming technique that was proposed

by the previous study. However, this paper proposes a completely new appli-

93

cation of Flash memory in the context of information hiding instead of random

number generation and fingerprinting.

5.4.3 Physical Unclonable Functions

Physical Unclonable Functions (PUFs) exploit process variation to provide

unique fingerprints for logic circuits [3]. Special circuits are built that vary their

output depending on the process variation specific to one instance of the chip.

This work is related to PUFs in the sense that we exploit physical properties

and process variations for security purposes. However, unlike PUFs, our in-

formation hiding scheme uses process variations to hide information instead of

generating device-specific fingerprints and keys. Also, our information hiding

technique can be applied using standard Flash chips and does not require any

custom circuitry.

94

CHAPTER 6

CONCLUSION

In this work, we show that unmodified Flash chips are capable of providing

two important security functions: high-quality true random number genera-

tion and the provision of many digital fingerprints. Using thermal noise and

random telegraph noise, random numbers can be generated at up to 10Kbit

per second for each Flash bit and pass all NIST randomness tests. An authen-

tication scheme with fingerprints derived from partial programming of pages

on the Flash chip show high robustness and uniqueness. The authentication

scheme was tested over 24 pages with 24 different instances of a Flash chip

and showed clear separation. A Flash chip can provide many unique finger-

prints that remain distinguishable in various temperature and aged conditions.

Both random number generation and fingerprint generation require no hard-

ware change to commercial Flash chips. Because Flash chips are ubiquitous, the

proposed techniques have a potential to be widely deployed to many existing

electronic device though a firmware update or software change.

We also demonstrate a technique to hide information using the program time

of individual bits in Flash memory. Program time is an analog characteristic

of Flash and is not visible from digital content, does not affect normal mem-

ory operation, and survives Flash data erasure. Measuring program time can

be done over the standard Flash interface (with no hardware modification) via

partial programming. Using groups of bits to store one bit of payload allows

the technique to effectively hide information robustly with low bit error rates,

and makes detection difficult to prove unless one knows the hiding key. With-

out the key, measuring analog characteristics of the Flash chip reveals nothing

95

that cannot be explained by normal wear or manufacturing variation. We note

that retaining a copy of the entire analog characteristics of the Flash memory

requires a large amount of time.

96

BIBLIOGRAPHY

[1] Thomas Ristenpart and Scott Yilek. When good randomness goes bad: Vir-
tual machine reset vulnerabilities and hedging deployed cryptography. In
NDSS, 2010.

[2] Andrew Rukhin, Juan Soto, James Nechvatal, Miles Smid, and Elaine
Barker. A statistical test suite for random and pseudorandom number gen-
erators for cryptographic applications. Technical report, DTIC Document,
2001.

[3] G.E. Suh and S. Devadas. Physical Unclonable Functions for Device Au-
thentication and Secret Key Generation. In Proceedings of the 44th Design
Automation Conference, 2007.

[4] Patrick Koeberl, Jiangtao Li, Anand Rajan, Claire Vishik, and Wei Wu. A
practical device authentication scheme using sram pufs. In Trust and Trust-
worthy Computing, pages 63–77. Springer, 2011.

[5] Pravin Prabhu, Ameen Akel, Laura Grupp, Wingkei Yu, G.E. Suh, Ed-
win Kan, and Steven Swanson. Extracting Device Fingerprints from Flash
Memory by Exploiting Physical Variations. In Trust and Trustworthy Com-
puting, Lecture Notes in Computer Science. Springer Berlin / Heidelberg,
2011.

[6] Lisa M Marvel, Charles G Boncelet Jr, and Charles T Retter. Spread
spectrum image steganography. Image Processing, IEEE Transactions on,
8(8):1075–1083, 1999.

[7] Geoffrey B Rhoads. Steganography methods employing embedded cali-
bration data, June 3 1997. US Patent 5,636,292.

[8] Krista Bennett. Linguistic steganography: Survey, analysis, and robustness
concerns for hiding information in text. 2004.

[9] N.F. Johnson and S. Jajodia. Exploring Steganography: Seeing the Unseen.
Computer, 1998.

[10] Donovan Artz. Digital steganography: hiding data within data. internet
computing, IEEE, 5(3):75–80, 2001.

97

[11] Frank Y Shih. Digital watermarking and steganography: fundamentals and tech-
niques. CRC Press, Inc., 2007.

[12] Yinglei Wang, Wingkei Yu, G. Edward Suh, and Edwin Kan. Flash Mem-
ory for Ubiquitous Hardware Security Functions: True Random Number
Generation and Device Fingerprints. In Proceedings of the IEEE Symposium
on Security and Privacy, 2012.

[13] MJ Kirton and MJ Uren. Noise in solid-state microstructures: A new
perspective on individual defects, interface states and low-frequency (1/)
noise. Advances in Physics, 38(4):367–468, 1989.

[14] Hideaki Kurata, Kazuo Otsuga, Akira Kotabe, Shinya Kajiyama, Taro Os-
abe, Yoshitaka Sasago, Shunichi Narumi, Kenji Tokami, Shiro Kamohara,
and Osamu Tsuchiya. Random telegraph signal in flash memory: Its im-
pact on scaling of multilevel flash memory beyond the 90-nm node. Solid-
State Circuits, IEEE Journal of, 42(6):1362–1369, 2007.

[15] C Monzio Compagnoni, Michele Ghidotti, Andrea L Lacaita, Alessandro S
Spinelli, and Angelo Visconti. Random telegraph noise effect on the pro-
grammed threshold-voltage distribution of flash memories. Electron Device
Letters, IEEE, 30(9):984–986, 2009.

[16] Sung-Min Joe, Jeong-Hyong Yi, Sung-Kye Park, Hyungcheol Shin, Byung-
Gook Park, Young June Park, and Jong-Ho Lee. Threshold voltage fluctua-
tion by random telegraph noise in floating gate nand flash memory string.
Electron Devices, IEEE Transactions on, 58(1):67–73, 2011.

[17] Donald E Knuth. The art of computer programming, volume 1: fundamen-
tal algorithms. Addison-Wesley, Reading, Mass, 1973.

[18] Kenichi Abe, Akinobu Teramoto, Shigetoshi Sugawa, and Tadahiro Ohmi.
Understanding of traps causing random telegraph noise based on exper-
imentally extracted time constants and amplitude. In Reliability Physics
Symposium (IRPS), 2011 IEEE International, pages 4A–4. IEEE, 2011.

[19] John H Scofield, Nick Borland, and DM Fleetwood. Temperature-
independent switching rates for a random telegraph signal in a silicon
metal–oxide–semiconductor field-effect transistor at low temperatures. Ap-
plied Physics Letters, 76(22):3248–3250, 2000.

[20] Open NAND Flash Interface. http://onfi.org.

98

[21] Texas Instruments. Omap mobile processors, 2013.

[22] Berk Sunar, William J Martin, and Douglas R Stinson. A provably secure
true random number generator with built-in tolerance to active attacks.
Computers, IEEE Transactions on, 56(1):109–119, 2007.

[23] Charles W Odonnell, G Edward Suh, and Srinivas Devadas. Puf-based
random number generation. In MIT CSAIL CSG Technical Memo, 481, 2004.

[24] Mehrdad Majzoobi, Farinaz Koushanfar, and Srinivas Devadas. Fpga-
based true random number generation using circuit metastability with
adaptive feedback control. In Cryptographic Hardware and Embedded
Systems–CHES 2011, pages 17–32. Springer, 2011.

[25] C. Dike G. Cox and D. J. Johnston. Intels digital random number generator,
2011.

[26] EE Times.com. U.S.: Fake parts threaten electronic market, 2010.

[27] SOSFakeFlash. http://sosfakeflash.wordpress.com/.

[28] Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. Fuzzy extractors: How
to generate strong keys from biometrics and other noisy data. In Advances
in cryptology-Eurocrypt 2004, pages 523–540. Springer, 2004.

[29] D Boning and J Chung. Statistical metrology: Understanding spatial vari-
ation in semiconductor manufacturing. In Microelectronic Manufacturing
Yield, Reliability, and Failure Analysis II: SPIE 1996 Symp. On Microelectronic
Manufacturing, 1996.

[30] Keith A Bowman, Steven G Duvall, and James D Meindl. Impact of die-
to-die and within-die parameter fluctuations on the maximum clock fre-
quency distribution for gigascale integration. Solid-State Circuits, IEEE Jour-
nal of, 37(2):183–190, 2002.

[31] Sani R Nassif. Modeling and forecasting of manufacturing variations. In
Statistical Metrology, 2000 5th International Workshop on, pages 2–10. IEEE,
2000.

[32] Pappu Srinivasa Ravikanth. Physical one-way functions. PhD thesis, Mas-
sachusetts Institute of Technology, 2001.

99

[33] Blaise Gassend, Dwaine Clarke, Marten Van Dijk, and Srinivas Devadas.
Silicon physical random functions. In Proceedings of the 9th ACM conference
on Computer and communications security, pages 148–160. ACM, 2002.

[34] Jae W Lee, Daihyun Lim, Blaise Gassend, G Edward Suh, Marten Van Dijk,
and Srinivas Devadas. A technique to build a secret key in integrated cir-
cuits for identification and authentication applications. In VLSI Circuits,
2004. Digest of Technical Papers. 2004 Symposium on, pages 176–179. IEEE,
2004.

[35] Daniel E Holcomb, Wayne P Burleson, and Kevin Fu. Initial sram state as a
fingerprint and source of true random numbers for rfid tags. In Proceedings
of the Conference on RFID Security, volume 7, 2007.

[36] L.M. Grupp, A.M. Caulfield, J. Coburn, S. Swanson, E. Yaakobi, P.H. Siegel,
and J.K. Wolf. Characterizing Flash Memory: Anomalies, Observations,
and Applications. In Proceedings of the 42nd International Symposium on Mi-
croarchitecture, 2009.

[37] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for
support vector machines. ACM Transactions on Intelligent Sys-
tems and Technology, 2:27:1–27:27, 2011. Software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[38] Abbas Cheddad, Joan Condell, Kevin Curran, and Paul Mc Kevitt. Digital
Image Steganography: Survey and Analysis of Current Methods. Signal
Processing, 2010.

[39] N. Provos and P. Honeyman. Hide and Seek: An Introduction to Steganog-
raphy. IEEE Security & Privacy, 2003.

[40] F.A.P. Petitcolas, R.J. Anderson, and M.G. Kuhn. Information Hiding - A
Survey. Proceedings of the IEEE, 1999.

[41] Hassan Khan, Mobin Javed, Syed Ali Khayam, and Fauzan Mirza. Design-
ing a cluster-based covert channel to evade disk investigation and foren-
sics. Computers & Security, 30(1):35 – 49, 2011.

[42] Iain Sutherland, Gareth Davies, and Andrew Blyth. Malware and
Steganography in Hard Disk Firmware. Journal in Computer Virology, 2011.

[43] A.M. Mehta, S. Lanzisera, and K. Pister. Steganography in 802.15.4 Wire-

100

less Communication. In Proceedings of the 2nd International Symposium on
Advanced Networks and Telecommunication Systems, 2008.

[44] Krzysztof Szczypiorski and Wojciech Mazurczyk. Steganography in IEEE
802.11 OFDM Symbols. Security and Communication Networks, 2011.

[45] P.R. Prucnal, M.P. Fok, K. Kravtsov, and Zhenxing Wang. Optical Steganog-
raphy for Data Hiding in Optical Networks. In Proceedings of the 16th Inter-
national Conference on Digital Signal Processing, 2009.

[46] D. Stanescu, V. Stangaciu, I. Ghergulescu, and M. Stratulat. Steganography
on Embedded Devices. In Proceedings of the 5th International Symposium on
Applied Computational Intelligence and Informatics (SACI), 2009.

101

