
24  July/August 2008  ACM QUEUE rants: feedback@acmqueue.com

Flash storage  

Can flash memory become 

the foundation for a new tier  

in the storage hierarchy?



ACM QUEUE  July/August 2008  25  more queue: www.acmqueue.com

The past few years have been an exciting time for 
flash memory. The cost has fallen dramatically as 
fabrication has become more efficient and the mar-

ket has grown; the density has improved with the advent 
of better processes and additional bits per cell; and flash 
has been adopted in a wide array of applications. The 
flash ecosystem has expanded and continues to expand—
especially for thumb drives, cameras, ruggedized laptops, 
and phones in the consumer space. 

One area where flash has seen only limited success, 
however, is in the primary-storage market. As the price 
trend for flash became clear in recent years, the industry 
anticipated its ubiquity for primary storage, with some 
so bold as to predict the impending demise of rotating 
media (undeterred, apparently, by the obduracy of mag-

netic tape). Flash has not lived up to these high expecta-
tions, however. The brunt of the effort to bring flash to 
primary storage has taken the form of SSDs (solid-state 
disks), flash memory packaged in hard-drive form fac-
tors and designed to supplant conventional drives. This 
technique is alluring because it requires no changes to 
software or other hardware components, but the cost of 
flash per gigabyte, while falling quickly, is still far more 
than hard drives. Only a small number of applications 
have performance needs that justify the expense. 

Although flash’s prospects are tantalizing, the chal-
lenge is to find uses for it that strike the right balance 
between cost and performance. Flash should be viewed 
not as a replacement for existing storage, but rather as a 
means to enhance it. Conventional storage systems mix 

Today adam leventhal, 
sun Microsystems



26  July/August 2008  ACM QUEUE rants: feedback@acmqueue.com

DRAM (dynamic memory) and hard drives; flash is inter-
esting because it falls in a sweet spot between those two 
components for both cost and performance in that flash is 
significantly cheaper and denser than DRAM and signifi-
cantly faster than disk (see figure 1). Flash can accord-
ingly augment the system to form a new tier in the storage 
hierarchy—perhaps the most significant new tier since the 
introduction of the disk drive with RAMAC in 1956. 

ProPErtiEs of flAsh 
Flash has two distinct categories: NAND and NOR—desig-
nations that refer to the way the flash cells are arranged. 
NOR flash allows for random access and is best suited for 
random access memory, while NAND must be treated as 
blocks and is ideal for persistent storage. The rest of this 
article examines only NAND flash, the cheaper and more 
common variety, of which again there are two types: SLC 
(single-level cell) and MLC (multilevel cell). SLC stores a 
single binary value in each memory cell. The binary value 
is distinguished by two threshold voltages. MLC supports 
four or, recently, eight distinct values per memory cell, 
corresponding to two or three bits of storage. Because of 
its improved longevity and performance, the conven-
tional wisdom is that SLC is best suited for enterprise (i.e., 
nonconsumer-grade) solutions, so our focus here is on 

SLC flash, its cost, power dissipation, performance, and 
longevity as compared with DRAM and disk drives. 

The cost per unit of storage is what has brought flash 
to the forefront in recent years (see figure 2). Earlier this 
decade, flash costs were on par with those of DRAM; 
now, flash devices are much less expensive: $10-$35 per 
gigabyte for an SLC flash device compared with around 
$100 per gigabyte for DRAM. The cost trend appears to be 
continuing to widen the gap between flash and DRAM. 
Disk drives are still much cheaper than flash, weighing 
in at less than $1 per gigabyte for 7200-RPM drives and 
in the neighborhood of $3 per gigabyte for 15,000-RPM 
drives. 

The other exciting attribute of flash is its low power 
consumption. As the cost of power and the impetus 
toward green computing rise, so does the attractiveness 
of lower-power solutions. While completely accurate 
comparisons among flash, DRAM, and hard drives are 
difficult because of differences in capacity and interfaces, 
it’s fair to say that flash consumes significantly less power 
than those other system components, especially on a per-
gigabyte basis. Table 1 records the power consumption 
for some typical components to provide a broad sense for 
each type of device. 

Flash storage Today  

Price and Performance

10,000
DRAM
SSD
15k rpm drives

1,000

100

10

1

0.1
µsecs/read $/gb

1 fi
GU

rE

Recent Cost of Flash per GB

250

200

150

100

50

0
2003 2004 2005 2006 2007

2 fi
GU

rE



ACM QUEUE  July/August 2008  27  more queue: www.acmqueue.com

The performance of flash is a bit unusual in that it’s 
highly asymmetric, posing a challenge for using it in a 
storage system. A block of flash must be erased before it 
can be written, which takes on the order of 1-2 ms for a 
block, and writing to erased flash requires around 200-300 
µs. For this reason flash devices try to maintain a pool of 
previously erased blocks so that the latency of a write is 
just that of the program operation. Read operations are 
much faster: approximately 25 µs for 4k. By comparison, 
raw DRAM is even faster, able to perform reads and writes 
in much less than a microsecond. Disk-drive latency 
depends on the rotational speed of the drive: on average 
4.2 ms for 7200 RPM, 3 ms for 10,000 RPM, and 2 ms for 
15,000 RPM. Adding in the seek time bumps these laten-
cies up an additional 3-10 ms depending on the quality of 
the mechanical components. 

SLC flash is typically rated to sustain 1 million pro-
gram/erase cycles per block. As flash cells are stressed, they 
lose their ability to record and retain values. Because of 
the limited lifetime, flash devices must take care to ensure 
that cells are stressed uniformly so that “hot” cells don’t 
cause premature device failure. This is done through a pro-
cess known as wear leveling. Just as disk drives keep a pool 
of spare blocks for bad-block remapping, flash devices 
typically present themselves to the operating system as 
significantly smaller than the amount of raw flash to 
maintain a reserve of spare blocks (and pre-erased blocks 
for performance). Most flash devices are also capable of 
estimating their own remaining lifetimes so systems can 
anticipate failure and take prophylactic action. 

thE storAGE hiErArChy of todAy 
Whether over a network or for local access, primary 
storage can be succinctly summarized as a head unit 
containing CPUs and DRAM attached to drives either in 
storage arrays or JBODs (just a bunch of disks). The disks 
are the primary repository for data—typical modern data 
sets range from a few hundred gigabytes up to a petabyte 

or more—while DRAM acts as a very fast cache. Clients 
communicate via read and write operations. Read opera-
tions are always synchronous in that the client is blocked 
until the operation is serviced, whereas write operations 
may be either synchronous or asynchronous depending 
on the application. For example, video streams may write 
data blocks asynchronously and verify only at the end 
of the stream that all data has been quiesced; databases, 
however, typically use synchronous writes to ensure that 
every transaction has been committed to stable storage. 

On a typical system, the speed of a synchronous write 
is bounded by the latency of nonvolatile storage, as writes 
must be committed before they can be acknowledged. 
Read operations first check in the DRAM cache providing 
very low-latency service times, but cache misses must also 
wait for the slow procession of data around the spindle. 
Since it’s quite common to have working sets larger than 
the meager DRAM available, even the best prefetching 
algorithms will leave many read operations blocked on 
the disk. 

A brute-force solution for improving latency is simply 
to spin the platters faster to reduce rotational latency, 
using 15,000-RPM drives rather than 10,000- or 7,200-
RPM drives. This will improve both read and write 
latency, but only by a factor of two or so. For example, 
a 10-TB data set on a 7,200-RPM drive (from a major 
vendor, at current prices) would cost about $3,000 and 
dissipate 112 watts; the same data set on a 15,000-RPM 
drive would cost $22,000 and dissipate 473 watts—all 
for a latency improvement of a bit more than a factor of 
two. The additional cost and power overhead make this 
an unsatisfying solution, though it is widely employed 
absent a clear alternative. 

A focused solution for improving the performance of 
synchronous writes is to add NVRAM (nonvolatile RAM) 
in the form of battery-backed DRAM, usually on a PCI 
card. Writes are committed to the NVRAM ring buffer and 
immediately acknowledged to the client while the data 

is asynchronously written 
out to the drives. Once the 
data has been committed 
to disk, the corresponding 
record can be freed in the 
NVRAM. This technique 
allows for a tremendous 
improvement for synchro-
nous writes, but suffers 
some downsides. NVRAM 
is quite expensive; batter-
ies fail (or leak or, worse, 

Power Consumption Comparison

Device Approximate power consumption 

DRAM DIMM module (1 GB) 5W

15,000-RPM drive (300 GB) 17.2W 

7200-RPM drive (750 GB) 12.6W 

High-performance flash SSD (128 GB) 2W

1 tA
bl

E



28  July/August 2008  ACM QUEUE rants: feedback@acmqueue.com

explode); and the maximum size of NVRAM tends to be 
small (2-4 GB)—small enough that workloads can fill the 
entire ring buffer before it can be flushed to disk. 

flAsh As A loG dEviCE 
One use of flash is as a stand-in for NVRAM that can 
improve write performance as a log device. To that end 
you need a device that mimics the important properties 
of NVRAM (fast, persistent writes), while avoiding the 
downsides (cost, size, battery power). Recall, however, 
that while achieving good write bandwidth is fairly easy, 
the physics of flash dictate that individual writes exhibit 
relatively high latency. It’s possible, however, to build a 
flash-based device that can service write operations very 
quickly. This is done by inserting a DRAM write cache and 
then treating it as nonvolatile by adding a supercapacitor 
that, in case of power loss, provides the necessary power 
to flush outstanding data in the DRAM to flash. 

Many applications, such as databases, can use a dedi-
cated log device as a way of improving the performance 
of write operations; for these applications, such a device 
can be easily dropped in. To bring the benefits of a flash 
log device to primary storage, and therefore to a wide 
array of applications, we need similar functionality in a 
general-purpose file system. Sun’s ZFS provides a use-
ful context for the use of flash. ZFS, an enterprise-class 
file system designed for the scale and requirements of 
modern systems, was implemented from scratch starting 
in 2001. It discards the model of a file system sitting on a 
volume manager in favor of pooled storage for both sim-
plicity of management and greater flexibility for optimiz-
ing performance. ZFS maintains its on-disk data structures 
in a way that is always consistent, eliminating the need 
for consistency checking after an unexpected power fail-
ure. Furthermore, it is flexible enough to accommodate 
new technological advances, such as new uses of flash. 
(For a complete description of ZFS, see http://opensolaris.
org/os/community/zfs.) 

ZFS provides for the use of a separate intent-log device 
(a slog in ZFS jargon) to which synchronous writes can be 
quickly written and acknowledged to the client before the 
data is written to the storage pool. The slog is used only 
for small transactions, while large transactions use the 
main storage pool—it’s tough to beat the raw through

put of large numbers of disks. The flash-based log device 
would be ideally suited for a ZFS slog. The write buffer on 
the flash device has to be only large enough to saturate 
the bandwidth to flash. Its DRAM size requirements—and 
therefore the power requirements—are quite small. 
Note also that the write buffer is much smaller than the 
required DRAM in a battery-backed NVRAM device. There 
are effectively no constraints on the amount of flash that 
could be placed on such a device, but experimentation 
has shown that 10 GB of delivered capacity is more than 
enough for the vast majority of use cases. 

Using such a device with ZFS in a test system, we mea-
sured latencies in the range of 80-100 µs. This approaches 
the performance of NVRAM and has many other benefits. 
A common concern about flash is its longevity. SLC flash 
is often rated for 1 million write/erase cycles, but beyond 
several hundred thousand, the data-retention period can 
drop to just a few weeks. ZFS will write to this device 
as a slog in 8-KB chunks with each operation taking 80 
µs. On a device with 10 GB of raw flash, this equates to 
about 3½ years of constant use. A flash device with a 
formatted capacity of 10 GB will, however, typically have 
20-50 percent more flash held in reserve, easily taking 
the longevity of such a device under constant use to five 
years. The device itself can report its expected remaining 
lifetime as it counts down its dwindling reserve of spare 
blocks. Further, data need be retained only long enough 
for the system to recover from a fatal error; a reasonable 
standard is 72 hours, so a few weeks of data retention, 
even for very old flash cells, is more than adequate and a 
vast improvement on NVRAM. 

flAsh As A CAChE 
The other half of this performance picture is read latency. 
Storage systems typically keep a DRAM cache of data the 
system determines a consumer is likely to access so that 
it can service read requests from that cache rather than 
wait for the disk. In ZFS, this subsystem is called the ARC 
(adaptive replacement cache). The policies that determine 
which data is present in the ARC attempt to anticipate 
future needs, but read requests can still miss the cache as 
a result of bad predictions or because the working set is 
simply larger than the cache can hold—or 

Flash storage Today  



ACM QUEUE  July/August 2008  29  more queue: www.acmqueue.com

even larger than the maximum configurable amount 
of DRAM on a system. Flash is well suited for acting as 
a new second-level cache between memory and disk in 
terms of capacity and performance. In ZFS, this is called 
the L2ARC. 

ZFS fills the L2ARC using large asynchronous writes 
and uses the cache to satisfy read requests seamlessly 
from clients. The requirements here are a perfect fit for 
flash, which inherently has sufficient write bandwidth 
and fantastic read latency. Since these devices can be 
external—rather than being attached to the main board, 
as is the case with DRAM—the size of the L2ARC is lim-
ited only by the amount of DRAM required for bookkeep-
ing (at a ratio of 50:1 in the current ZFS implementation). 
For example, the maximum memory configuration on a 
four-socket machine is usually around 128 GB; such a sys-
tem can easily accommodate 768 GB or more using flash 
SSDs in its internal drive bays. ZFS’s built-in checksums 
catch cache inconsistencies and mean that defective flash 
blocks simply lead to fewer cache hits rather than data 
loss. 

In the context of the memory hierarchy, caches are 
often populated as entries are evicted from the previous 
layer—in an exclusive cache architecture, on-chip caches 
are evicted to off-chip caches, etc. With a flash-based 
cache, however, the write latency is so poor that the 
system could easily be bogged down waiting for evic-
tions. Accordingly, the L2ARC uses an evict-ahead policy: 
it aggregates ARC entries and predictively pushes them 
out to flash, thus amortizing the cost over large opera-
tions and ensuring that there’s no additional latency 
when the time comes to evict an entry from the ARC. The 
L2ARC iterates over its space as a ring, starting back at 
the beginning once it reaches the end, thereby avoiding 
any potential for fragmentation. Although this technique 
does mean that entries in the L2ARC that may soon be 
accessed could be overwritten prematurely, bear in mind 
that the hottest data will still reside in the DRAM-based 
ARC. ZFS will write to the L2ARC slowly, meaning that it 
can take some time to warm up; but once warm, it should 
remain so, as long as the writes to the cache can keep up 
with data churn on the system. 

It’s worth noting that up to this point the L2ARC 
hasn’t even taken advantage of what is usually consid-
ered to be a key feature of flash: nonvolatility. Under 
normal operation, the L2ARC treats flash as cheap and 
vast storage. As it writes blocks of data to populate the 
cache devices, however, the L2ARC includes a directory 
so that after a power loss, the contents of the cache can 
be identified, thus pre-warming the cache. Although resets 

are rare, system failures, power failures, and downtime 
because of maintenance are all inevitable; the instantly 
warmed cache reduces the slow performance ramp typical 
of a system after a reset. Since the L2ARC writes slowly to 
its flash devices and data on the system may be modi-
fied quite quickly (especially with the use of flash as a log 
device), the contents of the L2ARC may not reflect the 
same data as is stored on disk. During normal operation, 
dirtied and stale entries are marked as such so that they 
are ignored. After a system reset, though stale data may 
be read off the cache device, metadata kept on the device 
and ZFS’s built-in checksums are used to identify this 
condition and seamlessly recover by reading the correct 
data from disk. 

Most of the time, 
caching even 
a very large 
working set in flash 
is cheaper than 
storing all data on  
fast disks.



30  July/August 2008  ACM QUEUE rants: feedback@acmqueue.com

For a working set that is larger than the DRAM capac-
ity, flash offers an avenue to access that working set much 
faster than could otherwise be done by disks of any speed. 
Even for a working set that could comfortably fit in 
DRAM, if the absolute performance of DRAM isn’t neces-
sary, it may be more economical to skimp on DRAM for 
the main ARC and instead cache the data on flash. As this 
use of flash meshes perfectly with its natural strengths, 
suitable devices can be produced quite cheaply and still 
have a significant performance advantage over fast disks. 
Although flash is still more expensive than fast disks per 
unit of storage, most of the time caching even a very large 
working set in flash is cheaper than storing all data on 
fast disks. 

thE iMPACt of flAsh 
By combining the use of flash as an intent-log to reduce 
write latency with flash as a cache to reduce read latency, 
we can create a system that performs far better and 
consumes less power than other systems of similar cost. 
It’s now possible to construct systems with a precise mix 
of write-optimized flash, flash for caching, DRAM, and 
cheap disks designed specifically to achieve the right 
balance of cost and performance for any given workload, 
with data automatically handled by the appropriate 
level of the hierarchy. It’s also possible to address specific 
performance problems with directed rather than gen-
eral solutions. Through the use of smarter software, we 
can build systems that integrate different technologies 
to extract the best qualities of each. Further, the use of 
smarter software will allow flash vendors to build solu-
tions for specific problems rather than gussying up flash 
to fit the anachronistic constraints of a hard drive. ZFS is 
just one example among many of how one could apply 
flash as a log and a cache to deliver total system perfor-
mance. Most generally, this new flash tier can be thought 
of as a radical form of HSM (hierarchical storage manage-
ment) without the need for explicit management. 

Although these solutions offer concrete methods of 
integrating flash into a storage system, they also raise a 
number of questions and force us to reconsider many 
aspects of the system. For example, how should we 
connect flash to the system? SSDs are clearly an easy 
approach, but there may be faster interfaces, such as the 
memory bus. More broadly, how will this impact the 

balance of a system? As more requests are serviced from 
flash, it may be possible to provision systems with far 
more network connectivity to clients than bus connectiv-
ity to disks. 

In that vein, flash opens the possibility of using disks 
that are even slower, cheaper, and more power efficient. 
We can now scoff at a 15,000-RPM drive as an untargeted 
half-measure for a variety of problems, but couldn’t the 
same argument be applied to a 7200-RPM drive? Just 
because it’s at the low end of the performance curve 
doesn’t mean it’s at the bottom. The 5400-RPM drive is 
quite common today and consumes less power still. Can 
the return of the 3600-RPM drive be far behind? The cost 
of power has continued to rise, but even if that trend were 
to plateau, a large portion of the total cost of ownership 
of a storage system is directly tied to its power use—and 
that’s to say nothing of the increased market emphasis on 
green design. Flash provides solutions that require us to 
rethink how we build systems and challenge us to develop 
smarter software to drive those systems; the result will be 
faster systems that are cheaper and greener. Q

ACKNOWLEDGMENTS

Props to Neil Perrin for developing slogs, to Brendan 
Gregg for developing the L2ARC, and to Jeff Bonwick and 
Matt Ahrens for reinventing storage with ZFS. I would 
also like to thank Bryan Cantrill, Matt Amdur, and Bev-
erly Hodgson for their diligent review of this article. 

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums
 
ADAM LEVENTHAL is a staff engineer on Sun’s Fishworks 
advanced product development team. He is one of the three 
authors of DTrace, for which he and his colleagues received 
Sun’s Chairman’s Award for Technical Excellence in 2004. He 
was named one of InfoWorld’s Innovators of 2005 and won 
top honors from the 2006 Wall Street Journal’s Innovation 
Awards. Leventhal joined Sun after graduating cum laude 
from Brown University in 2001 with a degree in math and 
computer science.
© 2008 ACM 1542-7730/08/0700 $5.00 

This article appeared in print in the July 2008 issue of Com-
munications of the ACM Vol. 51, No. 7.

Flash storage Today  


