
This paper is included in the Proceedings of

the 15th USENIX Conference on

File and Storage Technologies (FAST ’17).

February 27–March 2, 2017 • Santa Clara, CA, USA

ISBN 978-1-931971-36-2

Open access to the Proceedings of

the 15th USENIX Conference on

File and Storage Technologies

is sponsored by USENIX.

FlashBlox: Achieving Both Performance Isolation
and Uniform Lifetime for Virtualized SSDs

Jian Huang, Georgia Institute of Technology; Anirudh Badam, Laura Caulfield,

Suman Nath, Sudipta Sengupta, and Bikash Sharma, Microsoft; Moinuddin K. Qureshi,

Georgia Institute of Technology

https://www.usenix.org/conference/fast17/technical-sessions/presentation/huang

FlashBlox: Achieving Both Performance Isolation

and Uniform Lifetime for Virtualized SSDs

Jian Huang† Anirudh Badam Laura Caulfield

Suman Nath Sudipta Sengupta Bikash Sharma Moinuddin K.Qureshi†

†Georgia Institute of Technology Microsoft

Abstract

A longstanding goal of SSD virtualization has been to

provide performance isolation between multiple tenants

sharing the device. Virtualizing SSDs, however, has tra-

ditionally been a challenge because of the fundamental

tussle between resource isolation and the lifetime of the

device – existing SSDs aim to uniformly age all the re-

gions of flash and this hurts isolation. We propose uti-

lizing flash parallelism to improve isolation between vir-

tual SSDs by running them on dedicated channels and

dies. Furthermore, we offer a complete solution by also

managing the wear. We propose allowing the wear of dif-

ferent channels and dies to diverge at fine time granular-

ities in favor of isolation and adjusting that imbalance at

a coarse time granularity in a principled manner. Our ex-

periments show that the new SSD wears uniformly while

the 99th percentile latencies of storage operations in a

variety of multi-tenant settings are reduced by up to 3.1x

compared to software isolated virtual SSDs.

1 Introduction

SSDs have become indispensable for large-scale cloud

services as their cost is fast approaching to that of HDDs.

They out-perform HDDs by orders of magnitude, provid-

ing up to 5000x more IOPS, at 1% of the latency [21].

The rapidly shrinking process technology has allowed

SSDs to boost their bandwidth and capacity by increas-

ing the number of chips. However, the limitations of

SSDs’ management algorithms have hindered these par-

allelism trends from efficiently supporting multiple ten-

ants on the same SSD.

Tail latency of SSDs in multi-tenant settings is one

such limitation. Cloud storage and database systems

have started colocating multiple tenants on the same

SSDs [14, 58, 79] which further exacerbates the already

well known tail latency problem of SSDs [25, 26, 60, 78].

The cause of tail latency is the set of complex flash

management algorithms in the SSD’s controller, called

the Flash Translation Layer (FTL). The fundamental

goals of these algorithms are decades-old and were

meant for an age when SSDs had limited capacity and lit-

tle parallelism. The goals were meant to hide the idiosyn-

crasies of flash behind a layer of indirection and expose

a block interface. These algorithms, however, conflate

wear leveling (to address flash’s limited lifetime) and re-

source utilization (to exploit parallelism) which increases

interference between tenants sharing an SSD.

While application-level flash-awareness [31, 36, 37,

51, 75] improves throughput by efficiently leveraging the

device level parallelism, these optimizations do not di-

rectly help reduce the interference between multiple ten-

ants sharing an SSD. These tenants cannot effectively

leverage flash parallelism for isolation even when they

are individually flash-friendly because FTLs hide the

parallelism. Newer SSD interfaces [38, 49] that pro-

pose exposing raw parallelism directly to higher layers

provide more flexibility in obtaining isolation for tenants

but they complicate the implementation of wear-leveling

mechanisms across the different units of parallelism.

In this work, we propose leveraging the inherent par-

allelism present in today’s SSDs to increase isolation be-

tween multiple tenants sharing an SSD. We propose cre-

ating virtual SSDs that are pinned to a dedicated num-

ber of channels and dies depending on the capacity and

performance needs of the tenant. The fact that the chan-

nels and dies can be more or less operated upon indepen-

dently helps such virtual SSDs avoid adverse impacts on

each other’s performance. However, different workloads

can write at different rates and in different patterns, this

could age the channels and dies at different rates. For

instance, a channel pinned to a TPC-C database instance

wears out 12x faster than a channel pinned to a TPC-

E database instance, reducing the SSD lifetime dramat-

ically. This non-uniform aging creates an unpredictable

SSD lifetime behavior that complicates both provision-

ing and load-balancing aspects of data center clusters.

To address this problem, we propose a two-part wear-

leveling model which balances wear within each virtual

SSD and across virtual SSDs using separate strategies.

Intra-virtual SSD wear is managed by leveraging exist-

ing SSD wear-balancing mechanisms while inter-virtual

USENIX Association 15th USENIX Conference on File and Storage Technologies 375

100 105 110 115 120 125

Time (seconds)

0
100
200
300
400
500
600
700

B
an

dw
id

th
 (M

B
/s

ec
)

Instance-1-read
Instance-2-write
Instance-3-read

Instance-4-write

(a) Software Isolated Instances

100 105 110 115 120 125

Time (seconds)

0
100
200
300
400
500
600
700

B
an

dw
id

th
 (M

B
/s

ec
)

Instance-1-read
Instance-2-write
Instance-3-read

Instance-4-write

(b) Hardware Isolated Instances

Software
Isolated

Hardware
Isolated

0
5

10
15
20
25
30
35
40
45

La
te

nc
y

(m
ill

is
ec

s) Instance-1-read
Instance-2-write
Instance-3-read
Instance-4-write

(c) 99th Percentile Latency

Software
Isolated

Hardware
Isolated

0

5

10

15

20

Av
g.

 N
um

be
r

of
 B

lo
ck

s
E

ra
se

d
Pe

r
Se

co
nd CH-1

CH-2
CH-3
CH-4

CH-5
CH-6
CH-7
CH-8

(d) Wear Leveling

Figure 1: Tenants sharing an SSD get better bandwidth (compare (a) vs. (b)) and tail latency as shown in (c) when

using new hardware isolation. However, dedicating channels to tenants can lead to wear-imbalance between the various

channels as shown in (d). Note that the number of blocks erased in the first, fourth and fifth channels is close to zero

because they host workloads with only read operations. This imbalance of write bandwidth across different workloads

creates wear-imbalance across channels. A new design for addressing such a wear-imbalance is proposed in this paper.

SSD wear is balanced at coarse-time granularities to re-

duce interference by using new mechanisms. We con-

trol the wear imbalance between virtual SSDs using a

mathematical model and show that the new wear-leveling

model ensures near-ideal lifetime for the SSD with neg-

ligible disruption to tenants. More specifically, this work

makes the following contributions:

• We present a system named FlashBlox using which

tenants can share an SSD with minimal interference

by working on dedicated channels and dies.

• We present a new wear-leveling mechanism that al-

lows measured amounts of wear imbalance to obtain

better performance isolation between such tenants.

• We present an analytical model and a system that

control the wear imbalance between channels and

dies, so that they age uniformly with negligible in-

terruption to the tenants.

We design and implement FlashBlox and its new wear-

leveling mechanisms inside an open-channel SSD stack

(from CNEX labs [18]), and demonstrate benefits for a

Microsoft data centers’ multi-tenant storage workloads:

the new SSD delivers up to 1.6x better throughput and

reduces the 99th percentile latency by up to 3.1x. Fur-

thermore, our wear leveling mechanism provides 95% of

the ideal SSD lifetime even in the presence of adversar-

ial write workloads that execute all the writes on a single

channel while only reading on other channels.

The rest of this paper is organized as follows: § 2

presents the challenges that we address in this work. De-

sign and implementation of FlashBlox are described in

§ 3. Evaluation results are shown in § 4. § 5 presents the

related work. We present the conclusions in § 6.

2 SSD Virtualization: Opportunity

and Challenges

Premium storage Infrastructure-as-a-Service (IaaS) of-

ferings [4, 7, 22], persistent Platform-as-a-Service

(PaaS) systems [8] and Database-as-a-Service (DaaS)

systems [2, 5, 9, 23] need SSDs to meet their service

level objectives (SLO) that are usually outside the scope

of HDD performance. For example, DocDB [5] guaran-

tees 250, 1,000 and 2,500 queries per second respectively

for the S1, S2 and S3 offerings [6].

Storage virtualization helps such services make effi-

cient use of SSDs’ high capacity and performance by

slicing resources among multiple customers or instances.

Typical database instances in DaaS systems are 10 GB –

1 TB [6, 10] whereas each server can have more than 20

TB of SSD capacity today.

Bandwidth, IOPS [48, 56] or a convex combination

of both [57, 74] is limited on a per-instance basis using

token bucket rate limiters or intelligent IO throttling [41,

59, 66] to meet SLOs. However, there is no analogous

mechanism for sharing the SSD while maintaining low

IO tail latency – an instance’s latency still depends on

the foreground reads/writes [25, 42, 73] and background

garbage collection [34] of other instances.

Moreover, it is becoming increasingly necessary to co-

locate diverse workloads (e.g. latency-critical applica-

tions and batch processing jobs), to improve resource uti-

lization, while maintaining isolation [33, 42]. Virtualiza-

tion and container technologies are evolving to exploit

hardware isolation of memory [11, 47], CPU [16, 40],

caches [28, 52], and networks [30, 72] to support such

scenarios. We extend this line of research to SSDs by

providing hardware-isolated SSDs, complete with a so-

lution for the wear-imbalance problem that arises due to

the physical flash partitioning across tenants with diverse

workloads.

2.1 Hardware Isolation vs. Wear-Leveling

To understand this problem, we compare the two differ-

ent approaches to sharing hardware. The first approach

stripes data from all the workloads across all the flash

channels (eight total), just as existing SSDs do. This

scheme provides the maximum throughput for each IO,

and uses the software rate limiter which has been used

for Linux containers and Docker [12, 13] to implement

weighted fair sharing of the resources (the scenario for

Figure 1(a)). Note that instances in the software-isolated

case do not share physical flash blocks with other colo-

cated instances. This eliminates the interference due to

376 15th USENIX Conference on File and Storage Technologies USENIX Association

Flash
Channel

Die

P
la
n
e

…

P
la
n
e

Die

P
la
n
e

…

P
la
n
e

……

Channel

Die

P
la
n
e

…

P
la
n
e

Die

P
la
n
e

…

P
la
n
e

…………

Figure 2: SSD Architecture: Internal parallelism in SSDs

creates opportunities for hardware-level isolation.

garbage collection in one instance affecting another in-

stance’s read performance [34]. The second approach

uses a configuration from our proposed mechanism that

provides the hardware isolation by assigning a certain

number of channels to each instance (the scenario for

Figure 1(b)).

In both scenarios, there are four IO-intensive work-

loads. These workloads request 1/8th, 1/4th, 1/4th and

3/8th of the shared storage resource. The rate limiter

uses these as weights in the first approach, while Flash-

Blox assigns 1, 2, 2 and 3 channels respectively. Work-

loads 2 and 4 perform 100% writes and workloads 1 and

3 perform 100% reads. All workloads issue sequentially-

addressed and aligned 64 KB IOs.

Hardware isolation not only reduces the 99th per-

centile latencies by up to 1.7x (Figure 1(c)), but also in-

creases the aggregate throughput by up to 10.8% com-

pared to software isolation. However, pinning instances

to channels prevents the hardware from automatically

leveling the wear across all the channels, as shown in

Figure 1(d). We exaggerate the variance of write rates

to better motivate the problem of wear-imbalance that

stems from hardware-isolation of virtual SSDs. Later in

the paper, we will use applications’ typical write rates

(see Figure 5) to design our final solution. To moti-

vate the problem further, we must first explore the par-

allelism available in SSD hardware, and the aspects of

FTLs which cause interference in the first approach.

2.2 Leveraging Parallelism for Isolation

Typical SSDs organize their flash array into a hierar-

chy of channels, dies, planes, blocks and pages [1, 17].

As shown in Figure 2, each SSD has multiple channels,

each channel has multiple dies, and each die has mul-

tiple planes. The number of channels, dies and planes

varies by vendor and generation. Typically, there are 2 -

4 planes per die, 4 - 8 dies per channel, and 8 - 32 chan-

nels per drive. Each plane is composed of thousands of

blocks (typically 4-9MB) and each block contains 128-

256 pages.

This architecture plays an important role in defining

isolation boundaries. Channels, which share only the re-

sources common to the whole SSD, provide the strongest

isolation. Dies execute their commands with complete

independence, but they must share a bus with other dies

on the same channel. Planes’ isolation is limited because

the die contains only one address buffer. The controller

may isolate data to different planes, but operations on

these data must happen at different times or to the same

address on each plane in a die [32].

In current drives, none of this flexibility is exposed to

the host. Drives instead optimize for a single IO pat-

tern: extremely large or sequential IO. The FTL logically

groups all planes into one large unit, creating “super-

pages” and “super-blocks” are hundreds of times larger

than their base unit. For example, a drive with 4MB

blocks and 256 planes has a 1GB super-block.

Striping increases the throughput of large, sequential

IOs, but introduces the negative side effect of interfer-

ence between multiple tenants sharing the drive. As all

data is striped, every tenant’s reads, writes and erases can

potentially conflict with every other tenant’s operations.

Previous work had proposed novel techniques to help

tenants place their data such that underlying flash pages

are allocated from separate blocks. This helps improve

performance by reducing the write amplification factor

(WAF) [34]. Lack of block sharing has the desirable side

effect of clumping garbage into fewer blocks, leading to

more efficient garbage collection (GC), thereby reducing

tail latency of SSDs [25, 42, 43, 73].

However, significant interference still exists between

tenants because when data is striped, every tenant uses

every channel, die and plane for storing data and the

storage operations of one tenant can delay other tenants.

Software isolation techniques [57, 67, 68] split the the

SSD’s resources fairly. However, they cannot maximally

utilize the flash parallelism when resource contention ex-

ists at a layer below because of the forced sharing of in-

dependent resources such as channels, dies and planes.

New SSD designs, such as open-channel SSDs that ex-

plicitly expose channels, dies and planes to the operating

system [44, 38, 49], can help tenants who share an SSD

avoid some of these pitfalls by using dedicated channels.

However, the wear imbalance problem between chan-

nels that ensues from different tenants writing at different

rates remains unsolved. We propose a holistic approach

to solve this problem by exposing flash channels and dies

as virtual SSDs, while the system underneath wear-levels

within each vSSD and balances the wear across channels

and dies at coarse time granularities.

FlashBlox is concerned only with sharing of the re-

sources within a single NVMe SSD. Fair sharing mech-

anisms that split PCIe bus bandwidth across multiple

NVMe devices, network interface cards, graphic pro-

cessing units and other PCIe devices is beyond the scope

of this work.

3 Design and Implementation

Figure 3 shows the FlashBlox architecture. At a high

level, FlashBlox consists of the following three compo-

nents: (1) A resource manager that allows tenants to al-

USENIX Association 15th USENIX Conference on File and Storage Technologies 377

App

Virtual SSD

Intra virtual

SSD wear

leveling

Intra virtual

SSD wear

leveling

… …

App

Host-level

Flash

Manager

Flash

App

Virtual SSD

Virtual SSD to Channel/Die/Plane Mappings

(Enables Hardware Isolation with Flash-level Parallelism)

Resource

Manager

…

SSD-Level

Flash

Manager

Inter virtual SSD

wear-leveling with

migration

Other FTL

Algorithms

…

Figure 3: The system architecture of FlashBlox.

Table 1: Virtual SSD types supported in FlashBlox.

Virtual SSD Type Isolation Level Alloc. Granularity

Channel Isolated vSSD (§ 3.1) High Channel

Die Isolated vSSD (§ 3.2) Medium Die

Software Isolated vSSD (§ 3.3) Low Plane/Block

Unisolated vSSD (§ 3.3) None Block/Page

locate and deallocate virtual SSDs (vSSD); (2) A host-

level flash manager that implements inter-vSSD wear-

levelling by balancing wear across channels and dies

at coarse time granularities; (3) An SSD-level flash

manager that implements intra-vSSD wear-levelling and

other FTL functionalities.

One of the key new abstractions provided by Flash-

Blox is that of a virtual SSD (vSSD) which can reduce

tail latency. It uses dedicated flash hardware resources

such as channels and dies that can be operated indepen-

dently from each other. The following API creates a

vSSD:

vssd t AllocVirtualSSD(int isolationLevel,

int tputLevel, size t capacity);

Instead of asking tenants to specify absolute numbers,

FlashBlox enables them to create different sizes and

types of vSSDs with different levels of isolation and

throughput (see Table 1). These parameters are compat-

ible with the performance and economic cost levels such

as the ones [3, 6] advertised in DaaS systems to ease us-

age and management. Tenants can scale up capacity by

creating multiple vSSDs of supported sizes just as it is

done in DaaS systems today. A vSSD is deallocated with

void DeallocVirtualSSD(vssd t vSSD).

Channels, dies and planes are used for providing dif-

ferent levels of performance isolation. This brings sig-

nificant performance benefits to multi-tenant scenarios

(details discussed in § 4.2) because they can be operated

independently from each other.

Higher levels of isolation have larger resource alloca-

tion granularities as channels are larger than dies. There-

fore, channel-granular allocations can have higher inter-

nal fragmentation compared to die-granular allocations.

However, this is less of a concern for FlashBlox’s design

for several reasons. First, a typical data center server

can house eight NVMe SSDs [46]. Therefore, the maxi-

FlashBlox SSD

Channel

vSSD_A vSSD_B

D
ie

vSSD_C vSSD_D vSSD_E vSSD_F

Soft-Plane for Software Isolated vSSD

Figure 4: A FlashBlox SSD: vSSD A and B use one and

two channels respectively. vSSD C and D use three dies

each. vSSD E, and F use three soft-planes each.

mum number of channel-isolated and die-isolated vSSDs

we can support is 128 and 1024 respectively using 16-

channel SSDs. Further, SSDs with 32 channels are on the

horizon which can double the number of vSSDs which

should be sufficient based on our conversations with the

service providers at Microsoft.

Second, the differentiated storage offerings of DaaS

systems [3, 6, 10] allow tenants to choose from a certain

fixed number of performance and capacity classes. This

allows the cloud provider to reduce complexity. In such

applications, the flexibility of dynamically changing ca-

pacity and IOPS is obtained by changing the number of

partitions dedicated to the application. FlashBlox’s de-

sign of bulk channel/die allocations aligns well with such

a model. Third, the differentiated isolation levels match

with the existing cost model for cloud storage platforms,

in which better services are subject to increased pricing.

This is a natural fit for FlashBlox where channels are

more expensive and performant than dies.

In DaaS systems, capacity is simply scaled up by cre-

ating new partitions. For instance in Amazon RDS and

Azure DocumentDB, applications scale capacity by in-

creasing the number of partitions. Each partition is of-

fered as a fixed unit containing a certain amount of stor-

age and IOPS (or application-relevant operations per sec-

ond). We designed FlashBlox for meeting the demands

of DaaS applications. Finally, hardware-isolated vSSDs

can coexist with software-isolated ones. For instance,

a few channels of each SSD can be used for provid-

ing traditional software-isolated SSDs whereby the cloud

provider further increases the number of differentiated

performance and isolation levels.

Beyond providing different levels of hardware isola-

tion, FlashBlox has to overcome the unbalanced wear-

leveling challenge to prolong the SSD lifetime. We de-

scribe the design of each vSSD type and its correspond-

ing wear-leveling mechanism respectively as follows.

3.1 Channel Isolated Virtual SSDs

A vSSD with high isolation receives its own dedicated

set of channels. For instance, the resource manager of an

SSD with 16 channels can host up to 16 channel-isolated

vSSDs, each containing one or more channels inaccessi-

ble to any other vSSD. Figure 4 illustrates vSSD A and

B that span one and two channels respectively.

378 15th USENIX Conference on File and Storage Technologies USENIX Association

YCSB-A
YCSB-B

YCSB-C
YCSB-D

YCSB-E
YCSB-F

Cloud Storage

Web Search

Web PageRank

MapReduce
TPCC

TATP
TPCB

TPCE
0
1
2
3
4
5

Av
g.

 #
B

lo
ck

s
 E

ra
se

d
/ S

ec

0.0002 0.001

Figure 5: The average rate at which flash blocks are

erased for various workloads, including NoSQL, SQL

and batch processing workloads.

3.1.1 Channel Allocation

The throughput level and target capacity determine

the number of channels allocated to a channel iso-

lated vSSD. To this end, FlashBlox allows the data

center/DaaS administrator to implement the size t

tputToChannel(int tputLevel) function that

maps between throughput levels and required num-

ber of channels. The number of channels allo-

cated to the vSSD is, therefore, the maximum of

tputToChannel(tputLevel) and ⌈capacity /
capacityPerChannel⌉.

Within a vSSD, the system stripes data across its al-

located channels similar to traditional SSDs. This maxi-

mizes the peak throughput by operating on the channels

in parallel. Thus, the size of the super-block of vSSD A

in Figure 4 is half that of vSSD B. Pages within the

super-block are also striped across the channels similar

to existing physical SSDs.

The hardware-level isolation present between the

channels by virtue of hardware parallelism allows the

read, program and erase operations on one vSSD to

largely be unaffected by the operations on other vSSDs.

Such an isolation enables latency sensitive applications

to significantly reduce their tail latencies.

Compared to an SSD that stripes data from all appli-

cations across all channels, a vSSD (over fewer chan-

nels) delivers a portion of the SSD’s all-channel band-

width. Customers of DaaS systems are typically given

and charged for a fixed bandwidth/IOPS level, and soft-

ware rate-limiters actively keep their consumption in

check. Thus, there is no loss of opportunity for not pro-

viding the peak-bandwidth capabilities for every vSSD.

3.1.2 Unbalanced Wear-Leveling Challenge

A significant side effect of channel isolation is the risk

of uneven aging of the channels in the SSD as different

vSSDs may be written at different rates. Figure 5 shows

how various storage workloads erase blocks at different

rates indicating that channels pinned naively to vSSDs

will age at different rates if left unchecked.

Such uneven aging may exhaust a channel’s life long

before other channels fail. Premature death of even a

single channel would render significant capacity losses

(> 6% in our SSD). Furthermore, premature death of a

single channel leads to an opportunity loss of never be-

ing able to create a vSSD that spans all the 16 channels

for the rest of the server’s lifetime. Such an imbalance

in capability of servers represents lost opportunity costs

given that other components in the server such as CPU,

network and memory do not prematurely lose capabili-

ties. Furthermore, unpredictable changes in capabilities

also complicate the job of load-balancers which typically

assume uniform or predictably non-uniform (by design)

capabilities. Therefore, it is necessary to ensure that all

the channels are aging at the same rate.

3.1.3 Inter-Channel Wear-Leveling

To ensure uniform aging of all channels, FlashBlox uses

a simple yet effective wear-leveling scheme:

Periodically, the channel that has incurred the maxi-

mum wear thus far is swapped with the channel that has

the minimum rate of wear.

A channel’s wear rate is the average rate at which

it erased blocks since the last time the channel was

swapped. This prevents the most-aged channels from

seeing high wear rates, thus intuitively extending their

lifetime to match that of the other channels in the sys-

tem.

Our experiments with workload traces from Mi-

crosoft’s data center workloads show that such an ap-

proach works well in practice. We can ensure near-

perfect wear-leveling with this mechanism and a swap

frequency of once every few weeks. Furthermore, the

impact on tail-latency remains low during the 15-minute

migration period (see § 4.3.1). We analytically derive the

minimum necessary frequency in § 3.1.4 and present the

design of the migration mechanism in § 3.1.5.

3.1.4 Swap Frequency Analysis

Let σi denote the wear (total erase count of all the blocks

till date) of the ith channel. ξ = σmax/σavg denotes the

wear imbalance1 which must not exceed 1 + δ ; where

σmax = Max(σ1, ...,σN), σavg = Avg(σ1, ...,σN), N is the

total number of channels, and δ measures the imbalance.

When the device is new, it is obviously not possible

to ensure that ξ ≤ 1+ δ without aggressively swapping

channels. On the other hand, it must be brought within

bounds early in the lifetime of the server (L = 150–250

weeks typical) such that all the channels are available for

as much of the server’s lifetime as possible.

SSDs are provisioned with a target erase workload and

we analyze for the same – let’s say M erases per week.

We mathematically study the wear-imbalance vs. fre-

quency of migration (f) tradeoff and show that manage-

1The ratio of maximum to average is an effective way to quantify

imbalance [45]. This is especially true in our case, as the lifetime of

the new SSD is determined by the maximum wear of a single channel,

whereas the lifetime of ideal wear-leveling is determined by the aver-

age wear of all the channels. The ratio of maximum to average thus

represents the loss of lifetime due to imperfect wear leveling.

USENIX Association 15th USENIX Conference on File and Storage Technologies 379

able values of f can provide acceptable wear imbalance

where ξ comes below 1+δ after αL weeks, where α is

between 0 and 1.

The worst-case workload for FlashBlox is when all the

writes go to a single channel.2 The assumption that a

single channel’s bandwidth can handle the entire provi-

sioned bandwidth is valid for modern SSDs: most SSDs

are provisioned with 3,000-10,000 erases per cell to last

150–250 weeks. The provisioned erase rate for a 1TB

SSD is therefore M=21–116 MBPS, which is lower than

a channel’s erase bandwidth (typically 64–128MBPS).

For an SSD with N channels, the wear imbalance

of ideal wear-leveling is ξ = 1, while the worst case

workload for FlashBlox gives a ξ = N: σmax/σavg =
M ∗ time/(M ∗ time/N) = N before any swaps. A sim-

ple swap strategy of cycling the write workload through

the N channels (write workload spends 1/ f weeks per

channel) is analyzed. Let’s assume that after K rounds of

cycling through all the channels, KN/ f ≥ αL holds true

– that is αL weeks have elapsed and ξ has become less

than 1+ δ and continues to remain there. At that very

instant ξ equals 1. Therefore, σmax = MK and σavg =

MK, then after the next swap, σmax = MK +M and σavg

= MK +M/N. In order to guarantee that the imbalance

is always limited, we need:

ξ = σmax/σavg = (MK +M)/(MK +M/N) ≤ (1 + δ)

This implies K ≥ (N − 1 − δ)/(Nδ) which is up-

per bounded by 1/δ . Therefore, to guarantee that ξ ≤
(1+δ), it is enough to swap NK = N/δ times in the first

αL weeks. This implies that, over a period of five years,

if α were 0.9 then a swap must be performed once ev-

ery 12 days (= 1/ f) for a δ = 0.1 (N = 16). Table 2

shows how the frequency of swaps increases with the

number of channels (shown as decreasing time period).

This also implies that 2
16

th
of the SSD is erased to per-

form the swap once every 12 days, which is negligible

compared to the 3,000–10,000 cycles that typical SSDs

have. However, for realistic workloads that do not have

such a skewed write pattern with a constant bandwidth,

swaps must be adaptively performed according to work-

load patterns (see Table 5) to reduce the number of swaps

needed while maintaining balanced wear.

3.1.5 Adaptive Migration Mechanism

We assume a constant write rate of M for analysis pur-

poses, but in reality writes are bursty. High write rates

must trigger frequent swaps while swapping may not be

needed as often during periods of low write rates. To

achieve this, FlashBlox maintains a counter per channel

2This worst-case is from a non-adversarial point of view. An adver-

sary could change the vSSD write bandwidth at runtime such that no

swapping strategy can keep up. But most data center workloads are not

adversarial and have predictable write patterns. We leave it to a security

watch dog to kill over-active workloads that are not on a whitelist.

Table 2: The frequency of swaps increases as the number

of channels increase to maintain balanced wear – swap

periods shown below for the SSD to last five years.

Number of Channels 8 16 32 64

Swap Period (days) 26 12 6 3

to represent the amount of space erased (MB) in each

channel since the last swap. Once one of the counters

goes beyond a certain threshold γ , a swap is performed,

and the counters are cleared. γ is set to the amount of

space erased if the channel experiences the worst-case

write workload between two swaps (i.e., M/ f).

The rationale behind this mechanism is that the chan-

nels must always be positioned in a manner to be able

to catch up in the worst-case. FlashBlox then swaps the

channels with σmax and λmin, where λi denotes the wear

rate of the ith channel and λmin = Min(λ1, ...,λN).

FlashBlox uses an atomic block-swap mechanism to

gradually migrate the candidate channels to their new lo-

cations without any application involvement. The mech-

anism uses an erase-block granular mapping table (de-

scribed in § 3.4) for each vSSD that is maintained in a

consistent and durable manner.

The migration happens in four steps. First, FlashBlox

stops and queues all of the in-flight read, program and

erase operations associated with the two erase-blocks be-

ing swapped. Second, the erase-blocks are read into a

memory buffer. Third, the erase-blocks are written to

their new locations. Fourth, the stopped operations are

then dequeued. Note that only the IO operations for the

swapping erase blocks in the vSSD are queued and de-

layed. The IO requests for other blocks are still issued

with higher priority to mitigate the migration overhead.

The migrations affect the throughput and latency of

the vSSDs involved. However, they are rare (happen less

than once in a month for real workloads) and take only

15 minutes to finish (see § 4.3.1).

As a future optimization, we wish to modify the DaaS

system to perform the read operations on other replicas to

further reduce the impact. For systems that perform reads

only on the primary replica, the migration can be staged

within a replica-set such that the replica that is currently

undergoing a vSSD migration is, if possible, first con-

verted into a backup. Such an optimization would reduce

the impact of migrations on the reads in applications that

are replicated.

3.2 Die-Isolated Virtual SSDs

For applications which can tolerate some interference

(i.e., medium isolation) such as the non-premium cloud

database offerings (e.g., Amazon’s small database in-

stance [3] and Azure’s standard database service [62]),

FlashBlox provides die-level isolation. The num-

380 15th USENIX Conference on File and Storage Technologies USENIX Association

ber of dies in such a vSSD is the maximum of

tputToDie(tputLevel) (defined by the adminis-

trator) and ⌈capacity / capacityPerDie⌉. Their

super-blocks and pages stripe across all the dies within

the vSSD to maximize throughput. Figure 4 illustrates

vSSD C, and D containing three dies each (vSSD D

has dies from different channels). These vSSDs, how-

ever, have weaker isolation guarantees since dies within

a channel must share a bus.

The wear-leveling mechanism has to track wear at the

die level as medium-level isolated vSSDs are pinned to

dies. Thus, we split the wear-leveling mechanism in

FlashBlox into two sub-mechanisms: channel level and

die level. The job of the channel-level wear-balancing

mechanism is to ensure that all the channels are aging at

roughly the same rate (see § 3.1). The job of the die-level

wear-balancing mechanism is to ensure that all the dies

within a channel are aging roughly at the same rate.

As shown in § 3.1.4, an N channel SSD has to swap at

least N/δ times to guarantee ξ ≤ (1+δ) within a target

time period. This analysis also holds true for dies within

a channel. For the SSDs today, in which each channel

has 4 dies, FlashBlox has to swap dies in each channel

40 times in the worst case during the course of the SSD’s

lifetime or once every month.

As an optimization, we leverage the channel-level mi-

gration to opportunistically achieve the goal of die-level

wear-leveling, based on the fact that dies have to mi-

grate along with the channel-level migration. During

each channel-level migration, the dies within the mi-

grated channels with the largest wear is swapped with the

dies that have the lowest write rate in the respective chan-

nels. Experiments with real workloads show that such a

simple optimization can effectively provide satisfactory

lifetime for SSDs (see § 4.3.2).

3.3 Software Isolated Virtual SSDs

For applications that have even lower requirements of

isolation like Azure’s basic database service [62], the

natural possibility of using plane level isolation arises.

However, planes within a die do not provide the same

level of flexibility as channels and dies with respect to

operating them independently from each other: Each die

allows operating either one plane at a time or all the

planes at the same address offset. Therefore, we use

an approach where all the planes are operated simultane-

ously but their bandwidth/IOPS is split using software.

Each die is split into four regions of equal size called

soft-planes by default, the size of each soft-plane is 4 GB

in FlashBlox (other configurations are also supported).

Planes are physical constructs inside a die. Soft-planes

however are simply obtained by striping data across all

the planes in the die. Further, each soft-plane in a die ob-

tains an equal share of the total number of blocks within a

die. They also receive fair share of bandwidth of the die.

The rationale behind this is to make it easier for data cen-

ter/PaaS administrator to map the throughput levels re-

quired from tenants to quantified numbers of soft-planes.

vSSDs created using soft-planes are otherwise indis-

tinguishable from traditional virtual SSDs where soft-

ware rate limiters are used to split an SSD across multiple

tenants. Similar to such settings, we use the state-of-the-

art token bucket rate-limiter [13, 67, 78] which has been

widely used for Linux containers and Docker [12] to im-

prove isolation and utilization at the same time. Our ac-

tual implementation is similar to the weighted fair-share

mechanisms in prior work [64]. In addition, separate

queues are used for enqueuing requests to each die.

The number of soft-planes used for creating these

vSSDs is determined similarly to the previous cases: as

the maximum of tputToSoftPlane(tputLevel)

and ⌈capacity / capacityPerSoftPlane⌉. Fig-

ure 4 illustrates vSSDs E and F that contain three soft-

planes each. The super-block used by such vSSDs is sim-

ply striped across all the soft-planes used by the vSSD.

We use such vSSDs as the baseline for our comparison

of channel and die isolated vSSDs.

The software mechanism allows the flash blocks of

each vSSD to be trimmed in isolation, which can reduce

the GC interference. However, it cannot address the sit-

uation where erase operations on one soft-planes occa-

sionally block all the operations of other soft-planes on

the shared die. Thus, such vSSDs can only provide soft-

ware isolation which is lower than die-level isolation.

Besides these isolated vSSDs, FlashBlox also supports

an unisolated vSSD model which is similar to software

isolated vSSD, but a fair sharing mechanism is not used

to isolate such vSSDs from each other. To guarantee the

fairness between vSSDs in today’s cloud platforms, soft-

ware isolated vSSDs are enabled by default in FlashBlox

to meet low isolation requirements.

For both software isolated and unisolated vSSDs, their

wear-balancing strategy is kept the same rather than

swapping soft-planes. The rationale for this is that isola-

tion between soft-planes of a die is provided using soft-

ware and not by pinning vSSDs to physical flash planes.

Therefore, a more traditional wear-leveling mechanism

of simply rotating blocks between soft-planes of a die

is sufficient to ensure that the soft-planes within a die

are all aging roughly at the same rate. We describe this

mechanism in more detail in the next section.

3.4 Intra Channel/Die Wear-Leveling

The goals of intra die wear-leveling are to ensure that

the blocks in each die are aging at the same rate while

enabling applications to access data efficiently by avoid-

ing the pitfalls of multiple indirection layers and redun-

dant functionalities across these layers [27, 35, 54, 77].

USENIX Association 15th USENIX Conference on File and Storage Technologies 381

Application Log

Device Level

Mapping

Other SSD Aspects

Fine-Granular

Log-Structured

Data Store

M

a

p

App

Address
Log

Address

Garbage

Collector &

Compactor

Erase-Block

Granular

FTL

M

a

p

Logical

Erase-Block

Address

Physical

Erase-Block

Address

Wear

Leveling

ECC, Energy Management & Bad Block Management

API: Read/Program Logical Page & Read/Erase Logical Erase-Block

API: Read/Program Physical Page & Read/Erase Physical Erase-Block

Figure 6: In FlashBlox, applications manage a fine-

granular log-structured data store and align compaction

units to erase-blocks. A device level indirection layer is

used to ensure all erase-blocks are aging at the same rate.

With both die-level (see § 3.3) and intra-die wear leveling

mechanisms, FlashBlox inevitably achieves the goal of

intra-channel wear-leveling as well: all the dies in each

channel and all the blocks in each die age uniformly.

The intra-die wear-leveling in FlashBlox is illustrated

in Figure 6. We leverage flash-friendly application or file

system logic to perform GC and compaction, and sim-

plify the device level mapping. We also leverage the

drive’s capabilities to manage bad blocks without hav-

ing to burden applications with error correction, detec-

tion and scrubbing. We base our design for intra-die

wear-levelling on existing open SSDs [27, 38, 49]. We

describe our specific design for completeness.

3.4.1 Application/Filesystem Level Log

The API of FlashBlox, as shown in Table 3, is designed

with log-structured systems in mind. The only restriction

it imposes is that the application or the file system per-

form the log-compaction at a granularity that is the same

as the underlying vSSD’s erase granularity.

When a FlashBlox based log-structured application

or a filesystem needs to clean an erase-block that con-

tains a live object (say O) then, (1) It first allocates a

new block via AllocBlock; (2) It reads object O via

ReadData; (3) It writes object O in to the new block

via WriteData; (4) It modifies its index to reflect the

new location of object O; (5) It frees the old block via

FreeBlock. Note that the newly allocated block still

has many pages that can be written to, which can be used

as the head of the log for writing live data from other

cleaned blocks or for writing new data.

FlashBlox does not assume that the log-structured sys-

tem frees all the allocated erase-blocks at the same rate.

Such a restriction would force the system to implement

a sequential log cleaner/compactor as opposed to tech-

niques that give weight to other aspects such as garbage

collection efficiency [37, 38]. Instead, FlashBlox ensures

uniform wear of erase-blocks at a lower level.

3.4.2 Device-Level Mapping

The job of the lower layers is to ensure: (1) that all erase-

blocks within a die are being erased at roughly the same

Table 3: FlashBlox API
vssd t AllocVirtualSSD(int isolationLevel, int

tputLevel, size t capacity)

/*Creates a virtual SSD*/

void DeallocVirtualSSD(vssd t vSSD)

/*Deletes a virtual SSD*/

size t GetBlockSize(vssd t vSSD)

/*Erase-block size of vSSD: depends on the number of channels/dies used*/

int ReadData(vssd t vSSD, void* buf, off t offset,

size t size)

/*Reads data; contiguous data is read faster with die-parallel reads*/

block t AllocBlock(vssd t vSSD)

/*Allocates a new block; it can be written to only once and sequentially*/

int WriteData(vssd t vSSD, block t

logical block id, void* buf, size t size)

/*Writes page aligned data to a previously allocated (erased) block;

contiguous data is written faster with die-parallel writes*/

void FreeBlock(vssd t vSSD, block t

logical block id)

/*Frees a previously allocated block*/

rate and (2) that erase-blocks that have imminent fail-

ures have their data migrated to a different erase-block

and the erase-block be permanently hidden from appli-

cations; both without requiring application changes.

With device-level mapping, the physical erase-blocks’

addresses are not exposed to applications – only logi-

cal erase-block addresses are exposed to upper software.

That is, the device exposes each die as an individual SSD

that uses a block-granular FTL, while application-level

log in FlashBlox ensures that upper layers only issue

block-level allocation and deallocation calls. The indi-

rection overhead is small since they are maintained at

erase-block granularity (requiring 8MB per TB of SSD).

Unlike tradtional SSDs, in FlashBlox, tenants cannot

share pre-erased blocks. While this has the advantage

that the tenants control their own write-amplification fac-

tors, write and GC performance, the disadvantage is that

bursty writes within a tenant cannot opportunistically use

pre-erased blocks from the entire device.

In FlashBlox, each die is given its own private block-

granular mapping table, and a IO queue with a depth of

256 by default (it is configurable) to support basic stor-

age operations and software rate limiter for software iso-

lated vSSDs. The out-of-band metadata (16 bytes used)

in each block is used to note the logical address of the

physical erase-block; this enables atomic, consistent and

durable operations. The logical address is a unique and

global 8 bytes number consisting of die ID and block ID

within the die. The other 8 bytes of the metadata are

used for a 2 bytes erase counter and a 6 byte erase times-

tamp. FlashBlox caches the mapping table and all other

out-of-band metadata in the host memory. Upon system

crashes, FlashBlox leverages the reverse mappings and

timestamps in out-of-metadata to recover the mapping

table [24, 80]. More specifically, we use the implemen-

tation from our prior work [27].

The device-level mapping layer can be implemented

either in the host or in the drive’s firmware itself [49] if

the device’s controller has under-utilized resources; we

382 15th USENIX Conference on File and Storage Technologies USENIX Association

implement it in the host. Error detection, correction and

masking, and other low-level flash management systems

remain unmodified in FlashBlox.

Both the application/filesystem level log and the

device-level mapping need to over provision, but for

different reasons. The log needs to over-provision for

the sake of garbage collection efficiency. Here, we

rely on the existing logic within log-structured, flash-

aware applications and file systems to perform their own

over-provisioning appropriate for their workloads. The

device-level mapping needs its own over-provisioning

for the sake of retiring error-prone erase-blocks. In our

implementation, we set this to 1% based on the error rate

analysis from our prior work [29].

3.5 Implementation Details

Prototype SSD. We implement FlashBlox using a

CNEX SSD [18] which is an open-channel SSD [44]

containing 1 TB Toshiba A19 flash memory and an open

controller that allows physical resource access from the

host. It has 16 channels, each channel has 4 dies, each

die has 4 planes, each plane has 1024 blocks, each block

has 256 pages with 16 KB page size. This hardware pro-

vides basic I/O control commands to issue read, write

and erase operations against flash memory. We use a

modified version of the CNEX firmware/driver stack that

allows us to independently queue requests to each die.

FlashBlox is implemented using the C programming lan-

guage in 11,219 lines of code (LoC) layered on top of the

CNEX stack.

Prototype Application and Filesystem. We were

able to modify LevelDB key-value store and the Shore-

MT database engine to use FlashBlox using only 38 and

22 LoC modifications respectively. These modifications

are needed to use the APIs in Table 3. Additionally,

we implemented a user-space log-structured file system

(vLFS) with 1,809 LoC (only 26 LoC are from Flash-

Blox API) based on FUSE for applications which cannot

be modified.

Resource Allocation. For each call to create a vSSD,

the resource manager performs a linear search of all the

available channels, dies and soft-planes to satisfy the re-

quirements. A set of free lists of them are maintained for

this purpose. During deallocation, the resource manager

takes the freed channels, dies and soft-planes and coa-

lesces them when possible. For instance, if all the four

dies of a channel become free then the resource manager

coalesces the dies into a channel and adds the channel to

the free channel set. In the future, we wish to explore ad-

mission control and other resource allocation strategies.

4 Evaluation

Our evaluation demonstrates that: (1) FlashBlox has

overheads (WAF and CPU) comparable to state-of-the-

Table 4: Application workloads used for evaluation.
Workload I/O Pattern

K
ey

-V
a
lu

e
S

to
re YCSB-A 50% read, 50% update

YCSB-B 95% read, 5% update

YCSB-C 100% read

YCSB-D 95% read, 5% insert

YCSB-E 95% scan, 5% insert

YCSB-F 50% read, 50% read-modify-write

D
a
ta

C
en

te
r

Cloud Storage 26.2% read, 73.8% write

Web Search 83.0% read, 17.0% write

Web PageRank 17.7% read, 82.2% write

MapReduce 52.9% read, 47.1% write

D
a
ta

b
a
se

s TPC-C mix (65.5% read, 34.5% write)

TATP mix (81.2% read, 18.8% write)

TPC-B account update (100% write)

TPC-E mix (90.7% read, 9.3% write)

art FTLs (§ 4.1); (2) Different levels of hardware isola-

tion can be achieved by utilizing flash parallelism, and

they perform better than software isolation (§ 4.2.1);

(3) Hardware isolation enables latency-sensitive appli-

cations such as web search to effectively share an SSD

with bandwidth-intensive workloads like MapReduce

jobs (§ 4.2.2); (4) The impact of wear-leveling migra-

tions on data center applications’ performance is low

(§ 4.3.1) and (5) FlashBlox’s wear-leveling is near to

ideal (§ 4.3.2).

Experimental Setup: We used FIO benchmarks [20]

and 14 different workloads for the evaluation (Table 4):

six NoSQL workloads from the Yahoo Cloud Serv-

ing Benchmarks (YCSB) [19], four database workloads:

TPC-C [70], TATP [65], TPC-B [69] and TPC-E [71],

and four storage workload traces collected from Mi-

crosoft’s data centers.

YCSB is a framework for evaluating the performance

of NoSQL stores. All of the six core workloads con-

sisting of A, B, C, D, E and F are used for the evalua-

tion. LevelDB [39] is modified to run using the vSSDs

from FlashBlox with various isolation levels. The open-

source SQL database Shore-MT [55] is modified to work

over the vSSDs of FlashBlox. The table size of the four

database workloads TPC-C, TATP, TPC-B and TPC-E

range from 9 - 25 GB each. A wear-imbalance factor

limit of 1.1 is used for all our experiments to capture re-

alistic swapping frequencies. The number of dies, chan-

nels and planes used for each experiment is specified sep-

arately for each experiment.

Storage intensive and latency sensitive applications

from Microsoft’s data centers are instrumented to col-

lect traces for cloud storage, web search, PageRank and

MapReduce workloads. These applications are the first-

party customers of Microsoft’s storage IaaS system.

4.1 Microbenchmarks

We benchmark two vSSDs that each run an FIO bench-

mark to evaluate FlashBlox’s WAF. Compared to the un-

modified CNEX SSD’s page-level FTL, FlashBlox deliv-

USENIX Association 15th USENIX Conference on File and Storage Technologies 383

RW+SW RW+RW RW+SR RW+RR SW+SW SW+SR SW+RR
0

0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

W
AF

FlashBlox
Unmodified SSD

Figure 7: WAF comparison between FlashBlox and a tra-

ditional SSD. RW/RR: random write/read; SW/SR: se-

quential write/read.

ers lower WAFs as shown in Figure 7 because of the fact

that FlashBlox’s vSSDs never share the same physical

flash blocks for storing their pages. As shown by previ-

ous work [34], this reduces WAF because of absence of

false sharing of blocks at the application level. The dif-

ferent types of vSSDs of FlashBlox have similar WAFs

because they all use separate blocks, yet they provide dif-

ferent throughput and tail latency levels (shown in Sec-

tion 4.2) because of higher levels of isolation.

In addition, FlashBlox has up to 6% higher total sys-

tem CPU usage compared to the unmodified CNEX

SSD when running FIO. Despite merging the file sys-

tem’s index with that of the FTL’s by using FlashBlox’s

APIs which reduces latency as shown by existing open-

channel work [38, 49], the additional CPU overhead is

due to the device-level mapping layer that is accesed in

every critical path. As a future optimization for the pro-

duction SSD, we plan to transparently move the device-

level mapping layer into the SSD.

4.2 Isolation Level vs. Tail Latency

In this section, we demonstrate that higher levels of iso-

lation provide lower tail latencies. Multiple instances of

application workloads are run on individual vSSDs of

different kinds. In each workload, the number of client

threads executing transactions is gradually increased un-

til the throughput tapers off. The maximum through-

put achieved for the lowest number of threads is then

recorded. The average and tail latencies of transactions

are recorded for the same number of threads.

4.2.1 Hardware Isolation vs. Software Isolation

In this experiment, the channel and die isolated vSSDs

are evaluated against the software isolated vSSDs (with

weighted fair sharing of storage bandwidth enabled). We

begin with a scenario of two LevelDB instances. They

run on two vSSDs in three different configurations, each

using a different isolation level: high, medium, and low;

they contain one channel, four dies and sixteen soft-

planes respectively to ensure that the resources are con-

sistent across experiments. The two instances run a

YCSB workload each. The choice of YCSB is made for

this experiment to show how removing IO interference

can improve the throughput and reduce latency for IO-

bottlenecked applications.

A+A A+B A+C A+D A+E A+F
0

20
40
60
80

100
120
140
160

Th
ro

ug
hp

ut
 (K

 o
ps

/s
ec

) DB1-in-Channel-Isolated-vSSD
DB1-in-Die-Isolated-vSSD
DB1-in-Software-Isolated-vSSD

DB2-in-Channel-Isolated-vSSD
DB2-in-Die-Isolated-vSSD
DB2-in-Software-Isolated-vSSD

Figure 8: The throughput of LevelDB+YCSB workloads

running at various levels of storage isolation.

Unisolated-vSSD

Software-Isolated-vSSD

Channel-Isolated-vSSD
0.25

0.5
1
2
4
8

16
32
64

99
th

 P
er

ce
nt

ile

La
te

nc
y

(m
ill

is
ec

s) WebSearch
MapReduce

(a) 99th Percentile Latency

Unisolated-vSSD

Software-Isolated-vSSD

Channel-Isolated-vSSD
0

30
60
90

120
150
180
210

B
an

dw
id

th
 (M

B
/s

ec
)

(b) Bandwidth

Figure 11: The performance of colocated Web Search

and MapReduce workload traces.

Each LevelDB instance is first populated with 32 GB

of data and each key-value pair is 1 KB. The YCSB client

threads perform 50 million CRUD (i.e., create, read, up-

date and delete) operations against each LevelDB in-

stance. We pick the size of the database and number of

operations such that GC is always triggered. YCSB C is

read-only, thus we report results for read operations only.

The total number of dies in each setting is the same. In

the channel isolation case, two vSSDs are allocated from

two different channels. In the die isolation case, both

vSSDs share the channels, but are isolated at the die level

within the channel. In the software isolation case, both

vSSDs are striped across all the dies in two channels.

Figure 8 shows that on average, channel isolated vSSD

provides 1.3x better throughput compared to die isolated

vSSD and 1.6x compared to the software isolated vSSD.

Similarly, higher levels of isolation lead to lower average

latencies as shown in Figure 9 (a) and Figure 9 (b). This

is because higher levels of isolation suffer from less in-

terference between read and write operations from other

instances. Die isolated vSSDs have to share the bus with

each other, thus, their performance is worse than chan-

nel isolated vSSDs, which are fully isolated in hardware.

Software isolated vSSDs share the same dies with each

other, suffering from higher interference.

Tail latency improvements are much more significant.

As shown in Figure 9 (c) and Figure 9 (d), channel iso-

lated vSSDs provide up to 1.7x lower tail latency com-

pared to die isolated vSSDs and up to 2.6x lower tail la-

tency compared to vSSDs that stripe data across all the

dies akin to software isolated vSSDs whose operations

are not fully isolated from each other.

A similar experiment with four LevelDB instances is

also performed. Tail latency results are shown in Fig-

ure 10 where channel isolated vSSDs provide up to 3.1x

lower tail latency compared the software isolated vSSDs.

384 15th USENIX Conference on File and Storage Technologies USENIX Association

A+A A+B A+C A+D A+E A+F
(a) Read (Average)

0
50

100
150
200
250
300
350
400

M
ic

ro
se

co
nd

s
DB1-in-Channel-Isolated-vSSD DB1-in-Die-Isolated-vSSD DB1-in-Software-Isolated-vSSD DB2-in-Channel-Isolated-vSSD DB2-in-Die-Isolated-vSSD DB2-in-Software-Isolated-vSSD

A+A A+B A+C A+D A+E A+F
(b) Update (Average)

A+A A+B A+C A+D A+E A+F
(c) Read (99th Percentile)

0
200
400
600
800

1000
1200
1400

A+A A+B A+C A+D A+E A+F
(d) Update (99th Percentile)

Figure 9: The average and 99th percentile latencies of LevelDB+YCSB workloads running at various levels of storage

isolation. Compared to die and software isolated vSSDs, channel isolated vSSD reduces the average latency by 1.2x

and 1.4x respectively, and decreases the 99th percentile latency by 1.2 - 1.7x and 1.9 - 2.6x respectively. Note that the

update latencies are not applicable for workload C which is read-only.

A+A+A+A
A+B+A+B

A+C+A+C
A+D+A+D

A+E+A+E
A+F+A+F

A+B+C+D
C+D+E+F

0
200
400
600
800

1000
1200
1400
1600

La
te

nc
y

 (m
ic

ro
se

co
nd

s) DB1-in-Channel-Isolated-vSSD
DB2-in-Channel-Isolated-vSSD
DB3-in-Channel-Isolated-vSSD
DB4-in-Channel-Isolated-vSSD

DB1-in-Software-Isolated-vSSD
DB2-in-Software-Isolated-vSSD
DB3-in-Software-Isolated-vSSD
DB4-in-Software-Isolated-vSSD

(a) Read Latency (99th Percentile)

A+A+
A+A
A+B+

A+B
A+C+

A+C
A+D+

A+D
A+E+

A+E
A+F+

A+F
A+B+

C+D
C+D+

E+F

(b) Update Latency (99th Percentile)

Figure 10: The 99th percentile latency of running four LevelDB instances with various levels of storage isolation. The

channel isolated vSSD reduces the 99th percentile latency by 1.3 - 2.7x and 1.5 - 3.1x for read and update operation

respectively, compared to software isolated vSSD.

4.2.2 Latency vs. Bandwidth Sensitive Tenants

We now evaluate how hardware isolation provides bene-

fits for instances that share the same physical SSD when

one is latency sensitive while others are not (for resource

efficiency [42]). Channel, software isolated and uniso-

lated vSSDs are used in this experiment. The total num-

ber of dies is the same in all three settings and is eight.

The workloads from a large cloud provider are used for

performing this experiment. Web search is the instance

that requires lower tail latencies while MapReduce jobs

are not particularly latency sensitive.

Results shown in Figure 11 demonstrate three trends:

First, channel isolated vSSDs provide the best compro-

mise between throughput and tail latency: tail latency

of the web search workloads decreases by over 2x for a

36% reduction of bandwidth of the MapReduce job when

compared to an unisolated vSSD. The fall in throughput

of MapReduce is expected because it only has half of the

channels of the unisolated case where its large sequential

IOs end up consuming the bandwidth unfairly due to the

lack of any isolation techniques.

Second, software isolated vSSDs for web search and

MapReduce can reduce the tail latency of web search to

the same level as the channel-isolated case, but the band-

width of the MapReduce job decreases by more than 4x

when compared to the unisolated vSSD. This is also ex-

pected because the work that an SSD can perform is a

convex combination of IOPS and bandwidth. Web search

takes a significant number of small IOPS when sharing

bandwidth fairly with MapReduce and this in-turn re-

duces the total bandwidth available for MapReduce.

4.3 Wear-Leveling Efficacy and Overhead

Wear-leveling in FlashBlox is supported in two different

layers. One layer ensures that all the dies in the system

are aging at the same rate overall with channel migra-

tions, while the other layer ensures that blocks within a

given die are aging at the same rate overall. Its overhead

and efficacy are evaluated in this section.

4.3.1 Migration Overhead

We first evaluate the overhead of the migration mecha-

nism. We migrate one channel and measure the change

in throughput and 99th percentile latency on a variety of

YCSB workloads that are running on the channel.

The throughput of LevelDB running on that channel

drops by no more than 33.8% while the tail latencies of

reads and updates increase by up to 22.1% (Figure 12).

For simplicity, we show results for migrating 1 GB of

the 64GB channel. We use a single thread and the data

moves at a rate of 78.9MBPS. Moving all of the 64 GB

of data would take close to 15 minutes.

The impact of migration on web search and MapRe-

duce workloads is shown in Figure 13. During migra-

tion, the bandwidth of the MapReduce job decreases by

36.7%, the tail latencies of reads and writes of the web

search increase by 34.2%. These performance slow-

downs bring channel-isolation numbers on par with the

software isolation. This implies that a 36.7% drop for

15 minutes when amortized over our recommended swap

rate represents a 0.04% overall drop.

4.3.2 Migration Frequency Analysis

To evaluate the wear-leveling efficacy, we built a simula-

tor and used it to understand how the device ages for var-

USENIX Association 15th USENIX Conference on File and Storage Technologies 385

A B C D E F
0

30
60
90

120

Th
ro

ug
hp

ut

(K
 o

ps
/s

ec
) Without Migration With Migration

(a) Throughput

A B C D E F
0

100
200
300
400

M
ic
ro
se
co
nd
s

(b) Read (99th Percentile)

A B C D E F
0

100
200
300
400
500
600

M
ic
ro
se
co
nd
s

(c) Update (99th Percentile)

Figure 12: The impact of a channel migration on workloads: LevelDB’s throughput falls by 33.8%, its 99th percentile

read and update latencies increase by 22.1% and 18.7% respectively.

0 5 10 15 20 25 30 35 40 45 50 55
Time (seconds)

0

50

100

B
an

dw
id

th

(M
B

/s
ec

) Read Write

(a) Bandwidth of MapReduce

0 5 10 15 20 25 30 35 40 45 50 55
Time (seconds)

0.30
0.35
0.40
0.45
0.50

La
te

nc
y

(m
ill

is
ec

on
ds

)

Read

(b) Read Latency of Web Search

0 5 10 15 20 25 30 35 40 45 50 55
Time (seconds)

1.0
1.2
1.4
1.6
1.8

La
te

nc
y

(m
ill

is
ec

on
ds

)

Write

(c) Write Latency of Web Search

Figure 13: The overhead of migrating 1GB of data as MapReduce and web search are running on the channels involved:

MapReduce’s bandwidth falls by up to 36.7% while web search’s latency increases by up to 34.2%.

1 2 4 8 12 16
Number of Workloads

0
1
2
3
4
5
6

Ye
ar

s

NoSwap
Ideal SSD
swap per 1 week
swap per 2 weeks
swap per 4 weeks
swap per 8 weeks
FlashBlox

(a) Channel Killer

1 2 4 8 12 16
Number of Workloads

0
2
4
6
8

10
12

Ye
ar

s

(b) Die Killer

Figure 14: SSD lifetime of running adversarial write

workloads that stress a single channel or a die.

ious workloads. For workload traces that are not from a

log-structured application, we first execute the workload

on the log-structured file system vLFS built using Flash-

Blox and trace FlashBlox API calls. We measure the

block consumption rate of these traces to evaluate the ef-

ficacy of wear-leveling. For the CNEX SSD, γ = M/ f =
24 TB (discussed in § 3.1.5). The supported number of

program erase (PE) cycles is 10 K in our drive. Our ab-

solute lifetimes scale linearly for other SSDs and factor

improvements remain the same regardless of the number

of supported PE cycles.

Worst-case workloads. To evaluate the possible

worst cases for SSDs, we run the most write-intensive

workloads against a few channels (channel killer) and

dies (die killer). We gradually increase the number of

such workloads to stress the SSD. Each workload is

pinned to exactly one channel or one die while keeping

other channels or dies for read-only operations.

Figure 14 shows the SSD’s lifetime for a variety of

wear-leveling schemes. Without wear-leveling (NoSwap

in Figure 14), the SSD dies after less than 4 months,

while FlashBlox can always guarantee 95% of the ideal

lifetime within migration frequency of once per ≤ 4

weeks for both channel and die killer workloads. The

adaptive wear-leveling scheme in FlashBlox automati-

cally migrates a channel by adjusting to write-rates.

Mixed workloads. In real-world scenarios, a mix of

various kinds of workloads would run on the same SSD.

We use all the 14 workloads (Table 4) simultaneously in

1 12 24 36 48 60 72 84 96 108 120 132 144 156

Time (weeks)

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1

W
ea

r
Im

ba
la

nc
e

(M
ax

/A
vg

) No Swap
swap per 1 week
swap per 2 weeks
swap per 4 weeks
swap per 8 weeks
FlashBlox

Figure 15: Wear imbalance of FlashBlox with different

wear-leveling schemes. The ideal wear imbalance is 1.0.

Table 5: Monte Carlo simulation (10K runs) of SSD life-

time with randomly sampled workloads on the channels.

#vSSD

NoSwap

Lifetime (Years)

Ideal vs. FlashBlox

Lifetime (Years) Wear Im-

balance

Swap Once in

Days (Avg)
99th 50th 99th 50th

4 1.2 1.6 6.2/6.1 13.8/13.5 1.02 94

8 1.2 1.3 3.7/3.6 6.7/6.6 1.02 22

16 1.2 1.2 2.1/2.1 3.4/3.3 1.01 19

the experiment, and measure FlashBlox’s wear leveling.

Fourteen channel isolated vSSDs are created for running

these workloads and migrations. Figure 5 shows how the

erase rates of these applications vary.

For the scheme without any migrations, the wear im-

balance is 3.1, and the SSD dies after 1.2 years. Also,

results show that blocks are more or less evenly aged for

a migration frequency as high as once in four weeks, as

shown in Figure 15. This indicates that for realistic sce-

narios, where write traffic is more evenly matched, sig-

nificantly fewer swaps could be tolerated.

Figure 16 shows the absolute erase counts of the chan-

nels (including the erases needed for migrations and

GC). Compared to the ideal wear-leveling, the absolute

erase counts are almost the same with the migration fre-

quency of a week.

To further evaluate FlashBlox’s wear-leveling efficacy,

we run a Monte Carlo simulation (10K runs) of the SSD

lifetime. We create various number of vSSDs and assign

386 15th USENIX Conference on File and Storage Technologies USENIX Association

NoSwap

swap per 1 week

swap per 2 weeks

swap per 4 weeks

swap per 8 weeks
FlashBlox Ideal

Wear-Leveling Scheme

0

5

10

Av
g.

 E
ra

se
 C

ou
nt

(x
10

00
)

0 52 26 13 6 8 N/A
#CH-1
#CH-2
#CH-3
#CH-4

#CH-5
#CH-6
#CH-7
#CH-8

#CH-9
#CH-10
#CH-11
#CH-12

#CH-13
#CH-14
#CH-15
#CH-16

(a) After 1 year

NoSwap

swap per 1 week

swap per 2 weeks

swap per 4 weeks

swap per 8 weeks
FlashBlox Ideal

Wear-Leveling Scheme

0

5

10

15

20

Av
g.

 E
ra

se
 C

ou
nt

(x
10

00
)

0 104 52 26 13 16 N/A

(b) After 2 years

NoSwap

swap per 1 week

swap per 2 weeks

swap per 4 weeks

swap per 8 weeks
FlashBlox Ideal

Wear-Leveling Scheme

0

5

10

15

20

25

Av
g.

 E
ra

se
 C

ou
nt

(x
10

00
)

0 156 78 39 19 29 N/A

(c) After 3 years

Figure 16: Erase counts over three years for workloads in Table 4. The erase count per block in each channel of

FlashBlox is close to that of the ideal SSD. The numbers on the top shows the cumulative migration count.

them uniformly at random to one of the fourteen work-

loads. The SSD is then simulated to end-of-life.

We report the 99th and 50th percentile lifetime of ideal

SSD, SSD without swapping (NoSwap) and FlashBlox in

Table 5. For the case of running 16 instances, 99% of the

ideal SSDs last 2.1 years, and half of them can work for

3.4 years. With adaptive wear-leveling scheme, Flash-

Blox’s lifetime is close to ideal and its wear imbalance is

close to the ideal case. In real world, where not all ap-

plications are adversarial (channel/die-killer workloads),

the swap frequency automatically increases.

5 Related Work

Open Architecture SSDs. Recent research has proposed

exposing flash parallelism directly to the host [38, 49, 61,

76]. This is immensely helpful for applications where

each unit of flash parallelism receives more or less sim-

ilar write workloads. However, this is often not the case

in multi-tenant cloud platform where workloads with a

variety of write-rates co-exist on the same SSD. Flash-

Blox takes a holistic approach to solve this problem, it

not only provides hardware isolation but also ensures all

the units of parallelism are aging uniformly.

SSD-level Optimizations. Recent work has success-

fully improved SSDs’ performance by enhancing how

FTLs leverage the flash parallelism [17, 32]. We extend

this line of research for performance isolation for appli-

cations in a multi-tenant setting. FlashBlox uses dedi-

cated channels and dies for each application to improve

isolation and balances inter-application wear using a new

strategy, while existing FTL optimizations are relevant

for intra-application wear-leveling.

SSD Interface. Programmable and flexible SSD inter-

faces have been proposed to improve the communication

between applications and SSD hardware [15, 50, 53].

SR-IOV [63] is a hardware bus standard that helps vir-

tual machines bypass the host to safely share hardware

to reduce CPU overhead. These techniques are compli-

mentary to FlashBlox which helps applications use dedi-

cated flash regions. Multi-streamed SSDs [33] addresses

a similar problem with a stream tag, isolating each stream

to dedicated flash blocks but sharing all channels, dies

and planes to achieve maximum per-stream throughput.

OPS isolation [34] has been proposed to dedicate flash

blocks to each virtual machine sharing an SSD. They re-

duce fragmentation and GC overheads. FlashBlox builds

upon this work and extends the isolation to channels and

dies without compromising on wear-leveling.

Storage Isolation. Recent research has demonstrated

that making software aware of the underlying hardware

constraints can improve isolation. Shared SSD per-

formance [56, 57] can be improved by observing the

convex-dependency between IOPS and bandwidth, and

also by predicting future workloads [64]. In contrast,

FlashBlox identifies the relation between flash isolation

and wear when using hardware isolation, and makes

software schedulers aware of it. It solves this problem

by helping software perform coarse time granular wear-

levelling across channels and dies.

6 Conclusions and Future Work

In this paper, we propose leveraging channel and die-

level parallelism present in SSDs to provide isolation for

latency sensitive applications sharing an SSD. Further-

more, FlashBlox provides near-ideal lifetime despite the

fact that individual applications write at different rates

to their respective channels and dies. FlashBlox achieves

this by migrating applications between channels and dies

at coarse time granularities. Our experiments show that

FlashBlox can improve throughput by 1.6x and reduce

tail latency by up to 3.1x. We also show that migrations

are rare for real world workloads and do not adversely

impact applications’ performance. In the future, we wish

to take FlashBlox in two directions. First, we would like

to investigate how to integrate with the virtual hard drive

stack such that virtual machines can leverage FlashBlox

without modification. Second, we would like to under-

stand how FlashBlox should be integrated with multi-

resource data center schedulers to help applications ob-

tain predictable end-to-end performance.

Acknowledgments

We would like to thank our shepherd Ming Zhao as well

as the anonymous reviewers. This work was supported in

part by the Center for Future Architectures Research (C-

FAR), one of the six SRC STARnet Centers, sponsored

by MARCO and DARPA. We would also like to thank

the great folks over at CNEX for supporting our research

by providing early access to their open SSDs.

USENIX Association 15th USENIX Conference on File and Storage Technologies 387

References

[1] N. Agarwal, V. Prabhakaran, T. Wobber, J. D. Davis,

M. Manasse, and R. Panigrahy. Design Tradeoffs for SSD

Performance. In Proc. USENIX ATC, Boston, MA, June

2008.

[2] Amazon Relational Database Service.

https://aws.amazon.com/rds/.

[3] Amazon Relational Database Service Pricing.

https://aws.amazon.com/rds/pricing/.

[4] Amazon’s SSD Backed EBS.

https://aws.amazon.com/blogs/aws/new-

ssd-backed-elastic-block-storage/.

[5] Azure DocumentDB.

https://azure.microsoft.com/en-

us/services/documentdb/.

[6] Azure DocumentDB Pricing.

https://azure.microsoft.com/en-

us/pricing/details/documentdb/.

[7] Azure Premium Storage.

https://azure.microsoft.com/en-

us/documentation/articles/storage-

premium-storage/.

[8] Azure Service Fabric.

https://azure.microsoft.com/en-

us/services/service-fabric/.

[9] Azure SQL Database.

https://azure.microsoft.com/en-

us/services/sql-database/.

[10] Azure SQL Database Pricing.

https://azure.microsoft.com/en-

us/pricing/details/sql-database/.

[11] S. Blagodurov, S. Zhuravlev, M. Dashti, and A. Fedorova.

A Case for NUMA-aware Contention Management on

Multicore Systems. In Proc. USENIX ATC’11, Berkeley,

CA, June 2011.

[12] Block IO Bandwidth (Blkio) in Docker.

https://docs.docker.com/engine/

reference/run/#block-io-bandwidth-

blkio-constraint.

[13] Block IO Controller.

https://www.kernel.org/doc/

Documentation/cgroup-v1/blkio-

controller.txt.

[14] Y. Bu, H. Lee, and J. Madhavan. Comparing SSD-

placement Strategies to scale a Database-in-the-Cloud. In

Proc. SoCC’13, Santa Clara, CA, Oct. 2013.

[15] A. M. Caulfield, T. I. Mollov, L. Eisner, A. De, J. Coburn,

and S. Swanson. Providing safe, user space access to fast,

solid state disks. In Proc. ACM ASPLOS’12, London,

United Kingdom, Mar. 2012.

[16] CGROUPS.

https://www.kernel.org/doc/

Documentation/cgroup-v1/cgroups.txt.

[17] F. Chen, R. Lee, and X. Zhang. Essential Roles of Ex-

ploiting Internal Parallelism of Flash Memory based Solid

State Drives in High-Speed Data Processing. In Proc.

HPCA’11, San Antonio, Texas, Feb. 2011.

[18] CNEX Labs.

http://www.cnexlabs.com/index.php.

[19] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,

and R. Sears. Benchmarking cloud serving systems with

ycsb. In Proc. SoCC’12, Indianapolis, Indiana, June

2010.

[20] FIO Benchmarks.

https://linux.die.net/man/1/fio.

[21] Fusion-io ioDrive.

https://www.sandisk.com/business/

datacenter/products/flash-devices/

pcie-flash/sx350.

[22] Google Cloud Platform: Local SSDs.

https://cloud.google.com/compute/docs/

disks/local-ssd.

[23] Google Cloud SQL.

https://cloud.google.com/sql/.

[24] A. Gupta, Y. Kim, and B. Urgaonkar. DFTL: A Flash

Translation Layer Employing Demand-based Selective

Caching of Page-level Address Mappings. In Proc. ACM

ASPLOS, Washington, DC, Mar. 2009.

[25] M. Hao, G. Soundararajan, D. Kenchammana-Hosekote,

A. A. Chien, and H. S. Gunawi. The Tail at Store: A Rev-

elation from Millions of Hours of Disk and SSD Deploy-

ments. In Proc. FAST’16, Santa Clara, CA, Feb. 2016.

[26] J. He, D. Nguyen, A. C. Arpaci-Dusseau, and R. H.

Arpaci-Dusseau. Reducing File System Tail Latencies

with Chopper. In Proc. FAST’15, Santa Clara, CA, Feb.

2015.

[27] J. Huang, A. Badam, M. K. Qureshi, and K. Schwan. Uni-

fied Address Translation for Memory-Mapped SSD with

FlashMap. In Proc. ISCA’15, Portland, OR, June 2015.

[28] Intel Inc. Improving Real-Time Performance by Utilizing

Cache Allocation Technology. White Paper, 2015.

[29] Iyswarya Narayanan and Di Wang and Myeongjae Jeon

and Bikash Sharma and Laura Caulfield and Anand Siva-

subramaniam and Ben Cutler and Jie Liu and Badriddine

Khessib and Kushagra Vaid. SSD Failures in Datacenters:

What? When? and Why? In Proc. ACM SYSTOR’16,

Haifa, Israel, June 2016.

[30] V. Jeyakumar, M. Alizadeh, D. Mazieres, B. Prabhakar,

C. Kim, and A. Greenberg. EyeQ: Practical Network Per-

formance Isolation at the Edge. In Proc. NSDI’13, Berke-

ley, CA, Apr. 2013.

[31] W. K. Josephson, L. A. Bongo, K. Li, and D. Flynn. DFS:

A File System for Virtualized Flash Storage. ACM Trans.

on Storage, 6(3):14:1–14:25, 2010.

[32] M. Jung and M. K. Ellis H. Wilson III. Physically Ad-

dressed Queueing (PAQ): Improving Parallelism in Solid

State Disks. In Proc. ISCA’12, Portland, OR, June 2012.

388 15th USENIX Conference on File and Storage Technologies USENIX Association

https://aws.amazon.com/rds/
https://aws.amazon.com/rds/pricing/
https://aws.amazon.com/blogs/aws/new-ssd-backed-elastic-block-storage/
https://aws.amazon.com/blogs/aws/new-ssd-backed-elastic-block-storage/
https://azure.microsoft.com/en-us/services/documentdb/
https://azure.microsoft.com/en-us/services/documentdb/
https://azure.microsoft.com/en-us/pricing/details/documentdb/
https://azure.microsoft.com/en-us/pricing/details/documentdb/
https://azure.microsoft.com/en-us/documentation/articles/storage-premium-storage/
https://azure.microsoft.com/en-us/documentation/articles/storage-premium-storage/
https://azure.microsoft.com/en-us/documentation/articles/storage-premium-storage/
https://azure.microsoft.com/en-us/services/service-fabric/
https://azure.microsoft.com/en-us/services/service-fabric/
https://azure.microsoft.com/en-us/services/sql-database/
https://azure.microsoft.com/en-us/services/sql-database/
https://azure.microsoft.com/en-us/pricing/details/sql-database/
https://azure.microsoft.com/en-us/pricing/details/sql-database/
https://docs.docker.com/engine/reference/run/#block-io-bandwidth-blkio-constraint
https://docs.docker.com/engine/reference/run/#block-io-bandwidth-blkio-constraint
https://docs.docker.com/engine/reference/run/#block-io-bandwidth-blkio-constraint
https://www.kernel.org/doc/Documentation/cgroup-v1/blkio-controller.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/blkio-controller.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/blkio-controller.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
http://www.cnexlabs.com/index.php
https://linux.die.net/man/1/fio
https://www.sandisk.com/business/datacenter/products/flash-devices/pcie-flash/sx350
https://www.sandisk.com/business/datacenter/products/flash-devices/pcie-flash/sx350
https://www.sandisk.com/business/datacenter/products/flash-devices/pcie-flash/sx350
https://cloud.google.com/compute/docs/disks/local-ssd
https://cloud.google.com/compute/docs/disks/local-ssd
https://cloud.google.com/sql/

[33] J.-U. Kang, J. Hyun, H. Maeng, and S. Cho. The Multi-

Streamed Solid-State Drive. In Proc. HotStorage’14,

Philadelphia, PA, June 2014.

[34] J. Kim, D. Lee, and S. H. Noh. Towards SLO Complying

SSDs Through OPS Isolation. In Proc. FAST’15, Santa

Clara, CA, Feb. 2015.

[35] W.-H. Kim, B. Nam, D. Park, and Y. Won. Resolving

Journaling of Journal Anomaly in Android IO: Multi-

version B-tree with Lazy Split. In FAST’14, Santa Clara,

CA, Feb. 2014.

[36] R. Konishi, Y. Amagai, K. Sato, H. Hifumi, S. Kihara, and

S. Moriai. The Linux implementation of a log-structured

file system. SIGOPS OSR, 40(3), 2006.

[37] C. Lee, D. Sim, J.-Y. Hwang, and S. Cho. F2FS: A New

File System for Flash Storage. In Proc. FAST’15, Santa

Clara, CA, Feb. 2015.

[38] S. Lee, M. Liu, S. Jun, S. Xu, J. Kim, and Arvind.

Application-Managed Flash. In Proc. FAST’16, Santa

Clara, CA, Feb. 2016.

[39] LevelDB.

https://github.com/google/leveldb.

[40] J. Leverich and C. Kozyrakis. Reconciling High Server

Utilization and Sub-millisecond Quality-of-Service. In

Proc. EuroSys’14, Amsterdam, Netherlands, Apr. 2014.

[41] N. Li, H. Jiang, D. Feng, and Z. Shi. PSLO: Enforcing the

Xth Percentile Latency and Throughput SLOs for Consol-

idated VM Storage. In Proc. EuroSys’16, London, United

Kingdom, Apr. 2016.

[42] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and

C. Kozyrakis. Heracles: Improving Resource Efficiency

at Scale. In Proc. ISCA’15, Portland, OR, June 2015.

[43] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa.

Bubble-Up: Increasing Utilization in Modern Warehouse

Scale Computers via Sensible Co-locations. In Proc. MI-

CRO’11, Porto Alegre, Brazil, Dec. 2011.

[44] Matias Bjorling and Javier Gonzalez and Philippe Bon-

net. LightNVM: The Linux Open-Channel SSD Subsys-

tem. In Proc. USENIX FAST’17, Santa Clara, CA, Feb.

2016.

[45] H. Menon and L. Kale. A Distributed Dynamic Load Bal-

ancer for Iterative Applications. In Proc. SC’13, Denver,

Colorado, Nov. 2013.

[46] Microsoft’s Open Source Cloud Hardware.

https://azure.microsoft.com/en-

us/blog/microsoft-reimagines-open-

source-cloud-hardware/.

[47] S. P. Muralidhara, L. Subramanian, O. Mutlu, M. Kan-

demir, and T. Moscibroda. Reducing Memory Interfer-

ence in Multicore Systems via Application-Aware Mem-

ory Channel Partitioning. In Proc. MICRO’11, Porto Ale-

gre, Brazil, Dec. 2011.

[48] R. Nathuji, A. Kansal, and A. Ghaffarkhah. Q-Clouds:

Managing Performance Interference Effects for QoS-

Aware Clouds. In Proc. EuroSys’12, Paris, France, Apr.

2010.

[49] J. Ouyang, S. Lin, S. Jiang, Y. Wang, W. Qi, J. Cong, and

Y. Wang. SDF: Software-Defined Flash for Web-Scale

Internet Storage Systems. In Proc. ACM ASPLOS, Salt

Lake City, UT, Mar. 2014.

[50] X. Ouyang, D. Nellans, R. Wipfel, D. Flynn, and D. K.

Panda. Beyond Block I/O: Rethinking Traditional Storage

Primitives. In Proc. HPCA’11, San Antonio, Texas, Feb.

2014.

[51] M. Rosenblum and J. K. Ousterhout. The Design and

Implementation of a Log-Structured File System. ACM

Trans. on Computer Systems, 10(1):26–52, Feb. 1992.

[52] D. Sanchez and C. Kozyrakis. Vantage: Scalable and Ef-

ficient Fine-Grain Cache Partitioning. In Proc. ISCA’11,

San Jose, CA, June 2011.

[53] S. Seshadri, M. Gahagan, S. Bhaskaran, T. Bunker, A. De,

Y. Jin, Y. Liu, and S. Swanson. Willow: A User-

Programmable SSD. In Proc. OSDI’14, Broomfield, CO,

Oct. 2014.

[54] K. Shen, S. Park, and M. Zhu. Journaling of journal is

(almost) free. In Proc. FAST’14, Berkeley, CA, 2014.

[55] Shore-MT.

https://sites.google.com/site/

shoremt/.

[56] D. Shue and M. J. Freedman. From Application Requests

to Virtual IOPs: Provisioned Key-Value Storage with Li-

bra. In Proc. EuroSys’14, Amsterdam, Netherlands, Apr.

2014.

[57] D. Shue, M. J. Freedman, and A. Shaikh. Performance

Isolation and Fairness for Multi-Tenant Cloud Storage. In

Proc. OSDI’12, Hollywood, CA, Oct. 2012.

[58] D. Shukla, S. Thota, K. Raman, M. Gajendran, A. Shah,

S. Ziuzin, K. Sundama, M. G. Guajardo, A. Wawrzy-

niak, S. Boshra, R. Ferreira, M. Nassar, M. Koltachev,

J. Huang, S. Sengupta, J. Levandoski, and D. Lomet.

Schema-agnostic indexing with azure documentdb. In

Proc. VLDB’15, Kohala Coast, Hawaii, Sept. 2015.

[59] A. Singh, M. Korupolu, and D. Mohapatra. Server-

Storage Virtualization: Integration and Load Balancing in

Data Centers. In Proc. SC’08, Austin, Texas, Nov. 2008.

[60] D. Skourtis, D. Achlioptas, N. Watkins, C. Maltzahn, and

S. Brandt. Flash on rails: consistent flash performance

through redundancy. In Proc. USENIX ATC’14, Philadel-

phia, PA, June 2014.

[61] X. Song, J. Yang, and H. Chen. Architecting Flash-

based Solid-State Drive for High-performance I/O Virtu-

alization. IEEE Computer Architecture Letters, 13:61–64,

2014.

[62] SQL Database Options and Performance: Understand

What’s Available in Each Service Tier.

https://azure.microsoft.com/en-us/

documentation/articles/sql-database-

service-tiers/#understanding-dtus.

USENIX Association 15th USENIX Conference on File and Storage Technologies 389

https://github.com/google/leveldb
https://azure.microsoft.com/en-us/blog/microsoft-reimagines-open-source-cloud-hardware/
https://azure.microsoft.com/en-us/blog/microsoft-reimagines-open-source-cloud-hardware/
https://azure.microsoft.com/en-us/blog/microsoft-reimagines-open-source-cloud-hardware/
https://sites.google.com/site/shoremt/
https://sites.google.com/site/shoremt/
https://azure.microsoft.com/en-us/documentation/articles/sql-database-service-tiers/#understanding-dtus
https://azure.microsoft.com/en-us/documentation/articles/sql-database-service-tiers/#understanding-dtus
https://azure.microsoft.com/en-us/documentation/articles/sql-database-service-tiers/#understanding-dtus

[63] SR-IOV for SSDs.

http://www.snia.org/sites/default/

files/Accelerating%20Storage%20Perf%

20in%20Virt%20Servers.pdf.

[64] Sungyong Ahn and Kwanghyun La and Jihong Kim.

Improving I/O Resource Sharing of Linux Cgroup for

NVMe SSDs on Multi-core Systems. In Proc. USENIX

HotStorage’16, Denver, CO, June 2016.

[65] TATP Benchmark.

http://tatpbenchmark.sourceforge.net/.

[66] E. Thereska, H. Ballani, G. O’Shea, T. Karagiannis,

A. Rowstron, T. Talpey, R. Black, and T. Zhu. IOFlow:

A Software-Defined Storage Architecture. In Proc.

SOSP’13, Farmington, PA, Nov. 2013.

[67] Throtting IO with Linux.

https://fritshoogland.wordpress.com/

2012/12/15/throttling-io-with-linux.

[68] Token Bucket Algorithm.

https://en.wikipedia.org/wiki/token_

bucket.

[69] TPCB Benchmark.

http://www.tpc.org/tpcb/.

[70] TPCC Benchmark.

http://www.tpc.org/tpcc/.

[71] TPCE Benchmark.

http://www.tpc.org/tpce/.

[72] Traffic Control HOWTO.

http://linux-ip.net/articles/Traffic-

Control-HOWTO/.

[73] B. Trushkowsky, P. Bodik, A. Fox, M. J. Franklin, M. I.

Jordan, and D. A. Patterson. The SCADS Director: Scal-

ing a Distributed Storage System Under Stringent Perfor-

mance Requirements. In Proc. FAST’11, Santa Clara, CA,

Feb. 2016.

[74] H. Wang and P. Varman. Balancing Fairness and Effi-

ciency in Tiered Storage Systems with Bottleneck-Aware

Allocation. In Proc. FAST’14, Santa Clara, CA, Feb.

2014.

[75] J. Wang and Y. Hu. WOLF: A Novel reordering write

buffer to boost the performance of log-structured file sys-

tems. In Proc. FAST’02, Monterey, CA, Jan. 2002.

[76] P. Wang, G. Sun, S. Jiang, J. Ouyang, S. Lin, C. Zhang,

and J. Cong. An Effective Design and Implementation

of LSM-Tree based Key-Value Store on Open-Channel

SSD. In Proc. EuroSys’14, Amsterdam, the Netherlands,

Apr. 2014.

[77] J. Yang, N. Plasson, G. Gillis, N. Talagala, and S. Sun-

dararaman. Don’t stack your Log on my Log. In Proc.

INFLOW’14, Broomfield, CO, Oct. 2014.

[78] S. Yang, T. Harter, N. Agrawal, S. S. Kowsalya, A. Krish-

namurthy, S. AI-Kiswany, R. T. Kaushik, A. C. Arpaci-

Dusseau, and R. H. Arpaci-Dusseau. Split-Level I/O

Scheduling. In Proc. SOSP’15, Monterey, CA, Oct. 2015.

[79] N. Zhang, J. Tatemura, J. M. Patel, and H. Hacigu-

mus. Re-evaluating Designs for Multi-Tenant OLTP

Workloads on SSD-based I/O Subsystems. In Proc. SIG-

MOD’14, Snowbird, UT, June 2014.

[80] Y. Zhang, L. P. Arulraj, A. C. Arpaci-Dusseau, and R. H.

Arpaci-Dusseau. De-indirection for Flash-based SSDs

with Nameless Writes. In Proc. 10th USENIX FAST, San

Jose, CA, Feb. 2012.

390 15th USENIX Conference on File and Storage Technologies USENIX Association

http://www.snia.org/sites/default/files/Accelerating%20Storage%20Perf%20in%20Virt%20Servers.pdf
http://www.snia.org/sites/default/files/Accelerating%20Storage%20Perf%20in%20Virt%20Servers.pdf
http://www.snia.org/sites/default/files/Accelerating%20Storage%20Perf%20in%20Virt%20Servers.pdf
http://tatpbenchmark.sourceforge.net/
https://fritshoogland.wordpress.com/2012/12/15/throttling-io-with-linux
https://fritshoogland.wordpress.com/2012/12/15/throttling-io-with-linux
https://en.wikipedia.org/wiki/token_bucket
https://en.wikipedia.org/wiki/token_bucket
http://www.tpc.org/tpcb/
http://www.tpc.org/tpcc/
http://www.tpc.org/tpce/
http://linux-ip.net/articles/Traffic-Control-HOWTO/
http://linux-ip.net/articles/Traffic-Control-HOWTO/

	Introduction
	SSD Virtualization: Opportunity and Challenges
	Hardware Isolation vs. Wear-Leveling
	Leveraging Parallelism for Isolation

	Design and Implementation
	Channel Isolated Virtual SSDs
	Channel Allocation
	Unbalanced Wear-Leveling Challenge
	Inter-Channel Wear-Leveling
	Swap Frequency Analysis
	Adaptive Migration Mechanism

	Die-Isolated Virtual SSDs
	Software Isolated Virtual SSDs
	Intra Channel/Die Wear-Leveling
	Application/Filesystem Level Log
	Device-Level Mapping

	Implementation Details

	Evaluation
	Microbenchmarks
	Isolation Level vs. Tail Latency
	Hardware Isolation vs. Software Isolation
	Latency vs. Bandwidth Sensitive Tenants

	Wear-Leveling Efficacy and Overhead
	Migration Overhead
	Migration Frequency Analysis

	Related Work
	Conclusions and Future Work

