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ABSTRACT
We address the problem of learning comprehensive syntactic
profiles for a set of strings. Real-world datasets, typically
curated from multiple sources, often contain data in various
formats. Thus any data processing task is preceded by the
critical step of data format identification. However, manual
inspection of data to identify various formats is infeasible in
standard big-data scenarios.

We present a technique for generating comprehensive
syntactic profiles in terms of user-defined patterns that also
allows for interactive refinement. We define a syntactic
profile as a set of succinct patterns that describe the entire
dataset. Our approach efficiently learns such profiles, and
allows refinement by exposing a desired number of patterns.

Our implementation, FlashProfile, shows a median profil-
ing time of 0.7 s over 142 tasks on 74 real datasets. We also
show that access to the generated data profiles allow for
more accurate synthesis of programs, using fewer examples
in programming-by-example workflows.

1. INTRODUCTION
In modern data science, most real-life datasets lack high-
quality metadata — they are often incomplete, erroneous,
and unstructured [15]. This severely impedes data analysis,
even for domain experts. For instance, a merely preliminary
task of data wrangling (importing, cleaning, and reshaping
data) consumes 50 – 80% of the total analysis time [33].
Prior studies show that high-quality metadata not only
help users clean, understand, transform, and reason over
data, but also enable advanced applications, such as query
optimization, schema matching, and reverse engineering [47,
38]. Traditionally, data scientists manually inspect samples
of data, or create aggregation queries. Naturally, this
approach does not scale to modern large-scale datasets [38].

Data profiling is the process of automatically discovering
useful metadata (typically as a succinct summary) for the
data [6]. In this work, we focus on syntactic profiling, i.e.

∗
Work done during an internship at Microsoft.

Birth Year
1900
1877

1860
?

1866

1893
...

1888?
1872

(a) Dataset

Automatically suggested profile:

· “1” � Digit×3 (2 574)
· “?” (653)
· Empty (80)
· “18” � Digit×2 � “?” (16)

Profile learned on requesting 5 patterns:
· “18” � Digit×2 (2 491)
· “?” (653)
· Empty (90)
· “190” � Digit (83)
· “18” � Digit×2 � “?” (16)

(b) Suggested and refined profiles

Figure 1: Profiles generated by FlashProfile for a
real dataset1. Atoms are concatenated with �, and
superscripts indicate their repetitions. The number
of matches for each pattern is shown on the right.

learning a succinct structural description of the data. We
present FlashProfile, a novel technique for learning syntactic
profiles that satisfy the following three desirable properties:

Comprehensive: We expose the syntactic profile as a set of
patterns, which cover 100% of the data.
Refinable: Users can interactively refine the granularity of
profiles by requesting the desired number of patterns.
Extensible: Each pattern is a sequence of atomic patterns,
or atoms. Our pattern learner LP includes a default set of
atoms (e.g., digits and identifiers), and users can extend it
with appropriate domain-specific atoms for their datasets.

Example: Figure 1 shows the syntactic profiles generated
by FlashProfile for an incomplete and inconsistent dataset
containing birth years. The profiles expose rare patterns in
the data that are otherwise hard to notice. For example,
the automatically suggested profile in Figure 1(b) reveals
dirty years of the form “18” � Digit×2 � “?” which constitute
less than 0.5% of the dataset. As shown at the bottom of
the figure, if a user requests one more pattern to refine the
profile, FlashProfile separates the “18” � Digit×2 years from
the much sparser “190” � Digit years.

The closest related tools that learn rich syntactic patterns
are Microsoft SQL Server Data Tools [2] (SSDT), and Pot-
ter’s Wheel [43]. Beside the lack of support for refinement,
neither tool generates comprehensive profiles. For the data
in Figure 1(a), SSDT generates2 the following profile, which
omits years matching “18” � Digit×2 � “?”:

· \d\d\d\d (79%)
· ? (20%)

1 Linda K. Jacobs, The Syrian Colony in New York City 1880-1900.
Accessed at http://bit.ly/LJacobs

2 Using “Column Pattern Profiling Task” in SSDT 14.0.61021.0 in Visual Studio
2015 with PercentageDataCoverageDesired = 100.
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Similarly, Potter’s Wheel only detects the most frequent
pattern in the dataset. Furthermore, for our example from
Figure 1(a), it detects the most frequent pattern as Int but
not its fixed length 4. We give a detailed comparison in § 8.

Our Technique: We profile a given dataset by first
partitioning it into syntactically similar clusters of strings,
and subsequently learning a succinct pattern describing each
cluster. To facilitate user-driven refinement of the results
into more clusters, we construct a hierarchical clustering
over the dataset. This enables efficient extraction of clusters
with desired granularity by splitting the hierarchy at an
appropriate height. Two major challenges to constructing
the hierarchy are — (1) defining an appropriate dissimilarity
measure that that allows domain-specific profiling, and
(2) computing all pairwise dissimilarities, which is typical
for hierarchical clustering, is expensive for large datasets.

Our key insight towards addressing the first challenge is
that, the desired measure of dissimilarity is not a property of
the strings per se, but of the patterns describing them over
the user-defined language. We define syntactic dissimilarity
based on costs of patterns – a low cost pattern describing
two strings indicates a high degree of syntactic similarity.
To address the second challenge, we show sampling and
approximation techniques which reuse previously learned
patterns to approximate unknown pairwise dissimilarities.
This enables hierarchical clustering using very few pairwise
dissimilarity computations. In essence, we present a general
framework for profiling, based on an efficient hierarchical
clustering technique which is parameterized by a pattern
learner L , and a cost function C over patterns.

Implementation and Evaluation: Our implementa-
tion, FlashProfile, uses a pattern learner based on inductive
program synthesis [32] – an approach for learning programs
over an underlying domain-specific language from an in-
complete specification (such as input/output examples).
We formally define the synthesis problem for our pattern
language LP , and present (1) a sound and complete pattern
learner LP over a user-specified set of atoms, and (2) a cost
function CP over LP patterns. We have implemented LP

using PROSE [4] (also called FlashMeta [40]), a state-of-the-
art inductive synthesis framework.

We evaluate our technique on 74 publicly-available real
datasets3 collected from online sources. Over 142 tasks,
FlashProfile achieves a median profiling time of 0.7s, 77%
of which complete in under 2s. Apart from being refinable
interactively, we show that profiles generated by FlashProfile
are more expressive compared to three state-of-the-art
existing tools, owing to its extensible language.

Applications: The benefits of comprehensive profiles ex-
tend beyond data understanding. An emerging technology,
programming by examples [32, 19, 21] (PBE), provides end
users with powerful semi-automated alternatives to manual
data wrangling. A key challenge to its success is finding a
representative set of examples which best discriminate the
desired program from a large space of possible programs [37].
We show that FlashProfile helps existing PBE systems by
identifying syntactically diverse inputs.

We have investigated 163 scenarios where Flash Fill [18],
a popular PBE system for string transformations, requires
> 1 example to learn the desired transformation. In 84%
of them, the representative examples belong to different
syntactic clusters identified by FlashProfile. Moreover, for
3 Available at: https://github.com/SaswatPadhi/ProfilingExperiments

86% of them, an interaction guided by the profile completes
the task in a minimum possible number of examples.

In summary, we present the following major contributions:

• (§ 3) We define interactive profiling as a problem of
hierarchical clustering based on syntactical similarity,
followed by qualifying each cluster with a pattern.

• (§ 4) We propose a novel dissimilarity measure which
is superior to traditional string-similarity measures for
estimating syntactic similarity. We also present sampling
and approximation strategies for efficiently constructing
hierarchies using the proposed measure.

• (§ 5) We instantiate our technique as FlashProfile, using
program synthesis for learning patterns over the language
LP . Our learner LP also supports user-defined patterns.

• (§6) We evaluate FlashProfile’s performance and accuracy
across 142 tasks on real-life datasets, and compare
profiles generated by FlashProfile to state-of-the-art tools.

• (§ 7) We show how FlashProfile helps PBE systems by
identifying a representative set of examples for the data.

2. MOTIVATING SCENARIO
In this section, we discuss a practical data analysis task and
show the benefit of comprehensive data profiles. Consider
the task of gathering descriptive statistics (e.g. range and
mode) of the data in Figure 1(a). The following Python
script is a reasonable first attempt after a quick glance on
the data:

clean = [int(e) for e in years if e != ’?’]
min_year = min(clean)
max_year = max(clean)
mode_year, mode_count = Counter(clean).most_common(1)[0]

But it fails when int(e) raises an exception on e == ’’.
Thus, the user updates the script to clean the data further:

clean = [int(e) for e in years if len(e) == 4]

Having encountered only 4-digit years and ? in the first
sample, she simplifies the script to consider only clean 4-digit
years. Now the script runs to its completion and returns:

min_year = 1813 mode_year = 1875
max_year = 1903 mode_count = 118

However, the mode count value is incorrect because the
analysis script ignores any approximate entries with a
trailing ? (e.g., 1875?). Since the user is unaware of such
entries after a quick glance on the data, she does not realize
that the computed value is incorrect.

A more cautious analyst might have discovered entries
like 1875? after adding a second check to filter out the
missing entries. However, such trial-and-error pattern
discovery requires several time-consuming iterations to cover
the entire dataset. The analyst also needs to manually
inspect the failing cases and find a general pattern to handle
them properly. Moreover, this approach works only if she
knows how to validate the data type (note the int(e) in
clean), which might be difficult for non-standard types.

Wrangling by Examples: Instead of manually ana-
lyzing the data, the user may choose a semi-automated
technique like Flash Fill. She loads her data in Excel and
provides a few examples, expecting Flash Fill to learn the
transformation for cleaning any dirty years by extracting
their integer parts. Typically users provide examples for
the first few rows. Flash Fill then synthesizes the simplest
generalization [18] over the provided examples.

https://github.com/SaswatPadhi/ProfilingExperiments


func Profile〈L,C〉(S : String[ ],m : Int,M : Int, θ : Double)

Result: P̃ , a set of patterns with partitions, such that m 6 | P̃ | 6M .

1 · H ← BuildHierarchy〈L,C〉(S,M, θ)

2 · P̃ ← Ø
3 · for all X ∈ Split(H,m,M) do
4 · P ← LearnBestPattern〈L,C〉(X).Pattern

5 · P̃ ← P̃ ∪ {〈Data: X,Pattern: P 〉}
6 · return P̃

Figure 2: Our profiling algorithm, using a pattern
learner L and cost function C over patterns.

In this case, Flash Fill produces identity transform since
the first several inputs are all clean 4-digit years. Fixing
this mistake requires manual inspection, which reveals a
discrepancy only at the 84th row. Furthermore, if the user
invokes the MIN, MAX, or MODE functions on the output column,
Excel silently ignores all non-numeric entries, thus producing
incorrect results without any warnings.

As we show in § 7, a profile of the input column allows
Flash Fill to learn the desired transformation with fewer
examples. Instead of simply taking examples in the order
they appear in the dataset, Flash Fill proactively requests it
on the most discrepant row w.r.t. the previous examples.

3. OVERVIEW
In this section, we informally explain our technique, and its
instantiation as FlashProfile. The goal of syntactic profiling
is to learn patterns summarizing the given data, which are
neither too specific nor too general (to be practically useful).
Here, the dataset itself is a trivial overly specific profile,
whereas the regex .* is an overly general one.

Definition 3.1. Syntactic Profile: Given a set of strings
S, syntactic profiling involves learning (1) a partitioning
{S1, . . . ,Sk} of the set S, and (2) a set of syntactic patterns

P̃ = {P1, . . . , Pk}, such that each Pi succinctly describes the

partition Si. The set P̃ is called a syntactic profile of S.

At a high level, our approach uses a clustering algorithm,
which invokes pattern learning on demand. In Figure 2, we
outline our Profile algorithm, which is parameterized by:
• a pattern learner L that accepts a set of strings S, and

returns a set of patterns consistent with them,
• a cost function that returns a numeric cost for a given

pattern with respect to a given dataset
Profile accepts a dataset S, with bounds

[
m,M

]
for the

number of patterns desired, a real number θ (a sampling

factor), and returns a profile P̃ = {〈S1, P1〉, . . . , 〈Sk, Pk〉}
with m 6 k 6 M . First, it invokes BuildHierarchy
to construct a hierarchy H (line 1), which is subsequently
partitioned by Split (line 3). Finally, for each partition X,
LearnBestPattern is invoked (line 4) to learn a pattern

P , which is added to P̃ paired with its partition X (line 5).
In the following subsections, we use Figure 1(a) as our

running example and explain the two main components :

• BuildHierarchy: for hierarchical clustering,
• LearnBestPattern: for pattern learning,

and their dependence on L and C.

3.1 Hierarchical Clustering with Sampling
BuildHierarchy yields a hierarchy (or dendrogram)

over a given dataset S, representing a nested grouping
of strings based on their similarity [25]. For instance,

⊥⊥⊥

Any+

“1” � Any+

“1” � Digit3

“18” � Digit2

1813 · · · 1898

“190” � Digit1

1900 · · · 1903

“18” � Digit2 � “?”

1850? · · · 1875?

“?”

?

Empty

ε

. .
. ...
. . . . .

. ...
. . . . .

. ...
. . .

Suggested

Refined

Any = any character
Digit = a decimal digit

(a) An example hierarchy showing suggested and
refined partitionings. Leaves indicate strings, and
internal nodes indicate patterns matching them.

ε ? 1817 1872 1901 1875?

ε 0 304.8 304.8 304.8 304.8 304.8
? ⊥⊥⊥ 0 304.8 304.8 304.8 304.8

1817 ⊥⊥⊥ Any+ 0 1.780 2.164 226.1
1872 ⊥⊥⊥ Any+ “18”�Digit×2 0 2.164 173.8
1901 ⊥⊥⊥ Any+ “1” � Digit×3 “1” � Digit×3 0 268.4
1875? ⊥⊥⊥ Any+ “18” � Any+ “187” � Any+ “1”�Any+ 0

(b) Computed dissimilarity values (upper triangle),
and corresponding learned patterns (lower triangle).

Figure 3: Hierarchy over our running example.

Figure 3(a) shows a hierarchy over our running example.
Once constructed, a hierarchy may be split at an appropriate
height to extract a partitioning of desired granularity. This
also enables a natural form of refinement – supplying
the desired number of clusters. However, FlashProfile
also supports fully automatic profiling, using a simple
heuristic to inspect the hierarchy and suggest a partitioning.
Figure 3(a) shows a heuristically suggested split (with 4
clusters) and a finer split (with 5 clusters) resulting from
a refinement request.

Flat clustering methods like k-means [34], or k-medoids [26],
generate a single partitioning with fixed number of clusters.
Moreover, they are equally expensive4, since they require
computation of all pairwise dissimilarities.

Agglomerative Hierarchical Clustering (AHC): We
use a standard AHC algorithm, which initializes each string
in its own cluster and repeatedly merges a pair of clusters
till only a single cluster remains [25]. AHC requires: (1)
a dissimilarity measure over strings, and (2) a linkage
criterion over clusters. The linkage criterion extends a
dissimilarity measure over strings to one over clusters.
We use a classic complete-linkage [48] criterion for linking
clusters. However, existing similarity measures [17] do not
capture the desired syntactic dissimilarity over strings. To
enable users to profile their datasets using custom atoms for
their domains, the dissimilarity measure must necessarily be
sensitive to the specific set of atoms that are allowed.

Example 1. If hexadecimal digits are allowed, the string
f005ba11 is more similar to 5ca1ab1e than scalable. But
without it, f005ba11 seems equally similar to either string
(an alphanumeric atom describes either of them).

Syntactic Dissimilarity Measure: We observe that
the desired dissimilarity measure is not a property of the
strings themselves, but of the patterns describing them –
specifically, the most suitable pattern amongst a potentially
4 Time complexity of k-means is O(kf |S|), for k clusters over dataset S with
f features defined on strings. However, in our case, dissimilarity w.r.t.
other strings is the only feature, and k-means would run in O(k|S|2).



Lower BinDigit Space HexDigit
[a−z] [01] [ ] Digit | [a−fA−F ]

Upper Digit DotDash AlphaDigitSpace
[A−Z] [0−9] [.−] Alpha | Digit | Space

Alpha AlphaDigit Punct Base64
Upper | Lower Alpha | Digit DotDash | [, : ? /] AlphaDigit | [+\=]

TitleCaseWord AlphaDash AlphaSpace Symbol
Upper1 Lower+ Alpha | [−] Alpha | Space Punct | [@ # $ % & ··· ]

Table 1: The default set of atoms in LP . The regular
expressions for atoms are shown below their names.

large number of consistent patterns. Using the learner L
and cost function C, we define the dissimilarity measure η
as the minimum cost incurred by any pattern for describing
a given pair of strings. We evaluate η in § 6.1, and show its
superiority over classic character-based similarity measures,
and machine-learned regression models.

Figure 3(b) shows dissimilarities inferred by FlashProfile
for a few pairs of strings from our running example. We
also show the least-cost patterns describing them using the
default atoms listed in Table 1. The void (⊥⊥⊥) indicates a
pattern-learning failure that arises because no pattern in
FlashProfile matches both empty and non-empty strings. We
associate equal measures of dissimilarity with ⊥⊥⊥ and Any+.

Adaptive Sampling and Approximation: While η
captures a high-quality syntactic similarity, it is expensive to
compute. With it, each pairwise dissimilarity computation
during AHC would require learning and scoring of patterns,
making our technique too expensive for large real datasets.

We address this challenge by using a two-stage sampling
technique. (1) At the top-level, FlashProfile employs a
Sample−Profile−Filter cycle: we sample a small subset of
the data, profile it, and filter out data that is explained
by the profile learned so far. In § 6.2, we show that a
small sample of strings is often sufficient to learn a general
pattern describing them. (2) While profiling each sample,
our BuildHierarchy algorithm adaptively samples a few
pairwise dissimilarities, and approximates the rest. The key
domain-specific observation that enables this is, computing
the dissimilarity for a pair of strings gives us more than just
a measure – we also learn a pattern. We test this pattern on
other pairs, to learn their approximate dissimilarity. This is
typically much faster than learning new patterns.

Example 2. The pattern “1” � Digit×3 learned for the
strings { 1817 , 1901 }, also describes { 1872 , 1901 }, and
may be used to compute their dissimilarity, without pattern
learning. Figure 3(b) shows other such recurring patterns.

Although the pattern “1” Any+ learned for { 1901 , 1875? }
also describes { 1872 , 1875? }, there exists another pattern
“187” Any+ which indicates a lower syntactic dissimilarity
(due to a larger overlap) between them. Therefore, the
dissimilarities (and equivalently, patterns) to be sampled,
need to be chosen carefully for accurate approximations. We
detail our adaptive sampling, and approximation algorithms
in § 4.2 and § 4.3 respectively.

3.2 Pattern Learning via Program Synthesis
An important aspect of our clustering based approach to
profiling, described in §3.1, is its generality. It may leverage
any learning technique which provides:
• a pattern learner L over strings, for:

– computing dissimilarity, and approximations
– exposing the profile to end users

func LearnBestPattern〈L,C〉(S : String[ ])
Result: The minimum cost pattern with its cost, learned for S.

1 · V ← L (S)
2 · if V = Ø then return 〈Pattern:⊥⊥⊥,Cost: Cmax〉
3 · P ← arg minP ∈V C(P,S)
4 · return 〈Pattern:P,Cost: C(P,S)〉

Figure 4: An algorithm for learning the best pattern
for a given set of strings S, using a pattern learner
L and cost function C.

• a cost function C over patterns, for:
– identifying the most suitable pattern
– computing a measure of dissimilarity

Figure 4 lists our LearnBestPattern algorithm for
learning the most suitable pattern, and its cost. First, we
compute a set of patterns V consistent with a dataset S by
invoking L (line 1). If pattern learning fails (line 2), we
return ⊥⊥⊥, and a high default cost Cmax (line 3). Otherwise,
we invoke C to compute the pattern P that has the minimum
cost with respect to the given dataset S (line 4).

A natural candidate for implementing L , is inductive
program synthesis [32], which generalizes a given set of
examples to the desired program over a specified domain-
specific language (DSL). FlashProfile learns patterns over the
DSL LP which is extensible by end-users. Using inductive
synthesis over LP , we implement the pattern learner LP ,
and a cost function CP which realize L and C respectively.

A DSL for Patterns: Our language LP describes the
space of possible patterns for strings. A pattern P ∈ LP

describes a string s, i.e. P JsK = True iff s satisfies every
constraint imposed by P . Patterns are defined as arbitrary
sequences of atomic patterns (atoms). We assume a default
set of atoms (listed in Table 1) which may be extended
with arbitrary pattern-matching logic. A pattern describes
a string, if each successive atomic match succeeds, and they
match the string in its entirety.

Example 3. The pattern “18” � Digit×2 � “?” matches
1875?, but not 1872 since the atom “?” fails to find a match.
Unlike regexes, patterns in LP must match entire strings.
For instance, “18” � Digit×2 matches 1872, but not 1875?
since the suffix ? is left unmatched.

Pattern Synthesis: The inductive synthesis problem for
pattern learning is: given a set of strings S, learn a pattern
P ∈ LP that describes every string in S, i.e. ∀ s ∈ S: P JsK =
True. Since P is a sequence of atoms, we can decompose the
synthesis problem for matching P into smaller problems for
matching individual atoms. However, a näıve approach of
tokenizing each string to (exponentially many) sequences of
atoms and computing their intersection is quite expensive.
Instead, our learner LP : 2 S → 2 LP , finds the intersection in
an incremental fashion, at the boundaries of atomic matches,
by computing a set of compatible atoms.5 Furthermore, LP

is sound and complete over LP patterns, restricted to the
user-specified set of atoms.

LP is built using PROSE [4] (also called FlashMeta [40]), a
state-of-the-art inductive synthesis framework that is being
deployed industrially [41]. It performs a top-down walk
over the specified DSL grammar, at each step reducing a
given synthesis problem on the desired program to smaller
synthesis problems on subexpressions of the program, based
on the reduction logic specified by the DSL designer. We
explain the details of LP in § 5.2.
5 We denote the set of all strings as S, and power set of a set X as 2X .



func BuildHierarchy〈L,C〉(S : String[ ],M : Int, θ : Double)
Result: A hierarchy over S assuming at most M clusters,

and edge-sampling factor θ.

1 · D ← SampleDissimilarities〈L,C〉(S, bθMc)
2 · A ← ApproxDMatrix(S, D)
3 · H ← AHC(S,A)
4 · return H

Figure 5: Hierarchical clustering using sampling and
approximations over pairwise dissimilarities.6.

Cost of Patterns: Once a set of consistent patterns
is identified, a variety of strategies may be employed to
identify the most desirable pattern w.r.t the dataset. Our
cost function, CP : LP ×2 S → R, quantifies the suitability of
each pattern with respect to the given dataset. Intuitively,
it decides a trade-off between two opposing factors:

Specificity: select a pattern that does not over-generalize
Simplicity: select a compact (interpretable) pattern
Example 4. The pair { Male , Female } are matched by

the patterns Upper � Lower+ and Upper � HexDigit � Lower+.
Although the latter is a more specific pattern, it is overly
complex. On the other hand, the pattern Alpha+ is simpler
and easier to interpret by end users, but is overly general.

To this end, each atom in LP has an empirically fixed
static cost, and a dataset-driven dynamic weight. The final
cost of a pattern is the weighted sum of the cost of atoms
that appear in it. We describe our cost function CP in §5.3.

4. HIERARCHICAL CLUSTERING
In this section, we first explain our algorithm for building a
hierarchy and learning a profile by sampling dissimilarities
for only a few pairs of strings. In § 4.4, we then discuss
how to combine profiles generated over several samples of a
dataset to generate an overall profile. Henceforth, we use
the term pair to denote a pair of strings.

The procedure BuildHierarchy, listed in Figure 5,
constructs a hierarchy H over a given dataset S, assuming at
mostM clusters to be extracted, using the sampling factor θ.
First, SampleDissimilarities computes a hashtableD (line
1), which maps only O(θM |S|) pairs sampled from S, to the
dissimilarities and best patterns computed for them. We
formally define this dissimilarity measure in §4.1, and detail
the SampleDissimilarities algorithm in § 4.2. D is then
used by ApproxDMatrix to create matrix A containing
all pairwise dissimilarities over S, approximating wherever
necessary (line 2). Finally, A is used by AHC to construct
the hierarchy H, using the complete-linkage criterion η̂ (line
3). We explain AHC based on approximations, in § 4.3.

4.1 Syntactic Dissimilarity
We first formally define a syntactic dissimilarity measure
over strings based on the patterns learned by L (specifically,
the one with least cost), which describe them together.

Definition 4.1. Syntactic Dissimilarity: The syntactic
dissimilarity of identical strings is 0. For strings s1 6= s2,
we define the syntactic dissimilarity as the minimum cost
incurred by any pattern to describe both:

η(s1, s2)
def
=

{
Cmax if V = Ø

min
P ∈V

C(P, {s1, s2}) otherwise

where V = L ({s1, s2}) denotes the patterns learned for
{s1, s2}, and Cmax denotes a high cost for a learning failure.
6 bxc denotes the floor of x, i.e. bxc = max {m ∈ Z | m 6 x}.

func SampleDissimilarities〈L,C〉(S : String[ ], M̂ : Int)
Result: A dictionary mapping a few pairs of strings from S, to the

best pattern describing them and its cost.

1 · a← a random string in S
2 · D ← ∅ ; ρ← {a}
3 · for i← 1 to M̂ do
4 · for all b ∈ S do
5 · D[a, b]← LearnBestPattern〈L,C〉({a, b})
I Pick the most dissimilar string w.r.t. strings in ρ.
6 · a← arg maxx ∈ S miny ∈ ρ D[y, x].Cost
7 · ρ.add(a)

8 · return D

Figure 6: An algorithm for sampling patterns.

We detail FlashProfile’s pattern learner LP and cost
function CP in § 5, but it is easy to observe the relative
syntactic dissimilarities for the following real-world entities
based on patterns learned over atoms shown in Table 1.

Example 5. The dates shown below have a dissimilarity
value of 1.64, based on the LP pattern shown on the right:

2014-11-23
2014-02-09

“2014-” � Digit×2 � “-” � Digit×2

Whereas, the following dates in different formats have a
noticeably higher dissimilarity value, 5.49:

2014-11-23
05/15/2010

Digit+ � Punct � Digit×2 � Punct � Digit+

Finally, as one would expect, a date and an ISBN code have
an extremely high degree of dissimilarity (198.4):

2014-11-23
978-3-642-28269-0

Digit+ � “-” � Digit+ � “-” � Any+

We use the LearnBestPattern method (from Figure 4)
for computing syntactic dissimilarity. LearnBestPattern
returns the best (least-cost) pattern and its cost, for a given
dataset S. For computing η(s1, s2), we provide S = {s1, s2}.

4.2 Adaptive Sampling of Patterns
Although η accurately measures the syntactic dissimilarity
of strings over an arbitrary language of patterns, it does so at
the cost of performance. Using LearnBestPattern, every
pairwise dissimilarity computation requires pattern learning
and scoring, which may be computationally expensive
depending on the number of consistent patterns generated.
Moreover, typical clustering algorithms [25] require all
pairwise dissimilarities. To put this into perspective, even
with a fast pattern learner requiring ∼10 ms per dissimilarity
computation7, one would spend over 3 s on computing all
300 pairwise dissimilarities for profiling only 25 strings.

As shown in example 2, previously learned patterns may
be used to estimate dissimilarities for other pairs. However,
the patterns to be sampled must be chosen carefully. For
instance, a pattern learned for a pair with very high
dissimilarity may be too general, and may match many other
pairs. But, approximations based on these matches would
be inaccurate since the cost of this pattern may differ vastly
from the least-cost patterns for other pairs.

Our adaptive sampling algorithm, shown in Figure 6,
is inspired by the seeding technique of k-means++ [8].
SampleDissimilarities accepts a dataset S, an integer

M̂ that is provided by BuildHierarchy as bθMc (line
1, Figure 5), and samples O(θM |S|) pairwise similarities,
7 FlashProfile’s pattern learner LP has a median learning time of 7 ms per

pairwise dissimilarity, over our benchmarks. For comparison, most recent
synthesizers based on PROSE have a learning time of ∼500ms [41].



func ApproxDMatrix(S : String[ ],
D : String× String 7→ Pattern× Double)

Result: A complete dissimilarity matrix A over S.

1 · A ← ∅
2 · for all s ∈ S do
3 · for all s′ ∈ S do
4 · if s = s′ then A[s, s′]← 0
5 · else if 〈s, s′〉 ∈ D then A[s, s′]← D[s, s′].Cost
6 · else

I Approximate η(s, s′) with the best matching pattern in D.
7 · X ← TestPatterns(D, {s, s′})
8 · if X 6= Ø then A[s, s′]← mind ∈X d.Cost
9 · else

I Compute η(s, s′) exactly if D has no matching pattern.
10 · D[s, s′]← LearnBestPattern〈L,C〉({s, s′})
11 · A[s, s′]← D[s, s′].Cost

12 · return A

Figure 7: An algorithm for generating a matrix of
pairwise approx. dissimilarities over S.

out of O(|S|2). It iteratively selects a set ρ of M̂ strings
from S that are most dissimilar to each other. The string
that is most dissimilar to those existing in ρ, is the one
that is the most dissimilar to its nearest neighbor in ρ
(line 6). Instead of computing all pairwise dissimilarities
over S, SampleDissimilarities only computes the pairwise
dissimilarities of strings in S w.r.t. those in ρ (line 5).

Example 6. Consider sampling dissimilarities over our

running example from Figure 1(a) with M̂ = 4, starting with
1817. Based on the dissimilarities shown in Figure 3(b), we

sample ρ = {1817, ε, ?, 1875?}, in that order. With M̂ = 5,
we pick the next candidate for ρ as 1901.

Intuitively, SampleDissimilarities samples a subset of
dissimilarities that are likely to be sufficient for constructing
a hierarchy accurate till M levels, i.e. if 1 6 k 6M clusters
are extracted from the hierarchy, they should be equivalent
to those extracted from a hierarchy constructed without any
approximations. Since a hierarchy may be split to at most
M clusters, θ should typically be at least 1.0 to sample intra-
and inter- cluster dissimilarities for at least one point from
each cluster. However, with expressive pattern languages,
the sampled least-cost patterns may be too specific and may
necessitate increasing θ to sample more patterns.

While a high θ degrades performance due to a large
number of calls to the pattern learner, a low θ results in
poor approximations, especially over large datasets. In §6.2
we show that θ = 1.25 works well for real datasets.

4.3 Approximately Correct AHC
Our approximation technique is grounded on the observation
that testing whether a pattern matches a string, is typically
much faster than learning new patterns. If the dissimilarity
of a pair is unknown, we test the sampled set of patterns, and
approximate the dissimilarity as the minimum cost incurred
by any known pattern that is consistent with the pair.

Using the hashtable D from SampleDissimilarities, the
method ApproxDMatrix, listed in Figure 7, approximates
a matrix A of all pairwise dissimilarities over S. For
identical strings, the dissimilarity is set to 0 (line 4). If
the dissimilarity of a pair has already been sampled in D,
we simply copy it to A (line 5). Lines 7, 8 show the key
approximation step that are executed if the dissimilarity
of a pair {s, s′} has not been sampled. In line 7, we
invoke TestPatterns to select a set X containing only

func AHC(S : String[ ],A : String× String 7→ Double)
Result: A hierarchy over S using dissimilarity matrix A.

1 · H ←
{
MakeLeaf(s) | s ∈ S

}
2 · while |H | > 1 do
3 · 〈X,Y 〉 ← arg minX,Y ∈H η̂(X,Y | A)
4 · H ← (H \ {X,Y }) ∪ {MakeNode(X,Y )}
5 · return H

Figure 8: A standard AHC algorithm.

those patterns P from D, which describe both s and s′,
i.e. P JsK = P Js′K = True. If X is non-empty, we simply
select the least-cost pattern from X (line 8). If X turns out
to be empty, i.e. no sampled pattern describes both s and
s′, then we invoke LearnBestPattern to compute η(s, s′)
(line 10). We also add the newly learned pattern to D, in
line 11, to use it for subsequent approximations.

Once we have all pairwise dissimilarities, we use a
standard AHC algorithm [25], shown in Figure 8. Initially
in line 1, each string starts in its own cluster, which form the
leaf nodes in the hierarchy. In each iteration, we select the
least dissimilar pair of clusters (line 3) and join them to a
new internal node (line 4), till we are left with a single node
(line 2), which becomes the root of the hierarchy. To select
the least dissimilar pair of clusters, AHC algorithms require
a linkage criterion (line 3). We use a classic complete-linkage
criterion [48] over our pairwise dissimilarities:

Definition 4.2. Complete-Linkage Criterion: Given two
clusters X,Y ⊆ S and a dissimilarity matrix A over S, we
define the overall dissimilarity of clusters X and Y as:

η̂(X,Y | A)
def
= max
s1∈X, s2∈Y

A[s1 , s2]

where A[s1 , s2] indicates the dissimilarity of s1 and s2.

Compared to other linkage criteria, complete linkage has
been shown to be more resistant to outliers and yield useful
hierarchies in many practical applications [25].

After a hierarchy H has been constructed, our Profile
algorithm (listed in Figure 2) invokes the Split method to
extract m 6 k 6 M clusters. If m = M , it simply splits
the first m levels (the top-most m internal nodes) of the
hierarchy. Otherwise, it uses a heuristic based on the elbow
(also called knee) method. Between the mth and the M th

level, it locates a level k in the hierarchy after which the
dissimilarities of subsequent levels do not seem to vary much.

4.4 Profiling Large Datasets
To scale our technique to large datasets, we implement a
second round of sampling around our core Profile method.
Recall that, the SampleDissimilarities samples O(θM |S|)
pairwise dissimilarities by selecting a set ρ of most dissimilar
strings, and computing their dissimilarity with all strings in
dataset S. But, although | ρ | = bθMc is very small, | S | is
still very large (several thousands) for real-life datasets.

Our second sampling technique runs the Profile algo-
rithm from Figure 2 on small chunks of the original dataset
and combines the generated profiles. We observe that even
a small randomly selected subset exhibits relatively frequent
patterns in the dataset, and our learner LP does not require
more than a couple of strings to learn them in most cases.

We implement a simple Sample−Profile−Filter loop:

1. sample bµMc strings from S,

2. add their profile to the current set of known patterns,

3. remove strings described by the known patterns from S.



func CompressProfile〈L,C〉(P̃ : ref Profile,M : Int)

Result: An compressed profile P̃ that satisfies | P̃ | 6M .

1 · while | P̃ | > M do

I Compute the most similar partitions in the profile so far.
2 · 〈X,Y 〉 ← arg min

X,Y ∈P̃
LearnBestPattern〈L,C〉(X.Data ∪ Y.Data).Cost

I Merge the partitions and update P̃ .
3 · Z ← X.Data ∪ Y.Data
4 · P ← LearnBestPattern〈L,C〉(Z).Pattern

5 · P̃ ← (P̃ \ {X,Y }) ∪ { 〈Data: Z,Pattern: P 〉 }
6 · return P̃

Figure 9: An algorithm for compressing a profile.

The sampling factor µ determines the size of each chunk
provided to Profile. A very small µ degrades performance,
since in each iteration it learns a profile that does not
generalize well over the remaining dataset, and thus requires
many iterations to profile the entire dataset. A large µ also
degrades performance, since it requires Profile to sample
many pairwise dissimilarities. In §6.3, we show that µ = 4.0
works well for FlashProfile, over most real-life datasets.

When adding new profiles learned in step (2), we may
exceed the maximum number of patterns M specified by
the user, and may need to compress the profile. Our
CompressProfile algorithm, shown in Figure 9, accepts a

large profile P̃ and modifies it to have at most M patterns.

P̃ must be of the same type as returned by Profile,
i.e. must contains patterns paired with corresponding data
partitions. First, we identify a pair of partitions 〈X,Y 〉
which are the most similar, i.e. incur the least cost for
describing them together with a pattern (line 1). We
then merge the data in X,Y to a single partition Z (line
3), learn a pattern describing Z (line 4), and update the

profile P̃ by replacing X,Y with Z and its pattern (line 5).
CompressProfile repeats this entire process till the total
number of patterns falls within the upper-bound M .

5. PATTERN SYNTHESIS
In this section we describe FlashProfile, which instantiates
the proposed profiling technique based on clustering. We
begin with a brief description of the language in § 5.1. In
§ 5.2, we present our pattern learner LP , which produces
all patterns consistent with a given dataset using a user-
specified set of atoms over LP . Finally, in § 5.3, we provide
a description of our cost function CP for LP patterns.

5.1 The Pattern Language LP

Figure 10(a) shows formal syntax for our pattern language
LP . Each pattern P ∈ LP is a function P : String → Bool
which embodies a set of constraints over strings. A pattern
P describes a given string s i.e. P JsK = True, iff s satisfies
all constraints imposed by P . Patterns in LP are defined in
terms of atomic patterns:

Definition 5.1. Atomic Patterns (Atoms): An atom,
α : String→ Int is an operator which given a string s, returns
the length of the longest prefix of s matched by it. Atoms
only match non-empty strings, i.e. α(s) = 0 indicates match
failure for α on the string s.

LP allows the following four kinds of atoms:

• Constant String : Consts only matches the string s. We
use a string literal such as “data” to denote Const“data”.

• Regular Expressions: RegExr matches the longest prefix
matched by the regular expression r.

Pattern P [s] := Empty(s)
| P [SuffixAfter(s, α)]

Atom α := Classzc | RegExr
| Functf | Consts

c ∈ sets of characters
f ∈ functions String→ Int
r ∈ regular expressions
s ∈ strings S
z ∈ non-negative integers

(a) Syntax of an LP pattern P .

s = ε
Empty(s) ⇓ true

s = s0 ◦ s1 α(s) = |s0| > 0

SuffixAfter(s, α) ⇓ s1

Functf (s) ⇓ f(s)

s′ = s ◦ s′′

Consts(s′) ⇓ |s|

L = {x | ∀n ∈ N, r . s[0 ::: n]}
RegExr(s) ⇓ maxx∈L |x|

s = s0 ◦ s1 ∀x ∈ s0 : x ∈ c
s[|s0|] 6∈ c

Class0
c(s) ⇓ |s0|

s = s0 ◦ s1 ∀x ∈ s0 : x ∈ c
|s0| = z > 0 s[|s0|] 6∈ c

Classzc(s) ⇓ z

(b) Semantics of LP patterns. The judgement E ⇓ v denotes
that the expression E evaluates to a value v.

Figure 10: DSL LP for defining syntactic patterns8.

• Functions: Functf allows arbitrary logic in the function
f , and matches a prefix of length |f(s)|.
• Character Class: Classzc matches the longest prefix

that only contains characters from the set c, for
z = 0. However, a width z > 0 enforces a fixed-
width constraint as well – the match Classzc(s) fails
if Class0

c(s) 6= z, otherwise it returns z.

FlashProfile provides a default set of atoms listed in Table 1.
However, the set of atoms may be extended by end users to
generate rich profiles for their datasets.

Example 7. Atom Digit is Class1
D with D = {0, . . . , 9}.

Digit+ is Class0
D, and Digit×2 is Class2

D. The atom Digit×2

matches the string 04/23/2017 but not 2017/04/23. For the
latter case, the longest prefix matched by Digit+ is 2017, of
length 4 6= 2. However, Digit+ matches both strings, and
returns 2 and 4 respectively.

Definition 5.2. Patterns: A pattern is defined by a
sequence of zero or more atoms. The LP expression Empty
denotes an empty sequence of atoms, which only matches the
empty string ε. The pattern α1 � α2 � . . . � αk is denoted by

Empty(SuffixAfter( · · · SuffixAfter(s, α1) · · · , αk))
in LP , which matches a string s0, iff

sk = ε ∧ ∀i ∈ N, αi(si−1) > 0

where si+1 = si[αi+1(si) ::: ] i.e. the remaining unmatched
suffix of string si after matching atom αi+1.

Formal semantics for atoms and patterns are shown in
Figure 10(b). s[i] denotes the ith character of s, and s[i ::: j]
denotes the substring of s from the ith character, till before
the jth character. j may be omitted to indicate a substring
extending till the end of s. In LP , the SuffixAfter(s, α)
operator computes s[α(s) ::: ], or raises an error if α(s) = 0.

Example 8. Consider the following URLs collected from
a dataset∗ containing flight data for various destinations:

http://www.jetradar.com/flights/EsaAla-ESA/
http://www.jetradar.com/flights/Mumbai-BOM/
http://www.jetradar.com/flights/NDjamena-NDJ/
http://www.jetradar.com/flights/Bangalore-BLR/
http://www.jetradar.com/flights/LaForges-YLF/

The following pattern describes these URLs:
“http://www.jetradar.com/flights/”�

Upper+ � Alpha+ � “-” � Upper×3 � “/”
8 r . x denotes a successful match of regex r with string x in its entirety,

and a ◦ b denotes the concatenation of strings a and b.
∗ https://support.travelpayouts.com/hc/ru/article_attachments/201368927/places_t.csv

https://support.travelpayouts.com/hc/ru/article_attachments/201368927/places_t.csv


5.2 Synthesis of LP Patterns
FlashProfile’s pattern learner LP uses inductive program
synthesis [32] for synthesizing patterns that describe a given
set S of strings using a user-specified set of atoms A. For
convenience of end users, we automatically enrich their
specified set of atoms by allowing: (1) all Const atoms,
and (2) fixed-width variants of all Class atoms specified by
them, for all widths. LP is instantiated with these enriched
atoms derived from A, which we denote as 〈A〉:

〈A〉 = A ∪ {Consts | s ∈ S}
∪ {Classzc | Class0

c ∈ A ∧ z ∈ N} (1)

Although 〈A〉 is unbounded (since S is unbounded), as we
explain later, our synthesis procedure only explores a small
fraction of 〈A〉 which are compatible with a given dataset S.

We build on a state-of-the-art inductive program synthesis
library PROSE [4], which implements the FlashMeta [40]
framework. Our synthesis relies on deductive reasoning –
reducing a synthesis problem over an expression, to smaller
synthesis problems over its subexpressions. PROSE provides
a convenient framework with highly efficient algorithms and
data-structures for building such program synthesizers.

An inductive program synthesis task is defined by: (1) a
domain-specific language (DSL) for target programs which
in our case is LP , (2) a spec [40, §3.2] that defines a set
of constraints over the output of the desired program. The
spec given to LP (denoted as ϕ), simply requires the desired
pattern P to describe all strings i.e. ∀s ∈ S : P JsK = True.
We formally write such a spec ϕ as:

ϕ
def
=
∧
s∈S [s True]

Deductive reasoning allows us to reduce the spec ϕ over
a pattern P to specs over its arguments. The specs are
reduced recursively till terminal symbols in LP (string s, or
atom α). Then, starting from the values of terminal symbols
which satisfy their spec, we collect the subexpressions and
combine them to synthesize bigger expressions. We refer the
reader to [40] for more details on the synthesis process.

The reduction logic (called witness functions [40, §5.2]) for
specs is domain-specific, and depends on the semantics of the
DSL operators. Specifically for LP , we need to define the
logic for reducing the spec ϕ over the two kinds of patterns:
Empty, and P [SuffixAfter(s, α)].

For Empty(s) to satisfy ϕ, i.e. describe all strings s ∈ S,
each string s must indeed be ε. No further reduction is
needed since s is a terminal. We simply check, ∀s ∈ S : s = ε.
Empty(s) fails to satisfy ϕ if S contains non-empty strings.
P [SuffixAfter(s, α)] allows more complex patterns that

first match s with atom α, and the remaining suffix with P .
In contrast to prior approaches [43, 45] which learn complete
patterns over individual strings and then combine them, in
LP we compute an intersection of patterns consistent with
individual strings, in an incremental manner. In pattern
P [SuffixAfter(s, α)], the unknowns are α (the atom which
matches a prefix of s), and P (the pattern which matches the
remaining suffix s[α(s) ::: ]). However, for a fixed α, P can
be synthesized recursively, by posing a synthesis problem
similar to the original one, over the suffix s[α(s) ::: ] instead
of s, for each s ∈ S i.e. with the new spec:

ϕα
def
=
∧
s∈S

[
s[α(s) ::: ] True

]
(2)

Instead of enumerating ϕα for all allowed atoms, we
consider only those atoms α that succeed in matching some
prefix of all strings in S. This is the key to computing

func GetMaxCompatibleAtoms(S : String[ ],A : Atom[ ])
Result: The maximal set of atoms that are compatible with S.

1 · C ← ∅ ; Λ← A
2 · for all s ∈ S do
3 · for all α ∈ Λ do

I Remove incompatible atoms.
4 · if α(s) = 0 then
5 · Λ.Remove(α) ; C.Remove(α)
6 · else if α ∈ Class then
7 · if α 6∈ C then C[α]← α(s)
8 · else if C[α] 6= α(s) then C.Remove(α)

I Add compatible fixed-width Class atoms.
9 · for all α ∈ C do

10 · Λ.Add(RestrictWidth(α,C[α]))

I Add compatible Const atoms.
11 · L← LongestCommonPrefix(S)
12 · Λ.Add(ConstL[0 : 1], ConstL[0 : 2], . . . , ConstL)
13 · return Λ

Figure 11: Algorithm for computing max
〈A〉
∝ [S] on a

dataset S, with a user-specified set of atoms A.

the intersection of patterns over individual strings in an
incremental fashion. Such atoms are said to be compatible
with the given dataset S.

Definition 5.3. Compatible Atoms: Over a set U of
allowed atoms, we say a set of atoms A ⊆ U is compatible
to a given dataset S, denoted as A ∝ S, if every atom in A
successfully matches some prefix of every string s ∈ S, i.e.

A ∝ S iff ∀α ∈ A : ∀ s ∈ S : α(s) > 0.

We call a compatible set A of atoms is maximal under U ,
denoted as A = maxU∝[S] iff ∀X ⊆ U : X ∝ S ⇒ X ⊆ A.

Example 9. Consider the following Canadian postal
codes: S = { V6E3V6, V6C2S6, V6V1X5, V6X3S4 }. Over the
set 〈A〉 of atoms using equation (1) on A = the default
atoms (listed in Table 1), the maximal set of compatible

atoms max
〈A〉
∝ [S] contains 18 atoms such as “V6”, “V”, Upper,

Upper+, Alpha+, AlphaSpace, AlphaDigit×6 etc.

GetMaxCompatibleAtoms, outlined in Figure 11, ac-
cepts a set of strings S, a set of atomsA specified by the user,

and computes the set Λ = max
〈A〉
∝ [S], where 〈A〉 denotes

the enriched set of atoms based on A given by equation (1).
We start with Λ = A (line 1), and gradually remove atoms
that are not compatible with S, i.e. fail to match at least
one string s ∈ S (line 5). For enriching A with fixed-width
Class tokens, we maintain a hashtable C that maps a Class
token to its width (line 8). If the width of a Class atom
is not constant over all s ∈ S, we remove it from C (line
9). We finally add to Λ, the fixed-width variants of all Class
atoms in C, generated by calling RestrictWidth (line 10).
For enriching with Const atoms, we compute the longest
common prefix L across all s ∈ S (line 11), and add every
prefix of it to Λ, as a compatible Const token (line 12).

In essence, a spec ϕ for P [SuffixAfter(s, α)] is reduced to

a set of
∣∣max

〈A〉
∝ [S]

∣∣ new specs, each representing a distinct

synthesis problem for P : {ϕα | α ∈ max
〈A〉
∝ [S]}, where ϕα is

as given by equation (2), and 〈A〉 denotes the enriched set
of atoms derived from A by equation (1). Each synthesis
problem is solved the same way as the original one. PROSE
handles the recursive propagation of appropriate specs to
subexpressions, and combines the generated subexpressions
to patterns that satisfy the original spec ϕ.

We conclude with a comment on the soundness and
completeness of our pattern learner LP .



Definition 5.4. Soundness and U -Completeness: We
say that a learner LP for LP patterns is sound, if for a given
dataset S every learned pattern P satisfies ∀s ∈ S : P JsK =
True. We say that LP instantiated with a set U of atoms
is U -complete, if for every dataset S, it learns all patterns
P ∈ LP over U atoms, which satisfy ∀s ∈ S : P JsK = True.

For our synthesis procedure, soundness is guaranteed since
we only consider compatible atoms. Completeness follows
from the fact that we always consider their maximal set
over U atoms. LP is 〈A〉-complete for any user-specified
set A of atoms. Therefore, once the set of patterns LP (S)
has been learned for a S, a variety of cost functions may be
employed to select the most suitable pattern for S amongst
all possible patterns over 〈A〉, without recomputing LP (S).

5.3 Cost of Patterns in LP

Our cost function CP produces a real number, given a
pattern P ∈ LP and a dataset S, based on the structure
of P and its behaviour over S. Empty is assigned a cost of 0
regardless of the dataset, since any dataset with which Empty
is consistent, only contain ε. We define the cost CP (P,S) for
a pattern P = α1 � . . . � αn, with respect to dataset S as:

CP (P,S) =
∑n
i=1 CP (αi) ·D(i, P,S)

Each atom α in LP has statically assigned cost CP (α) ∈
(0, Cmax) based on a priori bias for the atom. The static
costs for the default atoms in FlashProfile were empirically
decided. We define Cmax = CP (Any+) to be the maximum
cost across all atoms. For a pattern P = α1 � . . . � αn, our
cost function CP sums these static costs after applying a
dynamically determined weight D(i, P,S) ∈ (0, 1), based on
how well each token αi generalizes over S.

D(i, P,S) =
1

|S| ·
∑
sj ∈S

lj,i
|sj |

where lj = 〈lj,1, . . . , lj,n〉 denotes the lengths of successive
prefix matches over a string sj ∈ S. Since a token match
never fails over S for any synthesized pattern P , lj,i > 0 and
D(i, P,S) > 0 for all tokens αi ∈ P .

Example 10. Consider S = { Male, Female }, that are
matched by P1 = Upper �Lower+ and P2 = Upper �HexDigit �
Lower+. The static costs for the relevant atoms are:

{Upper 7→ 8.2, HexDigit 7→ 26.3, Lower+ 7→ 9.1}
The costs for both patterns shown above, are computed as:

CP (P1,S) = 8.2
2

( 1
4

+ 1
6
) + 9.1

2
( 3

4
+ 5

6
) = 8.9

CP (P2,S) = 8.2
2

( 1
4

+ 1
6
) + 26.3

2
( 1

4
+ 1

6
) + 9.1

2
( 2

4
+ 4

6
) = 12.5

P1 is chosen as best pattern, since CP (P1,S) < CP (P2,S).

Note that although HexDigit is more specific compared
to Upper and Lower – HexDigit contains 16 characters as
opposed to 26, it has a higher static cost. This is an example
of a priori bias against HexDigit to avoid strings like “face”
being described as HexDigit×4 instead of Lower×4. However,
its cost is much lower compared to CP (AlphaDigit) = 639.6,
making it the preferred pattern for strings such as “f00d”.
Static costs are baked into the atoms and must be provided
by domain experts when introducing new atoms.
CP balances the trade-off between specificity vs generality

– more specific atoms receive a smaller dynamic weight
(which leads to a smaller overall cost), whereas the sum
of the costs over many overly specific atoms may exceed the
cost of a single more general atom. In § 6.2, we evaluate
the quality of profiles learned by FlashProfile and show that
they are natural – neither too specific, nor overly general.
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(b) RF Features10

Measure FP JarW RF1 RF2 RF3

AUC 96.28% 35.52% 91.73% 98.71% 76.82%

Figure 12: Comparing the accuracy of FlashProfile
(FP) with a character-based measure (JarW) and
machine-learned models (RF1, RF2, RF3). RF models
show high variance w.r.t. training distribution.

6. EVALUATION
In this section, we present an experimental evaluation of
FlashProfile, focusing on the following key questions:
• (§ 6.1) How well does our syntactic similarity measure

perform over real world entities?
• (§6.2) How accurate are the profiles over real datasets,

and what is the effect of sampling and approximations?
• (§6.3) What is the overall performance of FlashProfile,

and how does it depend on the various parameters?
• (§ 6.4) Are the generated profiles natural and useful?

How do they compare to those from existing tools?

Implementation and Experimental Setup: We have
implemented FlashProfile as a cross-platform C# library built
using Microsoft PROSE [4]. All experiments were performed
on an 8-core Intel i7 3.60GHz machine with 32GB RAM
running 64-bit Ubuntu 16.10 with .NET Core 1.0.1.

6.1 Syntactic Similarity
We evaluate the applicability of our dissimilarity measure
from Definition 4.1, over real-life entities. From 25 clean real
datasets11 ranging over names, dates, postal codes, phone
numbers etc. in different formats, we randomly pick two
datasets, and select a random string from each. We picked
240400 such pairs of strings. A good similarity measure is
expected to be able to identify when the two strings are
drawn from the same dataset by assigning them a lower
dissimilarity value, compared to two strings selected from
different datasets. For example, the pair { Albert Einstein
, Isaac Newton } should have a lower dissimilarity value than
{ Albert Einstein , 03/20/1998 }.

For evaluation, we use the standard precision-recall [35]
(PR) measure. Precision in our context is the fraction of
pairs that truly belongs to the same dataset, out of all
pairs that are labeled to be “similar” by the predictor.
Recall is the fraction of pairs retrieved by the predictor,
out of all pairs truly drawn from same datasets. By
varying the threshold for labelling a pair as “similar”, we
generate a PR curve and measure the area under the curve
(called AUC). A good similarity measure should exhibit high
precision and high recall, and therefore have a high AUC.
Figure 12 show a comparison of our method against two
10len returns length of a string, begin〈X〉 checks if a string begins with a

character in X, cnt〈X〉 counts occurences of characters from X in a string,

and ∆[f ] computes |f(s1)− f(s2)|2 for a pair of strings s1 and s2.
11Available at: https://github.com/SaswatPadhi/ProfilingExperiments

https://github.com/SaswatPadhi/ProfilingExperiments
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Figure 13: Accuracy of FlashProfile.

baselines: (1) a character-based similarity measure (JarW),
and (2) a machine-learned predictor (RF ) using several
intuitive syntactic features. We explain them below.

We observed that character-based measures [17] show
poor AUC, and are not indicative of syntactic similarity. A
popular data-wrangling tool OpenRefine [3] allows clustering
of string data using Levenshtein distance [30]. However, this
measure exhibits a negligible AUC over our benchmarks.
Although the Jaro-Winkler distance [49] indicated as JarW
in Figure 12(a) shows a better AUC, it is quite low compared
to both our, and machine-learned predictors.

Our second baseline is a standard random forest [11]
model RF using the syntactic features listed in Figure 12(b)
such as, difference in length, number of digits etc. We

train RF 1 over 160267 pairs with
(

1
25

)2
= 0.16% pairs

drawn from same datasets. We observe from Figure 12(a)
that the accuracy of RF is quite susceptible to changes in
the distribution of the training data. RF 2 and RF 3 were
trained with 0.64% and 1.28% pairs from same datasets,
respectively. While RF 2 performs marginally better than
our predictor, RF 3 performs worse. In contrast, our
technique does not require any training, and hence even if
training and test distributions are significantly different, our
method still produces an accurate similarity measure.

6.2 Profiling Accuracy
We show FlashProfile’s accuracy along two dimensions:
• Partitions: Our sampling and approximation tech-

niques preserve accuracy of partitioning the datasets,
• Descriptions: Profiles generated using LP and CP are

natural – neither too general nor too specific.

Partitioning: From 25 clean datasets, we randomly pick
n ∈ [2, 8] datasets, and select a group of 256 random strings
from each. We combine them, and invoke FlashProfile to
partition them into n clusters. We measure the precision of
clustering using the symmetric uncertainty [50], which is a
measure of normalized mutual information (NMI). An NMI
of 1 indicates the resulting partitioning to be identical to the
original groupings of strings, and an NMI of 0 indicates that
the final partitioning is unrelated to the original groupings.

Recall that in each iteration, we profile bµMc strings, and
sample pairwise dissimilarities of only |ρ| = bθMc strings
w.r.t. S. For this experiment, we set M = n. With different
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Figure 14: Impact of sampling on performance.
(using the same colors and markers as Figure 13(a))

values of µ and θ, we show the mean NMI of the partitionings
over 10 tests for each value of n, in Figure 13(a).

The NMI improves with increasing θ, since we sample
more dissimilarities, resulting in better approximations.
However, the NMI drops with increasing µ, since more
pairwise dissimilarities are approximated. We observe that
the median NMI is significantly higher than the mean,
indicating a small number of cases where FlashProfile made
poor approximations. The dashed line indicates the median
NMIs with µ = 4.0. We observe a median NMI of 0.96
(mean 0.88) for 〈µ = 4.0, θ = 1.25〉, which is FlashProfile’s
default configuration for all our experiments (indicated by
the circled point in Figure 13(a)).

Descriptions: We evaluate the suitability of the auto-
matically suggested profiles, by measuring their precision
and recall. A natural profile should not be overly specific
– it should generalize well over the dataset (true positives),
but not beyond it (false positives).

We consider 56 datasets ignoring datasets with duplicate
formats. For each dataset, we profile a randomly selected
subset containing 10% of its strings, and measure: (1) the
fraction of the remaining dataset described by it, and (2) the
fraction of an equal number of strings from other datasets,
matched by it. Figure 13(b) summarizes our results. The
lighter and darker shades indicate the fraction of true
positives and false positives respectively. The white area at
the top indicates the fraction of false negatives – the fraction
of the remaining dataset that is not described by the profile.
We record an overall precision of 97.8%, a recall of 93.4%.
The dashed line indicates a mean true positive rate of 93.2%,
and the dotted line shows a mean false positive rate of 2.3%.

6.3 Performance
We evaluate FlashProfile’s performance over various 〈µ, θ〉-
configurations considered during the partitioning-accuracy
evaluation. We show the performance-accuracy trade off
in Figure 14(b). We plot the mean speed up of various
configurations over 〈µ = 1.0, θ = 1.0〉, against the mean
NMI of partitioning. Our default configuration 〈µ = 4.0, θ =
1.25〉 achieves a mean speed up of 2.3×. We also show the
profiling times in Figure 14(a). The dotted lines indicate
profiling time without pattern sampling, for different values
of the string-sampling factor µ. The dashed line shows the
median profiling time for various values of θ with µ = 4.

As one would expect, the profiling time increases with
θ, since FlashProfile samples more patterns making more
calls to LP . The dependence of profiling time on µ
however, is more interesting. Notice that for µ = 1,
the profiling time is higher than any other configuration
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Figure 15: Profiling time for real-life datasets.

with pattern sampling enabled (solid lines). This is due
to the fact that FlashProfile learns very specific profiles
with µ = 1 over a very small sample of strings, and does
not describe much of the remaining data. This results
in many Sample−Profile−Filter iterations over the entire
dataset. The performance improves with µ till µ = 4.0, and
then starts deteriorating as we sample many more pairwise
dissimilarities.

Finally, we evaluate FlashProfile’s performance on end-to-
end real-life profiling tasks on 74 datasets collected from
various online sources, that have a mixture of clean and
dirty datasets. Over 142 tasks – 74 for automatic profiling,
and 68 for refinement, we observe a median profiling time
of 0.7s. With our default configuration, 77% of the requests
are fulfilled within 2 seconds – 73% of automatic profiling
tasks, and 82% of refinement tasks. In Figure 15 we show
the variance of profiling times w.r.t. size of the datasets
(number of strings in them), and the average length of the
strings in the datasets (all axes being logarithmic).

6.4 Comparison of Learned Profiles
For three real-life datasets, we compare the profiles learned
by FlashProfile to patterns generated by three state-of-
the-art tools: (1) Microsoft’s SQL Server Data Tools [2]
(SSDT), (2) Ataccama One [1] (A1) – a dedicated profiling
tool, and (3) Potter’s Wheel [43] (PW). In SSDT, we
use PercentageDataCoverageDesired = 100, and the default
limit (10) on the number of patterns.

Below, we list the automatically suggested profile from
FlashProfile as FP, and the one generated on requesting
exactly k patterns as FPk. For brevity, we (1) omit �,
(2) denote a constant atom “data” as data, (3) abbreviate
the default atoms: Digit 7→ d, Upper 7→ u, Space 7→ , and
(4) expand repeated atoms such as Digit×3 to ddd.

Example 11. A dataset containing postal codes
Data : 99518 , 61021-9150 , 2645 , K0K 2C0 , 61604-5004 , . . .

PW : Most frequent pattern = int

FP : ε | S7K7K9 | 61 ddd - dddd | u d u d u d | d+

A1 : N | N-N | LDLDLD | LDL DLD

SSDT : \w\w\w \w\w\w | \d\d\d\d\d | \d\d\d\d | .*

FP6 : ε | S7K7K9 | 61 ddd - dddd | u d u d u d | ddddd | dddd

SSDT produces an overly general profile containing .*.
Ataccama One uses a restricted set of patterns that allow

digits (D), numbers (N), letters (L), words (W). Moreover, it
does not learn constants or fixed-width constraints.

Example 12. A dataset containing U.S. routes
(We abbreviate: AlphaSpace 7→ ω, AlphaDigitSpace 7→ σ)

Data : OR-213 , I-5 N , I-405 S , OR-99E , US-26 E , I-84 E , . . .
PW : Most frequent pattern = IspellWord int space AllCapsWord

Initially, FlashProfile suggests a conservative profile:

FP : ε | 12348 N CENTER | US 26(ω+) | u+-σ+

Users may interactively refine the profiles. Even at the
same level of granularity, for example with both A1 and FP
generating 6 partitions below, FP qualifies them with richer
patterns identifying relevant constants for the partition:

FP7 : ε | 12348 N CENTER | US 26(SUNSET) | US 26(MT HOOD HWY)
| u+ - d+ | uu - dd u+ | u+ - d+ u+

A1 : N L W | W N (W) | W N (W W W) | W-N | W-NW | W-N W

Although SSDT identifies some constants, it merges many
small but syntactically dissimilar partitions, producing .*:

FP9 : ε | 12348 N CENTER | US 26(SUNSET) | US 26(MT HOOD HWY)
| u+- d+ | US-30BY | OR-99 u | I- d+ u+ | uu -2 d+ u

SSDT : US-26 E | US-26 W | I-5 N | I-5 S | I-84 E | I-84 W
| I-\d\d\d N | I-\d\d\d S | .*

We conclude with an interesting observation: requesting
for 13 partitions in this case separates all the route prefixes:

FP13 : ε | 12348 N CENTER | US 26(SUNSET) | US 26(MT HOOD HWY)
| I-5 | US-30 | OR- d+ | US-30BY | OR-99 u
| I-5 u+ | I- d+ u | US-26 u | OR-217 u

7. APPLICATIONS IN PBE SYSTEMS
In this section, we briefly discuss applications of our data
profiling technique to improve PBE systems. Such systems
aim to synthesize a desired program from a small number of
input-output examples [18, 21, 45]. For instance, given an
example “Albert Einstein”  “A.E.”, the goal is to learn
a program that extracts the initials for a given name. That
is, given “Alan Turing”, we want the synthesized program
to output “A.T.”. Though several PBE systems have been
proposed recently, a major criticism for these systems has
been the lack of usability and confidence in them [28, 37].

Examples are an inherently under-constrained form of
specs for the desired program, and a large number of
programs (up to 1020) may be consistent with them [41].
Two major challenges to learning the desired program
are: (1) obtaining a representative set of examples that
convey the desired behavior, and (2) ranking the consistent
programs to select the ones natural to end users.

Significant Inputs: A user of the PBE system cannot
be expected to provide the representative examples. In fact,
typically, users provide outputs for only the first few inputs.
However, if all these examples are very similar, the system
may not learn a program that generalizes over other inputs.
In § 2, we discuss such a case for Flash Fill [18], a popular
PBE system for string transformations. Instead, we propose
to request the user to provide outputs for significant inputs
– the most dissimilar input w.r.t. those previously provided.

First, we generate a syntactic profile P̃ for the input, and
use the OrderPartitions function, listed in Figure 16(a),
to order the input partitions, based on mutual dissimilarity.
Starting with the tightest partition (line 1) i.e. the one with
the least-cost pattern describing it, we iteratively append



func OrderPartitions〈L,C〉(P̃ : Profile)
Result: An ordered list of partitions 〈S1, . . . ,S|P̃ |〉 of the source dataset S.

I First select the least-cost partition.
1 · ρ← 〈(arg min

X∈P̃
C(X.Pattern, X.Data)).Data〉

2 · while | ρ | < | P̃ | do

I Select the partition that is most dissimilar w.r.t. existing partitions in ρ.
3 · T ← arg max

Z∈P̃
min
X∈ρ

LearnBestPattern〈L,C〉(Z.Data ∪X).Cost

4 · ρ.Append(T.Data)

5 · return ρ

(a) Ordering partitions by mutual dissimilarity.
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Figure 16: Significant inputs for Flash Fill.

the partition that is most dissimilar (requires the highest-
cost pattern to describe) with prior partitions in ρ (line 3).

We request the user to provide an output for a randomly
selected input from each partition in order 〈S1, . . . ,S|P̃ |〉.
Since Flash Fill is interactive, the user can inspect the output
for each input, and skip if it is already correct. Finally, we
restart from S1 after one cycle through all partitions.

We measure the efficacy of our interaction model, over 163
Flash Fill benchmarks that require > 1 examples to learn
the desired program. Figure 16(b) compares the number of
examples required originally, to that using significant inputs.
Seven benchmarks that timed-out have been omitted. Over
the remaining 156 benchmarks, we observe that Flash Fill,
(1) never requires a second example from the same partition,
for 131 benchmarks, and (2) uses the smallest possible set
of examples over the given inputs, for 140 benchmarks.

Thus, (1) validates our hypothesis that syntactic parti-
tions indeed identify representative inputs, and (2) further
indicates that ordering partitions using our dissimilarity
measure, allows for a highly effective interaction model.

Note that, the significant inputs scenario is similar to
active learning, which is well-studied in machine-learning
literature [23]. Active learning also seeks to find data
points to be annotated so that the learned predictor is most
accurate. However, typical active-learning methods require
hundreds of annotated examples. In contrast, PBE systems
typically deal with very few annotated examples [37].

8. RELATED WORK
Data Profiling: There has been a line of work on
profiling various aspects of a column of data; see [38, 6]
for recent surveys. Traditional profiling techniques target
simple statistical properties [36, 42, 12, 13, 24, 3, 5].

To our knowledge, no existing technique supports re-
finement of syntactic profiles learned over an extensible
language. We present a novel dissimilarity measure which
is the key to learning refinable profiles over user-specified
patterns. While Potter’s Wheel [43] does not learn a compile
profile, it learns the most frequent data pattern using user-
defined domains. SSDT [2] learns rich regular expressions

but is neither extensible not comprehensive. A dedicated
profiling tool Ataccama One [1] generates comprehensive
profiles over a very small set of base patterns. OpenRefine [3]
does not learn syntactic profiles, but it allows clustering of
strings using character-based similarity measures [17]. In §6
we show that they do not capture syntactic similarity.

Application-Specific Structure Learning: There has
been prior work on learning specific structural properties
aimed at aiding data wrangling applications, such as data
transformations [43, 45], information extraction [31], and
reformatting or normalization [44, 27]. These approaches
make specific assumptions regarding the target application,
which do not necessarily hold when learning general purpose
comprehensive profiles for data understanding. We show in
§ 7 that profiles learned by FlashProfile may aid PBE based
applications, such as Flash Fill [19] for data transformation.

A recent work leverages profiling based on hierarchical
clustering, for tagging sensors used in building automa-
tion [10]. However, they use a fixed set of features relevant
to their domain, and do not qualify clusters with patterns.

Grammar Induction: Syntactic profiling is also related
to the problem of learning regular expressions, or more
generally a grammar [14] from a given set of examples.
Most techniques in this line of work such as L-Star [7] and
RPNI [39], assume availability of both positive and negative
examples, or a membership oracle. Furthermore, these
techniques are either too slow or do not generalize well [9].

Finally, the LearnPADS [16, 51] tool generates a syntac-
tic description and a suite of tools for processing semi-
structured data. However it does not support refinement.

Program Synthesis: Our implementation, FlashProfile,
uses an inductive program synthesis framework, PROSE [4]
(also called FlashMeta [40]). Inductive synthesis, specifically
programming-by-examples [19, 21] (PBE) has been the
focus of several recent works on automating data-driven
tasks, such as string transformations [18, 46, 45], text
extraction [29], and spreadsheet data manipulation [20, 22].
However, unlike these applications, data profiling does not
solicit any examples from the user. We demonstrate a novel
application of a supervised synthesis technique to solve an
unsupervised learning problem – our clustering technique
drives the synthesizer by creating examples as necessary.

9. CONCLUSION
With increasing volume and variety of data, we require
better profiling techniques to enable end users to easily
understand, and analyse their data. Existing techniques
target simple data-types, mostly numeric data, or only
generate partial profiles for string data, such as frequent
patterns. In this paper, we present a technique for learning
comprehensive syntactic descriptions of string datasets,
which also allows for interactive refinement. We implement
this technique as FlashProfile, and present extensive evalua-
tion on its accuracy and performance. We show that profiles
generated by FlashProfile are useful both for manual data
analysis and in existing PBE systems.
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