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Abstract

Novel flat crown ether molecules have been characterized in silico using
DFT hybrid and hybrid-meta functionals. Monomer units of Si2C3 with
a planar tetracoordinate carbon atom have been used as building blocks.
Alkali (Li

+
, Na

+
, K

+
, Rb

+
, and Cs

+
) and alkaline-earth (Ca

2+
, Sr

2+
,

and Ba
2+

) metals, and uranyl (UO
2+

2 ) ion selective complexes have also
been theoretically identified. The high symmetry and higher structural
rigidity of the host molecules may likely to impart higher selectivity in
chelation. Theoretical binding energies have been computed and experi-
mental studies are invited.
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1 Introduction

The concept of molecules with a planar tetracoordinate carbon (ptC)1,2 atom is
an inspiration to all chemists despite it breaks one of the fundamental paradigms
of organic chemistry - i.e., tetrahedral tetracoordinate carbon.3–14 Experimen-

tal and theoretical confirmation of pentaatomic ptC species (CAl−4 , CAl3Si
−/0,

CAl3Ge−/0, CAl2−4 , etc.,)15–18 have given some momentum in the search of
these molecules in the gas phase. Stabilization of ptC by hydrogenation, in the

case of CAl4H
−/0, has also been reported recently.19 The effect of “pt” silicon

(ptSi)20–24 atom in the stability of calix[4]pyrrole hydridosilicate25 serves as the
first experimental proof for ptSi, which motivates the study of these molecules
further. Experimentally, it was also demonstrated in the past that molecules
with a ptC atom can be enormously stabilized by the cooperative influence of
metal pairs (Zr/Al or Zr/Zr+) of atoms.26 The first crystallographically charac-
terized ptC molecule, a divanadium complex, identified by Cotton and Miller,27

was recognized later by Keese.4 It is also noted here that molecules with a pla-
nar hypercoordinate carbon (phC)7,28–38 atom are also actively pursued. Apart
from the chemical bonding perspective, interest in molecules with a ptC or phC
atom stems from the fact that they could be used as potential new materials.21,39
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Figure 1: Flat crown ethers of Si2C3 with ptC atoms identified at the B3LYP-
D3BJ/6-311++G(2d,2p) level of theory.
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Pioneering work on crown ethers by Pedersen40 and Cram,41 and on
cryptands by Lehn42 marked the birth of a new field called supramolecu-
lar chemistry. Whether it is a liquid or gas phase, conventional crown ether
molecules characteristically bind different metal cations depending upon the size
of the macrocyclic ring, polarity of the medium, and also the type of the donor
atom.43–45 Because of this versatility, more than 10,000 crown ether molecules
have been synthetically characterized46–50 and their potential applications in
phase transfer catalysis,51 chemical separations,52 analytical methods,53 and
also in nuclear waste management have already been well-documented.54–56 Mo-
tivated by molecules with a ptC atom and also by crown ethers, new “flat crown
ether molecules” have been designed here and their chelation behavior have also
been explored computationally. Embedding crown ethers in graphene57 or car-
bon nanostructures58 have been emerging to control their low structural rigid-
ity.59–61 Preorganizing the host molecule to suit the guest is a necessity for its
potential applications. Here, instead of using a graphene environment, a novel
approach has been followed by taking advantage of the concept of molecules
with a ptC atom and consequentially making flat crown ethers to maximize its
suitability.

2 Results and Discussion

In this work, utilizing Si2C3 with a ptC atom as a base unit, we have com-
putationally identified different flat crown ethers starting from Si2C3-8-crown-
2 (Si2C3-8C2 from here on wards) to Si2C3-24-crown-6 (Si2C3-24C6), which
are depicted in Figure 1. Five different flat metal-chelated complexes iden-
tified at the B3LYP-D3BJ/6-311++G(2d,2p) level of theory, Li+-Si2C3-16C4,
Na+-Si2C3-16C4, Ca

2+-Si2C3-16C4, K
+-Si2C3-20C5, and Rb+-Si2C3-20C5 are

shown in Figures 2 (a), (b), (c), (d), and (e), respectively. Si2C3-16C4 also forms
a coordinated complex with uranyl ion, UO2+

2 -Si2C3-16C4, which is shown in
Figure 3. For brevity, all optimal geometry parameters collected are shown in
the electronic supporting information and the binding energies computed for
various metal-chelated Si2C3-flat crown ethers including UO2+

2 are given in Ta-
ble 1. In this communication, predominant focus has been paid on Si2C3-16C4
and -20C5 and their chelated complexes considering the cavity ring sizes and
ionic radii of different metal ions. Metal chelation studies with Si2C3-24C6 is
currently ongoing and would be the focus of our future work. Starting from
Si2C3-16C4, as the overall cavity ring size increases (especially diagonal O-O
distances), alkali metal ions Li+ and Na+, and alkaline-earth metal ion, Ca2+-
chelated complexes are possible and they have been identified to be minima
using DFT at all levels employed herein. Although K+ forms a complex with
Si2C3-16C4, flat structure was found to be a transition state and minimum
geometry was found to be in a “quasi plate” shape (see Figure 4). Immedi-
ate higher homologue, Si2C3-20C5, hosts both K+ and Rb+ and retains overall
planarity.

From Table 1, the following trend has been observed. As the ionic radii
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M+--O distance (Å) 
(a) Li+ --O = 2.203 
(b) Na+ --O = 2.299 
(c) Ca2+ --O = 2.324 
(d) K+--O   = 3.044 
(e) Rb+--O = 3.076 

(b) Na+-Si2C3-16-crown-4 

(d) K+-Si2C3-20-crown-5 (e) Rb+-Si2C3-20-crown-5 

Na+ 

	

	

	

K+ 

	

	

	

	

Rb+ 

(a) Li+-Si2C3-16-crown-4 

Li+ 

(c) Ca2+-Si2C3-16-crown-4 

Ca2+ 

Figure 2: Five different M+-chelated Si2C3 crown ethers identified at the
B3LYP-D3BJ/6-311++G(2d,2p) level of theory.

Table 1: Binding energies (in eV) of flat Si2C3 metal-chelated crown ethers
calculated at different levels.
Species Symmetry; PBE0 B3LYP B3LYP-D3BJ TPSSh TPSSh-D3BJ

State 6-311++G(2d,2p)

Li
+

-Si2C3-16C4
1
A1g ; D4h -3.22 -3.44 -3.80 -3.16 -3.43

Na
+

-Si2C3-16C4
1
A1g ; D4h -2.51 -2.75 -3.16 -2.46 -2.74

K
+

-Si2C3-16C4
a 1

A1; C4v -1.59 -1.81 -2.22 -1.61 -1.91

Rb
+

-Si2C3-16C4
a 1

A1; C4v -1.19 -1.37 -1.78 -1.20 -1.51

Cs
+

-Si2C3-16C4
a 1

A1; C4v -0.96 -1.12 -1.52 -0.99 -1.28

Ca
2+

-Si2C3-16C4
1
A1g ; D4h -7.88 -8.23 -8.76 -7.82 -8.19

Sr
2+

-Si2C3-16C4
a 1

A1; C4v -5.77 -6.17 -6.70 -5.79 -6.15

Ba
2+

-Si2C3-16C4
a 1

A1; C4v -4.70 -5.11 -5.68 -4.79 -5.19

K
+

-Si2C3-20C5
1
A

′

1; D5h -1.92 -2.08 -2.54 -1.86 -2.21

Rb
+

-Si2C3-20C5
1
A

′

1; D5h -1.62 -1.82 -2.31 -1.61 -1.97

Cs
+

-Si2C3-20C5
a 1

A1; C5v -1.32 -1.51 -1.99 -1.33 -1.68

[UO2-Si2C3-16C4]
2+ 1

A1g ; D4h -9.02 -9.39 -10.33 -9.28 -9.95

a

This M
+

-chelated structure is not completely flat.

increases down the group, binding energy decreases. While Li+ and Na+ make
a chelated complex with Si2C3-16C4 and retains planarity, K+, Rb+, and Cs+

do not maintain planarity in minimum energy geometries though binding oc-
curs. This is not surprising due to the fact that ionic radii increases further
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from Na+ to K+. However, due to higher structural rigidity, the host molecule
is unable to accommodate K+ ion inside the cage (see Figure 4). Consequently,
the electrostatic interactions between K+ and four oxygen atoms push the entire
molecule like a “quasi plate”. Similar structures have been obtained for Rb+

and Cs+ in chelation with Si2C3-16C4 (not shown here for brevity). Moving to
higher homologue, Si2C3-20C5, when Li+ and Na+ ions remain at the center,
they become higher-order saddle points (see supporting information for details).
However, K+ binds with this host molecule (see Figure 2) due to slightly in-
creased ring size now and the binding energies are in the range of -1.86 to -2.54
eV. Perhaps, though there are five oxygen donor atoms now, the binding en-
ergy is still slightly larger (-2.54 eV) compared to the lower homologue (-2.22
eV) at the same level of theory (B3LYP-D3BJ/6-311++G(2d,2p); see Table 1).
Indirectly, this feature imposes higher selectivity. Also, this indicates that the
electrostatic interactions are stronger when planarity is maintained. Rb+ also
binds with Si2C3-20C5. Here, it maintains planarity unlike Rb+-Si2C3-16C4.
The binding energies are in the range of -1.61 to -2.31 eV for Rb+-Si2C3-20C5.
Just like K+ ion, binding energies are slightly larger for Rb+ (despite 5 donor
atoms now instead of 4) when the entire molecule is in one plane. With Cs+,
binding occurs with Si2C3-20C5 but planarity is no longer maintained.

As far as alkali-earth metals are concerned, when Be2+ remains at the center
in Si2C3-16C4, all the calculations at different levels lead to multiple number
of imaginary frequencies. On the contrary, Mg2+ with Si2C3-16C4 makes cova-
lent bonds with oxygen atoms but that geometry eventually turned out to be a
second-order saddle point at all levels (see supporting information). However,
the next ion Ca2+, whose ionic radii (114 pm) is comparable to Na+ (116 pm),
binds with Si2C3-16C4. Due to higher charge and also being in planar configu-
ration, the binding energies are sufficiently high (-7.82 to -8.76 eV; see Table 1)
for Ca2+-Si2C3-16C4. Sr2+ and Ba2+ also bind with the latter, however, pla-
narity is lost yet again due to increased ionic radii. Also, their binding energies
are comparably less compared to Ca2+. Our investigation is currently ongoing
with respect to binding tendencies of alkali-earth metal ions in Si2C3-20C5. It is
noted here that Si2C3-16C4 also forms a complex with uranyl ion, [UO2-Si2C3-
16C4]2+ (see Figure 3). The reason we had tried this particular ion is largely
due to the fact that enormous amount of effort had already been devoted in
making new chelating agents for UO2+

2
62,63. into uranyl oxides. Here, we are

proposing a new chelating agent for UO2+
2 whose binding energies are in the

range of -9.02 to -10.33 eV.
The optimal geometry parameters of various flat crown ethers are collected

in the ESI†. The ptC-C and ptC-Si bond lengths show single bond charac-
teristics. Also, quite consistently, the Si-C bond length exhibits double bond
characteristics (∼ 1.75 Å) in all cases. The optimized geometries of neutral flat
crown ethers and their chelated complexes identified here are of same symmetry
when planarity is maintained. In all cases, the ground electronic states are sin-
glets and they are non-degenerate. Thus, they are not Jahn-Teller distorted64

within their ground electronic states.
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U--Oax   = 1.752 Å 
U--Oeq   = 2.431 Å 

Figure 3: [UO2-Si2C3-16-crown-4]
2+ identified at the B3LYP-D3BJ/6-

311++G(2d,2p) level of theory.

K+ 

K+--O = 2.708 Å  (a) top-view (b) bottom-view 

K+ 

Figure 4: Two different views of K+-Si2C3-16-crown-4 identified at the B3LYP-
D3BJ/6-311++G(2d,2p) level of theory are shown.
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3 Conclusions

In conclusion, a new series of crown ether molecules called “flat crown ethers”
have been computationally characterized using the advent of molecules with
a ptC atom. This novel approach opens up a new direction in the area of
already popular “supramolecular chemistry”. The synthetic possibilities of these
molecules are invited and there are ample amount of reasons why one should
study these molecules considering their higher degree of selectivity in metal
chelation and also symmetry. Chelation with UO2+

2 is certainly encouraging
to study these molecules further. Perhaps, only time shall tell what kind of
potential applications or further new avenues are possible with these peculiar
molecules.

4 Computational Details

Initially geometry optimization and frequency calculations have been done using
density functional theory (DFT) with two different hybrid-functionals, PBE065

and B3LYP66–68 with the 6-311++G(2d,2p) basis set.69,70 All minima obtained
at these latter levels have been reoptimized including Grimme’s empirical dis-
persion corrections (D3)71 with Becke-Johnson damping (D3BJ),72,73 to make
sure whether the wavefunction is stable or not. Further, all geometries have
also been optimized with the TPSSh74 hybrid-meta functional including D3BJ
corrections. All the flat crown ethers studied here are found to be stable at
these five different levels of theory. For Rb+-, Cs+-, Sr2+-, and Ba2+-chelated
crown ethers, calculations have been done with the LANL2DZ ECP (for metal
ion alone).75 For uranium, Stuttgart/Dresden ECP of MWB6076 and the cor-
responding atomic natural orbital basis set77 have been used in all calculations.
All electronic structure calculations have been done with the Gaussian program
package78.

5 Supporting Information

Cartesian coordinates of the optimized geometries, total electronic energies,
zero-point vibrational energies (ZPVEs), ZPVE-corrected total energies, num-
ber of imaginary frequency values, and optimal geometry parameters obtained
at different levels are given.
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von Ragué Schleyer. Four decades of the chemistry of planar hypercoordi-
nate compounds. Angew. Chem., Int. Ed., 54:9468–9501, 2015.

[8] B. Sateesh, A. Srinivas Reddy, and G. Narahari Sastry. Towards design of
the smallest planar tetracoordinate carbon and boron systems. J. Comput.
Chem., 28:335–343, 2007.

[9] Congjie Zhang, Pei Wang, Jinxia Liang, Wenhong Jia, and Zexing Cao.
Theoretical study on a family of organic molecules with planar tetracoor-
dinate carbon. J. Mol. Struct: THEOCHEM, 941(1):41 – 46, 2010.
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