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Sub-wavelength dielectric gratings (SWG) have
emerged recently as a promising alternative
to distributed-Bragg-reflection (DBR) dielectric
stacks for broadband, high-reflectivity filtering
applications. A SWG structure composed of a
single dielectric layer with the appropriate pat-
terning can sometimes perform as well as thirty
or forty dielectric DBR layers, while providing
new functionalities such as polarization control
and near-field amplification. In this paper, we in-
troduce a remarkable property of grating mirrors
that cannot be realized by their DBR counter-
part: we show that a non-periodic patterning of
the grating surface can give full control over the
phase front of reflected light while maintaining
a high reflectivity. This new feature of dielec-
tric gratings could have a substantial impact on a
number of applications that depend on low-cost,
compact optical components, from laser cavities
to CD/DVD read/write heads.

Resonant effects in dielectric gratings were first clearly
identified in the early 1990’s [1] as having promising ap-
plications to free-space optical filtering [2, 3] and sens-
ing [4, 5]. They typically occur in sub-wavelength grat-
ings (SWG), where the first-order diffracted mode cor-
responds not to freely propagating light but to a guided
wave trapped in some dielectric layer. The trapped wave
is scattered into the zeroth diffracted order and interferes
with the incident light to create a pronounced modula-
tion of transmission and reflection. When a high-index-
contrast grating is used, the guided waves are rapidly
scattered and do not propagate very far laterally. In this
case it is appropriate to think of the grating as a coupled
resonator system, where each high index groove behaves
as a (lossy) cavity. In such gratings, broad transmis-
sion and reflection features can be observed, and have
been used to design novel types of highly reflective mir-
rors [6, 7]. Recently, SWG mirrors have been used to
replace the top dielectric stacks in vertical-cavity surface-
emitting lasers (VCSELs) [8, 9], and in novel MEMS de-
vices [10, 11]. Besides being more compact and cheaper
to fabricate, these structures provide new optical features
such as polarization control.

In this paper, we show — both numerically and ex-
perimentally — how a non-periodic design of the SWG
pattern allows dramatic control of the phase front of the
reflected beam, without affecting the high reflectivity of
the mirror. We provide complete design rules on how to
obtain a given phase front for the reflected beam, and we
design a set of effectively cylindrical and spherical mirrors

which can be fabricated using simple lithography followed
by etching. We believe our method can considerably re-
duce the cost of optical components while offering new
functionalities for a host of applications from laser cavity
reflectors to CD/DVD read/write heads. The paper will
focus on 1D gratings with TM-polarized incident light,
but the design rules apply equally well to TE-polarized
and unpolarized gratings (the latter necessitating a 2D
pattern). Transmissive gratings are also possible and will
be described elsewhere.

To understand the phase front modification provided
by a non-periodic SWG mirror, we start by consider-
ing the complex reflection coefficient r0(λ) of a partic-
ular periodic SWG mirror, as shown in Fig. 1(a). The
wavelength-dependent reflectance and phase shift of the
mirror can be easily obtained using either the finite ele-
ment method (FEM) or rigorous coupled wave analysis
(RCWA) [12]. In the particular case of Fig. 1(a), the
grating is a set of linear silicon grooves with a period
of 0.76 µm on a quartz substrate, and is illuminated at
normal incidence with a TM-polarized plane wave (i.e.,
the E-field vector is perpendicular to the grooves). Due
to the strong index contrast between silicon and air,
the grating has a broad spectral region of high reflec-
tivity, consistent with other reports in the literature[6].
A less obvious but critical observation is that the phase
of the reflected beam varies significantly across the high-
reflectivity spectral region.

In order to design grating reflectors that imprint a par-
ticular phase profile on an incident beam, we first exploit
a well-known property of Maxwell’s equations with re-
spect to a uniform spatial scale transformation. If we
physically change the spatial dimensions of a periodic
grating uniformly by a factor of α, the new reflection
coefficient profile will be identical to that of the original
grating, but with a wavelength axis that has also been
scaled by α. Therefore, if we design a grating that has a
particular complex reflection coefficient r0 at a vacuum
wavelength λ0, then we obtain a new grating with the
same reflection coefficient at wavelength λ by multiply-
ing all grating dimensions by the factor α = λ/λ0, giving
r(λ) = r0(λ/α) = r0(λ0).

The critical conceptual advance that enables designs
with high focusing power is the realization that a non-

uniform scaling of the reference grating should allow lo-
cal tuning of the value of the reflected phase while main-
taining a large reflectivity for a monochromatic incident
beam. Since high-contrast gratings operate with local-

ized resonances, we expect their reflection properties at
a given point in space to depend only on the local geom-
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FIG. 1: Magnitude-squared and phase of the reflection co-
efficient from a 1D silicon grating of 470 nm thickness on
a SiO2 substrate, subject to normal incidence illumination
with a TM-polarized plane wave. The reflection coefficient is
plotted as (a) a function of wavelength for a fixed period of
0.76 µm, and (b) as a function of spatial period at a fixed
wavelength of 1.55 µm.

etry around that point. Suppose that we wish to imprint
a phase φ(x, y) on a reflected beam at some point on
the grating with transverse coordinates (x, y). Near that
point, a nonuniform grating with a slowly-varying spatial
scale factor α(x, y) behaves locally as though it was a pe-
riodic grating with a reflection coefficient r0[λ/α(x, y)].
Therefore, given a periodic grating design with a phase
φ0 at some wavelength λ0, choosing a local scale fac-
tor α(x, y) = λ/λ0 will set φ(x, y) = φ0. So long as
all required values of φ0 are available within the high-
reflectivity spectral window, the new non-periodic grat-

ing can be designed to support a specific phase map for a
specific application. We have followed this procedure to
generate the plot of the magnitude and phase of the com-
plex reflection coefficient at λ = 1.55 µm as a function
of grating period shown in Fig. 1(b). Notice that this
approach is in general not valid for weak gratings where
the local structure of the incident beam is spatially aver-
aged laterally upon reflection [13]. However, as we show
below, this is a very robust and reliable guiding principle
for high contrast grating designs.

Two simple phase profiles are noteworthy. First, a lin-
early varying phase profile φ(x, y) = κxx + κyy (where
κx and κy are design parameters) gives rise to a de-
flected reflected beam, just as a tilted mirror would.
The deflection angle θ measured from normal is given

by sin θ =
√

κ2
x

+ κ2
y
/k0, where k0 = 2π/λ0 and λ0 is the

free space wavelength. Second, a quadratic phase pro-
file φ(x, y) = k0

(

x2/fx + y2/fy
)

/2 gives rise to elliptical
“thin lens” focusing with focal lengths fx and fy in the
xz and yz planes, respectively. In that case, the grating
behaves as a perfect parabolic mirror. Of course, more
complicated reflection phase profiles can also be imple-
mented.

Continuously scaling the height of a particular grating
groove typically requires grey-scale lithography. While
this is a mature fabrication technique, it is not readily
accessible to most research groups and is more expen-
sive than binary lithography. For this reason, whenever
possible we seek purely planar designs for our SWG re-
flectors, maintaining the grating groove thickness across
the entire optic. In practice, it is generally possible to
obtain a phase shift similar to that achievable in 3D scal-
ing using purely 2D scaling, varying the grating period
and/or duty cycle (defined as the groove width divided by
the period) only. Figure 1(b) shows an example where
a phase shift close to 2π is obtained for a fixed wave-
length by varying the grating period only while keep-
ing the reflectance above 98%. The resulting design is
reminiscent of output-coupler gratings used to extract
light from a dielectric slab into a controlled radiation
mode [14–16]. However, the operating principle is very
different here: it is based on the excitation of localized
resonances in the high-contrast grating rather than on
leaky modes in a low-contrast grating. It is also very dif-
ferent from (and superior to) conventional Fresnel lenses,
where prisms and wedges of well-engineered geometric
features are utilized to exploit refraction and total inter-
nal reflection. In contrast to Fresnel lenses, SWGs have
only sub-wavelength features that provide a smooth re-
flected phase front despite the sharp discontinuities in
dielectric constant.

Once we have chosen a particular spatial distribution
of duty cycle and period, we must determine the grating
pattern that best approximates that distribution. One
way to think about this problem is to view the non-
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periodic grating as a distorted version of the reference
periodic grating. A local change in duty cycle simply
corresponds to a local scaling of the grating pattern that
leaves the underlying lattice unchanged, a procedure that
is easily implemented for 1D or 2D gratings. A local
change of period can be implemented by a coordinate
transformation that distorts the lattice itself. A more
detailed discussion of this idea can be found in the Ap-
pendix section.

Our freedom in designing optical devices using purely
planar technology is determined by the range of phase
variation we can obtain through lateral scaling of a dielec-
tric grating. Many applications — including phase front
correction, laser cavity reflectors, and low-numerical-
aperture optics — require only a relatively small phase
variation (e.g., less than π/2) achievable through the lat-
eral scaling of high-contrast gratings having a single reso-

nance. For example, in the case of the planar “parabolic”
reflectors described below, a phase variation of 0.8π at a
fixed operating wavelength can be realized by varying the
duty cycle alone. Larger phase differentials can be ob-
tained using dielectric gratings that exhibit merged mul-

tiple resonances in their spectrum, such as the 470 nm-
thick silicon grating on an SiO2 substrate operating in the
1.2–2 µm wavelength range shown in Fig. 1(a). Apply-
ing the design principle outlined above, Fig. 1(b) demon-
strates that a total phase range of 1.7π can be realized
at an operating wavelength of 1.55 µm by varying both
duty cycle and local grating period, while the reflectance
remains above 98%. Although this phase variation is al-
ready large enough to support a wide range of free-space
optical applications, achieving a full 2π is important be-
cause it enables arbitrary phase front control. A straight-
forward means of reaching this significant goal is to use
a few (as little as two) grating thicknesses with comple-
mentary phase variations that together cover the entire
2π range. This allows a reflectance in excess of 98% to
be maintained using a process compatible with planar
technology. Another solution (used next to simulate a
large-NA parabolic reflector) arises from the observation
that we can realize a 2π phase variation (and thus full
wavefront control) using a single-thickness design by ac-
cepting a small decrease in the reflectance.

Figure 2 provides an example of arbitrary wavefront
control with reasonably high reflectance using lateral
scaling alone. Here we have used a finite element method
to simulate a 1D (cylindrical) parabolic reflector of large
numerical aperture (NA = 0.45) with a diameter of
50 µm and a focal length of 50 µm . The design of the
device requires a total phase variation of 8π from cen-
ter to edge, which is obtained by modulation of the local
period only using the reflectance curve of Fig. 1(b). As
shown in Fig. 2, this optic focuses an incident gaussian
beam with a 20 µm waist at the grating surface down
to a spot with a 1.66 µm waist (i.e., within 25% of the
diffraction limit), with a total reflectance of 85%. This

rational design method constitutes an excellent starting
point for a systematic optimization of the groove width
and period, which is very likely to improve the amplitude
and beam quality of the reflected field.

We have tested the non-periodic SWG concept experi-
mentally by fabricating TM reflectors with aperture radii
of 150 µm (limited by our e-beam lithography tool) and
a relatively long focal length of 17.2 mm to facilitate the
measurement of the beam profile. This design required
a phase variation of up to ∼ 0.8π that was obtained
through spatial modulation of the duty cycle alone, as
described in detail in the Appendix section. We fabri-
cated a flat, a cylindrical, and a spherical SWG mirror
made of a 450 nm amorphous silicon layer on a quartz
substrate with a (uniform) grating period of 670 nm. The
fabrication procedure involving e-beam lithography is de-
scribed below in the Methods section. The groove width
is uniform for the flat reflector but is spatially modu-
lated for the cylindrical and spherical mirrors. An optical
microscope image of a fabricated spherical grating mir-
ror is shown in Fig. 3, along with scanning microscope
images of the silicon grooves at various locations. We
tested the device with a collimated laser beam having
a 100 µm waist radius. Our main experimental results
are summarized in Fig. 4, with the schematics of the
grating patterns shown in the top row, and the measured
beam profiles after reflection off each grating displayed in
the middle row. The reflected beam parameters can be
reconstructed from the measured beam radii at various
positions, as shown in the bottom row of Fig. 4. Using
these parameters, we can calculate the focal lengths to be
20 ± 3 mm for both mirrors, close to the design value of
17.2 mm. The reflectance of the mirrors is in the range of
80–90%, lower than the expected 98%, primarily due to
proximity effects in the e-beam lithography step, as well
as the surface roughness of the silicon grooves evident
in Fig. 3. We believe that focal length and reflectance
will be much closer to the design specifications after op-
timization of the fabrication procedure.

The non-periodic SWG mirrors presented here could
provide new optical functionalities for a host of passive
or active devices. They can provide tight lateral con-
finement of light in a VCSEL cavity, improving on the
periodic-SWG-based structure demonstrated in [9] and
allowing high-speed, high-power, single-mode operation.
They can also be used to shape directly the transverse
mode profile of a microlaser through the output mir-
ror, replace the expensive compound lens systems in a
number of consumer electronic products (DVD players,
digital cameras, etc), and provide a cheaper alternative
to micro-lens arrays used in CMOS and CCD sensors
and quantum computation implementations relying on
trapped atoms. Combined with techniques to modulate
the position, shape, or effective index of the grating layer
(electro-optic effect, MEMS tuning, free carrier plasma
effect, etc.), the approach presented here could become
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FIG. 2: Numerical simulation of a 50 µm-aperture focusing reflector with NA = 0.45, featuring an 8π differential phase shift
from center to edge. The grating is illuminated with a collimated beam of waist 20 µm at a wavelength of 1.55 µm. The plot
shows the intensity of the reflected field as a function of position, as well as both the phase distribution 1 µm below the grating
and the beam intensity profile in the focal plane. The beam is almost perfectly gaussian at the focus with a waist of 1.66 µm.

150 μm

670 nm

FIG. 3: Optical microscope picture of a fabricated spherical
SWG mirror. The groove width in various locations is shown
as SEM images in the insets.

the tool of choice for applications involving active phase
front correction, dynamic focusing, or cavity resonance
tuning.

METHODS

The devices of Figures 3 and 4 were fabricated in
450 nm thick amorphous silicon deposited on a quartz
substrate at 300 ◦C by PECVD. The refractive index of
the silicon layer was measured by ellipsometry over the
wavelength range of interest, and those measurement val-
ues were used in the numerical simulations. The grating
patterns were defined by electron beam lithography us-
ing the negative resist FOX-12 from Corning exposed at
200 µC/cm2 and developed for 3 minutes in a solution of
MIF 300. After development, the patterns were weakly
descummed using CF4/H2 reactive ion etching to clear
the resist residue between the grating lines. The silicon
grooves themselves were formed by dry etching using a
HBr/O2 chemistry. At the end of the process, a 100 nm
resist layer remains on top of the silicon grooves and was
included in the numerical simulations. Scanning electron
microscope images of the fabricated grating are shown in
Fig. 3.

The measurement setup consisted of a fiber-coupled
laser that was collimated using an aspheric lens to have
a waist of 100 µm at the grating position. The reflected
beam was picked off using a cube beam-splitter. To ob-
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FIG. 4: Top row: schematic of the groove distribution for the three structures: flat (left), cylindrical (middle), and spherical
(right) SWG mirrors. Middle row: measured beam profiles at the foci for the three mirrors. Bottom row: plots of the beam radii
(1/e2) as a function of distance for the three mirrors. The blue and red diamonds are the measured values for the horizontal
and vertical radii, respectively, and the continuous lines are best fits. The green line represents the radius of a beam reflected
from a reference plane mirror.

tain the reference data, a planar dielectric mirror with
reflectivity >99% was used instead of the grating. Re-
flectance data were also confirmed using a spectroscopic
ellipsometer.

APPENDIX

This appendix section provides detailed discussions of
a few technical points raised in the main text. First,
we explain how to design a grating pattern to imprint a
specific phase profile on a reflected beam, in both 1D and
2D. Second, we present more materials on the design of
the fabricated reflectors of Fig. 3 and 4.

Designing a non-periodic grating pattern for a

specific reflected phase profile

In this section, we explain the procedure for designing
the pattern of a high-index-contrast non-periodic grating
to imprint a particular phase profile φ(x, y) on a reflected
beam. For a given periodic grating, the magnitude and
phase of the reflection coefficient r at a given wavelength
l will vary with the period p and the duty cycle η (de-
fined as the ratio of the groove width to the period). For
certain grating thicknesses, we can achieve a high reflec-
tivity (i.e., |r|2 > 98%) with a wide variation of phase
over a relatively large range of values of {p, η}, as indi-
cated by the closed solid line in Fig. 5. In general, this
result serves as a look-up table to determine the distri-
bution of duty cycle period p(x, y) and η(x, y) according
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to the target phase distribution φ(x, y). Here we provide
a detailed explanation of how to determine p(x, y) and
η(x, y) in practice.

Designing a 1D non-periodic grating pattern using a discrete

algorithm

For a 1D non-periodic grating design, the goal is to
find the local period p(x) and duty cycle η(x) that give
a particular known target phase profile φ(x) along the
x axis. We begin by choosing a path (such as Path 1
in Fig. 5) enclosed within the high reflectivity region,
defined by a set of parametric functions of the parameter
t as

p = P (t) , η = I (t) , φ = Φ (t) , (1)

where P (t) and I(t) are known, single-valued functions
that generate coordinates on the horizontal and verti-
cal axes, respectively, of Fig. 5, and Φ(t) generates the
phase of the reflection coefficient (encoded by color in the
figure). Given our target phase at the origin, φ(0), we
select the value of t ≡ t0 that gives Φ(t0) = φ(0), and
record the corresponding period p0 = P (t0) and duty
cycle η0 = I(t0).

Our task now is to use Fig. 5 to create a discrete rep-
resentation of the target function φ(x) by choosing the
position and width of consecutive grating lines using the
a straightforward recurrence procedure. (As noted in the
main text, the physics of high-index-contrast subwave-
length gratings results in a smoothed spatial distribution
of phase with local values interpolated between adjacent
grooves.) Suppose that we have already found the pe-
riod and duty cycle of grating line n to be ηn ≡ I(tn)
and pn ≡ P (tn), respectively, for some value of the pa-
rameter t = tn, and that the center of that line is at xn.
The center position of line n + 1 (with period pn+1) can
then be written as

xn+1 = xn +
1

2
(pn + pn+1) . (2)

Therefore, we must find the value of tn+1 that satisfies
Φ(tn+1) = φ(xn+1), or

Φ(tn+1) = φ

[

xn +
1

2
pn +

1

2
P (tn+1)

]

, (3)

which depends on only one unknown tn+1, and can be
iterated numerically. The period and duty cycle of grat-
ing line n+ 1 are then computed as pn+1 = P (tn+1) and
ηn+1 = I(tn+1), and this process can be repeated until
the boundary of the grating aperture is reached.

Local period modulation of a 1D non-periodic grating through

a coordinate transform

As we described in the main text, the local period mod-
ulation of a 1D non-periodic grating can be realized an-
alytically as a coordinate transformation from the refer-
ence periodic grating described by the dielectric permit-
tivity distribution ǫ(u) = ǫ(u+ Λ). Consider a target pe-
riod distribution p(x), and define α(x) ≡ p(x)/p0, where
p0 is the period of the reference grating. For simplic-
ity, we assume that α(x) is piecewise continuous and is
bounded, i.e. 0 < A ≤ α(x) ≤ B < +∞, which is al-
ways the case in practice. We then define the coordinate
transformation

u(x) = u(0) +

∫

x

0

ds

α(s)
(4)

By our assumptions on α(x), this map is continuously
differentiable everywhere in x-space with

u′(x) =
1

α(x)
(5)

Consider a grating in x-space defined by the dielectric
function ǫ̃(x) = ǫ(u(x)). When α(x) varies slowly com-
pared to  L, we can write

u(x + α(x) L) ≈ u(x) + α(x) Lu′(x) = u(x) +  L, (6)

which leads to the relation

ǫ̃(x + α(x) L) ≈ ǫ̃(x). (7)

That is, the grating defined in x-space by the dielectric
function ǫ̃ has a local period α(x) L, so that ǫ̃(x) is indeed
the grating pattern we are seeking.

Designing a 2D non-periodic grating pattern

As in the 1D case, the 2D grating pattern should be
designed by using the magnitude/phase plot of the pe-
riodic grating design in Fig. 5 as a look-up table. For
example, the discrete procedure for the 1D case can be
repeated for discrete yn to determine the position of each
period center (xn, yn) with its duty cycle ηn,n. The cor-
responding grid points of neighboring yn are then con-
nected to form the non-uniform grating grooves with the
local width determined by ηn,n. Since the period at yn
and yn+1 is in general not the same, it is possible that the
grids at yn and yn+1 are not one-to-one matched, result-
ing in terminated grooves at a few locations similar to
the dislocation defects in a crystal. The density of such
defects is low under slow-varying conditions, and their
influence on the reflected field is localized, similar to the
situation in the large NA reflector (shown in Fig. 2 of the
main text) where discontinuities at the 2mπ interfaces
cause no noticeable effects in the final result. The possi-
ble negative consequences of these defects can be further
compensated by local modulation of the duty cycle.
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FIG. 5: A plot of the phase of the reflection coefficient r of a periodic SWG mirror as a function of period and duty cycle,
used to design the large numerical aperture reflector shown in Fig. 2 in the main text. The area enclosed within the solid line
corresponds to |r|2 > 98%.

FIG. 6: Simulated reflected phase of a periodic SWG mirror as a function of period and duty cycle, used to design the fabricated
structures of Fig. 3 and 4 in the main paper. The grating is fabricated in 450 nm thick silicon on a fused silica substrate, and
operates at a wavelength of 1550 nm. The dashed and solid lines mark the contours for |r|2 = 95% and 98%, respectively.
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FIG. 7: Solid black line: Local duty cycle (i.e., the ratio of
groove width to period) as a function of distance from the
center of the grating, designed for a focal length of 17.2 mm.
Blue solid line and red broken line: Expected (blue) and sim-
ulated (red) phase front of the reflected beam. The incident
field is a collimated beam having a waist of 100µ m focused
on the surface of the reflector.

Design of fabricated parabolic reflectors

Here we provide more detailed explanations of the de-
signs of the parabolic reflectors shown in Figs. 3 and 4 of
the main text. It is basically an application of the dis-
crete algorithm introduced above. The design is based on
a periodic grating of 450 nm thick silicon with a 670 nm
period on a quartz substrate, which has the properties
of the reflection coefficient shown in Fig. 6 (similar to
that of Fig. 5, but for a different reference period). We
realized that varying the duty cycle while keeping the
period fixed was sufficient for the parabolic focal lengths
we wished to fabricate, corresponding to a design along
a path parallel to the duty cycle axis (i.e., the broken
white line in Fig. 6, with the segment inside the black
solid lines as the counterpart of Line 1 in Fig. 5). For the
cylindrical reflector, this resulted in uniform, parallel sil-
icon grooves of different widths, with centers uniformed
distributed along the x direction with a period of 670 nm.
A schematic of this pattern is shown in the middle of the
first row of Fig. 4 in the main text, and the local duty
cycle used in the design is shown in Fig. 7 as the solid
black line. For the spherical reflector, the result is a set

of silicon grooves whose centers were also uniformly dis-
tributed along the x direction with a period of 670nm,
but with each groove having a y-dependent width. This
schematic is shown on the right of the first row of Fig. 4
in the main text.

We also used used the finite element method to per-
form a full-wave simulation of the designed cylindrical
SWG mirror (fx = 17.2 mm, fy = +∞). The targeted
(parabolic) and simulated reflection phase profiles are
shown in Fig. 7 as the solid blue and broken red lines,
respectively. The expected and simulated phase profile
agree very well, except for a small feature near period
120 where the grating reflectance of the period/duty cy-
cle combination is slightly smaller (although still above
98%) than the rest of the grating.
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