
ILLINOIS JOURNAL OF MATHEMATICS
Volume 29, Number 4, Winter 1985

FLAT FAMILIES OF AFFINE LINES ARE AFFINE-LINE
BUNDLES

BY

T. KAMBAYASHI AND DAVID WRIGHT

By a fibration over a scheme S we mean a faithfully flat morphism X S
of finite type, and one such morphism will be called an An-bundle over S if the
S-scheme X is locally isomorphic to the affine n-space A 7 and S relative to the
Zariski topology. The purpose of this note is to establish the following
theorem.

THEOREM. If X - S is a fibration such that for each point s S the fiber of
s in X is isomorphic to the affine line Aks) and if the base S is a Noetherian
normal scheme, then X is an Al-bundle over S.

Earlier, Kambayashi and Miyanishi proved this theorem under the ad-
ditional hypotheses that the morphism X---, S be affine and the base S be
locally factorial [7; Theorem 1]. On the other hand, they assumed only the
generic fiber to be an A and all other fibers to be geometrically integral. The
proof in the present paper reduces to the case where S is the spectrum of a
local ring, then proceeds by induction on the dimension of S, which was the
approach of [7]. The proof for dim S 1 when X S is assumed to be affine
was quite elementary (see [7; Lemma 1.3]); without this assumption it is much
less so. The crux of our argument for the dim S 1 case (see 1) employs a
lemma of Swan, which appears with proof as Lemma 1.1 below. The main task
when dim S > 1 is to weaken the assumption of "locally factorial" down to
"normal" for the base scheme S. This is done in 2 following an idea of V.
Danilov, contained in a letter to one of the authors. His idea involves a
reduction to the case of a Henselian base scheme S, and a clever "two section"
argument for that case. We are much indebted to him and want him to receive
the appropriate credit for his vital contribution to this proof. We also thank I.
Dolgachev for clarifying some of the points in Danilov’s letter.

Several helpful comments were offered to us by Mohan Kumar, Pavaman
Murthy, and Randy Puttick, for which we are grateful.
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1. The case dim S 1

We begin by establishing a result due to Swan.

1.1 LEMMA (Swan [11]). Let A be a Noetherian domain containing another
domain R over which it is offinite transcendence degree d >= 1. Let R be a
prime element, and assume there exists a prime ideal P in A of height d + 1 such
that P N R tR. Then any sequence fo, fl, f2,.., of non-zero elements of A,
starting with fo transcendental over R, and satisfying

(1) f ci= tf + for some c R i=0,1,2,...,

is a finite sequence.

Proof Suppose that an infinite such sequence exists. Let q tR. By
localizing at q we may assume q is a maximal ideal of R. Let

B=R[fo,fl,... c_A.

It follows from the equations (1) that B is generated birationally over R by f0;
hence the transcendence degree of B over R is 1. Let Q tB, we have that the
composite of homomorphisms R B---> B/Q is surjective, since by the
equations (1), fi c (mod Q) for all i. Clearly Q 4: B, since is not a unit
(even in A). Thus the kernel Q N R of this homomorphism must equal q, since
q is maximal. Hence R/q B/Q, so Q is a maximal ideal and Q P N B.
We claim that the localization BQ is a principal valuation ring. Clearly its

maximal ideal is tBQ; our claim will be established once we show that

n= ltnBQ {0}, for it follows from this that any element of B0 has a unique
factorization ut where u is a unit in BQ and r >= 0. To see this, note that

(’] nBQ "B
n=l n=l Q

(this follows easily from the fact that is prime in B) and

n=l n=l

since A is a Noetherian domain and is not a unit in A. Therefore

and the claim is verified. (Here let us note that in the lemma the hypothesis "A
is Noetherian" can be replaced by "f’l=ltnA (0)".)
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The extension BO_ A p has transcendence degree d- 1. Upon choosing a
transcendence basis x1,..., Xd_ A, for this extension, we have

BQ[X1,...,Xd_I] C____ Ap, dimBo[xl,...,Xa_ll d,

and

dimA,=d+ 1.

This contradicts the following lemma, so such an infinite sequence could not
exist.

1.2 LEMMA (Swan [11] or [12; Theorem 5.4]). Let A
_
F be domains with A

Noetherian, dim A < o, and F algebraic over A. Then dim F <_ dim A.

Proof Given a chain of prime ideals P0 c P1 c c Pn in F, choose
Y; P- Pi-1 for i= 1,..., n. Then, clearly, dim A[yx,..., yn] >__ n. We may
therefore assume F to be finitely generated over A; by induction, we may even
take it to be simply generated. Thus F A[y] A[Y]/I for an ideal I in the
polynomial ring A[Y]. Since F is algebraic over A, I 4: {0}. Therefore
dim F < dim A[Y] 1 + dim A (since A is Noetherian). This finishes the
proof.

Let f: XS be a fibration and F a scheme. If for each sS the
(scheme-theoretic) fiber f-l(s) is isomorphic to Fk(,)= F X k(s) over the
residue field k(s) of s, we call f a fibration offiber type F. Thus the morphism
of our theorem is a fibration of fiber type A Spec Z[T]. We will call such a
morphism, more simply, an Al-fibration.

1.3 Remark. If f: X S is any faithfully flat morphism of Noetherian
schemes such that S is normal and each fiber of f is normal, then X is also
normal. This results from a standard fact of commutative algebra, which can
be found, for example, in [9; Corollary 21.E]. We will be using the consequent
fact that if f is an Al-fibration with S normal and Noetherian, then X is
normal. It is then clear that X is connected if S is. Another fact which will be
used is that an AX-fibration is a smooth morphism. This results from [4; IV,
Theorem 17.5.1].

1.4 PROPOSITION. Let C SpecR where R is a principal valuation ring.
Then every ACfibration over C is an Al-bundle over C.

Proof Let K and k be, respectively, the field of fractions and the residue
field of R. Let Y C be an Al-fibration, with the generic fiber and the closed
fiber denoted by YK and Yk, respectively. Our assumptions imply Y is normal
and integral (see Remark 1.3), and that Yr SpecK[f] for some f in the
function field of Y, transcendental over K. Since Y is normal, f possesses
well-defined zeros and poles. Since f has no poles in Y, it can have a pole
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only at the prime divisor Yk- Let R be a uniformizing parameter. Identi-
fying R as a subring of F(Y, Or), Yk is defined everywhere by t, and we may
replace f by t’f where m is greater than or equal to the order of the pole f
has at Y,. Since f now has no poles on Y, f F(Y, Or.) (and Y/ SpecK[f]
still holds).

Consider the homomorphism 9: F(Y, Or) F(Y, Ork arising from the
closed embedding Yk Y. By hypothesis, F(Y, O rk ) k[u] where u is
transcendental over k. If q(f)= a0 k, then lifting a0 to some co R, we
have (f- Co)= 0. Since defines Yk, divides f- co in each local ring of
Y. Hence divides f-co in I’(Y, Or). Thus we have f-co tfl, where
fl F(Y, Oy). If (fl) k, we repeat this process to get fl cl tf2, where
c R, f2 F(Y, y). We can continue choosing fi+l accordingly, as long as
q(fi) k; the following argument will show that the resulting sequence
f0( f), flf_, must be finite. Let U be any affine open set in Y containing a
closed point y in Yk, let A F(U, (Or), and let P c A be the (maximal) ideal
in A corresponding to y. Then A has transcendence degree 2 over R, P
restricts to tR (since y maps to the closed point of C), and P has height 2 (the
containments { y } c Yk Y show that ht(P) >= 2. That Y is two-dimensional
follows from that fact that both fibers are one-dimensional.). Replacing fi and
c by their images in A, for 1, 2,..., we see that we are in the situation of
Lemma 1.1, with d 1, and we thereby conclude that the sequence is finite,
i.e., q(fn) q k for some n >= 0. Replacing f by fn, we may assume (f) k.
The containment R[f]

_
F(Y, Oy) of R-algebras induces a birational mor-

phism h" Y Z of C-schemes, where Z SpecR f ( Ac)- Our choice of f
clearly implies that h restricts to an isomorphism of the generic fibers in Y and
Z. Moreover, the morphism induced by h over the closed fibers corresponds to
the k-algebra homomorphism k[f] k[u] which sends f to (f). (Here
k[f] R[f] (R)Rk, and f= f (R) 1.) Since 9(f) k, this is a finite morphism.
In particular, we see that the morphism h is surjective and has finite fibers. By
Zariski’s Main Theorem [4, III, Corollary 4.4.9], h is an isomorphism.

1.5 Remark. The reader will easily verify that a morphism X S of finite
type, with S Noetherian, will be an ALbundle if (and only if) for every point
s S, the induced morphism X Spec(gs, SpecOs, is an Al-bundle.
Thus Proposition 1.4 holds where C is any one-dimensional, normal,
Noetherian scheme. Moreover, this observation will enable us to proceed with
the proof of our theorem by induction on the dimension of S, even though,
before localizing, S could be infinite dimensional.

2. The case dim S > 1

2.1. We now proceed to prove the main theorem inductively for the general
case. In lieu of Remark 1.5 and Proposition 1.4, we may assume S SpecR
where R is a normal, Noetherian local domain of dimension n >= 2, and we
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may assume the theorem holds for base schemes of lower dimension. In
particular, the Al-fibration f: X S restricts to an Al-bundle over S’ S
{ p }, where p is the closed point of S, since dim S’= n 1. Letting X’=
XxsS’ (= f-(S’)) and f" X’ S’ the induced morphism (which makes X’
an ALbundle over S’), we will first show that X is indeed an A-bundle over S
provided X’ is a trivial Al-bundle over S’.

In this case X’ -= S’ X A, f’ corresponding to the projection S’ X A S’.
Let Z S A and Z’= S’ A1, so that Z’ is an open set of Z. The
isomorphism X’ ---- Z’ gives a birational correspondence g: X Z over S.
Since X and Z are both normal, and since the fiber of p in both X and Z has
codimension >__ 2, we have F(Z, dgz) F(Z’, Oz) =- F(X’, (.0x) F(X, Ox) [4;
IV, Theorem 5.10.5], the middle isomorphism being induced by g. Since Z is
affine, the existence of the composite homomorphism F(Z, (.0z) F(X, 0x)
implies that g is a morphism.

So we now have a birational morphism g: X Z of S-schemes which
restricts to the isomorphism X’ -= Z’, and we claim that g is an isomorphism.
It clearly suffices to show that g is an open immersion (since, in that case, g
would restrict to an open immersion gk" Xk Z of the closed fibers, both of
which are isomorphic to A"k, gk would necessarily be an isomorphism, making
g an isomorphism). Since Z is normal, it suffices, by Zariski’s Main Theorem,
to show that g has finite fibers [4; III, 4.4.9]. The only way this can fail is if g
carries Xk to a closed point z (necessarily k-rational) in Zk, so we assume this
is the case. Since Z S A1, we have Z Spec R[t], and we may choose so
that the point z is defined by 0 on Zk.

Let U be an affine open neighborhood of some point of Xg. Then U (as well
as Z) is smooth over S, hence v/s and fz/s are locally free sheaves of rank
one over U and Z, respectively [1; Ch. VII, Theorem 5.3]. Since g[ v: U Z is
an S-morphism which is an open immersion outside the closed fiber U in U,
the map

(1) (gl v)*az/s al/s

is an isomorphism away from U. Since U is normal and U has codimension

>= 2, (1) is an isomorphism [4; IV Theorem 5.10.5]. Letting A R[t] and
B F(U, (.0x), we identify A as a subring of B. The isomorphism (1) says that

f/R B (R).A/R, from whence it follows that f/R Bdt.
On the other hand, the fact that g v carries U to z says that

(mB)A =mA + tA,

where m is the maximal ideal of R; therefore mB. Writing

mb +...-bmrbr,
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where each m m, bi B, we have dt mldb + + mrdbr, which shows
that dt (mB)s/R. This is impossible, since 2B/R is free on the generator dt
and mB c B. This concludes the argument at hand.

2.2. The proof is now reduced to proving that X’ X sS’ is a trivial
Al-bundle over S’= S- (p). We first show this for the case where R is
Henselian. Then, since f: X S is a smooth morphism (Remark 1.3), any
section for the restriction f-l(p) (p) of f to the closed fiber (where p is
again the closed point of S) extends to a section for f [4; IV, Theorem
18.5.17]. A section on the closed fiber corresponds to a k-rational point on
f-l(p) (___ A), where k k(p). We choose two distinct such points, and
extend to get two sections o0: S X and o1: S X whose images are
non-intersecting in X. These restrict to sections o" S’ X’ and o" S’ X’
for the Al-bundle X’ S’. Regarding o6 as the "zero-section", X’ can be
given the structure of rank one vector bundle over S’. 2 As such, the section o
becomes a "non-vanishing" section on X’. Inasmuch as a rank one vector
bundle with a non-vanishing global section is trivial, X’ is a trivial Al-bundle.
This settles the argument at hand when R is Henselian.

2.3. For the general case, let be the Henselization of R, Speck,
X s

, and f: " the resulting Al-fibration of . We know that , is
a normal, Noetherian, local domain, faithfully flat over R (see [4; IV, 18.6.6,
18.6.9, 18.6.12]). Let /3 be the closed point if , and put ’= - (),

’ " #’. By the result of 2.2, ’ is a trivial Al-bundle over ’ (and in fact

" is an Al-bundle over ).
Now, for any ring A, let G(A) be the matrix group

0 1
"a ,bA

(where A* denotes the units of A). Let T SpecA. If A is a domain, G(A) is
identified with the group of T-automorphisms of A. We have a split exact
sequence

(2)
v
A*1 AG(A) --. 1

of groups, where

u(b) 0 1 0 1
a"

2It is an easy exercise to prove that an Al-bundle which admits a section is a vector bundle.
This fact is peculiar to rank one, however.
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Now let W be any scheme and let w be the sheaf of groups on W arising
from the functor G. From (2) we see that there is a split exact sequence

(3) 1 (9 w w --* (9 v 1

which together with the map ’ S’, gives rise to the commuting diagram of
cohomology sets

(4)

the rows being exact sequences of sets with base point. The symbol will be
used indiscriminately to denote the base point of any one of the cohomology
sets occurring in (4). We observe three facts:

(a) The kernel of ;v is (.). This is due to the fact that, in the exact
sequence

H(’, if.q,) ---> H(’, (9#*,) - El( ’,

the first map is surjective, since (3) is a split exact sequence. Consequently, the
image of is ( ), which is the kernel of .

(b) The map is injective. Since S is normal and its closed point has
codimension >_ 2, and the same holds for , we have

HI(S’, (gs*,) Pic(S’)_ CI(S’)= CI(S)= CI(R)

and likewise replacing S, S’, and R by , ’, and k. (C1 denotes the ideal class
group.) But, because R is a local, Noetherian, normal (hence Krull) domain,
and k is faithfully flat over R, CI(R) CI(R) is injective [3; Corollary 6.11].

(c) The map r is injectioe. This follows from the isomorphism

HI(S’, (gs,) Hp}(S, (gs) lim+ EXtR(R/mq, R)
q

where m is the maximal ideal of R, and the same isomorphisms replacing S,
S’, R, and m by , ’, k, and fi, where fia is the maximal ideal of k (cf. [6;
Proposition 2.2 and Theorem 2.8]). We have

lim Ext,(k/illq,/) -= lim[EXt2R(R/mq, R) (R) Rk

-= [li.mq EXt 2R ( R/mq R ) tRk
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(The first isomorphism uses the flatness of/ over R; the second uses the fact
that tensor product commutes with direct limits.) Because of the faithful
flatness of over R, the map E E (R) R is injective, for any R-module E.
Setting

E lim Ext] ( Rimq, R )
q

gives us the desired result.
Returning to the main line of the proof, the Al-bundle X’ S’ corresponds

to an element a HI(S’, fs’). The fact that " ’ is a trivial Al-bundle
says that s(a)= in (4), and we have

s

so that, by (b) above, /3
that we have

Hence a w(’) for some y HI(s’, (9S,), SO

r(3,) , v(r(y))

which shows, in view of (a), that r(T)= *. But then, by (c), we find - ,,
and hence ct ,. This proves X’ S’ is a trivial ALbundle and thus
establishes our main theorem.

3. Comments and discussions

3.1. The main theorem of this paper is likely to be true even if the fibers
are affine n-spaces A and not just affine line A (cf. Veisfeiler-Dolgachev [13]).
But the only published attempt to prove this is [8], which assumes dim S 1
and n 2; the proof there contains a gap (p. 279 following (3)). Meanwhile
Avinash Sathaye has proved this special case (which also assumes the map
X S is affine). This theorem will presumably be published soon.

3.2. As we stated in our opening remarks, the theorem is true when only
the generic fiber is assumed to be A and all other fibers are geometrically
integral, provided the morphism X S is affine and S is locally factorial [7].
One should take note, however, that when the morphism X S is not
assumed to be affine, this weaker hypothesis on the fibers is not enough to
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preserve the theorem’s validity. This is seen by the following example, pointed
out to us by A. Bialynicki-Birula.

Example. Let k be a field and X A (x }, where x is any closed point.
Let f: X S A be the projection onto any axis in A. Clearly the generic
fiber of f is of type A and all other fibers are geometrically integral, but X is
not an Al-bundle over S.

3.3. In Vladimir Danilov’s letter, mentioned earlier, he claims to have a
proof of the main theorem. For the case dim S 1 he gives no indication of
his proof, and we have no idea whether it substantially agrees with ours in 1.

3.4. If the assumption that S is normal is dropped, the theorem is no
longer true. To see this one needs only to consider the well-known examples
(first discovered by E. Hamann) of a (non-normal) Noetherian local ring R
which has non-trivial stably polynomial algebras. Specifically, there exists, for
such R, an algebra A such that A[T] =_ R[V, W] as R-algebras. (See [2] for a
thorough exposition on this phenomenon.) Setting X= SpecA and S
Spec R, the map X S satisfies the hypothesis of the theorem except for the
normality of S. However, X is not an Al-bundle, since A is not a polynomial
ring over R.
A more geometric example of an Al-fibration which is not an Al-bundle has

been provided by Madhav Nori, as follows. (We leave some details for the
reader to verify.) We take k to be an algebraically closed field. Let C be the
curve in A Speck[V,W] defined by V2= W3, a curve which has a
singularity at one point p (the origin), and consider the map A C x P
sending to ((t 3, t2), (t: 1)). This morphism is a closed immersion. Denote its
image by Z, and let X-(CxP)-Z. The map X---, C which is the
restriction of the projection P x C --, C to X is clearly an A-fibration, but
we claim it is not an Al-bundle in any neighborhood of the singular point p.
For if it were we could shrink C about p and have an isomorphism f:
C x A --, X over C. Consider the composite

C A
f PXcCX

restricted to the fiber over any point x in C. We get an open immersion

A P, which extends uniquely to an isomorphism P P. This isomor-
phism will be denoted ox. The map C pl__ C pl sending (x, y) to
(x, ox(y)) is a morphism which extends f, and therefore carries the singular
curve C () birationally onto the non-singular curve Z, which is impossi-
ble.

3.5. Let pn= ProjZ[T0,... Tn be the projective n-space. The fibrations
X S of fiber type Pn are much easier to handle because of the availability of
powerful tools such as Brauer groups, and also the projective and general
linear groups over S (cf. Grothendieck [5]). Specifically, if f: X S is a
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Pn-fibration and if S is a normal, Noetherian scheme, one can deduce, by way
of Nagata’s Embedding Theorem in the relative case [10], that f is a proper
morphism. Then, a theorem of Grothendieck [5; I, Theorem 8.2, p. 64] applies,
and tells us that X is a Pn-bundle over S, relative to the 6tale-finite topology.
In case S is one-dimensional, we know furthermore that X is a Pn-bundle
(relative to the Zariski topology). For, in that case, X-o S has a rational
section, because the generic fiber is P. over the field K of rational functions of
S; but such a section is defined everywhere on S, since S is a normal curve and
X -o S is proper. (This follows from the valuative criterion for properness.) We
then again draw upon an argument of Grothendieck in [5; II, pp. 68-69].

Unfortunately, Grothendieck’s Theorem 8.2 of [5], mentioned above, is not
accompanied by a proof, even though such a proof appears to be well known
in certain circles. Meanwhile, we have obtained an elementary proof of a
special case by a method quite similar to the one employed in Proposition 1.4
above, the result being that a Pl-fibration over a Noetherian, normal, integral
scheme S of dimension one is a Pl-bundle. The proof may be published
elsewhere.
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