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the presence of flux generates flat monodromies in the moduli space which we therefore

call ‘Monodromic Moduli Space’. While we do indeed find long axionic trajectories, these
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of the (finite) monodromy group introduced by the flux. We attempt to formulate this in

terms of a ‘Moduli Space Size Conjecture’. Interesting mathematical structures arise in

that the relevant spaces turn out to be fundamental domains of congruence subgroups of

the modular group. In addition, new perspectives on inflation in string theory emerge.
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1 Introduction

What properties does a low energy effective field theory have to exhibit to possess a UV

completion in the form of a theory of quantum gravity? This is an interesting open problem

in theoretical physics whose resolution will have important consequences for cosmology and

particle physics [1–3]. A specific question in this context is, whether quantum gravity sets

a limit to the size of field spaces of (pseudo-)scalar fields. This has been studied extensively

for axionic fields, i.e. (pseudo-)scalars with a shift-symmetry. The reason is that such fields

may be relevant for inflation [4–6] and cosmological solutions to the hierarchy problem [7].

Many independent approaches to the above set of questions indicate that super-

Planckian axionic field ranges are problematic. For one, the Weak Gravity Conjecture

(WGC) [2] casts doubt on the existence of super-Planckian axions [8–14]. The electric

WGC for axions censors super-Planckian excursions in the field space of one or many ax-

ions on the basis of an instanton-induced potential. A naive generalization of the magnetic

version of the WGC to axions suggests a hard bound on the axion period at the Planck

scale; however, recent more detailed analyses do not provide a definite answer [15, 16].

Furthermore, one of the conjectures of [1, 3] states that large excursions in field space

necessarily lead to effective 4d theories with exponentially small cutoff. We will follow [17]

in calling this the Swampland Conjecture. While it is primarily about non-compact direc-

tions in moduli space, one may wonder whether generalizations to other field trajectories

exist [17–20], e.g. to those constructed in F -term axion monodromy inflation [21–23].
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All these findings are consistent with the early observations that axions with a super-

Planckian period cannot be straightforwardly obtained from string theory compactifica-

tions [24, 25] (see also [26]). In addition, entropy bounds were employed in [27] to argue

against super-Planckian axions (see however [28]). Gravitational instantons may also af-

fect axions [29–31] and in particular spoil super-Planckian axion field ranges, but a definite

answer is elusive without a better understanding of quantum gravity. Also, it is probably

fair to say that, quite generally, the mechanism behind the WGC and a possible related

censorship of super-Planckian axion field spaces remains obscure.1

Given this complicated state of affairs, it is legitimate to take a more optimistic point of

view: why should it not be possible after all to find a string model in which an appropriate

scalar potential on top of a small moduli space forces the axion onto a long winding tra-

jectory [36]? Indeed, a particularly simple implementation of this general idea which uses

type IIB fluxes and the gauging mechanism of [37] has already been described in [38] under

the name of ‘Winding Inflation’. In this way, one would at least have an ‘effective’ long-

range axion (see [39] for related considerations in the 1-form context). However, also this

optimistic example-based attitude has remained unconvincing because of the complications

of any realistic string construction.

In this work, we attempt to resolve the issue by constructing super-Planckian axion

field spaces in a very simple stringy setting, which allows for explicit calculations. We

are not interested in inflation or any other phenomenological application, which allows us

to avoid the problems of realistic string constructions. In addition, we are not prone to

the (possibly model-dependent) backreaction effects which underlie the bounds obtained

in [18, 19]. This increases the chance that any bounds we find have a generic quantum

gravity origin.

Thus, our focus are supersymmetric, flat axionic directions such that backreaction

plays no role. This is close in spirit to the approach taken in [40]. Here we choose to work

with type IIB string theory compactified on a toroidal orientifold with supersymmetric

3-form flux. Such a flux generically reduces the dimension of moduli space. It can also

introduce a monodromy (with finite but possibly large monodromy group) in the remaining

flat directions.2 To keep the discussion focussed on the question at hand, we do not address

the problem of stabilizing the remaining moduli. Working out the consequences of our

flux choice we find that a certain two-dimensional subspace of the full moduli space is

enlarged by a factor N , where N is a flux number. In this way, to the best of our present

understanding, a super-Planckian flat axionic direction emerges.

However, one should be careful about an interpretation of this in the sense of a large

field space. The key is the geometry of this space. Indeed, the reason for the extended mod-

1See however [32–35] for recent work on deriving the WGC from fundamental principles.
2Monodromies also arise in flux compactifications on Calabi-Yau manifolds and have been discussed in

the context of moduli dynamics and tunneling in the string landscape, see e.g. [41–44]. In these works

monodromy transformations connect points with different values of the scalar potential or isolated vacua.

By contrast, we study monodromy transformations between points on a periodic flat direction, enlarging

the periodicity of the latter. Note also that, following the recent literature on inflation, we use the term

monodromy for the breaking of a periodicity by flux, not for the large diffeomorphism required to make the

original periodicity manifest.
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uli space is the reduced modular invariance of tori with fluxes as compared to tori without

flux. The resulting moduli space is given by a fundamental domain of so-called congruence

subgroups of SL(2,Z). Together with the proper metric, this space is a Riemann surface

of a certain genus, with locally hyperbolic geometry, with a number of conical singulari-

ties and with singular cusps or throats. The natural way to measure distances between

two points in this space is via geodesics. However, the long axionic trajectories advertised

above are very far from being geodesics. Two points on such an axionic trajectory may have

an ‘axionic’ distance ∼ N , with N our potentially large flux number. Yet their geodesic

distance is only ∼ ln(N). More generally the geodesic distance between any two points

is bounded by an expression of order ln(1/Λ), where Λ is the cutoff below which the 4d

effective theory is valid.

We try to formalize these findings in terms of two conjectures which are related to but

also distinctly different from the well-known Swampland Conjecture and recent variants [1,

3, 17, 20]. Consider the moduli space of a generic 4d field theory with cutoff Λ. Then we

conjecture that the absolute size of the moduli space, as measured by the appropriately

defined diameter, scales as ln(1/Λ). Alternatively, we may focus on the full moduli space of

a certain string compactification. Pick two points in this moduli space which are connected

by a geodesic with length L. Then we claim that there exist points on this geodesic at

which the lightest KK or winding mode mass is smaller or of the order of exp(−αL),

with α ∼ O(1).

At first sight all of this might suggest that long and in particular long axionic trajec-

tories are not realizable in 4d effective field theories with high cutoff. However, recall that

we have found a long axionic direction. The fact that this direction was not a geodesic may

be irrelevant if one is able to construct an appropriate potential that forces the field onto

this long trajectory.3 Thus, it appears that the question of large-field inflation requires

knowledge beyond the Weak Gravity and Swampland Conjectures.

2 A monodromic moduli space via fluxes

2.1 KNP vs. winding trajectories from fluxes

We want to construct a long axionic direction in the moduli space of a supersymmetric

compactification of type IIB string theory as a long winding trajectory in a compact field

space. This is the Kim-Nilles-Peloso (KNP) mechanism [36], but in our case the winding

trajectory will arise due to 3-form fluxes rather than the instanton potential employed

in [36]. The idea is as follows. Consider a theory with two axions ϕ1 and ϕ2 with small

and, for simplicity, equal periodicity given by the axion decay constant f . Even though

this field space is small one can generate a long trajectory by having a potential for the

axions that has a minimum at ϕ1 = Nϕ2 for a large integer N . Now, the remaining flat

direction has a periodicity of
√
N2 + 1f which is much larger than the original f for large

N (see figure 1). This is the KNP-mechanism.

3Recently, a model of inflation has been proposed in which the hyperbolic geometry of field space is

essential [45] (see also [46]). It would be interesting to see whether this can be realized in our setting.
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ϕ1

ϕ2

f

f

Figure 1. Winding flat direction of total length ∼ Nf (shown for N = 5).

We choose to work in a simple setup of toroidal orientifolds. Thus we take as the

compact space T6/Z2 = (T2
1 × T2

2 × T2
3)/Z2, i.e. a factorisable 6-torus subject to a Z2

identification. By turning on 3-form fluxes on the tori we will show how one can generate

a superpotential of the form [47–50]

W = (Mτ1 −Nτ2)(τ − τ3) , (2.1)

where τ = C0 +ie−φ is the axio-dilaton, τi with i = 1, 2, 3 are the complex structure moduli

of the three 2-tori and M,N are integers (flux numbers). For the following analysis it will

be useful to label the real and imaginary components of τ and τi and we hence define

τ = C0 + ie−φ = c+ is , (2.2)

τi = Re τi + i Im τi = ui + ivi . (2.3)

Throughout this work we will refer to the real parts c = Re τ and ui = Re τi as ‘axionic’

directions due to their associated shift symmetries.4

Without loss of generality we can take vi > 0. A minimum of the scalar potential is

determined by the conditions DIW = 0 and W = 0, where I runs over all moduli. This

corresponds to the supersymmetric vacuum with τ3 = τ and Mτ1 = Nτ2. Note that the

minimum is not a unique point in field space, as there are several flat directions. First, let

us consider only one particular flat direction in the (u1, u2) field space, defined by

ψ ≡Mu1 −Nu2 = 0 (2.4)

4In the case of c the shift symmetry arises from the SL(2,Z) symmetry of type IIB string theory

and persists beyond toroidal orientifold compactifications. The shift symmetries in ui originate from the

SL(2,Z) modular symmetries of the compactification tori. For more general compactifications on Calabi-

Yau threefolds, shift symmetries in the complex structure moduli sector are typically broken, but this

breaking becomes increasingly weak when approaching large complex structure.
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and all other moduli fixed. Our main focus is whether this direction can be long enough

such that we can traverse a trans-Planckian distance.

Naively, it may seem that there is no bound to this flat direction. If we increase u1 we

simply have to increase u2 accordingly to keep ψ = 0. Of course, as suggested by figure 1,

we will return to the same geometrical situation after a certain distance. But it is at first

sight not obvious whether the flux configuration on the torus has changed.

To study this in detail, recall u1 and u2 are the real parts of τ1 and τ2, which are the

complex structure moduli of two tori. Further recall that the complex structure moduli

sector exhibits a modular symmetry: all tori whose complex structure moduli are related by

an SL(2,Z) transformation are equivalent. Thus, if we wish to limit ourselves to physically

inequivalent configurations, we have to limit the range of τ1 and τ2 to the fundamental

domain of SL(2,Z). Accordingly, u1 and u2 are constrained to be in the corresponding

fundamental domain.

However, the situation becomes more complicated in the presence of 3-form fluxes.

Since these are 3-forms on the tori, a modular transformation on them will also induce a

transformation of the fluxes. In the following, we show how this leads to a monodromic,

i.e. enlarged, moduli space and to a long but finite axionic direction.

2.2 Brief interlude concerning the action of the modular group

Before we explain how to arrive at a superpotential (2.1) and how the moduli space is

extended we need to set up some elementary notation concerning SL(2,Z) and gauge

redundancies of tori. Let a torus be defined as the complex plane modded out by some

lattice,

C/spanZ(ey, ex) . (2.5)

Coordinates y ∈ [0, 1) and x ∈ [0, 1) are introduced by

z = (y, x) ·

(
ey
ex

)
. (2.6)

For example, with ey = τ , ex = 1 we have

z = (y, x) ·

(
τ

1

)
= x+ τy . (2.7)

More generally, the same torus is described by

z = (y, x)R−1R

(
τ

1

)
= e′xx

′ + e′yy
′ ≡ e′x (x′ + τ ′y′) , (2.8)

with

R =

(
a b

c d

)
∈ SL(2,Z) , τ ′ ≡

e′y
e′x

=
aτ + b

cτ + d
≡ R(τ) (2.9)

and (
y′

x′

)
= R−1 T

(
y

x

)
. (2.10)
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For our following analysis it will be important that, by the above logic, the components of

any 1-form

ω = ωidξ
i with dξi =

(
dy

dx

)
(2.11)

transform according to

ω′i = Ri
jωj . (2.12)

2.3 Flux choice

Let us briefly describe how we can arrive at a superpotential of the form (2.1) from flux

compactifications in toroidal orientifolds. Here and in the following we will set (2π)2α′ = 1.

The superpotential is the Gukov-Vafa-Witten superpotential, which can be written as

W =

∫
X

Ω3 ∧G3 , (2.13)

where

Ω3 = dz1 ∧ dz2 ∧ dz3 (2.14)

= (dx1 + τ1dy1) ∧ (dx2 + τ2dy2) ∧ (dx3 + τ3dy3) ,

G3 = F3 − τH3 ,

and (yi, xi) are the coordinates on the ith torus. For completeness, let us also record the

Kähler potential

K = − ln (−i(τ − τ̄))− 2 lnV − ln

(
−i
∫
X

Ω3 ∧ Ω3

)
= − ln (−i(τ − τ̄))− 2 lnV − ln (i(τ1 − τ̄1)(τ2 − τ̄2)(τ3 − τ̄3)) . (2.15)

The superpotential in (2.1) then arises for the following choice for the 3-form fluxes:5

F3 = (+M dx1 ∧ dy2 −N dy1 ∧ dx2) ∧ dx3 , (2.16)

H3 = (−M dx1 ∧ dy2 +N dy1 ∧ dx2) ∧ dy3 . (2.17)

Note that this can also be written more compactly as F3 = +A∧ dx3 and H3 = −A∧ dy3,

where we introduced the 2-form A which is only supported on the first two tori:

A = Aij dξi1 ∧ dξj2 with ξi1 =

(
y1

x1

)
and ξi2 =

(
y2

x2

)
. (2.18)

The essential part of the explicit flux information is encoded in the matrix

Aij =

(
0 −N
M 0

)
. (2.19)

5Note that odd flux numbers M and N imply the existence of further ‘exotic’ O3 planes [47].
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This flux choice enforces Mτ1 = Nτ2 and τ3 = τ . We will ignore τ and τ3 and focus on the

restricted 2-dimensional moduli space resulting from τ1 and τ2. It can be parametrized,

for example, by τ1 alone.

There is a constraint on the values of N and M coming from the D3 tadpole cancel-

lation condition. It reads

ND3 +
1

2

∫
X
H3 ∧ F3 =

1

4
NO3 , (2.20)

where ND3 is the number of D3-branes and NO3 is the number of O3-planes. For the

toroidal orientifold T6/Z2 one finds 64 fixed points corresponding to 64 O3-planes. The

flux contribution for our ansatz (2.17) can be calculated as
∫
X H3 ∧ F3 = 2MN . We thus

arrive at the constraint:

MN ≤ 16 , (2.21)

where the maximal value of 16 is attained for ND3 = 0.

2.4 The monodromic moduli space

Let us now return to the question of the size of moduli spaces in the presence of flux.

Given our superpotential (2.1) the minimum at W = 0 exhibits two complex flat directions

defined by (τ − τ3) = 0 and (Mτ1 −Nτ2) = 0. Here we will focus on the latter.

As noted before, we can restrict attention to τ1. Naively, one expects it to take values

e.g. in the canonical fundamental domain. We will immediately see that, in the presence

of fluxes, this is not any more true. Consider an arbitrary τ1 and a flux configuration

determined by the matrix A. Now, while keeping A fixed, move τ1 in the upper complex

half plane to any other τ ′1 that is related to τ1 by a modular transformation, i.e.

τ1 = R1(τ ′1) =
aτ ′1 + b

cτ ′1 + d
(2.22)

for some R1 ∈ SL(2,Z). Then the (F3, H3) fluxes also transform nontrivially due to the

transformation properties of the matrix Aij :

Aij → A′ij = (R1)i
kAkj . (2.23)

Therefore, although τ1 and τ ′1 are related by a modular transformation and the corre-

sponding two tori are identical, the whole physical configuration may be different due to

different values of the fluxes given by (2.23). However, it is possible that this non-trivial

transformation of the fluxes can be undone by a transformation acting on the second index,

associated with a modular transformation of the second torus. For this, one must require

that an SL(2,Z) matrix R2 exists such that

A′′ = R1AR
T
2 = A . (2.24)

The condition for this to be possible is that the matrix A−1R−1
1 A is in SL(2,Z),

RT
2 = A−1R−1

1 A =

(
a cN/M

bM/N d

)
∈ SL(2,Z) . (2.25)

– 7 –
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Figure 2. A fundamental domain of the congruence subgroup Γ0(5) as a subset of the upper com-

plex half plane is shown. The central strip without the ‘triangle’ touching the real axis corresponds

to the standard fundamental domain of the complex structure modulus of a torus.

Restricting our attention to the case where M and N have no common divisors, b must be

a multiple of N and c a multiple of M .

An important consistency check is to verify that, after performing the transformations

above, we still satisfy the vacuum condition Mτ ′1 = Nτ ′2. Indeed, one easily calculates

Nτ ′2 = N
aτ2 + bM/N

cNτ2/M + d
= Mτ ′1 , (2.26)

where we used Mτ1 = Nτ2.

In the special case of M = 1, the only restriction on R1 is that b is a multiple of N .

This means that the ‘smallest’ transformation of τ1, defining the periodicity of its real part,

takes the form

R1 =

(
1 N

0 1

)
. (2.27)

But this is exactly what we expected: the width of the fundamental domain is not unity,

e.g. Re τ1 ∈ (−1/2, 1/2), but has been extended to N , such that we can choose e.g. Re τ1 ∈
(−N/2, N/2). Figure 2 shows such an extended fundamental domain for N = 5, calculated

with the program ‘fundomain’ by H. Verrill [51]. Since this is the only feature of interest

for us we set M = 1 throughout the rest of the paper.

Using the Kähler potential (2.15) one can determine the metric in moduli space re-

stricted to τ1 and τ2:

ds2 =
dτ1dτ1

4(Im τ1)2
+

dτ2dτ2

4(Im τ2)2
. (2.28)

Evaluating this in the vacuum τ1 = Nτ2 parametrized by τ1 one finds

ds2 =
dτ1dτ1

2(Im τ1)2
. (2.29)

We are now in a position to calculate the length of the flat direction defined in (2.4). Our

result is

L =

∫ N/2

−N/2

du1√
2 Im τ1

=
N√

2 Im τ1

. (2.30)
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Figure 3. The lower part of the fundamental domain of the congruence subgroup Γ0(7) is shown.

Appropriate identifications of the boundaries are indicated [51].

Note that the value of N is bounded by a tadpole constraint such that N = 16 is the

largest allowed value. Saturating this bound and setting Im τ1 = 1 we find L = 8
√

2 for the

length of the flat direction. To summarize, it appears that we have succeeded in generating

a super-Planckian flat axionic direction.

3 Topology and geometry of fundamental domains of congruence sub-

groups

The transformations described by eq. (2.25) constitute so-called congruence subgroups of

SL(2,Z). We have already shown the fundamental domain of such a subgroup for the case

M = 1 and N = 5, denoted by Γ0(5) in figure 2. We can explicitly see the enlarged field

space for Imτ1 > 1 in the direction parallel to the real axis. The vertical boundaries on

the left and right of the fundamental domain are identified as is the case for the standard

fundamental domain of SL(2,Z). However, the identifications in the bottom are much

more subtle. Figure 3 shows the lower fundamental domain of Γ0(7) with the appropriate

identifications indicated [51].

Recall the metric on the moduli space of one torus (see e.g. (2.28)),

ds2 =
du2 + dv2

4v2
, (3.1)

where u is identified with the real and v with the imaginary part of the relevant complex

structure modulus. This metric is the natural metric on the space of all tori with fixed

volume. The upper complex half plane equipped with this metric is the hyperbolic plane.

Fundamental domains of SL(2,Z) and its congruence subgroups can therefore be viewed

as subsets of this plane (with appropriate identifications of boundaries). They can have

different topologies (non-trivial genus), cusps and conical singularities [52]. A qualitative

picture of such a Riemann surface is shown in figure 4. The throats in the picture correspond

to the cusps in the fundamental domain where it extends to the real axis. Also, the point

at infinity in the complex half plane gives rise to such a throat. As one can see in figure 5

for the congruence subgroup Γ0(12), there may be several of these cusps. The picture

– 9 –
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Figure 4. A qualitative picture of a fundamental domain of a congruence subgroup as a Riemann

surface. The throats correspond to the cusps of the fundamental domain together with the point

at infinity.

Figure 5. A fundamental domain of the congruence subgroup Γ0(12) with several cusps is shown.

also clearly shows the widened fundamental domain, now by a factor 12, compared to the

fundamental domain of a torus.

Let us now discuss the potentially long axionic directions corresponding to lines of

Im τ1 = const. Using the metric (3.1) we see that the length of these lines increases with

decreasing Im τ1. However, the smallest value of Im τ1 that allows for a straight unbroken

line is Im τ1 = 1. This is a direct consequence of the complicated structure of the funda-

mental domain at Im τ1 < 1. We have already calculated the periodicity of this axionic

direction to be N/
√

2. In our setting a tadpole condition bounds N by 16 from above which

therefore quantifies the maximal length of these axionic directions. We expect that corre-

sponding lengths in more involved compactification on CY’s in the large complex structure

limit surpass this significantly.

So far this sounds very encouraging. However, as long as there is no potential for τ1,

straight lines defined by Im τ1 = const. are by no means the most natural paths connecting

two points on this line. In fact they are not geodesics with respect to the proper metric (3.1)

on moduli space, i.e. there exist shorter paths. It is therefore somewhat arbitrary to declare

these non-geodesic paths to be long since one can always generate long paths by means of

a detour.
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It turns out that geodesics of the hyperbolic plane are given by lines of constant Re τ1

and arcs of circles with their center on the real axis (see figure 6). Let us calculate the

length of these geodesics. We start with the straight lines of constant real part and consider

only a segment of one of these lines starting at Im τ1 = a and ending at Im τ1 = b. The

length is given by

L =

∫ b

a

dy

2y
=

1

2
ln

(
b

a

)
. (3.2)

This is the well-known logarithmic behavior of proper field displacements in moduli space.

Now let us calculate the length of an arc of a circle with radius R which starts at a polar

angle α and ends at an angle β. The center of this circle may be located anywhere on the

real axis. Parameterizing this path by the polar angle one finds

L =

∫ β

α
dϕ

R

2R sin(ϕ)
=

1

2
ln

(
tan(β/2)

tan(α/2)

)
=

1

2
ln

(
1/ sin(β)− 1/ tan(β)

1/ sin(α)− 1/ tan(α)

)
. (3.3)

For a symmetric arc with β = π − α this can be simplified to

L =
1

2
ln

(
1 + cos(α)

1− cos(α)

)
. (3.4)

Using this formula, we now consider deformations of our long axionic trajectory and

determine how short it can become. Indeed, figure 6 shows the long, closed axionic tra-

jectory as a horizontal line connecting the point −N/2 + i with the (equivalent) point

N/2 + i. It can be deformed to the arc, also shown in the figure, which again connects

this fixed point with itself. For large N and hence small α the result is approximately

L ≈
√

2 ln(N/2), which is clearly much less than our naive expectation in (2.30), which

grew linearly with N .6 The upshot is that even if we manage to construct models with

large N and hence long axionic directions, we have to be very cautious about the question

to which extent these represent large proper distances between points in field space.

One can understand this property pictorially by embedding a section of one of the

throats in Euclidean 3-dimensional space (see figure 7). Note that the axionic direction is

the periodic direction around the throat. The shape of the throat is essentially the reason

why a simple closed circle around it does not provide the shortest path connecting a point

to itself. Instead, we can minimize the length of this circle by pushing it upwards where

the circumference of the throat with respect to the embedding space is smaller.

In summary, in spite of the possible N -fold widening of one or several throats by the

flux, the field space increases only logarithmically with N .

4 Size of the moduli space

In the following we want to analyze our model from a four-dimensional point of view. The

idea is to consider the four-dimensional effective field theory that describes the physics of

6Compared to (3.4) this expression for L contains an additional factor
√

2 in order to take the contribution

from τ2 to the length into account, see also (2.28) and (2.29). In the following we will tacitly include this

factor in expressions for lengths when appropriate.
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Figure 6. The two types of geodesics of the hyperbolic plane are shown: a vertical line and a

semi-circle. The segments of these of which the length is calculated in the main text are drawn

with thick lines. The shaded region at the bottom corresponds to the region where the fundamental

domains of Γ0(N) are in general very complicated (see also figures 3 and 5).

Figure 7. The embedding of a throat in 3-dimensional Euclidean space qualitatively shows why a

circle around the throat is not the shortest periodic path given a fixed starting point.

our model at energy scales smaller than a cutoff Λ, and to determine the regions of moduli

space where this theory is valid, i.e. where KK- and winding modes are heavier than the

cutoff scale. Once this region has been determined we will introduce a quantitative measure

for the size of this region and formulate a conjecture about the dependence of this size on

the cutoff.

4.1 Winding and KK modes on the compact space

Consider the ith of our three tori with complex structure modulus τi. In (2.5) we have

introduced the basis vectors ei,x = 1 and ei,y = τi spanning the corresponding lattice in the

complex plane. So far, no information concerning the volume is provided. By multiplying
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ei,x and ei,y by a factor
√
Vi/Im τi we obtain the basis vectors for a lattice corresponding

to a torus with volume Vi: √
Vi

Im τi
and

√
Vi

Im τi
τi . (4.1)

These vectors determine the mass MW of the winding modes on this torus via the formula7

MW(nx, ny) =
1

2πα′

√
Vi

Im τi
|nxei,x + nyei,y| = 2π

√
Vi

Im τi
|nx + nyτi| (4.2)

with integers nx and ny. In the last step we switched to units defined by ls = 2π
√
α′ = 1.

Analogously, the dual lattice is spanned by the vectors

i√
Vi Im τi

and
−i√
Vi Im τi

τi , (4.3)

and determines the masses MKK of the KK-modes on the torus according to

MKK(nx, ny) = 2π
1√

Vi Im τi
|nx − nyτi| , (4.4)

with, again, integers nx and ny. Substituting ny → −ny shows that the masses of KK- and

winding modes differ only by a factor Vi.

We achieve equality at the self-dual point Vi = 1. This is a convenient choice as it

simplifies the analysis regarding the effects of KK and winding modes on the cutoff of the

theory. However, for Vi = 1 certain 1-cycles in the geometry will necessarily become sub-

stringy over large regions of the moduli space of τi. In this case, unsuppressed instantons

can arise if a string worldsheet or D-brane wraps cycles with sub-stringy volume. They may

correct the 4d action, e.g. the Kähler metric. Similarly, light 4d states (particles, strings

etc.) can arise from string worldsheets or branes wrapped on small cycles. This may also

lead to corrections or affect the value of the cutoff of the effective 4d theory. A complete

analysis of the cutoff of the effective theory thus has to take into account KK modes,

winding modes as well as instantons and other light states. For a simpler presentation,

we will disentangle this as follows. First, in this section we will proceed with the study of

the effects of KK and winding modes, working at the self-dual point Vi = 1 for simplicity,

but ignoring all other corrections and light states. Then we will remove any extra light

states and unsuppressed instantons by increasing the volumes Vi such that no sub-stringy

cycles remain. As this will also affect the masses of KK and winding modes we will need

to modify the analysis of this section, which we will explain in section 4.4. It will turn out

that this modification is technically straightforward. Having laid out our strategy, we now

continue with the analysis for Vi = 1.

Now we need to know the mass of the lightest winding mode on the ith torus, denoted

by mW,i, which is equivalent to finding the shortest vector of the lattice spanned by the

basis (4.1).8 This problem is in general not solvable analytically and we will only provide

7The prefactor (2πα′)−1 comes from the Nambu-Goto action SNG = (2πα′)−1
∫
WS

.
8In the following we will only talk about winding modes which in our setting have the same masses as

the KK modes. In particular we have mW,i = mKK,i.
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an estimate. First of all, we can apply Minkowski’s theorem to this two-dimensional lattice

which will give an upper bound for the length of the shortest lattice vector. According to

our choice Vi = 1, the area of the parallelogram which is spanned by the basis (4.1) is equal

to unity.9 Then the theorem states that any convex subset of C that is symmetric with

respect to the origin and has a volume larger than four contains a non-zero lattice point.

If we choose this subset to be a disk, we can conclude that the shortest lattice vector can

not be longer than the radius of this disk. This implies an upper bound of order one for

all three tori.

However, there are regions in moduli space in which the true length of the shortest

lattice vector is orders of magnitude smaller and we would vastly overestimate the part

of moduli space where the low energy effective field theory is valid. We can improve this

situation by analyzing two special regions in which we can find a much better estimate for

the length of the shortest lattice vector.

Consider first Im τi ≥ 1. We have to minimize (n+mRe τi)
2+(mIm τi)

2 with n,m ∈ Z.

For m 6= 0, this is larger than unity. For m = 0 the minimum is clearly one, realized by

the vector (1, 0). The corresponding physical length is 1/
√

Im τi = mW,i/(2π).

Second, focus on |Re τi| ≤ Im τi � 1. This always holds at the bottom of the central

cusp of the fundamental domain of, for example, τ1 (see figure 5). Once again we need to

minimize (n+mRe τi)
2 + (mIm τi)

2. For n 6= 0 the minimum is unity, obtained for n = 1

and m = 0. If n = 0, the shortest lattice vector is simply τi, the length of which is smaller

than unity. The corresponding physical length is |τi|/
√

Im τi ∼
√

Im τi � 1, giving rise to

mW,i = 2π
√

Im τi.

In fact, we can extend this result for i = 1 to all the other cusps in the fundamental

domain of τ1. Note that, in principle, we can distinguish the cusps due to the flux. However,

right now we are only concerned with a pure lattice property, namely the shortest lattice

vector, which does not depend on the rest of the physical situation. We can therefore safely

ignore the fluxes. This allows us to use the original full modular invariance of the torus

to shift all the cusps onto the central one. The result mW,1 = 2π
√

Im τ1 is hence not only

valid in the central cusp but also in all the others.

Our complete result for the smallest winding mode mass therefore reads

mW,i ∼


2π/
√

Im τi, for Im τi ≥ 1

2π
√

Im τi, for Re τi + n ≤ Im τi � 1

2π, else

, (4.5)

where the integer n is chosen such that Re τi + n ∈ (−1/2, 1/2].

4.2 The restricted moduli space

Now we fix the cutoff scale Λ with respect to which we want winding modes (and KK-

modes) to be heavy, i.e. mW,i > Λ for all i. This condition is only satisfied on a subset

of the moduli space which depends on Λ. We call this subset the restricted moduli space

9Note that this volume is independent of the choice of basis.
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M(Λ) in the following. More precisely, since we take the four-dimensional point of view,

we fix the ratio of the cutoff and the four-dimensional Planck scale M4,

ε ≡ Λ

M4
, (4.6)

where in our units M4 =
√

4πg−1
s and gs is the string coupling.10 In the following we will

restrict ourselves to gs < 1 in order to stay in the perturbative regime. The monodromic

moduli space is parametrized by {τi} with the vacuum condition imposed and restricted to

the appropriate fundamental domains. The next step will now be to determine the region

in moduli space that is compatible with the condition mW,i > Λ for all i, i.e. the restricted

moduli space M(Λ).

Let us start by considering τ3 which is just equal to the axio-dilaton τ according to

the vacuum conditions (2.1). The condition gs < 1 is then equivalent to Im τ3 = Im τ > 1.

According to (4.5) we need to impose

Λ = εM4 = ε
√

4πIm τ <
2π√
Im τ

, (4.7)

where we used τ = τ3 and Im τ > 1. This gives a bound Im τ < (π2/ε)2/3 for the axio-

dilaton. Taking into account the appropriate moduli space metric, this is of course con-

sistent with the expected logarithmic growth of moduli space size with 1/ε. Indeed, we

did not try to create long trajectories in the τ3/τ -part of moduli space. To simplify our

analysis, we will set Im τ = Im τ3 = 1 from now on. In this way, we are certain that no

light KK or winding modes arise from extreme values of τ and τ3.

Next consider τ1 and τ2. The vacuum condition for M = 1 reads τ1 = Nτ2. We

choose τ1 to parametrize the flat directions. Consider first the region defined by Im τ1 ≥ 1.

The lightest mode on the first torus in this region has mass 2π/
√

Im τ1 according to (4.5).

Requiring Λ < 2π/
√

Im τ1 gives Im τ1 < (2π/Λ)2. The resulting bound on the fundamental

domain in the complex τ1-plane can be visualized as a horizontal line coming down from

infinity as we increase Λ (see figures 8 and 9).

Now let us focus on the lower part of the moduli space, i.e. Im τ1 < 1 and in particular

on the cusps located near the real axis (see figure 5). If we go far enough down the cusp we

will always satisfy |Re τ1| ≤ Im τ1 (possibly after an integer shift along Re τ1) all the way

to the singularity at the real axis. In fact, this condition covers most of the fundamental

domain in the regime Im τ1 < 1 and we will therefore take the resulting constraint on

the moduli space to be valid throughout this region. From (4.5) we can read off the

lightest winding mass coming from the first torus to be 2π
√

Im τ1 which leads to the bound

Im τ1 > (Λ/(2π))2. Similarly to the previously derived bound one can think of this as a

horizontal line which now rises from the bottom of the cusps as we increase Λ. Our final

picture of the restricted moduli space is sketched in figure 8 and figure 9.

In the previous analysis we have glossed over a subtlety which we want to comment on

in the following. So far we have ignored possible bounds coming from the second torus in the

last two paragraphs. Now we argue that such bounds do not generically occur throughout

10This is due to our choice Vi = 1.
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the fundamental domain. Ignoring these additional but non-generic constraints will finally

lead to an overestimation of the size of M(Λ).

Let us concentrate on the region defined by |Re τ1| ≤ Im τ1 < N . Then the vacuum

condition τ1 = Nτ2 obviously implies |Re τ2| ≤ Im τ2 < 1. According to (4.5) we expect

the lightest winding mass from the second torus to be 2π
√

Im τ2 = 2π
√

Im τ1/N . In

order to compare this with the corresponding winding masses of the first torus we need to

differentiate between two cases.

First focus on Im τ2 < 1/N , i.e. Im τ1 < 1. The lightest winding mode on the first

torus is then 2π
√

Im τ1. This is heavier than the winding mode on the second torus which

therefore provides the strongest bound on the moduli space. Second, consider 1/N ≤
Im τ2 ≤ 1 or equivalently 1 ≤ Im τ1 ≤ N . For Im τ1 <

√
N the lightest winding mode on

the second torus is in fact lighter than the corresponding mode on the first torus, which

has a mass 2π
√

Im τ1. Consequently, the second torus would provide the most important

bound on the moduli space in the regime |Re τ1| ≤ Im τ1 <
√
N .

However, the above region covers only the central cusp and a finite part of the upper

region of the fundamental domain of τ1 which does not comprise a substantial part thereof.11

The corresponding additional bound can hence not be considered generic and may be safely

omitted from our parametric analysis.

4.3 Estimating the size of the restricted moduli space

Now we introduce a quantitative measure for the size of the restricted moduli spaceM(Λ).

Since we are interested in distances in field space we may try to use the standard math-

ematical notion of the diameter. For a Riemannian manifold, in our case M(Λ), it is

defined as

diam(M(Λ)) ≡ sup
p1,p2∈M(Λ)

inf
γ
Lγ(p1, p2) , (4.8)

where the infimum is taken over all curves γ that connect the points p1 and p2 and Lγ(p1, p2)

denotes the length of the corresponding path. The quantity d(p1, p2) ≡ infγ Lγ(p1, p2) is

the usual notion of distance between two points.12 It is in particular extremal and the

corresponding curve must hence be a geodesic. Note that an alternative measure for the

size of M(Λ) is its volume which, however, we will not consider in the following.

The technical task now is to estimate the diameter of M(Λ). For the unrestricted

moduli space M(0) it is obvious that points, e.g. in two different throats, can have an

arbitrarily large distance, see figure 4. This is due to the fact that the throats are infinitely

long. Now consider M(Λ) with a small Λ. We will see in a moment that the technical

condition is Λ < 4π/
√
N . In this case, figure 8 applies. Here we explicitly see that the

bounds cut the infinitely long throats. The most widely separated points are still two

points in different throats, now pushed up the throat as far as allowed by the bounds.

11One might be tempted to extend the validity of this bound to all cusps by using the shift symmetry of

the second torus as was done in the last subsection for the first. The following argument shows why this is

not possible: consider a point in one of the cusps other than the central one. Then we have |Re τ1| > Im τ1
and hence also |Re τ2| > Im τ2. Now, in contrast to τ1, it is not possible to shift τ2 such that |Re τ2| ≤ Im τ2
holds because we already have |Re τ2| ≤ 1/2 (remember that |Re τ1| ≤ N/2).

12We will see below that in our physical situation this requires adjustment.
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Figure 8. The constraints on the moduli space for Λ < 4π/
√
N are shown. This picture must be

superposed with an appropriate fundamental domain of the congruence subgroup Γ0(N) in order

to explicitly see the restricted moduli space. The grey shaded region is excluded by the lower

and upper bounds given by (Λ/(2π))2 and (2π/Λ)2. In the text we calculate the length of the

paths shown.

We have to take two cases into account. Remember that the point at infinity in the

τ1-plane as well as the cusps at the bottom of the fundamental domain correspond to

throats. Connecting a point A1 in the upper throat to a point A2 in one of the throats at

the bottom yields a potentially long geodesic which is drawn in figure 8 as a vertical line.

The length of this geodesic is, according to (3.2), given by

d(A1, A2) = 2
√

2 ln

(
2π

Λ

)
. (4.9)

The second possibility is to consider two points B1 and B2 which lie in two different cusps,

i.e. in two throats at the bottom of the fundamental domain. They are connected by an

arc-shaped geodesic as shown in figure 8. Using (3.4) the length d(B1, B2) of this path can

be estimated by

d(B1, B2) = 2
√

2 ln

(
2π

Λ

)
+
√

2 ln

(
N

2

)
, (4.10)

which is clearly larger than d(A1, A2). Hence we conclude that for Λ < 4π/
√
N the diameter

of the moduli space is bounded by 2
√

2 ln(2π/Λ) +
√

2 ln(N/2).

Note that, in principle, the distance between the two points lying in different cusps

may actually be smaller than this. It is conceivable that, due to the complicated topology

of the central part of M(Λ), a shortcut between the two throats exists which has a length

much below 2
√

2 ln(2π/Λ) +
√

2 ln(N/2). However, taking (4.9) into account, the diameter

of moduli space can not be smaller than 2
√

2 ln(2π/Λ).

Next consider Λ ≥ 4π/
√
N . This situation is depicted in figure 9. The formula for the

distance between A1 and A2 remains the same as in the previous discussion. However, in
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Figure 9. The constraints on the moduli space for Λ ≥ 4π/
√
N are shown. The grey shaded region

is excluded by the lower and upper bounds given by (Λ/(2π))2 and (2π/Λ)2. The upper bound cuts

off a part of the arc-shaped geodesic connecting B1 with B2.

the figure one can see that the upper bound cuts part of the arc-shaped geodesic between B1

and B2. It is therefore not a path that determines the distance between its two endpoints

any more. Instead, according to our original definition of distance, we must deform it in

such a way that it lies completely within M(Λ) and has minimal length. This procedure

will, however, lead to an increased distance between the points B1 and B2 because any

deformation of this geodesic will increase its length. From a physical point of view this

behavior is contrary to our expectation that diam(M(Λ)) is a monotonically decreasing

function of Λ. In the following we present two different meaningful modification of our

definition of distance that are free of this drawback.

Note first that the 4d field theory with cutoff Λ breaks down at the boundary ofM(Λ).

Let us take the four-dimensional point of view and assume that, also outside this boundary,

a meaningful 4d physical theory exists. In general, it ceases to be a local field theory and we

are unable to make definite statements about the geometry of a corresponding larger moduli

space. The most conservative approach is then to assume that all unknown distances are

zero, in particular, that all pairs of boundary points have zero distance.

This idea can be made mathematically more rigorous. We know thatM(Λ) is a subset

of the full moduli spaceM(0). However, this may be only one of many manifolds of which

M(Λ) could in principle be a subset. Let us denote by Ω(Λ) the set of all manifolds M
such that M(Λ) ⊂ M as a metric manifold. One can think of Ω(Λ) as parametrizing

our ignorance about the true M(0) as a four-dimensional observer constrained by Λ. Our

proposal for a new definition of a distance d∗(p1, p2) between points p1, p2 ∈M(Λ) is

d∗(p1, p2) ≡ inf
M∈Ω(Λ)

dM(p1, p2) , (4.11)

where dM is the usual distance on M and points in M(Λ) may be identified with points
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inM via an appropriate injection i :M(Λ)→M. We expect that points at the boundary

ofM(Λ) are arbitrarily close in an appropriate M∈ Ω(Λ) which leads to the procedure of

effectively compactifying all boundary points of M(Λ) to a single point, as was described

in the previous paragraph.

In the foregoing discussion we motivated the definition of d∗ by assuming that M(Λ)

is part of a larger and more complete moduli space. Now we want to take the more radical

point of view that, as 4d observers constrained by Λ, we are not allowed to venture outside

the boundary even in principle. It may then be natural to work with a distance

d#(p1, p2) ≡

{
d(p1, p2), if p1 and p2 are connected by a geodesic

undefined, else
, (4.12)

i.e. to assume that points which are not connected by a geodesic that completely lies within

M(Λ) do not have a well-defined distance and are treated as completely unrelated. In a

sense this definition of distance is much simpler and straightforward than our first proposal.

The diameter of a generalM(Λ), however, does not necessarily have to be a monotonically

decreasing function of Λ with this definition of distance, although this problem does not

arise in our concrete example.

Now that we have discussed two different modified definitions of distance that are

better suited to the problem at hand than the usual definition, we have to re-examine the

analysis we have already worked out for Λ < 4π/
√
N . The main difference between d

and d∗ is that all boundary points are identified to a single point if we use the latter. In

particular, this implies that e.g. a point at the upper and a point at the lower boundary

in figure 8 have zero distance. Therefore points at different boundaries are no longer good

candidates for a large distance.

Instead, potentially large distances can be achieved between points C1 and C2 (see

figure 8). These are connected by the dashed arc-shaped geodesic as well as by the two

dashed vertical geodesics and the boundary. Altogether these three different paths build a

closed curve on which C1 and C2 lie. The maximal distance d∗(C1, C2) is achieved if the

length of the arc-shaped geodesic equals the sum of the lengths of the two vertical lines and

at the same time is maximized. Since the analytic solution of this optimization problem is

rather cumbersome, we give a qualitative discussion in three different parametric regimes:

2π/Λ � N/2, N/2 � 2π/Λ �
√
N/2 , and

√
N/2 � 2π/Λ. We expect the result to

capture the essential behavior of diam∗(M(Λ)).13

Let us start in the regime 2π/Λ � N/2. Then the contribution to the length of the

arc-shaped geodesic due to its horizontal extension is completely negligible compared to

the vertical direction (cf. (4.10)). Therefore, the length of the closed dashed path is to

good accuracy given by 2
√

2 ln(2π/Λ) where we have only taken the vertical direction into

account. At the optimum, C1 and C2 divide the path in two equally long parts such that

their distance is

d∗(C1, C2) =
√

2 ln

(
2π

Λ

)
for

2π

Λ
� N

2
. (4.13)

13diam∗ and diam# are defined as in (4.8) but using d∗ and d#, respectively, as the distance instead of d.
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As we increase Λ the contribution of the horizontal direction to the arc-shaped path

becomes more and more important. According to (4.10), it can be estimated by
√

2 ln(N/2),

such that it starts to dominate at 2π/Λ ∼ N/2. Hence, in the regime N/2 � 2π/Λ �√
N/2, the distance d∗(C1, C2) is dominated by the length ∼

√
2 ln(N/2) of the arc-shaped

path. In this regime, the vertical positions of C1 and C2 keep adjusting as Λ grows such

that the vertical path maintains the same length.

The next qualitative change occurs when Λ has increased so much that
√
N/2 ∼ 2π/Λ.

Now the arc-shaped geodesic is cut by the upper bound and is hence no longer available

in the competition with the vertical path. The vertical positions of C1 and C2 have by

now moved to Im τ1 = 1, where they will stay from now on. Their distance is determined

by the corresponding vertical geodesics connecting them to the lower and upper boundary

respectively. Thus, in the new regime
√
N/2 � 2π/Λ, this distance is 2

√
2 ln(2π/Λ).

Combining the three regimes we have

diam∗(M(Λ)) ∼


√

2 ln
(

2π
Λ

)
for Λ� 4π/N

√
2 ln

(
N
2

)
for 4π/N � Λ� 4π/

√
N

2
√

2 ln
(

2π
Λ

)
for Λ� 4π/

√
N

. (4.14)

Finally we have to repeat this analysis for d#. For Λ < 4π/
√
N our original analysis

remains valid and the diameter ofM(Λ) is estimated by diam#(M(Λ)) = 2
√

2 ln(2π/Λ) +√
2 ln(N/2). Once Λ ≥ 4π/

√
N the arc-shaped geodesic is cut into two parts and the

points B1 and B2 are no longer connected by a geodesic (see figure 9). Widely separated

points that have a well-defined distance are now given by B1 and B′2 which are connected

by the path shown in figure 9. Similarly to our original discussion this path provides

an upper bound for the distance of the two points. In particular, the radius of the arc-

shaped part is equal to (2π/Λ)2. With (3.4) we calculate the length of this path to be

2
√

2 ln(2π/Λ) + 2
√

2 ln(
√

2π/Λ). Hence, the diameter of M(Λ) reads

diam#(M(Λ)) ∼

2
√

2 ln
(

2π
Λ

)
+
√

2 ln
(
N
2

)
for Λ < 4π√

N

2
√

2 ln
(

2π
Λ

)
+ 2
√

2 ln
(

2
√

2π
Λ

)
for Λ ≥ 4π√

N

. (4.15)

Summarizing, we have found that the diameter of the restricted moduli space M(Λ)

is estimated by ln(1/Λ) if we ignore order one pre-factors. Remarkably, this was found

independently for two different definitions of distance. This is exactly the logarithmic

behavior known from the Swampland conjecture. However, in our case we have a statement

about the absolute size of the restricted moduli space instead of a statement about the

relative size of KK and winding mode masses at two different points with a given distance.

Before formulating our conjecture let us return to the problem of sub-stringy cycles.

The analysis so far has been performed at the self-dual point with all torus volumes chosen

to be Vi = 1. As a result we cannot avoid cycles with sub-stringy volumes which in turn

gives rise to unsuppressed contributions from both worldsheet and brane instantons. To

arrive at a robust result for the diameter of M(Λ) these effects need to be accounted for.

This is the subject of the next section.
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4.4 Suppression of worldsheet instantons

So far we have neglected the effect of worldsheet and brane instantons on our discussion

of the size of moduli space. To ensure that we can safely ignore instanton effects, we need

to arrange for the geometry not to possess any cycles with sub-stringy volumes. All cycles

have to be super-stringy (which is equivalent to requiring that all winding masses are larger

than 2π). Most importantly, this can always be achieved by increasing the torus volumes

Vi sufficently. Here we analyse how this will affect the size of the moduli space.14

Let us first consider the third torus. Recall that we have set Im τ3 = 1 such that V3 = 1

suffices according to (4.1) to make both cycles of T 2
3 have exactly string length. However,

for the first torus we have to increase the volume V1 to ensure that both cycles on T 2
1 are

super-stringy. In particular, we require

V1 =

{
Im τ1, for Im τ1 ≥ 1 ,

1/Im τ1, for Im τ1 < 1 .
(4.16)

Now let us turn to torus T 2
2 . At the end of section 4.2 we have argued that the winding

masses coming from the second torus are generically larger than the ones from T 2
1 . The

argument was made for V1,2 = 1 but remains true for the more general situation V1 = V2,

as is evident from (4.5). Therefore, by choosing V2 = V1 with V1 given by (4.16), we find

that mW,2 > 2π. This ensures that both cycles on T 2
2 are super-stringy, at least generically.

With these choices for the volumes Vi no sub-stringy cycles remain and instantons can be

safely ignored.

There are two points in the analysis in sections 4.1 to 4.3 that need to be modified

because of our different choice of volumes. First of all, as we have increased the winding

masses beyond the self dual point we also decreased the masses of KK modes accordingly.

Hence the KK modes now give rise to the stronger constraints on the validity of the 4d

effective theory. Inserting a factor 1/
√
V1 in (4.5) with V1 as in (4.16) we find for the

smallest KK mass

mKK,1 ∼


2π/Im τ1, for Im τ1 ≥ 1

2πIm τ1, for Re τ1 + n ≤ Im τ1 � 1

2π, else

. (4.17)

Demanding mKK,1 > Λ we find that the horizontal lines in figures 8 and 9 are no longer

at (Λ/(2π))2 and (2π/Λ)2 but at Λ/(2π) and 2π/Λ, respectively. Consequently, all ex-

pressions regarding the size of the moduli space have to be modified by substituting

(Λ/(2π))2 → Λ/(2π). Note that this replacement does not change the formulae for the

diameter significantly since the cutoff Λ always appears within a logarithm.

Furthermore we should take into account that V1,2 are no longer constant and therefore

contribute to the distance traversed in moduli space as we vary τ1. Indeed, we have so

far discussed distances in a submanifold of moduli space defined by fixing the Vi and τ3

and only varying τ1 = Nτ2. By contrast, we now have to consider a submanifold which

14We thank the referee for prompting us to add this discussion.
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Im τ1

V1,2

1

1

Figure 10. The dashed line corresponds to the submanifold of moduli space that is parametrized

by τ1 for constant torus volumes Vi. Letting the volumes Vi depend on τ1 as in (4.16) gives rise

to a different submanifold denoted by the solid line. Distances within this submanifold can to be

calculated by considering the contributions from both the metric on complex structure and Kähler

moduli space.

is non-trivially embedded in the product of Kähler and complex structure moduli spaces

as sketched in figure 10. The contribution to the metric on this submanifold due to the

displacement of Kähler moduli can be calculated from the corresponding Kähler potential.

For the Kähler moduli sector this is given by

K = − ln

[
1

8
(T1 + T̄1)(T2 + T̄2)(T3 + T̄3)

]
+ . . . , with Re(T1) = V2V3 , etc. (4.18)

Using this and (4.16) we find for the metric of the subset of the full moduli space

parametrized by τ1:

ds2 = 2
dτ1dτ1

(Im τ1)2
. (4.19)

In our original and simplified analysis the metric (cf. (2.29)) was smaller by a factor four

with the corresponding distances smaller by a factor of two. Recall that the replacement

(Λ/(2π))2 → Λ/(2π) introduced a factor 1/2 in those terms in (4.15) which involve a

logarithm of Λ. This factor is cancelled by the additional factor two from the new metric,

such that the sole net effect is the substitution lnN → 2 lnN plus non-logarithmic terms.

Thus, the introduction of variable volumes does not change our final formulae (4.15) for

the diameter of the moduli space significantly.

4.5 Statement of the conjecture

Consider a 4d field theory with cutoff Λ. The diameter of the corresponding

moduli space (as defined in section 4.3) is then of the order ∼ ln(1/Λ).

This formulation is very natural if one is interested in long flat directions in moduli

space in the absence of potentials. For example, if one is interested in effective field theories

for large-field inflation, this theory must be valid at least at the energy scale of inflation

given by H. Our conjecture implies then that flat directions have at most lengths of the
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order ln(1/H). Note that this statement is true only in the absence of potentials and it

therefore does not automatically rule out models of large-field inflation with too large H.

Another conjecture which is closer to the original Swampland conjecture is:

Consider the moduli space of a string theory compactification to four dimen-

sions. Consider two points in this space with a distance L determined by a

certain geodesic. Then there exist points on this geodesic at which the lightest

KK or winding mode mass is below or of the order exp(−αL), with α ∼ O(1).

A subtle but practically important difference to the Swampland Conjecture is the

following: according to our conjecture it is possible to have two points in moduli space

which have a large distance and, at the same time, KK and winding modes of the same,

high masses. The low-mass or low cutoff situation occurs somewhere in between. This

is in particular what happens for points separated in the axionic coordinate (i.e. Re τ in

our explicit model). The lowest cutoff will be experienced at a point along the geodesic

connecting the two points, and not at either the beginning or endpoint.

5 Conclusions

In this work we examined the possibility of trans-Planckian field spaces for complex struc-

ture moduli in string compactifications employing toroidal orientifolds. The main observa-

tion is that by a suitable choice of 3-form fluxes, a certain combination of moduli is lifted,

such that the remaining complex flat direction exhibits an enlarged fundamental domain

compared to the canonical fundamental domain of a complex structure modulus of a torus.

We refer to this as a ‘Monodromic Moduli Space’.

Mathematically, this moduli space corresponds to the fundamental domain of a con-

gruence subgroup of SL(2,Z). One important observation is that the fundamental domain

of such a congruence subgroup is typically widened compared to the canonical fundamental

domain of SL(2,Z). This widening takes the form

Re τ ∈
[
−1

2
,
1

2

]
−→ Re τ ∈

[
−N

2
,
N

2

]
, (5.1)

where τ is a complex structure modulus and N is an integer set by flux numbers.

We proceeded by examining whether a Monodromic Moduli Space may allow for trans-

Planckian field displacements. First we note that ‘axionic’ trajectories, i.e. trajectories with

Im τ = const., can become large to the extent that N can. (The tadpole constraint on 3-

form fluxes implies N ≤ 16 in our toy model.) But second we also note that for any two

points on such a long (non-geodesic) trajectory much shorter connections exist. They cor-

respond to arcs in the hyperbolic plane and their length scales only as lnN . Moreover, we

can restrict our moduli space by demanding that no winding or KK modes appear below

a certain cutoff Λ. It then turns out that an appropriately defined maximal distance be-

tween points on an axionic trajectory is not only bounded by lnN but also by ln(1/Λ). This

is reminiscent of the logarithmic limitations of field ranges due to backreaction observed

in [18], but here a related phenomenon arises for flat directions.
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While we made our observations in a simple string compactification based on a toroidal

orientifold, we expect them to hold more widely. To be specific, monodromies also exist

in flux compactifications on Calabi-Yau (CY) manifolds, an observation that has been

exploited to study moduli dynamics and tunneling between different vacua in the string

landscape, see e.g. [41–44]. In our context, the key point is that CY moduli spaces have

large complex structure points, analogous to the point at imaginary infinity in the torus

fundamental domain. The simplest example is (T 2)3, where we are dealing with the direct

product of three of the familiar throat-like geometries. In general, the geometry near the

large complex structure point of a CY is much more complicated, but it always includes

‘axionic’ directions which characterize short paths around such points. These paths are pe-

riodic if one allows for identifications using large diffeomorphisms of the CY. We expect that

this periodicity can be enlarged by an appropriate flux choice, analogously to our torus ori-

entifold example. We also expect that the resulting long axionic trajectories will be very far

from geodesics, with shortcuts similar to our arcs in the hyperbolic plane. Thus, the quali-

tative structure of a Monodromic Moduli Space of a CY with 3-form flux should be similar

to what we found in this paper. In the context of inflation, discussions of the moduli space

at large complex structure appeared e.g. in [23, 49, 53–55]; for recent progress concerning

global CY moduli spaces see [56]; for recent work on moduli spaces of CY 4-folds see [57].

The above motivates two conjectures which are related, but distinct from the various

forms of the Swampland Conjecture [1, 3, 17, 20]. Given the moduli space of a generic

4d field theory with cutoff Λ, we conjecture that the absolute size of the moduli space, as

measured by the appropriately defined diameter, scales as ln(1/Λ). Alternatively, we may

focus on the full moduli space of a certain string compactification. Pick two points in this

moduli space which are connected by a minimal geodesic with length L. Then we claim

that there exist points on this geodesic at which the lightest KK or winding mode mass is

smaller or of the order of exp(−αL), with α ∼ O(1).

One of the key findings of our work is that our construction allows for trans-Planckian

‘axionic’ directions which, however, are not geodesics. In particular, a trajectory along

Re τ for fixed Im τ = 1 is a periodic direction with period N/
√

2. This can be mod-

erately trans-Planckian despite the tadpole constraint on N . The upshot is that if it

were possible to stabilize Im τ without completely destroying the structure of the Mon-

odromic Moduli Space, our construction may constitute the first step towards a theory of

a trans-Planckian axion.

This is relevant for cosmology where one open question is the compatibility of large field

inflation and theories of quantum gravity. It has been suggested that large-field inflation

can in principle be embedded in the complex structure moduli sector of string theory

compactifications [23, 38, 53–55, 58], as long as there exists a trans-Planckian axionic

direction. We suggest that Monodromic Moduli Spaces may be a promising starting point

for the construction of such models.

However, there are also obstacles to be overcome: to stabilize Im τ , we require con-

tributions to the potential which may interfere with the proposed simple structure of the

Monodromic Moduli Space. Both for this stabilization and to construct a more realistic

model of cosmology and particle physics, it is necessary to move beyond simple toroidal
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orientifolds. While, as noted above, we expect the general structure of the correspond-

ing Monodromic Moduli Spaces of CYs to be similar, the details are far from clear. For

example, symmetry structures replacing the modular group and instanton-type (in the

mirror dual language) corrections which lift ‘axionic’ directions non-perturbatively have to

be studied. We leave these interesting questions for future work.
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