
 Open access Journal Article DOI:10.1080/00207179.2018.1502474

Flat trajectory design and tracking with saturation guarantees: a nano-drone
application — Source link

Ngoc Thinh Nguyen, Ionela Prodan, Laurent Lefèvre

Institutions: University of Grenoble

Published on: 02 Jun 2020 - International Journal of Control (Taylor & Francis)

Topics: Trajectory and Quadcopter

Related papers:

 Flatness-based nonlinear control strategies for trajectory tracking of quadcopter systems.

 Reliable nonlinear control for quadcopter trajectory tracking through differential flatness

 Trajectory Tracking and Control of Car-Like Robots

 The trajectory tracking problem for an unmanned four-rotor system: flatness-based approach

 Nonlinear control of a single-link flexible joint manipulator using differential flatness

Share this paper:

View more about this paper here: https://typeset.io/papers/flat-trajectory-design-and-tracking-with-saturation-
1evzk3vreo

https://typeset.io/
https://www.doi.org/10.1080/00207179.2018.1502474
https://typeset.io/papers/flat-trajectory-design-and-tracking-with-saturation-1evzk3vreo
https://typeset.io/authors/ngoc-thinh-nguyen-396i119xtg
https://typeset.io/authors/ionela-prodan-44q0rezw8f
https://typeset.io/authors/laurent-lefevre-14xvsjxqrn
https://typeset.io/institutions/university-of-grenoble-1irzuhle
https://typeset.io/journals/international-journal-of-control-2crp4v1j
https://typeset.io/topics/trajectory-20z6uugz
https://typeset.io/topics/quadcopter-g60esl18
https://typeset.io/papers/flatness-based-nonlinear-control-strategies-for-trajectory-4asxim112u
https://typeset.io/papers/reliable-nonlinear-control-for-quadcopter-trajectory-4q6p2280b8
https://typeset.io/papers/trajectory-tracking-and-control-of-car-like-robots-37rgui3spy
https://typeset.io/papers/the-trajectory-tracking-problem-for-an-unmanned-four-rotor-eas33z5b6d
https://typeset.io/papers/nonlinear-control-of-a-single-link-flexible-joint-3205n46qye
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/flat-trajectory-design-and-tracking-with-saturation-1evzk3vreo
https://twitter.com/intent/tweet?text=Flat%20trajectory%20design%20and%20tracking%20with%20saturation%20guarantees:%20a%20nano-drone%20application&url=https://typeset.io/papers/flat-trajectory-design-and-tracking-with-saturation-1evzk3vreo
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/flat-trajectory-design-and-tracking-with-saturation-1evzk3vreo
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/flat-trajectory-design-and-tracking-with-saturation-1evzk3vreo
https://typeset.io/papers/flat-trajectory-design-and-tracking-with-saturation-1evzk3vreo

HAL Id: hal-02074337
https://hal.archives-ouvertes.fr/hal-02074337

Submitted on 18 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Flat trajectory design and tracking with saturation
guarantees: a nano-drone application

Ngoc Thinh Nguyen, Ionela Prodan, Laurent Lefèvre

To cite this version:
Ngoc Thinh Nguyen, Ionela Prodan, Laurent Lefèvre. Flat trajectory design and tracking with sat-
uration guarantees: a nano-drone application. International Journal of Control, Taylor & Francis,
2020, 93 (6), pp.1266-1279. ฀10.1080/00207179.2018.1502474฀. ฀hal-02074337฀

https://hal.archives-ouvertes.fr/hal-02074337
https://hal.archives-ouvertes.fr

Flat trajectory design and tracking with saturation guarantees: a

nano-drone application

Ngoc Thinh Nguyen, Ionela Prodan and Laurent Lefèvre

Univ. Grenoble Alpes, Grenoble INP, LCIS, F-26000, Valence, France

ARTICLE HISTORY

Compiled June 27, 2018

ABSTRACT

This paper deals with the problem of trajectory planning and tracking of a quad-
copter system based on the property of differential flatness. Firstly, B-splines char-
acterizations of the flat output allow for optimal trajectory generation subject to
waypoints constraints, thrust and angles constraints while minimizing the trajec-
tory length. Secondly, the proposed tracking control strategy combines feedback
linearization and nested saturation control via flatness. The control strategy pro-
vides bounded inputs (thrust, roll, pitch angles) while ensuring the overall stability
of the tracking error dynamics. The control parameters are chosen based on the
information of the a priori given reference trajectory. Moreover, conditions for the
existence of these parameters are presented. The effectiveness of the trajectory plan-
ning and the tracking control design are analyzed and validated through simulation
and experiments results over a real nano quadcopter platform, the Crazyflie 2.0.

KEYWORDS

Trajectory planning; Trajectory tracking; Differential flatness; B-splines
parametrization; Feedback linearization; Nested saturation control, Nano
quadcopter platform

1. Introduction

UAVs (Unmanned Aerial Vehicles) are rapidly growing in popularity within the re-
search and industrial communities (Do, 2015; Hassanalian & Abdelkefi, 2017; Prodan
et al., 2013). Even if they are still in the very early stage of global usage, the miniature
flying robots technology started to develop and prosper as more and more industries are
realizing their potential and scope (Hassanalian & Abdelkefi, 2017; Kerma, Mokhtari,
Abdelaziz, & Orlov, 2012). A particular type of drones, the quadcopter systems mani-
fest highly coupled multivariable dynamics and underactuated configuration (Lu, Liu,
Guo, & Chen, 2017; Nguyen, Prodan, & Lefèvre, 2017; Shi, Zhang, & Zhou, 2015),
hence related problems of constrained trajectory generation and tracking mechanism
still remain open. One feasible approach is to off-line generate a reference trajectory
which respects certain specific objectives (e.g., waypoints tracking, state/input con-
straints satisfaction), and then, design an effective on-line tracking mechanism (Cao
& Lynch, 2016; Lu et al., 2017).

In the literature, there are many control methods for quadcopter trajectory tracking
which ultimately reduce to some variant of the feedback linearization control proce-

Email: {ngoc-thinh.nguyen,ionela.prodan,laurent.lefevre}@lcis.grenoble-inp.fr

dure (Aguilar-Ibáñez, Sira-Ramı́rez, Suárez-Castañón, Mart́ınez-Navarro, & Moreno-
Armendariz, 2012; Formentin & Lovera, 2011; Nguyen, Prodan, Stoican, & Lefèvre,
2017; Zhao & Go, 2014). A shortcomming of most of these methods is that they do
not consider constraints on the inputs. Henceforth, bounding the inputs changes the
the system’s expected behavior and may lead to undesired consequences (see, e.g. the
anti-windup issue (Wu & Lu, 2004)). Maggiore (2015) provides a feedback law for
stabilizing the quadcopter at a fixed position, allowing the system to have a bounded
thrust and the converging input bounded state stability property. Furthermore, Cao
and Lynch (2016) design a feedback control scheme which provides bounded thrust,
roll and pitch angles based on the BF (Body Frame) consideration. However, it re-
quires a convoluted transformation of the reference from the IF (Inertial Frame) to
the BF since the reference trajectory is usually designed based on the IF, e.g., passing
through waypoints which are determined w.r.t. the IF. Moreover, when considering
the IF representation of the system, Cao and Lynch (2016) state that it is impossible
to impose bounds on these two angles separately due to the existence of the direction
angle in the roll and pitch angles.

The framework followed here is based on previous results of the authors (Nguyen,
Prodan, & Lefèvre, 2018; Nguyen, Prodan, Stoican, & Lefèvre, 2017) and in the rest
of the paper, we present several contributions which, to the best of our knowledge, are
new to the state of the art:

i) propose a feedback linearization controller facilitated by nested control design for
quadcopter trajectory tracking based on the IF which provides bounded inputs
(thrust and roll, pitch angles) (as opposed to Cao and Lynch (2016)) and allows
the overall system to have the converging input bounded state stability.

ii) propose a modification on the original nested control design (Teel, 1992) which
allows the system to have larger saturation limits which vary depending on the
a priori given references, thus, exploits more capability of the system than the
fixed saturation limits (Teel, 1992).

iii) propose a condition for choosing the angle bounds employed in the control design
based on the a priori given trajectory and a condition for ensuring the existence
of all the related parameters consisting of the reference trajectory, the control
design and the limit of system. Thus, we create an unified design scheme for
trajectory generation and tracking with bounded thrust and bounded angles
while respecting the physical constraints of the system.

iv) validate the control method through simulation and experimental testing over
the nano quadcopter Crazyflie 2.0 platform (Giernacki, Skwierczyński, Witwicki,
Wroński, & Kozierski, 2017).

The outline of the paper is organized as follows. Section 2 briefly presents the trans-
lational dynamics of a quadcopter system and further provides information related to
the built-in controller and the constraints of the Crazyflie (CF) quadcopter platform.
Section 3 presents the constrained trajectory offline generation by using differential
flatness and B-spline parametrization. Section 4 details a feedback linearization con-
trol design of a quadcopter system. Then, nested control design is employed for design
trajectory tracking corrective terms with bounded inputs. Several conditions are pro-
posed to ensure the existence of all the desired parameters. Extensive simulation and
experimental results are provided in Section 5 over a Crazyflie quadcopter system.
Section 6 presents the conclusions and future work.

2

𝒚𝒂𝑰 𝒙𝒂𝑰

𝒛𝒂𝑰

𝒚𝒂𝑩 𝜃𝑟

𝒙𝒂𝑩

𝜙𝑟

𝒛𝒂𝑩 𝑇𝑟 𝜓 𝑟

Figure 1. Inertial fram I, body frame B and the four control inputs of the Crazyflie quadcopter platform.

The built-in controller of the quadcopter controls the four rotors to track the quadruple of {Tr, φr, θr, ψ̇r}
given by user.

2. Dynamical model and its flatness-based characterization

This section briefly introduces the dynamical model that we employ to control the
Crazyflie (CF) quadcopter system (shown in Fig.1) (Giernacki et al., 2017; Luis & Ny,
2016).

2.1. Dynamical model

As illustrated in Fig.1, the quadcopter will operate in two different coordinate systems:
the body frame B = {Bx, By, Bz}1 which is attached to the mass center and the
inertial frame I = {Ix, Iy, Iz} which is fixed to the ground. The attitude of the
quadcopter is defined by the orientation of frame B w.r.t. frame I. In general, this
relation is described through a 3D rotation matrix which is the product of the sequence
of three successive rotations. For the quadcopter we apply the roll–pitch–yaw XYZ
(φ, θ, ψ) sequence which is usually used in aerospace research (Lu et al., 2017; Nguyen,
Prodan, Stoican, & Lefèvre, 2017). I.e., firstly rotate the quadcopter a roll angle,
φ, around Ix axis, next, a pitch angle, θ, around Iy axis and finally, a yaw angle, ψ,
around Iz axis (see also Fig.1 for corresponding directions). As a result, the associated
rotation matrix is given as 2:

I
BR =





c θ cψ sφ s θ cψ − cφ sψ cφ s θ cψ + sφ sψ
c θ sψ sφ s θ sψ + cφ cψ cφ s θ sψ − sφ cψ
− s θ sφ c θ cφ c θ



 , (1)

Assuming the centrifugal force and external perturbation force (e.g., friction) are nul-
lified, there are only gravitational force (along the negative Iz axis) and thrust force
(along the positive Bz axis) which affect the translation dynamics of the quadcopter:

ξ̈ = −g Iz + I
BR

BzT, (2)

1The left superscript notations used here are adopted from Craig (2005); Inaba and Corke (2016).
2Note that, in order to write in a more compact way we have used in this paper ′s′, ′c′ and ′t′ to denote the

sin(·), cos(·) and tan(·) functions, respectively.

3

where g is the gravity. ξ ,
[
x y z

]⊤
represents the position w.r.t frame I and the

thrust force has the normalized magnitude T , i.e., the thrust magnitude divided by
the mass of the quadcopter, having the same unit with the gravity (m/s2).
By using the built-in controllers, the CF quadcopter can control the four rotors to
track the thrust input denoted as Tr, the roll, pitch angle inputs, denoted as φr, θr
and the yaw rate input denoted as ψ̇r. Since we do not modify these inner controllers,
we also neglect the rotation dynamics and the rotors configuration of the CF quad-
copter system which were detailed in Nguyen, Prodan, Stoican, and Lefèvre (2017)
and Giernacki et al. (2017). The built-in controllers of CF contain two loops (Gier-
nacki et al., 2017; Luis & Ny, 2016): i) an attitude PID controller which compares the
angle inputs, φr, θr, and the real angles, φ, θ received as the feedback from CF, then,
provides the references of the roll, pitch angle rates; ii) a PID rate controller which
compares the rate references included the foregoing yaw rate input ψ̇r, and the real
angle rates obtained from CF quadcopter in order to calculate the torques. Finally,
the torques and the thrust input Tr are transformed into the four rotor speeds by
using the appropriate configuration (i.e., X configuration for the CF quadcopter (Luis
& Ny, 2016)).

Remark 1. In our work, the built-in controller is assumed to be capable of tracking
the roll, pitch angle inputs, φr, θr, i.e.:

φ(t) → φr(t) and θ(t) → θr(t) as t→ ∞. (3)

We also neglect the transient effect on tracking the thrust input Tr along the Bz axis
(i.e., the response is fast enough not to cause much delays in the system (Luis & Ny,
2016)). Hence, we consider only the saturation effect for the real normalized thrust T
as follows:

T = min (Tr, Tlimit) , (4)

where the normalized thrust limit of the CF quadcopter is given as Tlimit = 20.18m/s2

(Luis & Ny, 2016). �

2.2. Flatness-based characterization

Differential flatness represents a generalization of the structural properties of the lin-
ear systems to nonlinear systems, which exhibit a state representation obtained via
derivatives of the input and output signals (Lévine, 2011). It allows us to implicitly
validate the dynamics taking into account constraints (with some difficulties) and even
provide a feedback law to linearize the nonlinear system. According to Nguyen, Pro-
dan, Stoican, and Lefèvre (2017), the quadcopter system is differentially flat with the

associated flat output z =
[
z1 z2 z3 z4

]⊤
defined as follows:

z =
[

x y z tan
(
ψ
2

)]⊤
. (5)

4

Thus, the three angles, φ, θ and ψ, and the thrust, T , are expressed in terms of z as:

φ = arcsin

(

2z4z̈1 − (1− z24)z̈2

(1 + z24)
√

z̈1
2 + z̈2

2 + (z̈3 + g)2

)

, (6)

θ = arctan

(
(1− z24)z̈1 + 2z4z̈2
(1 + z24)(z̈3 + g)

)

, (7)

ψ = 2arctan(z4), (8)

T =

√

z̈1
2 + z̈2

2 + (z̈3 + g)2. (9)

Remark 2. Within this work, we exploit only (6)–(9) in order to constrain the roll,
pitch angles and the thrust for both trajectory generation and tracking control design,
while the full flatness-based representations of the quadcopter system corresponding
to the flat output (5) can be found in Nguyen, Prodan, Stoican, and Lefèvre (2017).
There also exist different flatness-based representations of the quadcopter system ac-
cording to different choices of the flat output (Aguilar-Ibáñez et al., 2012; Engelhardt,
Konrad, Schäfer, & Abel, 2016). However, our proposed flat output (5) eliminates the
trigonometric terms of ψ as shown in (6)–(9), thus, providing more efficient calcula-
tions. �

For expressing with clarity and in a compact way the forthcoming results, we denote
the acceleration vector by k , [k1 k2 k3]

⊤, where k1, k2 and k3 are given as:

k1 = z̈1, k2 = z̈2, k3 = z̈3 + g. (10)

By considering the flatness-based representation of the roll and pitch angles in (6)-(7)
and then, denoting them shortly as: φ = Φ(k1, k2, k3, z4) and θ = Θ(k1, k2, k3, z4), we
have the following proposition (Nguyen et al., 2018).

Proposition 2.1 (Nguyen et al. (2018)). The roll, Φ(k1, k2, k3, z4), and pitch,
Θ(k1, k2, k3, z4), angles are bounded by the same function of k1, k2, k3 as follows:

|Φ(k1, k2, k3, z4)| ≤ ǫ(k1, k2, k3), |Θ(k1, k2, k3, z4)| ≤ ǫ(k1, k2, k3), ∀z4 ∈ R, (11)

where the angle boundary function, ǫ(·), is defined as:

ǫ(k1, k2, k3) = arcsin

(√

k21 + k22
k21 + k22 + k23

)

. (12)

Sketch of the proof. The two functions |Φ(k1, k2, k3, z4)| and |Θ(k1, k2, k3, z4)| are
bounded as follows:

|Φ(·)| ≤ arcsin

(√

k21 + k22
k21 + k22 + k23

)

, |Θ(·)| ≤ arctan

(√

k21 + k22
k23

)

. (13)

5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

−20

−10

0

10

Time [s]

A
n
g
le

[d
e
g
re
e
]

ǫ(k1, k2, k3) −ǫ(k1, k2, k3)
Φ(k1, k2, k3, 0) Φ(k1, k2, k3, 4t)
Θ(k1, k2, k3, 0) Θ(k1, k2, k3, 4t)

Figure 2. Illustrations of the roll, pitch angles bounded by the angle boundary ǫ.

Next, by considering ǫ defined in (12), we arrive to:

tan ǫ =

√

k21 + k22
k23

. (14)

Combining (13) and (14), we obtain the results of Proposition 2.1, thus, completing
the proof.

Illustrative example: Let us illustrate the Proposition 2.1 by using some simple
trajectories of k1, k2 and k3 given as follows:

k1(t) = 2 sin(t), k2(t) = sin(2t), k3 = 0.5 sin(0.5t) + g. (15)

The evaluations of the roll, φ = Φ(k1, k2, k3, z4), and pitch, Θ(k1, k2, k3, z4), angles
under different trajectories of the yaw angle represented by z4(t) are illustrated in
Figure 2. We can observe that the values of the roll (red lines) and pitch (green lines)
angles of the specific 3D trajectory vary according to the yaw angle values but they
are always bounded by −ǫ(t) and ǫ(t) (blue lines). �

Remark 3. There always exists real values of z4, denoted by z4φ
and z4θ

, such that:

∣
∣Φ(k1, k2, k3, z4φ

)
∣
∣ = ǫ(k1, k2, k3), |Θ(k1, k2, k3, z4θ

)| = ǫ(k1, k2, k3), (16)

in which z4φ
and z4θ

are the solutions of the quadratic equations given by:

k1z
2
4φ

− 2k2z4φ
− k1 = 0, k2z

2
4θ

+ 2k1z4θ
− k2 = 0. (17)

Thus, in the context of considering mismatches on yaw angle tracking presented in the
following sections, the angle boundary function ǫ(k1, k2, k3) is not conservative to be
employed in the inequalities (11). �

This property is very useful and will be employed later for imposing constraints
on the roll and pitch angles for the offline trajectory generation and online-tracking
control design subject to saturation inputs.

6

3. Constrained trajectory offline generation

This section addresses the offline trajectory generation for a quadcopter system.
First, defines briefly the B-splines curve, then employs B-splines for the flat output
parametrization to generate a feasible 3D trajectory which respects the CF quadcopter
dynamics (2) and constraints on states and inputs. In the literature, various states and
inputs constraints of the aerial systems are usually imposed based on a predefined yaw
angle trajectory, e.g., zero angle (Cowling, Yakimenko, Whidborne, & Cooke, 2007; Lu
et al., 2017; Mueller & D’Andrea, 2013) or a spline with specific degree (Engelhardt
et al., 2016). I.e., introducing a predefined yaw angle trajectory into the dynamics (2),
then, imposing constraints on the resulted system. However, the built-in controller of
the CF quadcopter controls only the yaw rate, ψ̇r, as detailed in Section 2 and it does
not provide very good tracking results, even for maintaining a constant direction (i.e.,
ψ̇r(t) = 0). Therefore, the unavoidable change in the yaw angle trajectory may cause
violation of the constraints if we follow these foregoing approaches.

In order to overcome this restriction, we decouple the position and the yaw an-
gle trajectory generation procedure. Firstly, we define the yaw angle rate reference
trajectory as ψ̇r(t) = 0 since it is straightforward to be implemented and further ver-
ified. However, we will not use this information for the position trajectory generation
(hereinafter, we call it shortly, trajectory generation).

The trajectory generation will take into account various states and inputs con-
straints such as boundary constraints, waypoints constraints, constraints on thrust,
and roll, pitch angles without requiring knowledge on a predefined yaw angle tra-
jectory. Thus, possible tracking errors in yaw angle do not affect the validation of
the above mentioned constraints. For further use, we denote the references of states
and inputs related to the trajectory generation by adding a “bar” overhead, e.g., the
position, ξ̄, the roll, pitch angles, φ̄, θ̄, the thrust, T̄ .

3.1. B-splines parametrization

B-splines basis functions are well-suited to flatness parametrization due to their ease
of enforcing continuity and because their degree depends only up to which derivative
is needed to ensure continuity (Prodan et al., 2013; Stoican, Prodan, & Popescu, 2015;
Stoican, Prodan, Popescu, & Ichim, 2017).
According to Piegl and Tiller (1995), a B-spline of order d is characterized by a knot-
vector :

T = {τ0, τ1 . . . τm} , (18)

of non-decreasing time instants (τ0 ≤ τ1 ≤ · · · ≤ τm) which parametrizes the associated
basis functions Bi,d(t) defined as:

Bi,1(t) =

{

1, for τi ≤ t < τi+1

0 otherwise
, (19a)

Bi,d(t) =
t− τi

τi+d−1 − τi
Bi,d−1(t) +

τi+d − t

τi+d − τi+1
Bi+1,d−1(t), (19b)

for d > 1 and i ∈ {0, 1, . . . , n} where n = m− d.
We consider a fixed knot-vector T with τi = t0, i ∈ {0, . . . , d} and τq = tf , q ∈

7

{n, . . . , n+ d} (Suryawan, 2012) constructed as follows:

T = {t0, ..., t0
︸ ︷︷ ︸

d+1

, τd+1, ..., τn−1, tf , ..., tf
︸ ︷︷ ︸

d+1

}, (20)

with the intermediary points τd, . . . , τn are equally distributed along these extremes.
Considering the row vector of control points in three dimensional space R

3 given as:

P =
[
p0, p1, . . . , pn

]
, (21)

we define a B-splines curve as a linear combination of the control points (21) and the
B-spline functions (19a)–(19b):

ξ̄(t) =

n∑

i=0

Bi,d(t)pxi
= PBd(t), (22)

where ξ̄ =
[
x̄ ȳ z̄

]⊤
andBd(t) =

[
B0,d(t) . . . Bn,d(t)

]⊤
. This construction yields various

interesting properties which are enumerated in Suryawan (2012) and Stoican et al.
(2015), some of them are related to the forthcoming results, hence, given in detail:

(1) Endpoint interpolation: the first control point coincides with the initial point
and the last control point coincides with the last point (Suryawan, 2012). E.g.:

p0 = ξ(t0), pn = ξ(tf). (23)

(2) The B-spline curve lies in the convex hull generated by the control points P;
(3) The ‘r’ order derivatives of B-spline basis function can be expressed as linear

combination of B-spline basis function as:

B
(r)
d (t) =MrBd−r(t) =MrLrBd(t), (24)

with matrices Mr, Lr of appropriate dimensions and content given in Stoican et
al. (2015); Suryawan (2012).

3.2. State constraints

Assume that the CF quadcopter has a known initial state composed of the position,
and its higher derivatives up to the acceleration, i.e., {ξ0, ξ̇0, ξ̈0}. The trajectory is
considered to satisfy the initial state constraints and also drive the CF quadcopter
to a defined final state consisting of position, ξf , velocity ξ̇f and acceleration ξ̈f . By
employing the two properties of the B-splines curve detailed in (23) and (24), the
boundary constraints are constructed as:

p0 = ξ0, PM1L1Bd(t = t0) = ξ̇0, PM2L2Bd(t = t0) = ξ̈0, (25)

pn = ξf , PM1L1Bd(t = tf) = ξ̇f , PM2L2Bd(t = tf) = ξ̈f . (26)

8

Note that, Bd(t = t0) =
[
1, 0, . . . , 0

]⊤
and Bd(t = tf) =

[
0, . . . , 0, 1

]⊤
.

Moreover, we consider a collection of N + 1 waypoints3 and the time instances asso-
ciated to them (there must be no conflict with the boundary conditions (25), (26)):

W = {wk} and TW = {tk}, k ∈ {0, . . . , N}. (27)

The trajectory has to pass through each waypoint wk at the time instant tk, i.e.:

PBd(tk) = wk. (28)

3.3. Input constraints

Since the built-in controller of the CF quadcopter is composed of linear PID controllers
constructed around the hovering states (roll, pitch angles equal zero), the ideal oper-
ating conditions are small values of these two angles. Thus, the reference trajectory is
subject to saturation constraints on roll and pitch angles with desired maximum value
ǫd ∈

(
0, π2

)
given as follows:

∣
∣φ̄
∣
∣ ≤ ǫd,

∣
∣θ̄
∣
∣ ≤ ǫd. (29)

Moreover, since we do not want the CF to have an aggressive altitude variation, the
normalized thrust reference, T̄ , is also limited by its lower bound, g − ∆g > 0 and
upper bound, g +∆g, given as follows:

g −∆g ≤ T̄ ≤ g +∆g, (30)

where ∆g > 0 is a desired parameter. Note that, the desired parameter ∆g only needs
to satisfy g −∆g > 0. Consequently, the upper bound of the thrust g +∆g is always
smaller than 2g, thus, the thrust reference, T̄ , always respects the real thrust limit,
Tlimit = 20.18 > 2g from (4).

Proposition 3.1 (Nguyen et al. (2018)). By imposing the constraint that K ,
[
k̄21 + k̄22 k̄23

]⊤
(10) lies inside a polytopic region defined as a convex sum of vertices

as follows:

K ∈ Conv

{

(
0, (g −∆g)

2
)
,
(
sin2 ǫd (g −∆g)

2, cos2 ǫd (g −∆g)
2
)
,

(
sin2 ǫd (g +∆g)

2, cos2 ǫd (g +∆g)
2
)
,
(
0, (g +∆g)

2
)

}

, (31)

the constraints on roll, pitch angles in (29) and the constraint on thrust in (30) are
satisfied regardless of the yaw angle values. �

Sketch of the proof. From Proposition 2.1, we have that
∣
∣φ̄
∣
∣ ≤ ǫ

(
k̄1, k̄2, k̄3

)
and

∣
∣θ̄
∣
∣ ≤ ǫ

(
k̄1, k̄2, k̄3

)
. Thus, we constrain the angle boundary ǫ(·) to be lower than the

maximum angle value ǫ in order to obtain (29). Then, by combining the results with

3Note that, considering waypoints at the trajectory generation level is coherent with typical software-hardware
UAV configurations which use waypoints in the communication protocol.

9

the constraints on thrust in (30), i.e., g−∆g ≤
√

k̄21 + k̄22 + k̄23 ≤ g+∆g, we arrive to

condition (31). For more details the reader is referred to Nguyen et al. (2018).

3.4. Constrained trajectory with minimal length

In our work, we choose to minimize the length of the trajectory along the time interval
[t0, tf] which is also subject to various states and inputs constraints described in Section
3.2 and 3.3. It results in an optimization problem with a quadratic cost function in
terms of the control points P (Stoican et al., 2015) defined as:

P =argmin
P

∫ tf

t0

(PM1Bd−1)
⊤ (PM1Bd−1) dt,

s.t. constraints (25), (26), (28) and (31) are verified,

(32)

For solving the optimization problem (32), the constraints (25), (26), (28) and (31) can
be enforced at discrete moments (Prodan et al., 2013; Stoican et al., 2015) or even be
guaranteed continuously (Stoican et al., 2017) along the time interval [t0, tf]. The first
method is straightforward to implement but it does not guarantee the constraints ful-
fillment “in-between” the discrete moments. In case of constraints violation, increasing
the sampling points can alleviate the problem. The inevitable drawback, high com-
putation time, can be accepted since the trajectory generation is done offline before
flight. The second method employs particular geometrical properties of the B-spline
functions given in Section 3.1 in order to obtain a continuous constraints validation
with fixed complexity (the number of constraints depends on the B-spline degree and
on the number of control points but not on the number of waypoints) (Stoican et al.,
2017).

Remark 4. Solving the nonlinear optimization problem (32) may provide a local
minimum result instead of the expected globally optimal solution (i.e., the shortest
curve). The solution is required to be manually verified after and the parameters (e.g.,
number of control points) may be changed until obtaining a good solution. Besides the
minimal trajectory length, (32) can take into account various optimization objectives
like input variation, magnitude, energy minimization and the like (Prodan et al., 2013;
Stoican et al., 2017). �

After solving (32), we obtain the 3D reference trajectory, ξ̄, which satisfies all the
imposed constraints, i.e., boundary condition(25)-(26), waypoints (28) and bounded
angles and thrust (31). We remind that we give a zero yaw angle rate input ψ̇r = 0
along the time interval [t0, tf]

4. Recalling all the necessary tools and constructions for
the offline constrained trajectory generation procedure, we provide in the following
the proposed control design method for tracking the given quadcopter references.

4. Feedback linearization control design with saturating inputs

A typical control scheme for quadcopter trajectory tracking (and UAV systems in
general) is illustrated in Figure 3. The preferred approach is to consider two control

4We denote the yaw angle rate input by ψ̇r since we want to give the uniform format of the four inputs sent
to the CF platform, i.e., {Tr, φr, θr, ψ̇r}.

10

𝝃, 𝝍

𝝓𝒓, 𝜽𝒓
𝑻𝒓

𝝃̅

 Outer

controller

𝝍 𝒓
Desired

torques 𝚫𝝓,𝚫𝜽

Attitude

controller

Rate

controller

Rotors

configur-

ation

PWM

signals

Crazyflie

quadcopter

system

Angle rates

𝝓,𝜽

Built-in inner controller

Figure 3. Control scheme for the Crazyflie quadcopter system.

layers in order to exploit the decoupling between the translational and rotational
dynamics of the quadcopters (Cao & Lynch, 2016; Engelhardt et al., 2016; Lu et al.,
2017). At the higher level, the outer controller compares an externally given reference
position, ξ̄, with the real position, ξ, and provides as outputs the reference angles
ηr and thrust Tr. They are sent to the lower level inner controller which compares
the reference angles ηr with the real angles η in order to provide the necessary angle
torques. These torques are then combined with the thrust Tr in order to obtain the
four rotor speeds by using the appropriate configuration of the quadcopter as detailed
in Section 2.

Hereinafter, we concentrate on the design of the outer controller which is to provide
the angle inputs φr, θr and the thrust input Tr allowing the CF quadcopter to track
the a priori given position trajectory, ξ̄. In order to avoid the unexpected effect of the
thrust saturation detailed in (4), the thrust input Tr has to respect the thrust limit,
Tlimit, as follows

5:

Tr ≤ Tlimit. (33)

Furthermore, the built-in controllers (whose aim is to control the three angles) of the
CF quadcopter are constructed around the hovering conditions, i.e., zero roll and pitch
angles, thus, constraints on the angle inputs φr, θr are necessary:

|φr| ≤ ǫc, |θr| ≤ ǫc, (34)

with ǫc ∈
(
ǫd,

π
2

)
, the maximum value of the angle inputs sent to the CF quadcopter.

We emphasize that ǫc must be larger than the desired maximum angle value ǫd from
(29) employed for the trajectory generation. At first, this is due to the fact that
the CF quadcopter may need to tilt more than the desired angle values in order to
counteract the position tracking errors. However, we will provide an analysis on the
value of ǫc in the forthcoming section. The control strategy is based on the concept
of feedback linearization of quadcopter systems (Formentin & Lovera, 2011; Nguyen,
Prodan, Stoican, & Lefèvre, 2017) and nested control design (Cao & Lynch, 2016;
Teel, 1992).

5We do not consider Tr ≥ Tmin as in (30) since from a practical point of view, the thrust can be equal to
zero under real circumstances when counteracting an external perturbation.

11

4.1. Feedback linearization via flatness

In this section, we introduce a feedback law which will drive the translation dynamics
(2) to simpler dynamical systems with appropriately designed corrective terms. The
design of the controller6 is facilitated by the flatness characterizations (6)–(9) given
as follows:

Tr =
√

u2x + u2y + (uz + g)2, (35a)

φr = arcsin




2z4ux − (1− z24)uy

(1 + z24)
√

u2x + u2y + (uz + g)2



 , (35b)

θr = arctan

(
(1− z24)ux + 2z4uy
(1 + z24)(uz + g)

)

, (35c)

where ux, uy and uz are the virtual inputs of the dynamics (2). Note that, the feedback
linearization law given in (35) is validated only for the translation dynamics (2) since
we concentrate on designing the outer controller illustrated in Figure 3. The feedback
linerization laws for the complete quadcopter system including both translation and
rotation dynamics can be found in Aguilar-Ibáñez et al. (2012); Formentin and Lovera
(2011)

Remark 5. In (35b)-(35c), z4 stands for the real yaw angle provided by the CF
platform. Possible tracking errors in the yaw angle do not propagate in the position
tracking since the roll and pitch angle inputs use the actual value of the yaw angle
(Nguyen, Prodan, Stoican, & Lefèvre, 2017). �

Under the assumption that the precise measurement of the yaw angle is available,
the input thrust Tr satisfies the thrust limit Tlimit, i.e., Tr ≤ Tlimit for the real thrust
to equal to the input thrust, T = Tr as detailed in Remark 1 (which will be enforced by
designing the appropriate virtual inputs ux, uy, uz detailed in the forthcoming section),
and the CF quadcopter does not turn upside down, i.e., the roll, pitch angles stay in
the range

(
−π

2 ,
π
2

)
, we have the following proposition.

Proposition 4.1. The feedback law (35) drives the dynamics (2) to one of the two
following systems depending on the value of uz:







ẍ = ux

ÿ = uy

z̈ = uz

, if uz ≥ −g, (36)







ẍ = − cos(2ψ)ux − sin(2ψ)uy

ÿ = − sin(2ψ)ux + cos(2ψ)uy

z̈ = −uz − 2g

, if uz < −g. (37)

Sketch of the proof. Without detailing all the steps, the reasoning is based on the
altitude dynamics exploited from (2) given as:

z̈ = −g + T cosφ cos θ. (38)

6similar result can be found in our previous work (Nguyen, Prodan, Stoican, & Lefèvre, 2017).

12

Since T cosφ cos θ ≥ 0, z̈ + g always has a non-negative value. Thus, introducing (35)
into the dynamics (2) leads to z̈ + g = |uz + g|. Consequently, z̈ = uz if uz ≥ −g and
z̈ = −uz − 2g if uz < −g which lead to the corresponding results of ẍ and ÿ.

The dynamical system (36) is usually the desired goal of the feedback law (35) with
various different designs of the virtual inputs ux, uy, uz as detailed in (Formentin &
Lovera, 2011; Nguyen, Prodan, Stoican, & Lefèvre, 2017; Zhao & Go, 2014). However,
if the condition of uz ≥ −g is not noticed, the system (2) may become unstable as
detailed in Appendix A. Thus, in order to guarantee the closed-loop stability, we will
ensure uz ≥ −g by designing the virtual input uz based on nested control method in
the following Section 4.2.

4.2. Virtual input design

This section details the design of the virtual inputs ux, uy and uz from (35) which

allows the dynamics (36) to track the apriori given trajectory consisting of { ¯̈ξ, ¯̇ξ, ξ̄}.
In the literature, a simple PD (or PID instead) corrective term is usually employed
(Formentin & Lovera, 2011; Nguyen, Prodan, Stoican, & Lefèvre, 2017; Zhao & Go,
2014). Another approach is to apply an LQR controller (Cowling et al., 2007). However,
these control designs do not take into account the saturation, the constraints and even
the unstable mode (37) of the quadcopter system. In order to satisfy the imposed
constraints on thrust and angles (33)-(34), and to overcome the unstable mode (37),
it is essential to bound the virtual control inputs:

|ux| ≤ Ux, |uy| ≤ Uy, |uz| ≤ Uz. (39)

Proposition 4.2. Considering the modified version of the nested control design
method for trajectory tracking (Teel, 1992) defined as:

uq = ¯̈q + λqσ

(
Kq1

λq
ėq +

1

2
σ

(
Kq2

λq
ėq +

Kq1Kq2

λq
eq

))

, q ∈ {x, y, z}, (40)

where eq = q̄ − q represents the position tracking error and Kq1 ,Kq2 ∈ R
+ are the

control parameters, the saturation limit λq is defined as:

λq = Uq − | ¯̈q| , (41)

where the bound Uq is chosen such that λq > 0. The saturation function σ : R → [−1, 1]
(Liu, Chitour, & Sontag, 1996) is defined as:

σ(s) = sign(s)min (|s| , 1) . (42)

The nested control design defined in (40) is bounded as required in (39), i.e., |uq| ≤ Uq,
q ∈ {x, y, z}. Furthermore, introducing uq (40) to the dynamics (36) leads to globally
asymptotically stable error dynamics in terms of eq.

Sketch of the proof. The bounds of uq are derived from applying the Triangle in-
equality to the control action (40) as follows:

|uq| ≤ |¯̈q|+ |(Uq − | ¯̈q|)σ(·)| ≤ |¯̈q|+ Uq − | ¯̈q| . (43)

13

Thus, |uq| ≤ Uq given in (39) is satisfied. Moreover, substituting (40) into the dynamics
(36) leads to:

ëq = −λqσ
(
Kq1

λq
ėq +

1

2
σ

(
Kq2

λq
ėq +

Kq1Kq2

λq
eq

))

, (44)

with eq = q̄ − q which is globally asymptotically stable for any positive parameters
Kq1 and Kq2 as detailed in the Appendix B.

Remark 6. We emphasize that the design (41) requires the smoothness of ¯̈q in order
to ensure the smoothness of uq in (40). Indeed, we modify the nested control design
introduced in Teel (1992) by employing the varied λq in (41), q ∈ {x, y, z} in order to
better exploit the saturating term. This is opposed to the fixed λq = Uq −max | ¯̈q| as
considered in (Aguilar-Ibáñez et al., 2012; Teel, 1992). In Aguilar-Ibáñez et al. (2012),
the nested control design of the quadcopter motion along the z-axis is employed to
ensure only the condition of uz > g and not to guarantee the saturation of the control
inputs. �

Proposition 4.3. Consider the a priori given trajectory consisting of {q̄, ¯̇q, ¯̈q}, q ∈
{x, y, z}. The quadcopter system (2) tracks the trajectory by using the feedback law
given in (35) with the associated virtual inputs defined in (40). By choosing the bounds
Ux, Uy, Uz in (40) such that the following conditions are satisfied:

Uz < g, (45)

Uq > max | ¯̈q| , q ∈ {x, y, z}, (46)

U2
x + U2

y ≤ (−Uz + g)2 tan2 ǫc, (47)
√

U2
x + U2

y + (Uz + g)2 ≤ Tlimit, (48)

the controller provides the angle inputs φr, θr and the thrust input Tr which satisfy
the conditions (33)-(34) and further, asymptotically stabilizes the error dynamics (44)
which implies that the quadcopter system asymptotically tracks the trajectory.

Sketch of the proof. Firstly, by considering (35b)-(35c), we have that: φr =
Φ(ux, uy, uz + g, z4) and θr = Φ(ux, uy, uz + g, z4). Thus, by using Proposition 2.1,
we arrive to the bounds on the roll, pitch angle inputs, i.e., |φr| , |θr| ≤ ǫ(ux, uy, uz+g)
(12) where ǫ(·) is also bounded in terms of Ux, Uy, Uz as follows:

ǫ(ux, uy, uz + g) = arctan





√

u2x + u2y
(uz + g)2



 ≤ arctan





√

U2
x + U2

y

(−Uz + g)2



 . (49)

Thus, (47) leads to ǫ(·) ≤ ǫc, hence, (34) is validated due to the monotony property of
the function arctan(·) in R

+. Secondly, by introducing (39) into (35a), we obtain the
bound on the desired thrust, Tr, given as:

Tr ≤
√

U2
x + U2

y + (Uz + g)2. (50)

By employing (48), from (50), we arrive to T ≤ Tlimit (33). Note that, T ≤ Tlimit

14

is a prerequisite of Proposition 4.1. Thus, Proposition 4.1 is validated. Furthermore,
introducing (45) into (39) leads to uz > −g. According to Proposition 4.1, the feedback
law (35) leads to the dynamics (36). Finally, (46) validates λq > 0 in (41), q ∈ {x, y, z},
this representing the conditions of the nested control design in (40). It ensures the
stability of the error dynamics (44), i.e., the tracking capability of the overall controller,
thus, completing the proof.

In order to efficiently choose the virtual input vector U =
[
Ux, Uy, Uz

]⊤
which is

subject to various constraints (45)–(48), we solve an optimization problem7 expressed
as:

U =argmax
U

‖U‖2,

s.t. constraints (45)–(48) are verified,
(51)

where ‖U‖2 = U2
x + U2

y + U2
z . Thus, we maximize the saturation limit λq in (41),

q ∈ {x, y, z} and consequentially, provide a better capability to counteract the tracking
error for the virtual input design (40).

Proposition 4.4. A sufficient condition for the existence of Ux, Uy, Uz satisfying
(45)–(48) is that the maximum value of the roll, pitch angle inputs, ǫc satisfies:

tan ǫc >
√
2
g +∆g

g −∆g

tan ǫd, (52)

and that the thrust limit Tlimit verifies:

Tlimit >

√

(2g − (g −∆g) cos ǫd)
2 + 2 sin2 ǫd (g +∆g)

2, (53)

with ǫd and ∆g in (29)–(30), are the desired parameters of the reference trajectory.

Sketch of the proof. As detailed in Appendix C, we have that:

max |¯̈x| ≤ (g +∆g) sin ǫd, (54)

max |¯̈y| ≤ (g +∆g) sin ǫd, (55)

max |¯̈z| ≤ g − (g −∆g) cos ǫd. (56)

Thus, in order to ensure the validation of (45) and (46), we arrive to:

Ux > (g +∆g) sin ǫd, (57)

Uy > (g +∆g) sin ǫd, (58)

g >Uz > g − (g −∆g) cos ǫd. (59)

By using Uz < g, condition (47) leads to:

Uz ≤ g − cot ǫc

√

U2
x + U2

y . (60)

7The cost function can be modified in order to give more flexibility to the corrective term of a particular axis.
Here, we consider the unweighted ℓ2 norm since we provide equal importance to all axes.

15

Furthermore, from (48), we have that:

Uz ≤
√

T 2
limit − U2

x − U2
y − g. (61)

Introducing (57)-(58) into (60) and (61), respectively, leads to:

Uz < g −
√
2(g +∆g) cot ǫc sin ǫd, (62)

Uz <
√

T 2
limit − 2(g +∆g)2 sin

2 ǫd − g. (63)

Thus, in order to ensure the existence of Uz constrained by (59), (62) and (63), we
arrive to:

g − (g −∆g) cos ǫd < g −
√
2(g +∆g) cot ǫc sin ǫd, (64)

g − (g −∆g) cos ǫd <
√

T 2
limit − 2(g +∆g)2 sin

2 ǫd − g. (65)

From (64)–(65), we obtain (52) and (53), hence, completing the proof.

Remark 7. Indeed, the condition (53) should be considered as a criteria for choosing
the parameters ǫd and ∆g employed in (29) and (30). This ensures a feasible reference
trajectory for the feedback control law (35) with the known thrust limit Tlimit. �

4.3. Overall stability analysis

This section investigates the effect of the built-in controller detailed in Remark 1 on
the overall stability of the position tracking capability. Since the thrust input Tr is
constrained to be under the thrust limit Tlimit from (33), the thrust T applied to the
CF quadcopter system equals the thrust input, i.e., T = Tr, as detailed in (4). Thus,
introducing the feedback law (35) into the dynamics (2) explicitly leads to:

q̈ = uq + dq, (66)

where q ∈ {x, y, z} and dx, dy, dz are given as:

dx = Tr(cφ s θ cψ + sφ sψ)− Tr(cφr s θr cψ + sφr sψ), (67)

dy = Tr(cφ s θ sψ − sφ cψ)− Tr(cφr s θr sψ − sφr cψ), (68)

dz = Tr cφ c θ − Tr cφr c θr, (69)

where the angle inputs, φr, θr, detailed in (35b)-(35c) are the references for the actual
roll, pitch angles, φ, θ, to follow.

Proposition 4.5. The terms dx, dy, dz given in (67)-(69) are bounded and dq → 0,
q ∈ {x, y, z} as t→ ∞.

Sketch of the proof. Applying the Triangular inequality to dx, dy, dz given in (67)-
(69), we obtain that:

|dx| ≤ 4Tr, |dy| ≤ 4Tr, |dz| ≤ 2Tr. (70)

16

Since Tr is bounded as constrained in (33), (70) leads to dx, dy, dz bounded. Further-
more, from (3), we have that the built-in controller is capable of tracking the roll, pitch
angle inputs (35b)-(35c), hence, dq → 0, q ∈ {x, y, z} as t → ∞, thus, completing the
proof.

Introducing the virtual inputs uq, q ∈ {x, y, z} detailed in (40) into the overall
dynamics (66) leads to:

ëq = −λqσ
(
Kq1

λq
ėq +

1

2
σ

(
Kq2

λq
ėq +

Kq1Kq2

λq
eq

))

+ dq, (71)

where eq = q̄ − q as given in (40). Since the perturbation dq is bounded and vanishes
asymptotically as detailed in Proposition 4.5, all solutions of (71) are bounded (Teel,
1992). This property of the nested saturation control design (40) is a form of converging
input bounded state stability. It guarantees that small vanishing input disturbances
do not produce unbounded solutions (Maggiore, 2015).

Moreover, the reference acceleration terms ¯̈q in (40) are bounded as detailed in
(54)-(56) which implies that all solution of the closed-loop system (66) are bounded.
As a result, according to Maggiore (2015), the closed-loop system (66) obtains almost
globally asymptotic tracking for the a priori given trajectory consisting of {q̄, ¯̇q, ¯̈q}, q ∈
{x, y, z}.

Remark 8. Maggiore (2015) introduces a hierarchical control design for stabilizing a
thrust-propelled system at a fixed position which can be seen as a particular case of our
tracking control law given in (35). Thus, the foregoing overall stability analysis is also
validated in Maggiore (2015) with similar ideas on bounded perturbation–bounded
solutions. �

5. Simulation and experiment results

This section presents first the trajectory generation results as introduced in Section 3.
Then, the tracking controller proposed in Section 4 are tested by using a simulation
model of a Crazyflie (CF) quadcopter (Giernacki et al., 2017) and lastly a real platform
at the Laboratory of Conception and Integration of System (LCIS), France. For the
simulation, the complete CF model given in Luis and Ny (2016) is employed including
translation, rotation dynamics and the built-in controller (further details are given in
Section 2). The experimental platform at laboratory LCIS shown in Figure 4 includes
an indoor CF nano quadcopter equipped with a 10-DOF IMU (accelerometer, gyro,
magnetometer, and high precision pressure), a Loco positioning system8 including a
deck attached to the CF quadcopter and six nodes fixed around the experimental room
with known positions. The Loco positioning system is functioning in TwoWay Ranging
(TWR) mode in which, the deck pings the nodes in sequence. This allows the deck
to obtain the distance between itself and the six nodes, then, the deck can calculate
its position compared to the six nodes. After gathering all the necessary feedback
information such as the position and the angles, the CF quadcopter communicates with
the ground station computer through a 2.4Ghz low-latency/long-range radio messages
by using the Crazyradio PA USB radio dongle. The computer sends an input message

8More information of the Crazyflie quadcopter and the Loco positioning system can be found in
https://www.bitcraze.io

17

Two Way Ranging

radio message

Input message {𝑇𝑟 , 𝜙𝑟 , 𝜃𝑟 , 𝜓̇𝑟}
Feedback {𝜉, 𝜂}

× 6

Loco Positioning node

Crazyflie 2.0 with

Loco Positioning deck

Crazyflie client

interface

Crazyradio PA

USB radio dongle

Experimental room equipped with

the Loco Positioning system

Figure 4. Operational control system setup of the Crazyflie quadcopter.

Table 1. Constraints imposed on the optimal trajectory generation
Constraints

Position, ξ̄(t) ξ̄(0) =
[

0 0 0
]

⊤
, ξ̄(5) =

[

0.5 2 1
]

⊤
,

ξ̄(10) =
[

1.5 2 1
]

⊤
, ξ̄(15) =

[

2 0 0
]

⊤

Velocity,
¯̇
ξ(t)

¯̇
ξ(0) =

[

0 0 0
]

⊤
,
¯̇
ξ(15) =

[

0 0 0
]

⊤

Acceleration,
¯̈
ξ(t)

¯̈
ξ(0) =

[

0 0 0
]

⊤
,
¯̈
ξ(15) =

[

0 0 0
]

⊤

Angles, φ̄, θ̄
∣

∣φ̄
∣

∣ ≤ ǫd,
∣

∣θ̄
∣

∣ ≤ ǫd with ǫd = 5◦

Thrust, T̄ g −∆g ≤ T̄ ≤ g +∆g with ∆g = 0.05g

including the four inputs {Tr, φr, θr, ψ̇r} to the CF quadcopter. Note that the thrust
input Tr after being calculated by (35a) is required to be converted into the thrust
unit of the CF quadcopter system, i.e., 16-bit integer valued from 0 to 65535.

5.1. Offline trajectory generation results

In this section, the results of the trajectory generation procedure introduced in Sec-
tion 3 are presented. Since the experimental platform, i.e., CF quadcopter, works well
only with small roll and pitch angles (i.e., smaller than 10◦) (Giernacki et al., 2017),
we imposed the desired maximum angle ǫd = 5◦ to generate the a priori feasible tra-
jectory. This is to obtain the limit of the angles input ǫc under 10◦ for the tracking
control design. Note that, for different platforms, the parameters ǫd and ǫc are eas-
ily modified according to particular requirements and capabilities. Furthermore, the
normalized thrust T̄ is also bounded by g − ∆g and g + ∆g with ∆g = 0.05g by
employing (31). We emphasize that the desired parameters ǫd = 5◦ and ∆g = 0.05g
are validated by the constraint (53) with the thrust limit, Tlimit = 20.18m/s2 as de-
tailed Remark 7, thus ensuring the existence of the control parameters presented later.
In addition, the trajectory constraints include passing through four given waypoints

W =
{ [

0 0 0
]⊤
,
[
0.5 2 1

]⊤
,
[
1.5 2 1

]⊤
,
[
2 0 0

]⊤
}

with the associated time

instants {0, 5, 10, 15} seconds. The trajectory possess all the derivatives of {x, y, z} up

18

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
−6

−4

−2

0

2

4

6

ǫd

−ǫd

Time [s]

A
n
g
le

[d
e
g
re
e
]

φ̄ θ̄
ǫ −ǫ

Figure 5. Roll, pitch angles references φ̄, θ̄, and the angle boundary ǫ as in (12) compared with the desired
angle limit ǫd.

Table 2. Parameters of the virtual in-
puts uq , q ∈ {x, y, z} given in (40).

Virtual input Uq Kq1 Kq2

ux 0.7168 1 2
uy 0.7168 1 2
uz 2.5970 2 3

to 2nd order equal 0 at the initial and final time instants since we aim to perform the
trajectory tracking task between the two hovering periods. All of the imposed con-
straints are gathered in Table 1.
The trajectory generation algorithms are implemented using Yalmip (Löfberg, 2004)
in Matlab 2015a with a total processing time of 7.81 sec. In Figure 5, we provide
results of the roll, pitch angles φ̄ and θ̄ (plotted in red and green lines) which are
actually bounded by the angle boundary ǫ (12) (plotted in blue lines). Moreover, the
angle boundary ǫ does not exceed the desired angle limit ǫd. Furthermore, in Figure
10, the thrust reference T̄ (plotted in dashed red line) stays within the desired thrust
limits, [g−∆g, g+∆g]. The 3D reference trajectory with waypoints will be presented
later with their tracking results in Figure 6.

5.2. Controller design

After having the reference trajectory, the tracking controller is constructed by using
the feedback law (35) facilitated by the nested control design (40). The limit of the
angle inputs, ǫc in (34), must be chosen to satisfy the constraint (52) with ǫd and
∆g given in Table 1, i.e, ǫc ≥ 7.79◦. Thus, we take ǫc = 8◦. The bounds Uq, with
q ∈ {x, y, z} are chosen by solving the optimization problem (51) by using Yalmip
(Löfberg, 2004) with a computation time of 0.81 sec and are delineated in Table 2
with the tuning parameters Kq1 , Kq2 in (40).

5.3. Trajectory tracking results

The quadcopter will track the foregoing trajectory reference which lasts 15 seconds
and then keeps hovering at the final position for 5 seconds. We provide illustrations
and tracking results for the simulation model and real experiment. For comparison,
in each case we take the Integral of Absolute magnitude of the Error (IAE) over the

position: IAE =
∫ tf=20
t0=0 ||ξ̄ − ξ||dt and gather them in Table 3. From Figures 6-7, we

19

Table 3. Tracking errors under two scenarios.

Tracking error Simulation Experiment

IAE 1.6228 3.8353

−0.5

0
0.5

1
1.5

2
2.5

0

1

2

0

0.5

1

t = 0 sec

t = 15− 20 sec

x [m]
y [m]

z
[m

]

Real motion
Simulation motion
Reference trajectory
Way points

15− 20

Figure 6. Quadcopter motions under simulation and experiment.

observe that both the simulation results (plotted in blue lines) and the real experiment
results (in green lines) track well their reference (in dashed red lines). Furthermore, as
observed in the inset from Figure 6 and also in Figure 7 from t = [15, 20] seconds, the
proposed controller also works for hovering at the fixed position. Another evidence for
the effectiveness of our contributions is that the two IAE results given in Table 3 are
not far from the other. These results indicate a good match between our simulation
model and real experimental platform and further, validate the tracking capabilities
of our proposed control approach.

For the saturation constraint on the angle inputs given in (34), we provide the results
of the three angles (plotted in solid lines) compared with their associated inputs φr
and θr (plotted in dashed lines in corresponding colors) in Figure 8 for the simulation
and in Figure 9 for the real experiment. Due to the control design (35) and (40)
with the appropriately chosen parameters given in Table 2, the angle inputs actually
respect their limitation ǫc as constrained in equation (34). Note that we do not give
the references for the yaw angle but their rate, i.e., ψ̇r = 0, hence, the yaw angle
value (in solid blue line) varies significantly as can be seen in Figure 9. However, the
tracking results of the yaw motion are not important for our control design as long
as the yaw angle feedback is introduced to the controller (35) as detailed in Remark
5. Furthermore, as illustrated in Figure 8-9, the roll, pitch angles, φ, θ, track their
associated inputs, φr and θr with noticeable delays under both simulation and real
experiment which cause errors on the position tracking results as observed in Figure
7, especially for the x and y axes. The delays are due to the linear PID compensator
employed in the built-in controller detailed in Section 2 while the rotation dynamics

20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

1

2

x
[m

] x real
x simulation
x̄

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

1

2

y
[m

] y real
y simulation
ȳ

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

0.5

1

Time [s]

z
[m

] z real
z simulation
z̄

Figure 7. Tracking results of the three axes.

21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
−10

−8

−6

−4

−2

0

2

4

6

8

10
ǫc

−ǫc

Time [s]

A
n
g
le

[d
e
g
re
e
]

φ φr
θ θr
ψ

Figure 8. Roll, pitch and yaw angles, φ, θ, ψ, with respect to the angle inputs, φr, θr, under simulation.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
−10

−8

−6

−4

−2

0

2

4

6

8

10
ǫc

−ǫc

Time [s]

A
n
g
le

[d
e
g
re
e
]

φ φr ψ
θ θr

Figure 9. Roll, pitch and yaw angles, φ, θ, ψ, with respect to the angle inputs, φr, θr, under experiment.

of a quadcopter have significant nonlinearities (Nguyen, Prodan, Stoican, & Lefèvre,
2017). These phenomena can be reduced by choosing more appropriate PID control
parameters or by replacing the built-in PID controller with another more appropriate
control scheme (Landry, Deits, Florence, & Tedrake, 2016).

In Figure 10, we provide the results of the thrust input, Tr, given in (35a) under ex-
periment and simulation (plotted in solid green and blue lines), respectively, compared
with the thrust reference, T̄ (plotted in dashed red line). They all clearly respect the
thrust limit, Tlimit = 20.18 m/s2, which is too large to appear in the plot. The thrust
input under experiment (in green) oscillates around the reference with large amplitude
which is mainly due to the precision of the Loco positioning system (around 10 cm),
thus, even when the quadcopter is hovering from t = 15 seconds, the position feedback
is still varying as observed from Figure 7. The other reasons are unknown disturbances
affecting the CF quadcopter.

22

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
8.5

9

9.5

10

10.5

11

11.5

g + ∆g

g − ∆g

Time [s]

N
o
rm

a
li
ze

d
th

ru
st

[m
/
s
2
]

Tr real Tr simulation T̄

Figure 10. The thrust input Tr under simulation and experiment compared with the thrust reference T̄ .

6. Conclusions

This paper firstly addressed the optimal constrained motion planning problem for the
quadcopter systems by using differential flatness properties and B-spline parametriza-
tion. Then, a tracking control design was introduced as a combination of feedback lin-
earization and the nested control method. The control scheme successfully overcomes
an unstable mode, usually ignored in the literature, and provides bounded thrust and
roll, pitch angles which are designed to respect the reference trajectory and the real
system constraints. Thus, the paper creates an unified trajectory generation and track-
ing control design procedure. Theoretical contributions are successfully applied to the
control of a Crazyflie nano-quadcopter for hovering and trajectory tracking.

Future works will concentrate on the introduction of bounded/stochastic distur-
bances and unexpected events such as faults. Improving the precision of the position
observing system for better experimental validation is also a future direction.

References

Aguilar-Ibáñez, C., Sira-Ramı́rez, H., Suárez-Castañón, M. S., Mart́ınez-Navarro, E., &
Moreno-Armendariz, M. A. (2012). The trajectory tracking problem for an unmanned
four-rotor system: flatness-based approach. International Journal of Control , 85 (1), 69–
77.

Cao, N., & Lynch, A. F. (2016). Inner–outer loop control for quadrotor uavs with input and
state constraints. IEEE Transactions on Control Systems Technology , 24 (5), 1797–1804.

Cowling, I. D., Yakimenko, O. A., Whidborne, J. F., & Cooke, A. K. (2007). A prototype of an
autonomous controller for a quadrotor uav. In Proceedings of the IEEE European Control
Conference (ECC) (pp. 4001–4008).

Craig, J. J. (2005). Introduction to robotics: mechanics and control (Vol. 3). Pearson/Prentice
Hall Upper Saddle River, NJ, USA.

Do, K. D. (2015). Coordination control of quadrotor vtol aircraft in three-dimensional space.
International Journal of Control , 88 (3), 543–558.

Engelhardt, T., Konrad, T., Schäfer, B., & Abel, D. (2016). Flatness-based control for a
quadrotor camera helicopter using model predictive control trajectory generation. In Pro-
ceedings of the IEEE 24th Mediterranean conference on Control and Automation (MED’16)
(pp. 852–859).

23

Formentin, S., & Lovera, M. (2011). Flatness-based control of a quadrotor helicopter via
feedforward linearization. In Proceedings of the IEEE 50th Conference on Decision and
Control (CDC-ECE’50) (pp. 6171–6176).

Giernacki, W., Skwierczyński, M., Witwicki, W., Wroński, P., & Kozierski, P. (2017). Crazyflie
2.0 quadrotor as a platform for research and education in robotics and control engineer-
ing. In Proceedings of the 22nd IEEE international conference on Methods and Models in
Automation and Robotics (MMAR’22) (pp. 37–42).

Hassanalian, M., & Abdelkefi, A. (2017). Classifications, applications, and design challenges
of drones: a review. Progress in Aerospace Sciences , 91 , 99–131.

Inaba, M., & Corke, P. (2016). Robotics research: The 16th international symposium isrr
(Vol. 114). Springer.

Kerma, M., Mokhtari, A., Abdelaziz, B., & Orlov, Y. (2012). Nonlinear h control of a quadro-
tor (uav), using high order sliding mode disturbance estimator. International Journal of
Control , 85 (12), 1876–1885.

Landry, B., Deits, R., Florence, P. R., & Tedrake, R. (2016). Aggressive quadrotor flight
through cluttered environments using mixed integer programming. In International confer-
ence on robotics and automation (icra) (pp. 1469–1475).

Lévine, J. (2011). On necessary and sufficient conditions for differential flatness. Applicable
Algebra in Engineering, Communication and Computing , 22 (1), 47–90.

Liu, W., Chitour, Y., & Sontag, E. (1996). On finite-gain stabilizability of linear systems
subject to input saturation. SIAM Journal on Control and Optimization, 34 (4), 1190–
1219.

Löfberg, J. (2004). Yalmip : A toolbox for modeling and optimization in MAT-
LAB. In Proceedings of the CACSD Conference. Taipei, Taiwan. Retrieved from
http://users.isy.liu.se/johanl/yalmip

Lu, H., Liu, C., Guo, L., & Chen, W.-H. (2017). Constrained anti-disturbance control for a
quadrotor based on differential flatness. International Journal of Systems Science, 48 (6),
1182–1193.

Luis, C., & Ny, J. L. (2016, August). Design of a trajectory tracking controller for a nanoquad-
copter (Tech. Rep.). Mobile Robotics and Autonomous System Laboratory, Polytechnique
Montreal.

Maggiore, M. (2015). Reduction principles for hierarchical control design.
Mueller, M. W., & D’Andrea, R. (2013). A model predictive controller for quadrocopter

state interception. In Proceedings of the IEEE European Control Conference (ECC’13) (pp.
1383–1389).

Nguyen, N. T., Prodan, I., & Lefèvre, L. (2017). Multi-layer optimization-based control
design for quadcopter trajectory tracking. In Proceedings of the 25th IEEE Mediterranean
Conference on Control and Automation (MED’17) (p. 601-606).

Nguyen, N. T., Prodan, I., & Lefèvre, L. (2018). Effective angular constrained trajectory gener-
ation for thrust-propelled vehicles. In Proceedings of the 16th European Control Conference
(ECC’18) (p. 1833-1838).

Nguyen, N. T., Prodan, I., Stoican, F., & Lefèvre, L. (2017). Reliable nonlinear control for
quadcopter trajectory tracking through differential flatness. Proceeding of the 20th IFAC
World Congress. IFAC-PapersOnLine, 50 (1), 6971-6976.

Piegl, L., & Tiller, W. (1995). B-spline curves and surfaces. In The nurbs book (pp. 81–116).
Springer.

Prodan, I., Olaru, S., Bencatel, R., Sousa, J., Stoica, C., & Niculescu, S. (2013). Receding hori-
zon flight control for trajectory tracking of autonomous aerial vehicles. Control Engineering
Practice, 21 (10), 1334–1349.

Shi, X.-N., Zhang, Y.-A., & Zhou, D. (2015). A geometric approach for quadrotor trajectory
tracking control. International Journal of Control , 88 (11), 2217–2227.

Stoican, F., Prodan, I., & Popescu, D. (2015). Flat trajectory generation for way-points relax-
ations and obstacle avoidance. In Proceedings of the 23th IEEE Mediterranean Conference
on Control and Automation (MED’15) (pp. 695–700).

24

Stoican, F., Prodan, I., Popescu, D., & Ichim, L. (2017). Constrained trajectory genera-
tion for uav systems using a b-spline parametrization. In Proceedings of the 25th IEEE
Mediterranean Conference on Control and Automation (MED’17) (pp. 613–618).

Suryawan, F. (2012). Constrained trajectory generation and fault tolerant control based on
differential flatness and b-splines (Unpublished doctoral dissertation). School of Electrical
Engineering and Computer Science, The University of Newcastle, Australia.

Teel, A. R. (1992). Global stabilization and restricted tracking for multiple integrators with
bounded controls. Systems & control letters, 18 (3), 165–171.

Wu, F., & Lu, B. (2004). Anti-windup control design for exponentially unstable lti systems
with actuator saturation. Systems & Control Letters, 52 (3), 305–322.

Zhao, W., & Go, T. H. (2014). Quadcopter formation flight control combining mpc and robust
feedback linearization. Journal of the Franklin Institute, 351 (3), 1335–1355.

Appendix A. The unstable mode (37) of the feedback linearization law

Proposition A.1. Assuming that the virtual input uz is designed for stabilizing the
quadcopter altitude dynamics (38) at the origin z = 0 with the normal PD corrective
term given as:

uz = −KDż −KP z, (A1)

where KP , KD are positive control parameters. According to Proposition 4.1, we have
that z = 0 is the asymptotically stable equilibrium point for the dynamics z̈ = uz from
(36) if uz ≥ −g. While if uz < −g, the dynamics z̈ = −uz − 2g is obtained from (37)
and the associated equilibrium point is z = 2g/KP which is unstable.

Proof. It is straightforward to have that: i) the origin z = 0 is asymptotically stable
for the dynamics z̈ = −KDż −KP z obtained by introducing (A1) into (36); ii) sub-
stituting (A1) into (37) leads to z̈ = KDż +KP (z − 2g/KP) which has the unstable
equilibrium point z = 2g/KP with correct values of the KP and KD parameters of
course.

Note that, there is no pair of parameters KP , KD such that both closed -loop
dynamics (36)–(37) are stabilized. On the other hand, there exist circumstances where
the unstable dynamics (37) will lead (via the positive KP , KD parameter) to a value
uz > −g, thus allowing to switch to the stable dynamics (36).

Appendix B. Proof for the stability of the error dynamics (44)

This section proves the stability of the error dynamics (44) with the control parameters
Kq1 ,Kq2 ∈ R

+. The forthcoming result is a generalization of the proof for the particular
case of Kq1 = Kq2 = 1 which was introduced in Teel (1992). Considering the new
variables e1, e2 defined as:

e1 = Kq2eq + ėq, e2 = ėq. (B1)

25

Introducing (B1) into (44) leads to:

ė1 = λq

[
e2
2R2

− σ

(
1

2
σ

(
e1
R1

)

+
e2
2R2

)]

, (B2)

ė2 = −λqσ
(
1

2
σ

(
e1
R1

)

+
e2
2R2

)

, (B3)

where R1 = λq/Kq1 and R2 = λq/(2Kq2). Hereinafter, we prove that the equilibrium
(e1 = 0, e2 = 0) of the system (B2)-(B3) is globally asymptotically stable.
Firstly, we consider the “big” value of e2, such that:

|e2| > R2, (B4)

By defining the Lyapunov function V2 = e22, we have that:

V̇2 = −2λqe2σ

(
1

2
σ

(
e1
R1

)

+
e2
2R2

)

. (B5)

Case 1: e2 > 0, (B4) leads to:

1

2
σ

(
e1
R1

)

+
e2
2R2

> −1

2
+

1

2
= 0. (B6)

Introducing condition (B6) and e2 > 0 into (B5) strictly leads to V̇2 < 0.
Case 2: e2 < 0, (B4) leads to:

1

2
σ

(
e1
R1

)

+
e2
2R2

<
1

2
− 1

2
= 0. (B7)

Introducing condition (B7) and e2 < 0 into (B5) strictly leads to V̇2 < 0.
Thus, if e2 /∈ E2 = {e2 : |e2| ≤ R2}, V2 = e22 strictly decreases. Consequentially, e2
enters E2 in a finite time and remains in E2.
Secondly, we consider that e2 ∈ E2, i.e., |e2| ≤ R2, we arrive to:

∣
∣
∣
∣

1

2
σ

(
e1
R1

)

+
e2
2R2

∣
∣
∣
∣
≤ 1

2
+

1

2
= 1. (B8)

Thus, by considering the definition of the saturation function σ(·) given in (42), we
have that:

σ

(
1

2
σ

(
e1
R1

)

+
e2
2R2

)

=
1

2
σ

(
e1
R1

)

+
e2
2R2

. (B9)

Introducing (B9) into (B2) leads to:

ė1 = −λq
2
σ

(
e1
R1

)

. (B10)

26

By considering the Lyapunov function V1 = e21, we have that:

V̇1 = −λqe1σ
(
e1
R1

)

< 0. (B11)

Thus, V1 is decreasing which indicates that e1 enters E1 = {e1, |e1| ≤ R1} in a finite
time. When e1 ∈ E1, the dynamics (B2)-(B3) become:

ė1 = − λq
2R1

e1, (B12)

ė2 = − λq
2R1

e1 −
λq
2R2

e2, (B13)

which is exponentially stable around the origin (e1 = 0, e2 = 0). Thus, (eq = 0, ėq = 0)
is also globally asymptotically stable for the error dynamics (44), hence, completing
the proof.

Appendix C. Proof for the upper bound of max
∣
∣ ¯̈q
∣
∣, q ∈ {x, y, z}

This section introduces the proof for the upper bound of max | ¯̈q|, q ∈ {x, y, z} employed
in (54)-(56) which are rewritten hereinafter for keep tracking easily:

max |¯̈x| ≤ (g +∆g) sin ǫd, (C1)

max |¯̈y| ≤ (g +∆g) sin ǫd, (C2)

max |¯̈z| ≤ g − (g −∆g) cos ǫd. (C3)

From (31) and (10), with ¯̈q, q ∈ {x, y, z} are the results of the optimal trajectory

generation, i.e.,
[

¯̈x
2
+ ¯̈y2 (¯̈z + g)2

]⊤
stays inside the polytopic set P (31), we obtain

that:

¯̈x2 + ¯̈y2 ≤ (g +∆g)2 sin2 ǫd, (C4)

(g −∆g)2 cos2 ǫd ≤ (¯̈z + g)2 ≤ (g +∆g)2. (C5)

From (C4), we arrive to:

|¯̈x| ≤ (g +∆g) sin ǫd, |¯̈y| ≤ (g +∆g) sin ǫd. (C6)

Thus, (C6) leads to (C1) and (C2). Furthermore, from (C5), we have that:

(g −∆g) cos ǫd − g ≤ ¯̈z ≤ ∆g. (C7)

As a result, we arrive to:

max |¯̈z| ≤ max (|(g −∆g) cos ǫd − g| ,∆g) . (C8)

Next, we have that:

|(g −∆g) cos ǫd − g| = g(1− cos ǫd) + ∆g cos ǫd. (C9)

27

By employing the condition ∆g < g from (30), we obtain that:

g(1− cos ǫd) + ∆g cos ǫd ≥ ∆g. (C10)

Combining (C9)-(C10) leads to:

max (|(g −∆g) cos ǫd − g| ,∆g) = g(1− cos ǫd) + ∆g cos ǫd. (C11)

Introducing (C11) into (C8) leads to (C3), thus, completing the proof.

28

