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Flatness of tracer density profile produced by a point source in turbulence
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The average concentration of tracers advected from a point source by a multivariate normal velocity
field is shown to deviate from a Gaussian profile. The flatness~kurtosis! is calculated using an
asymptotic series expansion valid for velocity fields with short correlation times or weak space
dependence. An explicit formula for the excess flatness at first order demonstrates maximum
deviation from a Gaussian profile at timet of the order of five times the velocity correlation time,
with a t21 decay to the Gaussian value at large times. Monotonically decaying forms of the velocity
time correlation function are shown to yield negative values for the first order excess flatness, but
positive values can result when the correlation function has an oscillatory tail. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1616558#
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I. INTRODUCTION

The pioneering work of Taylor1,2 on dispersion problems
in turbulent flows has led to the widespread use of Gauss
plume models for the prediction of mean concentration
passive tracers or pollutants. In isotropic turbulence, for
ample, the mean tracer concentration may be defined as
probability distribution function~PDF! of particles released
from the same point in space, with the statistical ensem
consisting of either independent experiments, or of indep
dent particles released from the source at widely spaced
intervals. This PDF is usually assumed to have a Gaus
form, with variance determined from Taylor’s formula.3 Tay-
lor also argued that the Gaussian form is asymptotically c
rect for large times, as the particles have effectively execu
a random walk through uncorrelated eddies. Moreover, if
turbulent velocity is modeled by a Gaussian~i.e., multivari-
ate normal! velocity field, it immediately follows that the
concentration is Gaussian at small times also. Thus it is o
at intermediate times that any deviation from a Gauss
distribution might be observed, but few attempts have b
made to examine this case.

Kraichnan4 investigated single-particle diffusion i
Gaussian velocity fields using kinematic simulations and
direct-interaction approximation~DIA !. His Fig. 9 shows de-
viations from the Gaussian distribution in numerical expe
ments, quantified by the flatness factor or kurtosis, wh
dips below its Gaussian value at intermediate times. Dire
interaction approximations of the flatness were not attemp
in Ref. 4, but Koch and Shaqfeh5 report that DIA calcula-
tions lead to an incorrect small-time limit for the flatness in
Gaussian velocity field.

Sawford and Borgas6 investigated a variety of stochast
models for the Lagrangian velocity in turbulent flow, an
showed that a multifractal model7 and a Markovian jump

a!Telephone:1353 21 490 3410; fax:1353 21 427 0813. Electronic mail
j.gleeson@ucc.ie
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model ~with discontinuous velocities! both predict leptokur-
tic density functions, i.e., with flatness factors larger than
Gaussian value, although they note the magnitude of the
viation from the Gaussian form depends on the model c
sen. Data from wind tunnel experiments is better fitted b
Gaussian distribution than by a leptokurtic distribution,
though the difference is not large.

In this paper we utilize an asymptotic series expans
of the mean concentration to derive quadrature formulas
the flatness, and show that simple forms of the velocity ti
correlation predict a platykurtic~sub-Gaussian flatness! dis-
tribution, in agreement with Kraichnan’s numerical simul
tions, but contrary to the models discussed by Sawford
Borgas. The small parameter of our asymptotic series is

a5utk0 , ~1!

whereu is the root mean square velocity,t is the velocity
correlation time, andk0 is a characteristic wavenumber o
the energy spectrum@see Eqs.~13! and ~14! for full defini-
tions#. We first demonstrate that the concentration is exac
Gaussian in the limit of vanishinga: This limit corresponds
to either a white-noise in time velocity field~t→0!,3 or to a
space-independent velocity (k0→0). We then calculate the
flatness using the first few terms in an asymptotic series
small a ~Sec. III!, and examine some simple examples
Sec. IV. Simplified formulas for terms in the asymptotic s
ries are listed in Appendix A, and in Appendix B Pade´ ap-
proximants are used to show that our results are not restri
to infinitesimally small values ofa.

II. EXACT RESULTS

The advection of a tracer from a point source at t
origin by a random velocity field is described by the soluti
of the advection equation

]

]t
u1¹•~uu!50, u~x,0!5d~x!. ~2!
6 © 2003 American Institute of Physics
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3547Phys. Fluids, Vol. 15, No. 11, November 2003 Flatness of tracer clouds
Hereudx is the probability, for one realization of the rando
velocity u that a marked particle which was at the origin
time t50 will be in the volume elementdx at timet. Taking
the average over the velocity statistics yields the mean p
ability density function~or ‘‘concentration’’!

Q5^u~x,t !&. ~3!

In isotropic turbulence the PDFQ is a function only of time
and the distancer from the source, and soQ(r ,t)dr is the
probability of finding a tracer which was released at the o
gin at time t50 in the spherical (d53) or circular (d52)
shell with radius betweenr and r 1dr.

In the following, the velocity will be assumed to be is
tropic, with Gaussian~multivariate normal! statistics and
mean zero. The effects of molecular diffusion are ignored
clarity, so tracer particles follow the fluid exactly. It is we
known that the concentration profile spreads in an appr
mate Gaussian shape—in particular the width of the clou
often measured by the dispersion@in this paper we use the
isotropic dispersion as defined in~4!, which is three times the
one-dimensional dispersion used in Ref. 8#

D~ t !5^r 2&5E xaxaQ~x,t !dx, ~4!

with the integral being over all of space, and repeated ind
summed from 1 tod, the number of space dimensions (d
52 or 3!. Taking r as the distance from the origin, we hav
r 25xaxa , so r 25x21y2 in two dimensions, andr 25x2

1y21z2 in for d53. In a previous paper8 we addressed the
calculation of the dispersion by means of an asymptotic
ries for small velocity correlation times and confirmed t
theoretical results by calculatinĝr 2& in numerical simula-
tions. It has been noted, however, that the average con
tration does not have an exact Gaussian shape for all time1,5

The deviation from a Gaussian shape may be measure
the flatness or kurtosis, defined as

f ~ t !5
^r 4&

^r 2&2
,

with ^r 4& defined similarly to~4!

^r 4&5E xaxaxbxbQ~x,t !dx. ~5!

The flatness of the distributionQ(x,t) is defined as

f ~ t !5
^r 4&

^r 2&2
5

* xaxaxbxbQ~x,t !dx

~* xaxaQ~x,t !dx!2
. ~6!

The flatness of ad-space-dimensional Gaussian distributi
is (21d)/d for all times, as may be confirmed by calculatin
the integrals in~6! for the general isotropic distribution with
zero mean and variances2(t):

Q~x,t !5
1

~2ps2~ t !!d/2
expS 2

xaxa

2s2~ t !
D , ~7!

to obtain^r 2&5ds2 and ^r 4&5d(21d)s4. Note that for a
one-dimensional Gaussian distribution the correspond
flatnesŝ y4&/^y2&2 equals 3: It can readily be demonstrat
Downloaded 14 Dec 2005 to 131.215.225.9. Redistribution subject to AIP
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for an isotropic distribution ind space dimensions that^r 2&
5d^y2& and^r 4&5d^y4&1d(d21)^y2&2. Thus the isotropic
flatness and the one-dimensional flatness are related by
equation

^r 4&

^r 2&2
5

1

d

^y4&

^y2&2
1

d21

d
. ~8!

All our results are expressed in terms of the isotropic fl
ness.

As an example of an exactly Gaussian concentration p
file, consider Eq.~2! when the velocity field is independen
of space. The velocity statistics are then fully specified
the covariance

^ua~ t !ub~ t8!&5
1

d
u2dabR~ t2t8!.

We call R(t) the time correlation function of the velocity
note it is symmetric aboutt50, with R(0)51. In this rather
unusual exampleR must be independent of spatial argumen
since the velocity depends only on time; note that in gene
R is defined through Eq.~12! below. The time correlation is
usually assumed to decay to zero ast increases, with a char
acteristic decay timet called the correlation time. The solu
tion for the average concentration can then be shown to
precisely~7! with variance given by

s2~ t !52u2E
0

tE
0

t1
R~ t12t2!dt1dt2 . ~9!

As ~7! is an exact Gaussian form, its flatness is (21d)/d for
all time. In the following we examine how weak space d
pendence in the velocity field results in a concentration d
tribution with flatness less than (21d)/d, with maximum
deviation neart55t. This non-Gaussian flatness is n
present in the limit of vanishing correlation timet→0, and
so is not seen in models with white-noise in time veloc
fields.3

III. ASYMPTOTIC SERIES EXPANSION

A. Series expansion

We begin by Fourier-transforming all space-depend
variables such as

u~k,t !5E u~x,t !e2 ik"xdx. ~10!

Henceforth only such Fourier-transformed variables are e
ployed, so the same symbol is used as in physical space
an isotropic, stationary, and incompressible velocity field ind
space dimensions, the covariance is given by

^ua~k,t !ub~p,t8!&5d~k1p!Qab~k,t2t8!, ~11!

with

Qab~k,t !5
E~k!R~ t,k!

2~d21!pkd21 S dab2
kakb

k2 D . ~12!

Here E(k) is the usual energy spectrum andR(t,k) is the
time correlation function of the velocity. The velocity corre
lation timet may be defined by
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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t5E
0

`

R~ t,k!dt, ~13!

andk0 is chosen to be the wavenumber where the spect
E(k) has its peak. The r.m.s. velocityu is defined by

u25
d21

d E
0

`

E~k!dk. ~14!

We seek to solve Eq.~2! when the parametera @defined in
terms oft, k0 andu by Eq. ~1!# is significantly smaller than
unity.

Equation~2! is transformed to

]

]t
u~k,t !1 i E dpk"u~p,t !u~k2p,t !50,

~15!
u~k,0!51,

which may be recast as an integral equation

u~k,t !512 i E
0

t

dt1E dpk"u~p,t1!u~k2p,t1!. ~16!

We seek a formal solution of~16! by iteration

u~0!51,

u~1!512 i E
0

t

dt1E dpk"u~p,t1!u~0!~k2p,t1!

512 i E
0

t

dt1E dpk"u~p,t1!,

~17!

u~2!512 i E
0

t

dt1E dpk"u~p,t1!u~1!~k2p,t1!

512 i E
0

t

dt1E dpk"u~p,t1!2E
0

t

dt1E
0

t1
dt2

3E dpE dqk"u~p,t1!~k2p!•u~q,t2!.

]

Downloaded 14 Dec 2005 to 131.215.225.9. Redistribution subject to AIP
m

We thus formally construct an infinite series solution to E
~15!, involving multiple integrals over wavevectors and tim
The usefulness of this approach lies in the fact that each t
in the infinite series is stochastic only through the appeara
of multiple velocity terms, and so the series may be avera
term-by-term to yield a series expansion forQ5^u& of the
form

Q~k,t !5q01aq11a2q21a3q31¯, ~18!

wherea is a bookkeeping parameter whose power equals
number of velocity terms in the corresponding integral,qn

represents the multiple wavevector and time integrals wh
integrands depend on the velocity field, andq051. For a
Gaussian velocity field, all even moments may be expres
in terms of the covariance~11!, and all odd moments are
zero:

q15q35q55¯50.

Thusq2 , for instance, is given by

q252E
0

t

dt1E
0

t1
dt2E dpE dq^k"u~p,t1!~k2p!•u~q,t2!&

52E
0

t

dt1E
0

t1
dt2E dpk"Q~p,t12t2!•~k2p!

52E
0

t

dt1E
0

t1
dt2E dpk"Q~p,t12t2!•k, ~19!

where we have used~11! and the incompressibility of the
velocity field. Contributions toq4 come from the average o
four velocity terms, which factors to yield
q45E
0

t

dt1E
0

t1
dt2E

0

t2
dt3E

0

t3
dt4E dpE dq@k"Q~p,t12t2!•k#@k"Q~q,t32t4!•k#

1E
0

t

dt1E
0

t1
dt2E

0

t2
dt3E

0

t3
dt4E dpE dq@k"Q~p,t12t3!•~k2q!#@~k2p!•Q~q,t22t4!•k#

1E
0

t

dt1E
0

t1
dt2E

0

t2
dt3E

0

t3
dt4E dpE dq@k"Q~p,t12t4!•k#@~k2p!•Q~q,t22t3!•~k2p!#. ~20!
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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3549Phys. Fluids, Vol. 15, No. 11, November 2003 Flatness of tracer clouds
The factorization of averages of the Gaussian field into pr
ucts of velocity covariances leads to a sum of (2n)!/2nn!
terms contributing toq2n .

We remark here that the various terms may be accou
for using a diagram expansion method, such as is comm
employed in perturbation expansions over Gaussian fiel9

First, define the diagrams of ordern to be 2n-polygons with
dotted lines joining pairs of vertices. For example, the d
gram of order 1 representing Eq.~19! is shown in Fig. 1,
with the three diagrams of order 2~representingq4) in Fig.
2. The expressions for theq2n may be recovered from th
diagrams of ordern by applying the following diagram rules
Consider the middle diagram of Fig. 2, which represents
second term on the right hand side of~20!:

E
0

t

dt1E
0

t1
dt2E

0

t2
dt3E

0

t3
dt4E dpE dq@~k2p!•Q~p,t12t3!

•~k2q!#@~k2p2q!•Q~q,t22t4!•k#. ~21!

Observe that~21! may be deduced from the diagram by a
plying the following rules:

~1! Vertex labels are the time integration variables.
~2! The wavevector integration variables are t

wavevectors labeling the internal dotted lines; these integ
are over all wavevector space.

~3! The vector sum of wavevectors at each vertex
zero, except for the first vertex~labeledt1) which has sum
1k, and the final vertex which has sum2k.

To compose the integrand, we multiply the factors res
ing from each of the following rules:

~4! For each internal dotted line, consider the start a
end vertices. In the diagram example above, for the inte
dotted line labeledp, the start vertex is labeledt1 and the end
vertex is labeledt3 . Both the start and the end vertex ha
solid lines emanating from them; suppose the waveve
labels on these lines area andb, respectively. Then the fac
tor we seek is2a"Q(p,ts2te)•b wherep is the dotted line
label andts andte are the start and end vertex labels.~If the
end vertex is the last vertex, then letb5k.! In the example,
a5k2p and b5k2q, so that the factor is2(k2p)
•Q(p,t12t3)•(k2q). By applying this rule again to the sec
ond dotted line, we find another factor of2(k2p2q)
•Q(q,t22t4)•k. Further simplification may be possible du
to incompressibility.

FIG. 1. Diagram of order 1.
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These rules form an algorithm for finding theq2n terms
in the iteration expansion ofQ and so may be implemente
using a symbolic manipulation program likeMATHEMATICA .

B. Renormalization

The behavior of each diagram as time increases de
mines the quality of the approximation toQ resulting from
truncating the infinite series. If the time correlation functio
R(t,k) decays sufficiently quickly~e.g., exponentially! to
zero ast→`, it can be shown thatconnecteddiagrams, i.e.,
those which cannot be split into two separate parts by cut
one solid line, grow linearly in time and so their contributio
to ]Q/]t remains bounded ast→`. On the other hand,un-
connected diagramssuch as the first term on the right han
side of ~20! grow faster than linearly, and their contributio
to ]Q/]t is unbounded. With a view to renormalizing th
infinite series~18! to eliminate these secular effects, we co
sider simple equivalent equations describing the evolution
the PDFQ. For example, the functional-derivative closu
~FDC! method advanced in Ref. 8 leads to an integrodiff
ential equation forQ

]Q

]t
5E

0

t

K1~k,s!Q~k,s!ds, ~22!

and an asymptotic expansion is derived for the kernelK1 .
However, following the method of cumulant expansion,9,10

we suggest that a simpler ansatz

]Q

]t
5K~k,t !Q~k,t !, ~23!

is equally as effective a renormalization, and indeed gen
ates the same results as the FDC method with a signifi
reduction in the complexity of algebraic manipulations. No
ing that the solution to~23! satisfying the initial condition is

Q~k,t !5expF E
0

t

K~k,T!dTG , ~24!

it remains only to find an expression forK as a cumulant
expansion.

We seek an expansion forK in even powers ofa

K5K01a2K21a4K41¯, ~25!

and utilize this and~18! into ~23! to match coefficients of
powers ofa term-by-term

a2
]q2

]t
1a4

]q4

]t
1¯5~K01a2K21a4K41¯ !

3~q01a2q21a4q41¯ !,

~26!
.
FIG. 2. The three diagrams of order 2
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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yielding theKn in terms of the knownqn

K050, K25
1

q0

]q2

]t
,

~27!

K45
1

q0
F]q4

]t
2

q2

q0

]q2

]t G .
]

Thus, for example,K2 is found from~19! to be

K252E
0

t

dt2E dpk"Q~p,t2t2!•k, ~28!

and again, eachKn may be calculated using symbolic m
nipulation computer packages. Moreover, it is found that
undesirable growth of terms ast→` noted above is no
present in the expansion forK, thus allowing us to use~24!
as an approximation toQ over all time.

C. Flatness of the Q PDF

Having found an expansion for the probability dens
function of tracers~24!, it remains only to use this to calcu
late the flatness of the distribution, according to Eq.~6!. In
terms of the Fourier transformed variables, the mome
such as~5! may be written as

^r 4&5
]4

]ka]ka]kb]kb
Q~k,t !uk50 , ~29!

and for an isotropic distribution~i.e., Q depending only on
magnitudek of k, independent of orientation! in d dimen-
sions this reduces to

^r 4&5
d~21d!

3

]4

]k4
Q~k,t !uk50 . ~30!

Similarly, the isotropic second moment is

^r 2&52d
]2

]k2
Q~k,t !uk50 ,

and so the flatness~6! is

f ~ t !5
21d

3d

]4Q

]k4 U
k50

S 2
]2Q

]k2 U
k50

D 2 , ~31!

which is written in terms ofK using ~24!

f ~ t !5
21d

3d F 31

]4

]k4
*0

t K~k,T!dTuk50

S 2
]2

]k2
*0

t K~k,T!dTU
k50

D 2G . ~32!

Using the expansion~25! of K derived above, it is straight
forward to calculate the derivatives in~32! term-by-term; for
convenience we introduce the notation
Downloaded 14 Dec 2005 to 131.215.225.9. Redistribution subject to AIP
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Dn52
]2

]k2 E0

t

Kn~k,T!dTuk50 ,

~33!

Fn5
]4

]k4 E0

t

Kn~k,T!dTuk50 ,

and so~32! becomes

f ~ t !5
21d

3d F31
(n51

` a2nF2n~ t !

~(n51
` a2nD2n~ t !!2G . ~34!

Noting thatF25F450, we list in Appendix A the formulas
for F6 andD2 to D6 , having performed all angular integral
and so reducing the expressions to multiple integrals o
time and wavenumbers.

IV. TIME CORRELATION FUNCTIONS

The calculation of the tracer flatness for a given pert
bation parametera has been reduced to the evaluation of t
quantitiesDn and Fn as in Eq.~34!. In this section some
simple time correlation functions are chosen to demonst
the lowest-order perturbation results. Pade´ approximants are
employed in Appendix B to support the claim that the resu
presented here are qualitatively correct for noninfinitesim
a.

A. Exponential time correlation

To simplify the analysis we take the time correlatio
function to have the following form:

R~ t,k!5e2vutu, ~35!

wherev5t21 is the inverse of the velocity correlation time
This is a rather unrealistic approximation to the time cor
lation of turbulent velocity fields, chiefly because it is n
differentiable att50, and also due to its lack of dependen
on the wavenumberk ~see Refs. 8 and 11!. However, it re-
sults in a number of simplifications of our analysis whi
enable the structure of the expansion to be clearly shown
note further that numerical computation by quadrature is
ways possible in the general case. Such a quadrature com
tation is performed for a correlation function which
smooth att50 in the next section, and the flatness beha
similarly to the analytical results derived here.

With R independent of wavenumber, the integrals overp,
q, and r reduce to moments of the energy spectrum,
which we introduce the notation

mi5
d21

d E
0

`

kiE~k!dk. ~36!

The factor of (d21)/d ensures the simple identificationm0

5u2. Note that ifR is wavenumber-dependent, then the fu
quadrature expressions given in Appendix A must be eva
ated, whereas assumingR to depend only on the time differ
ence allows us to evaluate all wavenumber integrals in te
of the moments~36! of the energy spectrum.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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3551Phys. Fluids, Vol. 15, No. 11, November 2003 Flatness of tracer clouds
We now nondimensionalize variables by a characteri
wavenumberk0 and the correlation timev21, and note that
the bookkeeping parameter emerges naturally as the no
mensional number

a5
uk0

v
. ~37!

Further simplification follows by using~35! and introducing
the Laplace transform

D̃~s!5E
0

`

e2stD~ t !dt,

so that the series expansion of the dispersionD(t) trans-
forms to

D̃~s!5a2D̃2~s!1a4D̃4~s!1¯, ~38!

with

D̃2~s!52u2
1

s2~s11!
~39!

and

D̃4~s!522u2m2

1

s2~s11!2~s12!
. ~40!

Similarly, the Laplace transform of the fourth tracer mome
is

F̃~s!5a2F̃2~s!1a4F̃4~s!1a6F̃6~s!1¯, ~41!

with

F̃2~s!5F̃4~s!50, ~42!

and, ford53,

F̃6
3D~s!52

144u4m2~5s18!

5s2~s11!3~s12!2~s13!
. ~43!

The two-dimensional versions ofD have the same form a
above, but theF6 term must be multiplied by 5/4 to go from
the three-dimensional~43! to the two-dimensional equiva
lent:

F̃6
2D~s!52

36u4m2~5s18!

s2~s11!3~s12!2~s13!
. ~44!

Each of the series may be viewed as asymptotic exp
sions abouta50, as they are clearly power series in ev
powers ofa. Recalling the definition ofa as uk0 /v, we
identify thea→0 limit as the limit of small correlation time
~white noise in time,v→`!, or of a weak space dependen
of the velocity field (k0→0). The latter interpretation is re
lated to the exact solution discussed in Sec. II. We show
there that a velocity field that depends only on time leads
a tracer concentration which is exactly Gaussian. Being
dependent of space means that the energy spectrum is a
function: E(k)}d(k), so all momentsmn are zero and all
terms in the series forF vanish identically.

The limiting behavior ofDn(t) andFn(t) as t→0 may
be found by inverting the Laplace transform, or more sim
Downloaded 14 Dec 2005 to 131.215.225.9. Redistribution subject to AIP
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by expanding the transformsD̃n(s) and F̃n(s) abouts5`,
then reading off the coefficient oftn as 1/n! times the coef-
ficient of s2(n11). We find

D2~ t !5u2t21O~ t3!, ~45!

D4~ t !52 1
12u

4m2t41O~ t5!, ~46!

F6
3D~ t !52 1

5u
4m2t61O~ t7!, ~47!

F6
2D~ t !52 1

4u
4m2t61O~ t7! as t→0, ~48!

and in general

D2n~ t !5O~ t2n!, F2n~ t !5O~ t2n! as t→0. ~49!

Similarly the limit ast→` may be found without invert-
ing the Laplace transform by expanding it into partial fra
tions of the form

A1

s2
1

A2

s
1(

i 51

l
Bi

~s2bi !
ni

1¯, ~50!

which inverts to

A1t1A21exponentially decaying terms,

provided that the polesbi all have negative real part. Usin
this, we find

D2~ t !52u2t1o~ t !, ~51!

D4~ t !52u2m2t1o~ t !, ~52!

F6
3D~ t !52 96

5 u4m2t1o~ t !, ~53!

F6
2D~ t !5224u4m2t1o~ t ! as t→`, ~54!

with the general result being

Dn~ t !5O~ t !, Fn~ t !5O~ t ! as t→`. ~55!

Consider the flatness whena!1, i.e., when the correla
tion time is short or the velocity is only weakly spac
dependent. Then we approximateF and D by the first non-
zero terms in their expansions

D~ t !'a2D2~ t !, F~ t !'a6F6~ t !,

and find the flatness from~34! to be

f ~ t !'
21d

3d F31a2
F6~ t !

~D2~ t !!2G .

As the limit a→0 corresponds to the exactly Gaussian ca
we define theexcess flatnessas

f a~ t !5
1

m2

F6~ t !

~D2~ t !!2
. ~56!

From the limits discussed above, it is clear that the exc
flatness approaches zero ast→0 and ast→`. Inverting
~39! and ~43! yields an analytical expression for the exce
flatness:
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f a
3D~ t !5

22~24t289!27e23t218~2t11!e22t29~6t2114t117!e2t

10~ t211e2t!2
. ~57!
b

th

w
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ess
The corresponding two-dimensional value is obtained
multiplying ~57! by 5/4. The minimum neart55 ~see Fig. 3!
is accurately determined numerically to demonstrate that
maximum deviation from the Gaussian flatness occurs at~di-
mensional! time

t55.0630v21, ~58!

with flatness

f 3D5 5
9@31a2m2f a

3D~5.0630!#5 5
320.264 346a2m2 .

~59!

Similarly, the two-dimensional minimum flatness is

f 2D5220.396 518a2m2 . ~60!

As t→`, the excess flatness returns to zero from belo
its asymptotic form can be found readily from~57!, or using
~51! and ~53! to be

f a
3D~ t !;2

24

5

1

t
1oS 1

t D , ~61!

f a
2D~ t !;2

6

t
1oS 1

t D as t→`. ~62!

In Appendix B a simple energy spectrum is used to c
culate higher order terms in the flatness, and Pade´ approxi-
mants extend the conclusions reached here to noninfini
mal values ofa.
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B. Other time correlation functions

Equation ~35! assumes a monotonically decaying tim
correlation. It was shown in Ref. 8 that the asymptotic ser
for the dispersion has different forms depending on whet
the time correlation function decays monotonically to ze
or has an oscillatory tail. We therefore consider here a g
eralization of~35! which has a nonmonotonic decay to zer

R~ t,k!5e2vutu cos~at!. ~63!

The Laplace transform techniques of the previous section
also applicable here, and the excess flatness may aga
expressed as~56!. However, even with the aid of Laplac
transforms, the expression forF6 is algebraically compli-
cated and so the detailed form is omitted here~but may be
obtained from the corresponding author!. The asymptotic be-
havior of the excess flatness is given by

f a
3D~ t !;2

24

5

123a2

~11a2!3

1

t
1oS 1

t D as t→`, ~64!

which reduces to~61! at a50. A similar generalization of
~62! holds in two dimensions. Note that the excess flatn
decays to zero from above ifa.1/A3. This behavior, and
the appearance of oscillations inf a(t) are shown in Fig. 4.

As a final example of theO(a2) excess flatness, we
consider the time correlation function

R~ t,k!5e2v2t2/2. ~65!
FIG. 3. First order excess flatness~57! for exponential
time correlation.
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FIG. 4. First order excess flatness for oscillatory time correlation, for various values ofa: ~a! a50.5, ~b! a51, ~c! a53.

FIG. 5. First order excess flatness in three dimensio
for time correlation function~65!.
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FIG. 6. Pade´ approximantsf @0,0# ~solid!, f @0,1# ~dashed!,
and f @1,1# ~dotted! in three dimensions, witha50.75.
er
th
n

n-
t

th

f

u

cu
br
ve

g

i
rr
e
I

a
a
l

n
s

for
o
ibit

It

sent
ed
int
om
or
le,
n-
is

r-

nd
re-
ch

III

rals
the
s
ve-

nt
p-
In this case the time integrals must be calculated num
cally; see Fig. 5 for the three-dimensional case. Again,
two-dimensional flatness is 5/4 times the three-dimensio
value. Note the negative excess neart55 and slow return to
zero excess flatness ast→`, similar to that found analyti-
cally for the exponential time correlation function. We co
clude that the properties of the flatness demonstrated in
previous section are not strongly dependent upon
smoothness ofR at t50.

V. CONCLUSION

We have described an asymptotic series expansion
the PDF of tracers~i.e., mean concentration field! advected
by a Gaussian random velocity field in the form of a cum
lant expansion. As noted following Eq.~23!, the renormal-
ization procedure which ensures that the series is nonse
in time is not unique, but the approach taken here is alge
ically simpler than, for instance, the functional-derivati
closure method of Ref. 8, and leads to the same results.

Our main result is Eq.~34! for the tracer flatness alon
with the quadrature expressions forDn andFn given in Ap-
pendix A. In principle, these imply that the tracer flatness
fully specified once the energy spectrum and the time co
lation function R of the velocity field are given. We hav
examined some particularly interesting examples in Sec.
which include an analytic formula~57! for the flatness when
R is an exponential function, and a generalization to the c
whereR has an oscillatory tail. Numerical quadrature for
smooth monotonicR yields similar results to the analytica
expression~57!, and Pade´ approximants~Appendix B! ex-
tend the result beyond infinitesimal values ofa, at least for
the single-scale energy spectrum~66!.

The conclusion to be drawn from Figs. 3, 5, and 6 a
the formulas forF6 in Appendix A is that the tracer PDF i
platykurtic ~i.e., has negative excess flatness! when the ve-
locity correlation functionR is monotonically decaying in
time, at least for low values of the parametera. This conclu-
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sion is supported by Kraichnan’s numerical simulations
finite values ofa,4 but contradicts the predictions of tw
models in Ref. 6. Interestingly, the excess flatness can exh
positive values whenR has an oscillatory tail, see Fig. 4.
would be interesting to extend Kraichnan’s4 kinematic simu-
lations to examine such cases; indeed we hope the pre
work will stimulate such studies. These could be perform
by sequentially releasing particles from a single fixed po
in space into a velocity field generated as a sum of rand
Fourier modes.4 The accurate computation of trajectories f
a sufficiently large number of particles should, in princip
allow construction of the moments of the particle radial de
sity distribution, and hence of the flatness. Further work
also required to calculate the flatness whenR depends non-
trivially on the wavenumber as well as on the time diffe
ence.
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APPENDIX A: HIGHER-ORDER TERMS IN EQ. „34…

The asymptotic series expansion detailed in Sec.
leads to expression~33! for the flatness, involving multiple
integrals over wavevectors and time. The angular integ
may be performed exactly, and so the reduced forms for
isotropic D2n and F2n for n<3 in three dimensions are a
follows. Note that these expressions include general wa
number dependence in the time correlation functionR; fur-
ther simplification follows when wavenumber-independe
correlation functions are considered as in Sec. IV and A
pendix B.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp



3555Phys. Fluids, Vol. 15, No. 11, November 2003 Flatness of tracer clouds
D2
3D5

4

3 E0

t

dt1E
0

t1
dt2E

0

`

dpE~p!R~ t12t2 ,p!,

D4
3D52

8

9 E0

t

dt1E
0

t1
dt2E

0

t2
dt3E

0

t3
dt4E

0

`

dpE
0

`

dqp2E~p!E~q!R~ t12t4 ,p!R~ t22t3 ,q!,

D6
3D5E

0

`

dpE
0

`

dqE
0

`

drE
0

t

dt1E
0

t1
dt2E

0

t2
dt3E

0

t3
dt4E

0

t4
dt5E

0

t5
dt6E~p!E~q!E~r !

3F16p4

27
R~ t12t6 ,p!R~ t22t5 ,q!R~ t32t4 ,r !1

16p2q2

27
R~ t12t6 ,p!R~ t22t5 ,q!R~ t32t4 ,r !

1
16p4

27
R~ t12t6 ,p!R~ t22t4 ,q!R~ t32t5 ,r !1

16p4

27
R~ t12t6 ,p!R~ t22t3 ,q!R~ t42t5 ,r !

2
16p2q2

135
R~ t12t5 ,p!R~ t22t6 ,q!R~ t32t4 ,r !2

8p2q2

135
R~ t12t4 ,p!R~ t22t6 ,q!R~ t32t5 ,r !

2
8p2r 2

135
R~ t12t5 ,p!R~ t22t4 ,q!R~ t32t6 ,r !2

8p2r 2

135
R~ t12t4 ,p!R~ t22t5 ,q!R~ t32t6 ,r !G ,

F2
3D50,

F4
3D50,

F6
3D52

64

45E0

`

dpE
0

`

dqE
0

`

drE
0

t

dt1E
0

t1
dt2E

0

t2
dt3E

0

t3
dt4E

0

t4
dt5E

0

t5
dt6E~p!E~q!E~r !

3@4p2R~ t12t6 ,p!R~ t22t5 ,q!R~ t32t4 ,r !14p2R~ t12t6 ,p!R~ t22t4 ,q!R~ t32t5 ,r !

14p2R~ t12t6 ,p!R~ t22t3 ,q!R~ t42t5 ,r !1~2p212q2!R~ t12t5 ,p!R~ t22t6 ,q!R~ t32t4 ,r !

1~p212q2!R~ t12t4 ,p!R~ t22t6 ,q!R~ t32t5 ,r !12q2R~ t12t3 ,p!R~ t22t6 ,q!R~ t42t5 ,r !

1~2p21r 2!R~ t12t5 ,p!R~ t22t4 ,q!R~ t32t6 ,r !1~p21q21r 2!R~ t12t4 ,p!R~ t22t5 ,q!R~ t32t6 ,r !

12p2R~ t12t5 ,p!R~ t22t3 ,q!R~ t42t6 ,r !1q2R~ t12t3 ,p!R~ t22t5 ,q!R~ t42t6 ,r !#.

In two dimensions, the corresponding expressions are

D2
2D5E

0

t

dt1E
0

t1
dt2E

0

`

dpE~p!R~ t12t2 ,p!,

D4
2D52

1

2 E0

t

dt1E
0

t1
dt2E

0

t2
dt3E

0

t3
dt4E

0

`

dpE
0

`

dqp2E~p!E~q!R~ t12t4 ,p!R~ t22t3 ,q!,

D6
2D5E

0

`

dpE
0

`

dqE
0

`

drE
0

t

dt1E
0

t1
dt2E

0

t2
dt3E

0

t3
dt4E

0

t4
dt5E

0

t5
dt6E~p!E~q!E~r !

3Fp4

4
R~ t12t6 ,p!R~ t22t5 ,q!R~ t32t4 ,r !1

p2q2

4
R~ t12t6 ,p!R~ t22t5 ,q!R~ t32t4 ,r !

1
p4

4
R~ t12t6 ,p!R~ t22t4 ,q!R~ t32t5 ,r !1

p4

4
R~ t12t6 ,p!R~ t22t3 ,q!R~ t42t5 ,r !

2
p2q2

8
R~ t12t5 ,p!R~ t22t6 ,q!R~ t32t4 ,r !2

p2q2

16
R~ t12t4 ,p!R~ t22t6 ,q!R~ t32t5 ,r !

2
p2r 2

16
R~ t12t5 ,p!R~ t22t4 ,q!R~ t32t6 ,r !2

p2r 2

16
R~ t12t4 ,p!R~ t22t5 ,q!R~ t32t6 ,r !G ,

F2
2D50, F4

2D50, F6
2D5

135

256
F6

3D .
Downloaded 14 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



3556 Phys. Fluids, Vol. 15, No. 11, November 2003 J. P. Gleeson and D. I. Pullin
FIG. 7. Pade´ approximantsf @0,0# ~solid!, f @0,1# ~dashed!,
and f @1,1# ~dotted! in two dimensions, witha50.5.
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APPENDIX B: PADÉ APPROXIMANTS

In order to extend the analysis to include higher pow
of a, it is convenient to adopt the exponential time corre
tion function ~35! and a single-scale~dimensional! energy
spectrum

E~k!5
d

d21
u2d~k2k0!, ~66!

which allows us to set all moments of the energy spectrum
unity, mn51 ~having nondimensionalized withk0 andv as
before!.

Even with this simplification, the higher order terms i
volve significant symbolic manipulation, and result in com
plicated expressions forD̃6 , D̃8 , F̃8 , and F̃10, which are
omitted here for brevity. Having calculated these higher
der terms in the asymptotic series, we use P´
approximants12 to accelerate convergence of the asympto
series. We note that such methods were used successfu
Ref. 8 for the related problem of calculating turbulent diff
sivities. Pade´ approximants toD andF are defined as rationa
functions ofa which yield the correct asymptotic series f
small a:

D @0,0#~ t !5D2~ t !, D @0,1#~ t !5
D2~ t !

12a2
D4~ t !

D2~ t !

,

D @1,1#~ t !5

D21a2
D4

22D2D6

D4

12a2
D6

D4

,

F @0,0#~ t !5F6~ t !, F @0,1#~ t !5
F6~ t !

12a2
D8~ t !

D6~ t !

,
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F @1,1#~ t !5

F61a2
F8

22F6F10

F8

12a2
F10

F8

.

The excess flatness is thus successively approximated b

f @0,0#5
F @0,0#

~D @0,0#!2
, f @0,1#5

F @0,1#

~D @0,1#!2
, f @1,1#5

F @1,1#

~D @1,1#!2
,

and yields curves that lie close together fora on the order of
1/2, see Figs. 6 and 7 for the three- and two-dimensio
cases, respectively. The fact that successive Pade´ approxi-
mants lie close together may heuristically be taken to in
cate that the exact value of the excess flatness is indeed n
tive even whena is not infinitesimally small, and so the PD
Q is platykurtic ~has sub-Gaussian flatness!. This is sup-
ported by the numerical simulations of Kraichnan,4 which
are performed at relatively high values ofa, and is contrary
to the predictions of the multifractal and Markovian jum
models examined by Sawford and Borgas.6
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