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ABSTRACT

We present an efficient full-volume automatic dense-pick-

ing method for flattening seismic data. First local dips �step-

outs� are calculated over the entire seismic volume. The dips

are then resolved into time shifts �or depth shifts� using a non-

linear Gauss-Newton iterative approach that exploits fast

Fourier transforms to minimize computation time. To handle

faults �discontinuous reflections�, we apply a weighted inver-

sion scheme. The weight identifies locations of faults, allow-

ing dips to be summed around the faults to reduce the influ-

ence of erroneous dip estimates near the fault. If a fault model

is not provided, we can estimate a suitable weight �essentially

a fault indicator� within our inversion using an iteratively re-

weighted least squares �IRLS� method. The method is tested

successfully on both synthetic and field data sets of varying

degrees of complexity, including salt piercements, angular

unconformities, and laterally limited faults.

INTRODUCTION

Despite numerous advances in computational power in recent

years, seismic interpretation still requires significant manual pick-

ing. One of the main goals of interpretation is to extract geologic and

reservoir features from seismic data. One commonly used interpre-

tation technique that helps with this effort is flattening data on hori-

zons �e.g., Lee, 2001�, also known as stratal slicing �Zeng et al.,

1998�. This procedure removes structure and allows the interpreter

to see geologic features as they were emplaced. For instance, after

flattening seismic data, an interpreter can see in one image an entire

floodplain complete with meandering channels. However, to flatten

seismic data, a horizon needs to be identified and tracked throughout

the data volume. If the structure changes often with depth, then many

horizons need to be identified and tracked. This picking process is

time consuming and expensive.

Certain visualization products and autopickers seek to make pick-

ing and flattening processes as efficient as possible. However, they

often suffer from weaknesses that prevent them from being truly

practical. For example, 3D volume interpretation packages allow in-

terpreters to view their data with depth perception using stereo glass-

es. These products have an opacity ability �James et al., 2002� that al-

lows interpreters to make unwanted data transparent. Unfortunately,

unless the zone of interest has a known unique range of attribute val-

ues, interpreters resort to picking on 2D slices. Additionally, tradi-

tional amplitude-based autopickers can fail if the horizon being

tracked has significant amplitude variation or, worse, polarity rever-

sal. Other tracking techniques such as artificial neural networks are

less sensitive to amplitude variations but are still prone to error if the

seismic wavelet character varies significantly from the training data

�Leggett et al., 1996�.

In this document, we propose a method for automatically flatten-

ing entire 3D seismic cubes without manual picking. This concept

was previously presented by Lomask and Claerbout �2002� and Lo-

mask �2003a, b�. It is an efficient algorithm that intrinsically per-

forms automatic dense picking on entire 3D cubes at once. Our

method involves first calculating local dips �stepouts� everywhere in

the data using a dip estimation technique �Claerbout, 1992; Fomel,

2002�. These dips are resolved into time shifts �or depth shifts� via a

nonlinear least-squares problem. We use an iterative Gauss-Newton

approach that integrates dips quickly using fast Fourier transforms

�FFTs�. Subsequently, the data are shifted vertically according to the

summed time shifts to output a flattened volume. Bienati and Spag-

nolini �1998, 2001� and Bienati et al. �1999a, 1999b� use a similar

approach to resolve the dips numerically into time shifts for autop-

icking horizons and flattening gathers but solve a linear version of

the problem. Stark �2004� takes a full-volume approach to achieve

the same goal but unwraps instantaneous phase instead of dips. Bli-

nov and Petrou �2005� use dynamic programming to track horizons

by summing local dips.

Manuscript received by the Editor May 26, 2005; revised manuscript received December 7, 2005; published online July 11, 2006.
1
Stanford Exploration Project, Mitchell Building, Department of Geophysics, Stanford University, Stanford, California 94305. E-mail: lomask@

sep.stanford.edu; antoine@sep.stanford.edu; clearbout@sep.stanford.edu; valencia@sep.stanford.edu.
2
Bureau of Economic Geology, University of Texas atAustin,Austin, Texas 78713. E-mail: sergey.fomel@beg.utexas.edu.

© 2006 Society of Exploration Geophysicists.All rights reserved.

GEOPHYSICS, VOL. 71, NO. 4 �JULY-AUGUST 2006�; P. P13–P20, 4 FIGS.
10.1190/1.2210848

P13



As with amplitude-based autopickers, amplitude variation also

affects the quality of dip estimation and, in turn, impacts the quality

of our flattening method. However, the effect will be less significant

because our method can flatten the entire data cube at once — glo-

bally — in a least-squares sense, minimizing the effect of poor dip

information. Discontinuities in the data from faults tend to corrupt

the local dip estimates at the faults. In this case, weights identifying

the faults are applied within the iterative scheme, allowing recon-

struction of horizons for certain fault geometries. Such weights

could be obtained from a previously determined fault model. If a

fault model is not provided, we automatically generate suitable

weights using iteratively reweighted least squares �IRLS�. Once a

seismic volume is flattened, automatic horizon tracking becomes a

trivial matter of reversing the flattening process to unflatten flat sur-

faces. The prestack applications for this method are numerous. For

example, time shifts can be incorporated easily into an automatic ve-

locity-picking scheme �Guitton et al., 2004�.

In the following sections, we present the flattening methodology

and a series of real-world geologic challenges for this method. The

first is a 3D synthetic data set generated from a model with a dipping

fault and thinning beds. Then we present a structurally simple, 3D

salt piercement field data set from the Gulf of Mexico. We consider it

structurally simple because the geologic dips do not change signifi-

cantly with depth. Increasing complexity, we flatten a 3D field data

set from the North Sea that contains an angular unconformity and

has significant folding. Last, we present a 3D faulted field data set

from the Gulf of Mexico.

FLATTENING THEORY

Ordinarily, to flatten a single surface, each sample is shifted verti-

cally to match a chosen reference point. For instance, this reference

point can be the intersection of the horizon and a well pick. In three

dimensions, this reference point becomes a vertical line �reference

trace�. To flatten 3D cubes, our objective is to find a mapping field

� �x,y,t� such that each time slice of this field contains the locations

of all data points along the horizon that happens to intersect the refer-

ence trace at that time slice. We achieve this by summing dips. The

basic idea is similar to phase unwrapping �Ghiglia and Romero,

1994�; but instead of summing phase differences to get total phase,

dips are summed to get total time shifts which are used then to flatten

the data.

The first step is to calculate local dips everywhere in the 3D seis-

mic cube. Dips can be calculated efficiently using a local plane-wave

destructor filter as described by Claerbout �1992� or with an im-

proved dip estimator described by Fomel �2002�. We primarily use

the latter. For each point in the data cube, two components of dip, b

and q, are estimated in the x- and y-directions, respectively. These

can be represented everywhere on the mesh as b�x,y,t� and q�x,y,t�.
If the data to be flattened are in depth, then dip is dimensionless, but

when the data are in time, dip has units of time over distance.

Our goal is to find a time-shift �or depth-shift� field � �x,y,t� such

that its gradient approximates the dip p�x,y,��. The dip is a function

of � because for any given horizon, the appropriate dips to be

summed are the dips along the horizon itself. Using the matrix repre-

sentation of the gradient operator �� = � �

�x

�

�y
�T

� and the estimated

dip �p = �b q�T�, our regression �developed inAppendix A� is

�� �x,y,t� = p�x,y,�� . �1�

Because the estimated dip field p�x,y,�� is a function of the un-

known field � �x,y,t�, this problem is nonlinear and therefore diffi-

cult to solve directly. We solve it using a Gauss-Newton approach by

iterating over the following equations:

r = ��k�x,y,t� − p�x,y,�k� , �2�

�� = ���T
��−1

�
T�r , �3�

�k+1�x,y,t� = �k�x,y,t� + �� , �4�

where the subscript k denotes the iteration number.

A more intuitive way to understand this method is to consider the

first iteration. If no initial solution is provided, �0 will be zero and the

residual r will be the input dips p along each time slice. These dips

are then summed into time shifts using equation 3. At this point,

these time shifts can be used to flatten the data. However, because the

dips were summed along time slices and not along individual hori-

zons, the data will not be perfectly flat. The degree that the data are

not flat is related to the variability of the dip in time.At this point, we

could reestimate new dips on the partially flattened data and then re-

peat the process. Iterating in this way will eventually flatten the data.

This is essentially how our method works, but instead of reestimat-

ing dips at each iteration, we correct the original dips at each itera-

tion with equation 2. Not only is this more efficient than estimating

new dips at each iteration, but it is also more robust because disconti-

nuities introduced by flattening create inaccurate dips.

Convergence is generally reached when the change in normalized

residual between consecutive iterations is smaller than a user-speci-

fied tolerance �, i.e.,

�rk−1�− �rk�
�r0�

� �. �5�

A value � = 0.001 often gives sufficiently flat results. An appealing

alternative stopping criterion would be to consider only the absolute

value of the residual �rk� because it is essentially the sum of the re-

maining dips. In this case, the stopping tolerance would be the user-

specified minimum average dip value. Unfortunately, dip value is

very sensitive to the amount of noise and, consequently, would not

make a satisfactory stopping criterion. The stopping criterion in

equation 5 is less sensitive to the absolute value of the noise because

it considers only the change in residual from iteration to iteration.

Once convergence is achieved, the resulting time-shift field � �x,y,t�
contains all of the time shifts required to map the original unflattened

data to flattened data. This is implemented by applying the time

shifts relative to a reference trace. In other words, each trace is shift-

ed to match the reference trace. For simplicity, we assume the refer-

ence trace to be a vertical line; however, it could, in principle, be

nonvertical or even discontinuous. In general, we operate on one

time slice at a time. After iterating until convergence, we then select

the next time slice and proceed down through the cube. In this way,

each time slice is solved independently. However, the number of it-

erations can be significantly reduced by passing the solution of the

previous time slice as an initial solution to the current time slice.

To improve efficiency greatly, we solve equation 3 in the Fourier

domain using the FFT. We apply the divergence to the estimated dips

and divide by the z-transform of the discretized Laplacian in the Fou-

rier domain, i.e.,
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�� � FFT2D
−1� FFT2D��Tr�

− Zx
−1 − Zy

−1 + 4 − Zx − Zy

� , �6�

where Zx = eiw�x and Zy = eiw�y. This fast Fourier approach is similar

to the method of Ghiglia and Romero �1994� for unwrapping phase.

This amounts to calling both a forward and inverse FFT at each itera-

tion. The ability to invert the 2D Laplacian in one step is the key to

the method’s computational efficiency. To avoid artifacts in the Fou-

rier domain, we mirror the divergence of the residual �Tr before we

apply the Fourier transform. Mirroring is described by Ghiglia and

Pritt �1998� for application to 2D phase unwrapping. They also de-

scribe a modification that uses cosine transforms instead of FFTs to

eliminate the need for mirroring.

The flattening process stretches or compresses the data in time, al-

tering the spectrum. Even worse, the flattening process can disrupt

the continuity of the data. To ensure a monotonic and continuous re-

sult, one should first smooth the input dips in time �or depth�. In some

instances, it may be necessary to enforce smoothness while integrat-

ing the dips. This can be accomplished by defining a 3D gradient op-

erator with an adjustable smoothing parameter as

��� = 	
��

�x

��

�y

�
��

�t


 � 	
b

q

0

 = p . �7�

Our new operator �� has a scalar parameter � used to control the

amount of vertical smoothing. In the case of flattening an image in

depth, � is dimensionless; in the case of time, it has units of time over

distance. This operator requires integrating the entire 3D volume of

dips at once rather than slice by slice. The 2D FFTs in equation 6 are

replaced with 3D FFTs. Consequently, each iteration is slowed.

The magnitude of the smoothing parameter � depends on compet-

ing requirements of the amount of noise and structural complexity. If

the structure is changing considerably with time, then it should be

chosen to be as small as possible. However, if there is significant

noise resulting in erroneous dips, it should be larger.

There is a subtle difference between smoothing the input dips or

smoothing the time-shift field. The time shift is essentially an inte-

gration of the input dips, so small errors in the input dips can accu-

mulate into large errors in the cumulative time-shift field. In the

same way that traditional amplitude-based autopickers can get off

the intended horizon and jump to the wrong horizon by making one

error, merely smoothing the input dips can cause this algorithm to

flatten the wrong reflector. This is less likely to occur by smoothing

the time-shift field.

Weighted solution for faults

Local dips estimated at fault discontinuities can be inaccurate. To

prevent such inaccurate dips from adversely affecting the quality of

the flattening, we can sum dips around the faults and ignore the spu-

rious dips across the faults to get a flattened result; a weighting is ap-

plied to the residual to ignore fitting equations that are affected by the

bad dips estimated at the faults. The regression to be solved is now

W�� �x,y,t� = Wp�x,y,�� . �8�

Equation 3 should then become

�� = ��TWTW��−1
�

TWTr . �9�

However, because we cannot apply a nonstationary weight in the

Fourier domain, we ignore the weights in equation 9 and iterate over

the same equations as before, except equation 2 is now replaced with

r = W���k�x,y,t� − p�x,y,�k�� . �10�

By ignoring the weights in equation 9, we are able to still use the

Fourier method in equation 6. Naturally, this means that the Fourier

method is not approximating the inverse as well as before, causing

the algorithm to need more iterations to converge. This approach is

similar to that of Ghiglia and Romero �1994� for phase unwrapping.

IRLS for fault weights

We also have an option of automatically creating the fault weights

from the data cube itself within the inversion. It is known that the �1

norm is less sensitive to spikes in the residual �Claerbout and Muir,

1973�. Minimizing the �1 norm makes the assumption that the resid-

uals are exponentially distributed and have a long-tailed distribution

relative to the Gaussian function assumed by the �2 norm inversion.

We can take advantage of this to honor dips away from faults and ig-

nore inaccurate dips at faults. By iteratively recomputing a weight

and applying it in equation 10, we tend to ignore outlier dip values

that occur at faults. By gradually ignoring more and more of the out-

liers, the solution is no longer satisfying an �2 �least-squares� cost

function but another more robust cost function. Our weight function

forces a Geman-McClure distribution �Geman and McClure, 1987�

using

W =
1

�1 + r2/r̄2�2
, �11�

where r̄ is an adjustable damping parameter. We choose the Geman-

McClure distribution because it is very robust and tends to create

weights that are almost binary, much like a fault indicator. The re-

sulting fault indicator model is unique in that it represents the fault

picks that best flatten the data. This IRLS approach adds consid-

erably more iterations to the flattening process. Also, it depends

strongly on the quality of the data, precluding its use on very noisy

data; with such data it tends to create false faults.

The damping parameter r̄ controls the sensitivity to outliers. If r̄ is

large, then the weight will be closer to one everywhere and, as a re-

sult, almost all of the dips will be honored. If r̄ is small, more of the

outlier dips will be ignored. If r̄ is too small, then dips that are not af-

fected by faults and noise can be ignored, creating false faults. Prac-

tice has shown that it is better to start out with a relatively large

damping parameter value of r̄ � 2 and then scale it by 0.8 when the

weight is no longer changing. This generally means scaling it every

five IRLS iterations.

Computational cost

For a data cube with dimensions n = n1 � n2 � n3, each iteration

requires n1 forward and reverse 2D FFTs. Therefore, the number of
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operations per iteration is about 8n�1 + log�4n2n3��. The number of

iterations is a function of the variability of the structure and the de-

gree of weighting. For instance, if the structure is constant with time

�or depth�, it will be flattened in one iteration �whereas in this case p

is independent of �, causing the problem to be linear�. On the other

hand, if a weight is applied and the structure changes much with

depth, it may take as many as 100 iterations. The IRLS approach re-

quires many more iterations because the problem is solved again

each time a new weight is estimated. A typical problem may take ten

IRLS iterations, causing a tenfold increase in computation time.

However, initializing each slice with the solution of the previous

slice can greatly reduce the total number of iterations required to

converge.

EXAMPLES OF 3D FLATTENING

We demonstrate this flattening method’s efficacy on a synthetic

data set and field 3D data sets. We start with a synthetic data set to il-

lustrate how this method can handle data with faults and folds, and

then we test the method on several 3D field data sets with varying de-

grees of structural complexity.

Synthetic data

Figure 1a is a 3D synthetic data set that presents two geologic

challenges. First, the structure is changing with depth, requiring

multiple nonlinear iterations. Second, a significant fault is present in

the middle of the cube. As can be seen on the time slice, the fault is

limited laterally and terminates within the data cube, i.e., the tip line

of the fault is contained within the data. The tip line is a boundary of a

fault that delineates the limit of slip. Because dips computed at fault

discontinuities are, in general, inaccurate and will compromise the

quality of the flattening result, we use the IRLS method to estimate

iteratively a weight that ignores the inaccurate dips estimated at the

fault and honors the dips away from the fault.

The flattening result is shown in Figure 1b. The location of the ref-

erence trace is displayed on the horizon slice. This trace is held con-

stant while the rest of the cube is shifted vertically to match it. Notice

how the cube is flattened accurately except in the area of the fault it-

self. The method is able to flatten this cube without prior information

of the fault location because the fault is laterally limited and the S/N

ratio is high. It is important that the fault be limited laterally so that

dips can be summed around the fault. Furthermore, the IRLS ap-

proach requires a good S/N ratio to prevent it from creating false

faults. The damping parameter r̄ = 0.2 is found by testing on one

time slice in the center of the cube. Initially, it was set at a higher val-

ue of r̄ = 2 and was then gradually lowered until the results im-

proved. If we had already had a fault model or automatic fault detec-

tor, such as a coherency cube �Bahorich and Farmer, 1995�, we could

have passed that to the inversion as a weight instead of implementing

the less robust and more computationally expensive IRLS method.

The automatically estimated fault weight is shown in solid red in

Figure 1c. The fault weight is slightly shifted from the discontinuity

because the weight identifies poor dips in the flattened cube.

The estimated � �x,y,t� field applied to flatten the data can also be

exploited to reverse the process. That is, we can use the time shifts to

unflatten data that is already flat. By unflattening flat surfaces and

overlaying them on the data, we are essentially picking any or all of

the horizons in the data cube. Figure 1c displays as dashes every fif-

teenth horizon overlain on the synthetic data shown in Figure 1a. We

could just as easily have displayed every horizon, but the image

Figure 1. Asynthetic model with structure varying with depth as well
as a dipping discontinuity representing a fault. �a� The white lines su-
perimposed onto the orthogonal sections identify the location of
these sections: a time slice at 0.332 s, an inline section at y =
0.65 km, and a crossline section at x = 0.66 km. The horizontal
scale for the right face is the same as the vertical scale for the upper
face. The reference trace is located at x = 0.0 km and y = 0.65 km.
�b�As Figure 1a only after flattening using the IRLS method. Notice
how the image is flattened accurately. �c� Result of overlaying
tracked horizons on the image in Figure 1a. The fault weight that was
generated automatically by the IRLS approach is displayed in solid
red. The method successfully tracks the horizons �dashed red�.
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would appear too cluttered. Notice that the horizons are well tracked,

even across a fault. Additionally, the slight shifts in fault weight can

be removed by unflattening the fault weight itself.

Gulf of Mexico salt piercement data

Figure 2a is a field 3D data cube from the Gulf of Mexico provided

by Chevron. It consists of structurally simple horizons that have

been warped up around a salt piercement. Several channels can be

seen in the time slice at the top of Figure 2a, but they are largely ob-

scured by the gradual amplitude overprint of a nearly flat horizon

that is cut by the time slice.

Figure 2b shows the flattened output of the data in Figure 2a. We

flattened this data set using the method without weights. The seismic

cube has been converted from a stack of time slices to a stack of hori-

zon slices. Notice that the gradual amplitude overprint present in the

unflattened data is no longer present in the flattened data. This is be-

cause horizons are no longer cutting across the image. Several chan-

nels are now easily visible on the horizon slice. Also, the beds adja-

cent to the salt dome have been partially reconstructed, causing the

salt to occupy a smaller area in Figure 2b.

Figure 2c displays three horizons overlain on the original data in

Figure 2a. The horizons track the reflectors on the flanks of the salt

well. Within the salt, the horizons gradually diverge from their re-

spective reflector events as the estimated dip becomes less accurate.

The time slice at the top displays the swath of a tracked horizon.

North Sea unconformity data

Figure 3a shows a 3D North Sea data set provided by Total.

Marked by considerable folding and a sharp angular unconformity,

this data set presents a real-world flattening challenge. The flattening

result shown in Figure 3b was made using the method without

weights. To preserve the continuity of the data, we used a smoothing

parameter of � = 1.0 in equation 7. We estimated � through trial and

error and aimed to make it as small as possible while preserving the

image quality. As a result, the flattened data are not completely flat.

Had we used � = 0.0, the data would be flatter but would lose conti-

nuity. Consequently, the trade-off between continuity and flatness

emerges in cases of pinch-outs and unconformities.

To achieve good agreement between the tracked horizons and the

data, we found � = 0.0 to be preferable, i.e., no imposed continuity.

The result is shown in Figure 3c. The time slice at the top shows the

swaths of a few horizons. Overall, the tracked horizons track up to

and along the unconformity, although some significant errors occur

where the data quality is poor and, as a result, the estimated dips are

inaccurate.

Gulf of Mexico faulted data

Figure 4a is an image of a Gulf of Mexico data set containing a

fault. We use the IRLS method to flatten this data cube and estimate a

fault weight simultaneously. This IRLS method uses the residual to

identify areas to ignore incorrect dips. The damping parameter value

r̄ = 0.2 was found by trial and error on a particular time slice, and

subsequently applied to the entire cube. The flattening results are

shown in Figure 4b. Notice that the horizons are flat, even directly

across from the fault. Figure 4c shows the original data with two un-

flattened horizons �dashed� overlying it. It successfully tracks the

horizons even across the fault. The automatically generated fault

weight is shown in solid red.

Figure 2. Chevron Gulf of Mexico data. �a� The white lines superim-
posed onto the orthogonal sections identify the location of these sec-
tions: a time slice at 0.522 s, an inline section at y = 11,436 m, and a
crossline section at x = 12,911 m. The horizontal scale for the right
face is the same as the vertical scale for the upper face. The reference
trace is located at x = 8000 m and y = 11,436 m. Notice how the
beds have been forced up to steep angles by the emplacement of a
salt piercement. �b� As Figure 2a only after flattening without any
weighting. The top panel is now a horizon slice displaying several
clearly visible channels. �c� Result of overlaying tracked horizons on
the image in Figure 2a. The horizons have been tracked accurately
even up to the considerably steep dips leading into the salt pierce-
ment.
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Figure 3. North Sea data. �a� The white lines superimposed onto the
orthogonal sections identify the location of these sections: a depth
slice at 2425 m, an inline section at y = 3960 m, and a crossline sec-
tion at x = 10,560 m. The horizontal scale for the right face is the
same as the vertical scale for the upper face. The reference trace is lo-
cated at x = 10,560 m and y = 3960 m. Note the angular unconfor-
mity at 2425 m. �b� As Figure 3a only after flattening without
weighting. A smoothing parameter � = 1.0 imposes smoothness on
the tracking. �c� The result of overlaying tracked horizons on the im-
age in Figure 3a. Here we used a smoothing parameter � = 0.0, caus-
ing horizons that lead to the angular unconformity to be tracked.

Figure 4. Gulf of Mexico data set displaying a fault. �a� The white
lines superimposed onto the orthogonal sections identify the loca-
tion of these sections: a time slice at 1.292 s, an inline section at y
= 1602 m, and a crossline section at x = 1868 m. The horizontal
scale for the right face is the same as the vertical scale for the upper
face. The reference trace is located at x = 1868 m and y = 1602 m.
�b�As Figure 4a only after flattening using IRLS method. �c� The re-
sult of overlaying two tracked horizons �dashed red� and the auto-
matically generated fault weight �solid red� on the image in Figure
4a.
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CONCLUSIONS

We present a method to flatten 3D seismic cubes efficiently and

robustly. This method uses an efficient implementation via FFT

within a nonlinear iterative scheme. We demonstrate its effective-

ness on both synthetic and field data sets with varying degrees of

structural complexity.

Data cubes with vertical, laterally limited faults can be flattened

by applying a residual weight. This allows horizons to be tracked

around the faults. The weight can be created from a previously deter-

mined fault model or coherence attribute. The weight merely identi-

fies inaccurate dip values estimated at fault discontinuities so they

will be ignored within the inversion. If not provided by a previous

fault model, the residual weight can be estimated automatically by

extending the basic flattening method to use IRLS. In this case, the

flattening method can be thought of as a fault detector that generates

the fault picks which best flatten the data. Unfortunately, this IRLS

scheme adds significant noise sensitivity and computation time to

our basic flattening method described.

The obtained estimate of � �x,y,t� has many potential uses; for ex-

ample, our method can easily be adapted to flatten data cubes on one

or any particular combination of horizons. This would assist geolo-

gists in analyzing thicknesses for rates of deposition and timing of

structural events in growth faults. Because the estimate of � �x,y,t�
captures all of the morphology of all horizons in the entire cube, it

has significant attribute-analysis potential, particularly for stress re-

lated attributes. Furthermore, for faulted data sets that have been re-

constructed successfully by this flattening method, the integrated

time shifts contain the slip distributions along the fault planes.

Ultimately, the quality of the flattening result depends on the qual-

ity of the input dips. Dip estimates can be affected by noise. Using

weights can remove the effect of some inaccurate dips; however,

there must still be enough good-quality dips to capture the general

trends of the structure. Furthermore, crossing events cannot be flat-

tened easily by this method.

We envision a tool that can be implemented quickly and easily on

both poststack and prestack data sets, exploiting its superior compu-

tational performance. For poststack data, this method can provide an

initial picking that interpreters can then adjust. The potential

prestack applications include gather alignment and velocity analy-

sis.
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APPENDIX A

EULER-LAGRANGE SOLUTION

FOR FLATTENING

The Euler-Lagrange equation �Farlow, 1993� can be applied to find

the function � �x,y,t� that minimizes

J��� = � � F�x,y,�,�x,�y�dxdy � 0, �A-1�

where �x and �y are the derivatives of � in the x- and y-directions, re-

spectively, given by

�F

��
−

d

dx
� �F

��x

� −
d

dy
� �F

��y

� = 0. �A-2�

In our application, we have

J��� = � � ��b�x,y,�� −
��

�x

2

+ �q�x,y,�� −
��

�y

2�dxdy , �A-3�

where b is the dip in the x-direction and q is the dip in the y-direction.

Calculating
�F

��
,

�F

��x
, and

�F

��y
, we find

�F

��
= 2�b −

��

�x
� �b

��
+ 2�q −

��

�y
� �q

��
, �A-4�

�F

��x

= − 2�b −
��

�x
� , �A-5�

and

�F

��y

= − 2�q −
��

�y
� . �A-6�

Substituting equations A-4–A-6 into equation A-2 and simplifying,

we get

�2�

�x2
+

�2�

�y2
=

�b

�x
+

�q

�y
+

1

2

��b2 + q2�
��

. �A-7�

In our method, we ignore the last term of equation A-7 and iterative-

ly solve

�2�

�x2
+

�2�

�y2
=

�b

�x
+

�q

�y
. �A-8�

We ignore the last term because the first two terms define a gradient

direction that we can implement in the Fourier domain efficiently.

Without the third term, the method takes more iterations to reach the

same answer because the gradient calculation is less accurate. How-

ever, because each iteration can be performed much more quickly if

the third term is not included, it is more computationally efficient to

neglect it. Equation A-8 can be rewritten using the gradient ��

= � �

�x

�

�y
�T� and the estimated dip �p = �b q�T� as

�
T
�� = �

Tp . �A-9�

Therefore, the regression to be solved is

�� = p . �A-10�
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