
 

 

 University of Groningen

Flavivirus cell entry and membrane fusion
Smit, Jolanda M.; Moesker, Bastiaan; Rodenhuis-Zybert, Izabela; Wilschut, Jan

Published in:
Viruses

DOI:
10.3390/v3020160

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2011

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Smit, J. M., Moesker, B., Rodenhuis-Zybert, I., & Wilschut, J. (2011). Flavivirus cell entry and membrane
fusion. Viruses, 3(2), 160-171. https://doi.org/10.3390/v3020160

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 23-08-2022

https://doi.org/10.3390/v3020160
https://research.rug.nl/en/publications/bb1b8c05-3e1b-49dd-a58e-77813ff6d471
https://doi.org/10.3390/v3020160


Viruses 2011, 3, 160-171; doi:10.3390/v3020160 

 

viruses
ISSN 1999-4915 

www.mdpi.com/journal/viruses 

Commentary 

Flavivirus Cell Entry and Membrane Fusion 

Jolanda M. Smit *, Bastiaan Moesker, Izabela Rodenhuis-Zybert and Jan Wilschut 

Department of Medical Microbiology, Molecular Virology Section, University Medical Center 

Groningen, University of Groningen, PO Box 30.001, 9700 RB Groningen, The Netherlands;  

E-Mails: b.j.s.moesker@med.umcg.nl (B.M.); i.a.rodenhuis-zybert@med.umcg.nl (I.R.-Z.); 

j.c.wilschut@med.umcg.nl (J.W.) 

* Author to whom correspondence should be addressed; E-Mail: jolanda.smit@med.umcg.nl;  

Tel.: +31-50-3632738; Fax: +31-50-3638171.  

Received: 19 January 2011; in revised form: 10 February 2011 / Accepted: 10 February 2011 /  

Published: 22 February 2011 

 

Abstract: Flaviviruses, such as dengue virus and West Nile virus, are enveloped viruses 

that infect cells through receptor-mediated endocytosis and fusion from within acidic 

endosomes. The cell entry process of flaviviruses is mediated by the viral E glycoprotein. 

This short review will address recent advances in the understanding of flavivirus cell entry 

with specific emphasis on the recent study of Zaitseva and coworkers, indicating that 

anionic lipids might play a crucial role in the fusion process of dengue virus [1].  

Keywords: flavivirus; membrane fusion; anionic lipids; negatively charged lipids; cell 
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1. Introduction  

Dengue virus (DENV) is a major emerging arthopod-borne pathogen causing a significant burden 

of disease in tropical and subtropical areas of the world [2,3]. DENV is a positive-sense RNA virus, 

belonging to the genus “Flaviviruses” of the family Flaviviridae [4]. The flavivirus genus comprises 

more than 70 viruses including, besides DENV, a number of other important human pathogens such as 

West Nile virus (WNV), tick-borne encephalitis virus (TBEV), Japanese encephalitis virus (JEV), and 

yellow fever virus (YFV). Flaviviruses are enveloped viruses, which enter their host cells through a 
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process of receptor-mediated endocytosis and subsequent fusion from within the endosomal cell 

compartment. This fusion process is triggered by the mildly acidic pH within the lumen of the 

endosome [4]. In this short review, new insights in flavivirus cell entry and membrane fusion will be 

discussed. We will emphasize specifically the role of target membrane lipids in the membrane fusion 

activity of DENV [1].  

2. Structure of Flaviviruses 

Flaviviruses are small, icosahedral viruses. The viral genome consists of a single-stranded, positive-

sense RNA molecule which is complexed to multiple copies of the capsid protein [5]. The 

nucleocapsid is surrounded by a host-derived lipid membrane, in which two transmembrane proteins 

are inserted, the major envelope glycoprotein E (53 kDa) and the membrane protein M (8 kDa). The M 

protein is a small proteolytic fragment of its precursor form prM (approximately 21 kDa) and is 

anchored into the viral membrane by two transmembrane helices [6,7]. In mature virions, the E 

glycoproteins are arranged in 90 homodimers with sets of three E head-to-tail homodimers that lie in 

30 rafts and form a herringbone pattern [6]. The E ectodomain has three structurally distinct domains 

(DI, DII, DIII) that are connected by flexible hinge regions [8]. Neither E nor M interacts with the 

nucleocapsid in mature virions [9]. In infected cells, virions are initially assembled in an immature 

form with a distinct structural organization. In these particles, the E glycoprotein is associated with the 

glycoprotein prM and three of these heterodimers form one viral spike [6,10]. Virus particle 

maturation occurs during viral egress.  

3. Flavivirus Cell Entry 

3.1 Receptor Binding 

The first step in the infectious cell entry pathway of flaviviruses involves binding of the E 

glycoprotein to a cellular receptor. Flaviviruses must recognize a ubiquitous cell surface molecule or 

utilize multiple receptors for cell entry as flavivirus infection has been observed in a variety of cell 

lines derived from different host species [11]. In recent years several attachment factors have been 

identified, indicating that flaviviruses may use multiple receptors for cell entry.  

Negatively charged glycoaminoglycans, such as heparan sulfate, which are abundantly expressed on 

numerous cell types, are utilized as low-affinity attachment factors by several flaviviruses [12-18]. 

These interactions serve to concentrate the virus at the cell surface and are mediated by domain DIII of 

the E glycoprotein. Multiple other attachment factors have been identified for DENV in mammalian 

cells including heat-shock proteins 90 and 70 [19], neolactotetraosylceramide [20], CD14 [21], 

GRP78/BiP [22], 37-kDa/67-kDa laminin [23], and C-type lectins such as DC-SIGN (dendritic  

cell-specific intracellular adhesion molecule-3 (ICAM3)-grabbing non-integrin) [24-26], the mannose 

receptor [27], and C-type lectin domain family 5, member A (CLEC5, MDL-1) [28]. In mosquito cells, 

DENV has been shown to interact with heat-shock protein 70, R80, R67 and a 45-kDa protein 

[19,29,30]. Crystallographic studies on DENV-DC-SIGN complexes revealed that interaction with 

DC-SIGN is preferentially mediated through the carbohydrate moiety at Asn67 in EDII [31]. WNV has 

also been shown to interact with DC-SIGN and DC-SIGNR in dendritic cells [32,33]. Furthermore, 
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WNV, JEV, and DENV, albeit to a lesser extent, have been documented to bind to αvβ3 integrins 

expressed on mammalian cells, mediated through interaction with EDIII [34,35]. On the other hand, 

entry of WNV into embryonic mouse fibroblasts and hamster melanoma is independent of  

αvβ3 integrin binding, suggesting that receptor molecule usage is strain-specific and/or cell  

type-dependent [36]. 

3.2 Entry of Flavivirus Particles into Cells  

Flaviviruses enter cells through clathrin-mediated endocytosis. Single-particle tracking analysis of 

DENV particles in living cells revealed that DENV particles diffuse along the cell surface towards a 

pre-existing clathrin-coated pit [37]. This implies that virions roll over distinct attachment factors 

untill they bind to the entry receptor localized to clathrin hotspots at the cell surface or that the initially 

formed virus-receptor complex is transported towards a pre-existing clathrin-coated pit. Subsequently, 

the clathrin-coated pit evolves and the invagination in the plasma membrane is closed by membrane 

scission mediated by dynamin to form a clathrin-coated vesicle. The clathrin-coated vesicle is 

transported away from the plasma membrane after which the clathrin coat is released from the vesicle. 

Real-time microscopy analysis showed that DENV particles remain associated with clathrin for 

approximately 80 seconds [37]. Earlier evidence that flaviviruses utilize clathrin-mediated endocytosis 

for cell entry was obtained by ultrastructural studies showing the presence of Kunjin and YFV in 

coated pits [38,39]. Furthermore, inhibition of WNV infection was observed in cells treated with 

chemical inhibitors like chlorpromazine [40] that prevent clathrin-coated pit formation and in cells 

expressing dominant-negative mutants of Eps15, a protein which is involved in clathrin-coated pit 

formation [41,42]. The route of flavivirus cell entry appears to be dependent on the virus strain and the 

cell type as a recent report documented entry of DENV in mammalian cells independent of clathrin, 

caveolae and lipid rafts [43].  

After clathrin-mediated uptake, the endocytic vesicle carrying the virus is delivered to early 

endosomes. Internalization of flavivirus particles occurs rapidly as a large fraction of WNV and 

DENV particles were observed to localize to early endosomes within five minutes post-entry [37,41]. 

Thereafter, the early endosome carrying the virus matures into a late endosome. For DENV, membrane 

fusion has been observed to occur primarily from within late endosomal compartments [37]. 

Membrane fusion was detected on average at 10-13 minutes after initiation of infection. It is important 

to note that the subcellular compartment from which membrane fusion occurs is most likely dependent 

on the pH-dependent membrane fusion properties of the virus and may therefore vary between 

individual DENV strains [37,44]. 

4. Molecular Mechanism of Membrane Fusion 

4.1 Low-pH-induced Conformational Changes in the E Glycoprotein 

The low-pH environment within endosomes triggers a series of molecular events within the E 

glycoprotein leading to membrane fusion of the viral membrane with the endosomal membrane and 

subsequent release of the nucleocapsid into the cell cytosol. Protonation of one or more histidine 

residues has been postulated to trigger the conformational changes of the E protein [45,46]. Indeed, 
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studies on TBEV identified two conserved histidines (at position 146 and 323) that may act as pH 

sensors and destabilize the DI-DIII interface [47]. On the other hand, site-specific mutagenesis studies 

on WNV revealed that histidine residues are not required for the initiation of the conformational 

changes required for membrane fusion [48].  

The conformational changes of the E glycoprotein that occur during the membrane fusion process 

of flaviviruses have been studied extensively [45,46,49]. The initial step in membrane fusion involves 

protonation-dependent disruption of the E protein rafts at the viral surface, including dissociation of E 

homodimers into monomers. This leads to the outward projection of DII and exposure of the fusion 

loop at the distal tip of DII to the target membrane. Subsequently, the E proteins insert their fusion 

loops into the outer leaflet of the membrane and three copies of E interact with one another via their 

fusion loops or DII domains to form an unstable trimer. The E trimers stabilize through additional 

interactions between the DI domains of the three E proteins [50]. Next, DIII is believed to fold back 

against the trimer to form a hairpin-like configuration. The energy released by these conformational 

changes induces the formation of a hemifusion intermediate, in which the monolayers of the 

interacting membranes are merged while the inner membranes are still intact. Finally, a fusion pore is 

formed and after enlargement of the pore, the nucleocapsid is released into the cytosol.  

4.2 Role of Cholesterol in Flavivirus Membrane Fusion 

Besides the mildly acidic endosomal pH, it is the composition of the target membrane that plays an 

important role in the membrane fusion process of flaviviruses. In vitro studies have revealed that 

flaviviruses such as TBEV and WNV have the capacity to fuse with artificial receptor-free lipid 

membranes (liposomes) consisting of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) at 

low pH, albeit with low efficiency [51-53]. Addition of cholesterol to target membranes was found to 

have a strong promoting effect on the membrane fusion capacity of TBEV and WNV [51-54]. 

Subsequent virus-liposome coflotation studies have indicated that cholesterol stimulates the low-pH-

triggered interaction of the E glycoprotein with lipid membranes [54,55]. The 3-hydroxyl group of 

cholesterol is important for this function [54]. Interestingly, and in contrast to alphaviruses, the E 

glycoprotein does not appear to directly interact with cholesterol in the target membrane [55]. These 

observations suggest that the promoting effect of cholesterol on membrane fusion is due to an overall 

change in the fluidity or physico-chemical properties of the target membrane. Although most studies 

were performed with TBEV and WNV, several recent studies show that DENV also has the capacity to 

interact and fuse with artifical membranes consisting of PC, PE, sphingolipids and cholesterol [56-58]. 

Cholesterol also plays an important role in facilitating efficient cell entry of flaviviruses as viral 

infectivity was found to be significantly impaired in cholesterol-depleted cells [36,59-61]. 

4.3 Role of Negatively Charged Lipids in Dengue Virus Membrane Fusion 

A recent study from Zaitseva and coworkers showed that DENV may utilize anionic lipids as a 

cofactor during the low-pH-driven membrane fusion process of the virus [1]. The investigation, by 

these authors, of the lipid dependence of DENV membrane fusion was triggered by the observation 

that DENV does not fuse with the plasma membrane of mammalian cells under low-pH conditions 

whereas efficient fusion occurred with the plasma membrane of insect cells. A difference between 



Viruses 2011, 3                            

 

 

164

these cell types is that insect cells have an unusually high concentration of anionic lipids in their 

plasma membrane. Accordingly, the authors found that addition of anionic lipids, such as 

bis(monoacylglycero)phosphate (BMP) and phosphatidylserine (PS), to the plasma membrane of 

mammalian cells facilitates low-pH-induced plasma membrane fusion of DENV. The role of anionic 

lipids in DENV membrane fusion was confirmed by in vitro virus-liposome fusion measurements, in 

which efficient membrane fusion was only observed using target membranes consisting of PC (70 

mol%) and BMP or PS or phosphatidylglycerol (PG). Furthermore, anionic lipids were observed to act 

downstream of the formation of a restricted hemifusion intermediate and likely promote the opening of 

the fusion pore. Interestingly, in mammalian cells, anionic lipids are enriched in late endosomal 

compartments, thus this observation may also explain why DENV fusion is primarily initiated from 

within these compartments [37].  

While the study of Zaitseva et al. is elegant and may explain a number of the characteristics of 

DENV cell entry, a word of caution seems justified. In earlier studies, negatively charged 

phospholipids have been observed to promote a number of viral membrane fusion reactions. First, PS 

has been suggested to serve as a receptor in cell entry of vesicular stomatitis virus [62], but more 

recent studies have challenged this view [63]. Furthermore, influenza virus was found to fuse quite 

efficiently with liposomes consisting of the anionic lipid cardiolipin in a low-pH-dependent 

manner [64]. However, subsequent detailed characterization of this fusion reaction revealed that it 

does not reflect the physiological fusion process of the virus. Specifically, the well-documented 

conformational change in the viral hemagglutinin (HA) turned out not to be involved [65]. Indeed, 

influenza virus pre-exposed to low pH in the absence of target membranes remained fusion-active with 

cardiolipin target liposomes [65,66], while such a low-pH pretreatment is known to result in a rapid 

and irreversible loss of fusion capacity—and infectivity—of the virus [66]. It thus appears that anionic 

lipids have a tendency to promote membrane fusion of enveloped viruses (and, for that matter, other 

biological membranes as well [67]), in a general, sometimes nonphysiological, manner [68]. The fact 

that, in the study of Zaitseva et al., several structurally different negatively charged phospholipids 

stimulate fusion of DENV, including lipids—such as phosphatidylglycerol (PG)—that are not present 

in the natural endosomal target membrane of the virus does not seem to support the notion of a highly 

specific cofactor role of these lipids in the process [1]. On the other hand, the experiments of Zaitseva 

et al. are well-designed and convincing. In particular, the observation that the anionic lipids act at a 

stage downstream of the formation of the hemifusion intermediate [1] is reassuring, as this localizes 

the role of these lipids to the cytoplasmic half of the endosomal target membrane, which is the leaflet 

where negatively charged phospholipids are primarily located. Further studies will be required to 

elucidate whether indeed anionic phospholipids represent a necessary and sufficient factor involved in 

infectious DENV fusion from within acidic endosomes.  

5. Particle Maturation Status and Infectivity  

Flavivirus-infected cells are known to secrete a mixture of mature, immature and partially mature 

particles. The prM quantity appears to be different between flaviviruses; whereas high numbers of 

prM-containing particles have been described for WNV and DENV [53,69-75], low numbers were 

observed for TBEV [76]. A recent study showed that as much as 40% of all extracellular DENV 
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particles derived from C6/36 mosquito cells are partially immature [77]. Overall, this demonstrates 

that flavivirus maturation during virus egress is rather inefficient. Upon assembly of immature virions 

in the ER, all virus particles are transported to the Golgi apparatus [78-82]. Within the mildly acidic 

environment of the Golgi, the virion undergoes a global conformational change leading to dissociation 

of E/prM heterodimers and formation of 90 homodimers [58,76,83]. This conformational change 

allows the host protease furin to cleave prM to M and a “pr” peptide [58,76,83,84]. The pr peptide 

dissociates from the particle upon release of the virion to the extracellular milieu [58,76,84,85]. It 

appears that furin processing of prM is rather inefficient and flavivirus particles that contain uncleaved 

prM proteins will, after the release of the virion to the extracellular milieu, reorganize back to form 

prM/E heterodimers at the viral surface.  

Numerous functional studies have shown that fully immature particles are noninfectious  

[53,58,74-76,83,86]. However, we and others recently demonstrated that fully immature particles can 

be rendered infectious by antibodies [87,88]. We observed that the lack of infectivity of fully immature 

particles was found to be related to inefficient binding to the cell surface [88]. Upon cell entry, 

immature virions are efficiently processed by furin, the pr peptide presumably being released at the 

low-pH environment of endosomes [85]. Whereas proteolytic cleavage of prM is a prerequisite for 

viral infectivity, multiple studies have shown that complete cleavage is not required for infectivity 

[74,75,89,90]. In partially mature particles, the mature aspect of the virion is most likely responsible 

for virus cell binding and entry after which the processing of prM may occur within the target cell and 

membrane fusion may be initiated. The threshold for viral infectivity in relation to the number of prM 

proteins present at the viral surface is as yet not understood. 

6. Concluding Remarks 

In recent years, our knowledge on the cell entry properties and membrane fusion activity of 

flaviviruses has improved significantly. Microscopic analysis of virus-infected cells has taught us how 

viruses hijack cellular pathways to deposit their genome into the host cell cytosol. Also, biochemical 

and structural approaches have identified important steps in the membrane fusion process of 

flaviviruses. The observation that viral infectivity is dependent on the maturation status of the particle 

is interesting and adds yet another layer of complexity to flavivirus cell entry. Future studies should be 

directed at a further dissection of the dynamics of flavivirus entry into human target cells and a 

detailed understanding of, not only the conformational changes of the E glycoprotein during membrane 

fusion, but also the role of target membrane lipids in the fusion process. Furthermore, given the 

substantial levels of prM in wt DENV, it will be crucial to gain more insight in the role of immature or 

partially immature virions in viral infectivity. A detailed understanding of the cell entry and membrane 

fusion process of flaviviruses is important and will facilitate the generation of novel antiviral drugs 

that prevent early steps of infection.   

Acknowledgements 

This work was supported by the Pediatric Dengue Vaccine Initiative, and by the Dutch Organization 

for Scientific research (NWO-ALW).  



Viruses 2011, 3                            

 

 

166

References and notes 

1. Zaitseva, E.; Yang, S.T.; Melikov, K.; Pourmal, S.; Chernomordik, L.V. Dengue virus ensures its 

fusion in late endosomes using compartment-specific lipids. PLoS. Pathog. 2010, 6, e1001131. 

2. World Health Organization. Dengue fact sheet, 2009. Available online: 

http://www.who.int/mediacentre/factsheets/fs117/en/ (assessed Jan 2011).  

3. Gubler, D.J. Dengue/dengue haemorrhagic fever: history and current status. Novartis. Found. 

Symp. 2006, 277, 3-16. 

4. Burke, D.S.; Monath, T.P. Flaviviruses. in Fields Virology; Knipe, D.M., Howley, P.M, Eds.; 

Lippincott Williams and Wilkins: Philadelphia, PA, USA, 2001; Volume 1; pp 1043-1125. 

5. Lindenbach, B.D.; Rice, C.M. Molecular biology of flaviviruses. Adv. Virus Res. 2003, 59, 23-61. 

6. Kuhn, R.J.; Zhang, W.; Rossmann, M.G.; Pletnev, S.V.; Corver, J.; Lenches, E.; Jones, C.T.; 

Mukhopadhyay, S.; Chipman, P.R.; Strauss, E.G.; Baker, T.S.; Strauss, J.H. Structure of dengue 

virus: implications for flavivirus organization, maturation, and fusion. Cell 2002, 108, 717-725. 

7. Zhang, W.; Chipman, P.R.; Corver, J.; Johnson, P.R.; Zhang, Y.; Mukhopadhyay, S.; Baker, T.S.; 

Strauss, J.H.; Rossmann, M.G.; Kuhn, R.J. Visualization of membrane protein domains by cryo-

electron microscopy of dengue virus. Nat. Struct. Biol. 2003, 10, 907-912. 

8. Rey, F.A.; Heinz, F.X.; Mandl, C.; Kunz, C.; Harrison, S.C. The envelope glycoprotein from tick-

borne encephalitis virus at 2 Å resolution. Nature 1995, 375, 291-298. 

9. Mukhopadhyay, S.; Kuhn, R.J.; Rossmann, M.G. A structural perspective of the flavivirus life 

cycle. Nat. Rev. Microbiol. 2005, 3, 13-22. 

10. Zhang, Y.; Corver, J.; Chipman, P.R.; Zhang, W.; Pletnev, S.V.; Sedlak, D.; Baker, T.S.; Strauss, 

J.H.; Kuhn, R.J.; Rossmann, M.G. Structures of immature flavivirus particles. EMBO J. 2003, 22, 

2604-2613. 

11. Rodenhuis-Zybert, I.A.; Wilschut, J.; Smit, J.M. Dengue virus life cycle: viral and host factors 

modulating infectivity. Cell Mol. Life Sci. 2010, 67, 2773-2786. 

12. Chen, Y.; Maguire, T.; Hileman, R.E.; Fromm, J.R.; Esko, J.D.; Linhardt, R.J.; Marks, R.M. 

Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate.  

Nat. Med. 1997, 3, 866-871. 

13. Germi, R.; Crance, J.M.; Garin, D.; Guimet, J.; Lortat-Jacob, H.; Ruigrok, R.W.; Zarski, J.P.; 

Drouet, E. Heparan sulfate-mediated binding of infectious dengue virus type 2 and yellow fever 

virus. Virology 2002, 292, 162-168. 

14. Hilgard, P.; Stockert, R. Heparan sulfate proteoglycans initiate dengue virus infection of 

hepatocytes. Hepatology 2000, 32, 1069-1077. 

15. Chen, H.L.; Her, S.Y.; Huang, K.C.; Cheng, H.T.; Wu, C.W.; Wu, S.C.; Cheng, J.W. 

Identification of a heparin binding peptide from the Japanese encephalitis virus envelope protein. 

Biopolymers 2010, 94, 331-338. 

16. Kozlovskaya, L.I.; Osolodkin, D.I.; Shevtsova, A.S.; Romanova, L.I.; Rogova, Y.V.; Dzhivanian, 

T.I.; Lyapustin, V.N.; Pivanova, G.P.; Gmyl, A.P.; Palyulin, V.A.; Karganova, G.G. GAG-

binding variants of tick-borne encephalitis virus. Virology 2010, 398, 262-272. 



Viruses 2011, 3                            

 

 

167

17. Lee, E.; Lobigs, M. E protein domain III determinants of yellow fever virus 17D vaccine strain 

enhance binding to glycosaminoglycans, impede virus spread, and attenuate virulence. J. Virol. 

2008, 82, 6024-6033. 

18. Mandl, C.W.; Kroschewski, H.; Allison, S.L.; Kofler, R.; Holzmann, H.; Meixner, T.; Heinz, F.X. 

Adaptation of tick-borne encephalitis virus to BHK-21 cells results in the formation of multiple 

heparan sulfate binding sites in the envelope protein and attenuation in vivo. J. Virol. 2001, 75, 

5627-5637. 

19. Reyes-Del, V.J.; Chavez-Salinas, S.; Medina, F.; del Angel, R.M. Heat shock protein 90 and heat 

shock protein 70 are components of dengue virus receptor complex in human cells. J. Virol. 2005, 

79, 4557-4567. 

20. Aoki, C.; Hidari, K.I.; Itonori, S.; Yamada, A.; Takahashi, N.; Kasama, T.; Hasebe, F.; Islam, 

M.A.; Hatano, K.; Matsuoka, K.; et. al. Identification and characterization of carbohydrate 

molecules in mammalian cells recognized by dengue virus type 2. J. Biochem. 2006, 139,  

607-614. 

21. Chen, Y.C.; Wang, S.Y.; King, C.C. Bacterial lipopolysaccharide inhibits dengue virus infection 

of primary human monocytes/macrophages by blockade of virus entry via a CD14-dependent 

mechanism. J. Virol. 1999, 73, 2650-2657. 

22. Jindadamrongwech, S.; Thepparit, C.; Smith, D.R. Identification of GRP 78 (BiP) as a liver cell 

expressed receptor element for dengue virus serotype 2. Arch. Virol. 2004, 149, 915-927. 

23. Thepparit, C.; Smith, D.R. Serotype-specific entry of dengue virus into liver cells: identification 

of the 37-kilodalton/67-kilodalton high-affinity laminin receptor as a dengue virus serotype 1 

receptor. J. Virol. 2004, 78, 12647-12656. 

24. Lozach, P.Y.; Burleigh, L.; Staropoli, I.; Navarro-Sanchez, E.; Harriague, J.; Virelizier, J.L.; Rey, 

F.A.; Despres, P.; Renzana-Seisdedos, F.; Amara, A. Dendritic cell-specific intercellular adhesion 

molecule 3-grabbing non-integrin (DC-SIGN)-mediated enhancement of dengue virus infection is 

independent of DC-SIGN internalization signals. J. Biol. Chem. 2005, 280, 23698-23708. 

25. Navarro-Sanchez, E.; Altmeyer, R.; Amara, A.; Schwartz, O.; Fieschi, F.; Virelizier, J.L.; 

renzana-Seisdedos, F.; Despres, P. Dendritic-cell-specific ICAM3-grabbing non-integrin is 

essential for the productive infection of human dendritic cells by mosquito-cell-derived dengue 

viruses. EMBO Rep. 2003, 4, 723-728. 

26. Tassaneetrithep, B.; Burgess, T.H.; Granelli-Piperno, A.; Trumpfheller, C.; Finke, J.; Sun, W.; 

Eller, M.A.; Pattanapanyasat, K.; Sarasombath, S.; Birx, D.L.; et al. DC-SIGN (CD209) mediates 

dengue virus infection of human dendritic cells. J. Exp. Med. 2003, 197, 823-829. 

27. Miller, J.L.; de Wet, B.J.; Martinez-Pomares, L.; Radcliffe, C.M.; Dwek, R.A.; Rudd, P.M.; 

Gordon, S. The mannose receptor mediates dengue virus infection of macrophages. PLoS. Pathog. 

2008, 4, e17. 

28. Chen, S.T.; Lin, Y.L.; Huang, M.T.; Wu, M.F.; Cheng, S.C.; Lei, H.Y.; Lee, C.K.; Chiou, T.W.; 

Wong, C.H.; Hsieh, S.L. CLEC5A is critical for dengue-virus-induced lethal disease. Nature 

2008, 453, 672-676. 

29. Mercado-Curiel, R.F.; Esquinca-Aviles, H.A.; Tovar, R.; az-Badillo, A.; Camacho-Nuez, M.; 

Munoz, M.L. The four serotypes of dengue recognize the same putative receptors in Aedes 

aegypti midgut and Ae. albopictus cells. BMC. Microbiol. 2006, 6, 85. 



Viruses 2011, 3                            

 

 

168

30. Yazi, M.M.; Salas-Benito, J.S.; Lanz-Mendoza, H.; Hernandez-Martinez, S.; del Angel, R.M.  

A putative receptor for dengue virus in mosquito tissues: localization of a 45-kDa glycoprotein. 

Am. J. Trop. Med. Hyg. 2002, 67, 76-84. 

31. Pokidysheva, E.; Zhang, Y.; Battisti, A.J.; Bator-Kelly, C.M.; Chipman, P.R.; Xiao, C.; Gregorio, 

G.G.; Hendrickson, W.A.; Kuhn, R.J.; Rossmann, M.G. Cryo-EM reconstruction of dengue virus 

in complex with the carbohydrate recognition domain of DC-SIGN. Cell 2006, 124, 485-493. 

32. Davis, C.W.; Nguyen, H.Y.; Hanna, S.L.; Sanchez, M.D.; Doms, R.W.; Pierson, T.C. West Nile 

virus discriminates between DC-SIGN and DC-SIGNR for cellular attachment and infection. J. 

Virol. 2006, 80, 1290-1301. 

33. Davis, C.W.; Mattei, L.M.; Nguyen, H.Y.; nsarah-Sobrinho, C.; Doms, R.W.; Pierson, T.C. The 

location of asparagine-linked glycans on West Nile virions controls their interactions with CD209 

(dendritic cell-specific ICAM-3 grabbing nonintegrin). J. Biol. Chem. 2006, 281, 37183-37194. 

34. Chu, J.J.; Ng, M.L. Interaction of West Nile virus with alpha v beta 3 integrin mediates virus 

entry into cells. J. Biol. Chem. 2004, 279, 54533-54541. 

35. Lee, J.W.; Chu, J.J.; Ng, M.L. Quantifying the specific binding between West Nile virus envelope 

domain III protein and the cellular receptor alphaVbeta3 integrin. J. Biol. Chem. 2006, 281,  

1352-1360. 

36. Medigeshi, G.R.; Hirsch, A.J.; Streblow, D.N.; Nikolich-Zugich, J.; Nelson, J.A. West Nile virus 

entry requires cholesterol-rich membrane microdomains and is independent of alphavbeta3 

integrin. J. Virol. 2008, 82, 5212-5219. 

37. van der Schaar, H.M.; Rust, M.J.; Chen, C.; van der Ende.-Metselaar; Wilschut, J.; Zhuang, X.; 

Smit, J.M. Dissecting the cell entry pathway of dengue virus by single-particle tracking in living 

cells. PLoS. Pathog. 2008, 4, e1000244. 

38. Ishak, R.; Tovey, D.G.; Howard, C.R. Morphogenesis of yellow fever virus 17D in infected cell 

cultures. J. Gen. Virol. 1988, 69, 325-335. 

39. Ng, M.L.; Lau, L.C. Possible involvement of receptors in the entry of Kunjin virus into Vero 

cells. Arch. Virol. 1988, 100, 199-211. 

40. Nawa, M.; Takasaki, T.; Yamada, K.; Kurane, I.; Akatsuka, T. Interference in Japanese 

encephalitis virus infection of Vero cells by a cationic amphiphilic drug, chlorpromazine. J. Gen. 

Virol. 2003, 84, 1737-1741. 

41. Chu, J.J.; Ng, M.L. Infectious entry of West Nile virus occurs through a clathrin-mediated 

endocytic pathway. J. Virol. 2004, 78, 10543-10555. 

42. Chu, J.J.; Leong, P.W.; Ng, M.L. Analysis of the endocytic pathway mediating the infectious 

entry of mosquito-borne flavivirus West Nile into Aedes albopictus mosquito (C6/36) cells. 

Virology 2006, 349, 463-475. 

43. Acosta, E.G.; Castilla, V.; Damonte, E.B. Alternative infectious entry pathways for dengue virus 

serotypes into mammalian cells. Cell Microbiol. 2009, 11, 1533-1549. 

44. Krishnan, M.N.; Sukumaran, B.; Pal, U.; Agaisse, H.; Murray, J.L.; Hodge, T.W.; Fikrig, E. Rab 5 

is required for the cellular entry of dengue and West Nile viruses. J. Virol. 2007, 81, 4881-4885. 

45. Harrison, S.C. The pH sensor for flavivirus membrane fusion. J. Cell Biol. 2008, 183, 177-179. 

46. Stiasny, K.; Fritz, R.; Pangerl, K.; Heinz, F.X. Molecular mechanisms of flavivirus membrane 

fusion. Amino Acids 2009. doi: 10.1007/s00726-009-0370-4. 



Viruses 2011, 3                            

 

 

169

47. Fritz, R.; Stiasny, K.; Heinz, F.X. Identification of specific histidines as pH sensors in flavivirus 

membrane fusion. J. Cell Biol. 2008, 183, 353-361. 

48. Nelson, S.; Poddar, S.; Lin, T.Y.; Pierson, T.C. Protonation of individual histidine residues is not 

required for the pH-dependent entry of west nile virus: evaluation of the "histidine switch" 

hypothesis. J. Virol. 2009, 83, 12631-12635. 

49. Mukhopadhyay, S.; Kuhn, R.J.; Rossmann, M.G. A structural perspective of the flavivirus life 

cycle. Nat. Rev. Microbiol. 2005, 3, 13-22. 

50. Liao, M.; Sanchez-San, M.C.; Zheng, A.; Kielian, M. In vitro reconstitution reveals key 

intermediate states of trimer formation by the dengue virus membrane fusion protein. J. Virol. 

2010, 84, 5730-5740. 

51. Corver, J.; Ortiz, A.; Allison, S.L.; Schalich, J.; Heinz, F.X.; Wilschut, J. Membrane fusion 

activity of tick-borne encephalitis virus and recombinant subviral particles in a liposomal model 

system. Virology 2000, 269, 37-46. 

52. Gollins, S.W.; Porterfield, J.S. pH-dependent fusion between the flavivirus West Nile and 

liposomal model membranes. J. Gen. Virol. 1986, 67, 157-166. 

53. Moesker, B.; Rodenhuis-Zybert, I.A.; Meijerhof, T.; Wilschut, J.; Smit, J.M. Characterization of 

the functional requirements of West Nile virus membrane fusion. J. Gen. Virol. 2010, 91,  

389-393. 

54. Stiasny, K.; Koessl, C.; Heinz, F.X. Involvement of lipids in different steps of the flavivirus 

fusion mechanism. J. Virol. 2003, 77, 7856-7862. 

55. Umashankar, M.; Sanchez-San, M.C.; Liao, M.; Reilly, B.; Guo, A.; Taylor, G.; Kielian, M. 

Differential cholesterol binding by class II fusion proteins determines membrane fusion 

properties. J. Virol. 2008, 82, 9245-9253. 

56. Poh, M.K.; Yip, A.; Zhang, S.; Priestle, J.P.; Ma, N.L.; Smit, J.M.; Wilschut, J.; Shi, P.Y.; Wenk, 

M.R.; Schul, W. A small molecule fusion inhibitor of dengue virus. Antiviral Res. 2009, 84,  

260-266. 

57. Schmidt, A.G.; Yang, P.L.; Harrison, S.C. Peptide inhibitors of dengue-virus entry target a late-

stage fusion intermediate. PLoS. Pathog. 2010, 6, e1000851. 

58. Yu, I.M.; Holdaway, H.A.; Chipman, P.R.; Kuhn, R.J.; Rossmann, M.G.; Chen, J. Association of 

the pr peptides with dengue virus at acidic pH blocks membrane fusion. J. Virol. 2009, 83,  

12101-12107. 

59. Das, S.; Chakraborty, S.; Basu, A. Critical role of lipid rafts in virus entry and activation of 

phosphoinositide 3' kinase/Akt signaling during early stages of Japanese encephalitis virus 

infection in neural stem/progenitor cells. J. Neurochem. 2010, 115, 537-549. 

60. Puerta-Guardo, H.; Mosso, C.; Medina, F.; Liprandi, F.; Ludert, J.E.; del Angel, R.M. Antibody-

dependent enhancement of dengue virus infection in U937 cells requires cholesterol-rich 

membrane microdomains. J. Gen. Virol. 2010, 91, 394-403. 

61. Tani, H.; Shiokawa, M.; Kaname, Y.; Kambara, H.; Mori, Y.; Abe, T.; Moriishi, K.; Matsuura, Y. 

Involvement of ceramide in the propagation of Japanese encephalitis virus. J. Virol. 2010, 84, 

2798-2807. 

62. Schlegel, R.; Tralka, T.S.; Willingham, M.C.; Pastan, I. Inhibition of VSV binding and infectivity 

by phosphatidylserine: is phosphatidylserine a VSV-binding site? Cell 1983, 32, 639-646. 



Viruses 2011, 3                            

 

 

170

63. Coil, D.A.; Miller, A.D. Phosphatidylserine is not the cell surface receptor for vesicular stomatitis 

virus. J. Virol. 2004, 78, 10920-10926. 

64. Stegmann, T.; Hoekstra, D.; Scherphof, G.; Wilschut, J. Kinetics of pH-dependent fusion between 

influenza virus and liposomes. Biochemistry 1985, 24, 3107-3113. 

65. Stegmann, T.; Hoekstra, D.; Scherphof, G.; Wilschut, J. Fusion activity of influenza virus. A 

comparison between biological and artificial target membrane vesicles. J. Biol. Chem. 1986, 261, 

10966-10969. 

66. Stegmann, T.; Nir, S.; Wilschut, J. Membrane fusion activity of influenza virus. Effects of 

gangliosides and negatively charged phospholipids in target liposomes. Biochemistry 1989, 28, 

1698-1704. 

67. Stegmann, T.; Booy, F.P.; Wilschut, J. Effects of low pH on influenza virus. Activation and 

inactivation of the membrane fusion capacity of the hemagglutinin. J. Biol. Chem. 1987, 262, 

17744-17749. 

68. Driessen, A.J.; Hoekstra, D.; Scherphof, G.; Kalicharan, R.D.; Wilschut, J. Low pH-induced 

fusion of liposomes with membrane vesicles derived from Bacillus subtilis. J. Biol. Chem. 1985, 

260, 10880-10887. 

69. Anderson, R.; Wang, S.; Osiowy, C.; Issekutz, A.C. Activation of endothelial cells via antibody-

enhanced dengue virus infection of peripheral blood monocytes. J. Virol. 1997, 71, 4226-4232. 

70. Cherrier, M.V.; Kaufmann, B.; Nybakken, G.E.; Lok, S.M.; Warren, J.T.; Chen, B.R.; Nelson, 

C.A.; Kostyuchenko, V.A.; Holdaway, H.A.; Chipman, P.R.; et al. Structural basis for the 

preferential recognition of immature flaviviruses by a fusion-loop antibody. EMBO J. 2009, 28, 

3269-3276. 

71. He, R.T.; Innis, B.L.; Nisalak, A.; Usawattanakul, W.; Wang, S.; Kalayanarooj, S.; Anderson, R. 

Antibodies that block virus attachment to Vero cells are a major component of the human 

neutralizing antibody response against dengue virus type 2. J. Med. Virol. 1995, 45, 451-461. 

72. Putnak, R.; Cassidy, K.; Conforti, N.; Lee, R.; Sollazzo, D.; Truong, T.; Ing, E.; Dubois, D.; 

Sparkuhl, J.; Gastle, W.; et al. Immunogenic and protective response in mice immunized with a 

purified, inactivated, Dengue-2 virus vaccine prototype made in fetal rhesus lung cells. Am. J. 

Trop. Med. Hyg. 1996, 55, 504-510. 

73. Se-Thoe, S.Y.; Ng, M.M.; Ling, A.E. Retrospective study of Western blot profiles in immune sera 

of natural dengue virus infections. J. Med. Virol. 1999, 57, 322-330. 

74. Zybert, I.A.; van der Ende-Metselaar, H.H.; Wilschut, J.; Smit, J.M. Functional importance of 

dengue virus maturation: infectious properties of immature virions. J. Gen. Virol. 2008, 89,  

3047-3051. 

75. Randolph, V.B.; Winkler, G.; Stollar, V. Acidotropic amines inhibit proteolytic processing of 

flavivirus prM protein. Virology 1990, 174, 450-458. 

76. Heinz, F.X.; Stiasny, K.; Puschner-Auer, G.; Holzmann, H.; Allison, S.L.; Mandl, C.W.; Kunz, C. 

Structural changes and functional control of the tick-borne encephalitis virus glycoprotein E by 

the heterodimeric association with protein prM. Virology 1994, 198, 109-117. 

77. Junjhon, J.; Edwards, T.J.; Utaipat, U.; Bowman, V.D.; Holdaway, H.A.; Zhang, W.; Keelapang, 

P.; Puttikhunt, C.; Perera, R.; Chipman, P.R.; et al. Influence of pr-M cleavage on the 

heterogeneity of extracellular dengue virus particles. J. Virol. 2010, 84, 8353-8358. 



Viruses 2011, 3                            

 

 

171

78. Deubel, V.; Digoutte, J.P.; Mattei, X.; Pandare, D. Morphogenesis of yellow fever virus in Aedes 

aegypti cultured cells. II. An ultrastructural study. Am. J. Trop. Med. Hyg. 1981, 30, 1071-1077. 

79. Hase, T.; Summers, P.L.; Eckels, K.H.; Baze, W.B. An electron and immunoelectron microscopic 

study of dengue-2 virus infection of cultured mosquito cells: maturation events. Arch. Virol. 1987, 

92, 273-291. 

80. Mackenzie, J.M.; Westaway, E.G. Assembly and maturation of the flavivirus Kunjin virus appear 

to occur in the rough endoplasmic reticulum and along the secretory pathway, respectively.  

J. Virol. 2001, 75, 10787-10799. 

81. Ng, M.L. Ultrastructural studies of Kunjin virus-infected Aedes albopictus cells. J. Gen. Virol. 

1987, 68, 577-582. 

82. Welsch, S.; Miller, S.; Romero-Brey, I.; Merz, A.; Bleck, C.K.; Walther, P.; Fuller, S.D.; Antony, 

C.; Krijnse-Locker, J.; Bartenschlager, R. Composition and three-dimensional architecture of the 

dengue virus replication and assembly sites. Cell Host. Microbe 2009, 5, 365-375. 

83. Yu, I.M.; Holdaway, H.A.; Chipman, P.R.; Kuhn, R.J.; Rossmann, M.G.; Chen, J. Structure of the 

immature dengue virus at low pH primes proteolytic maturation. J. Virol. 2009, 83, 12101-12107. 

84. Wengler, G.; Wengler, G. Cell-associated West Nile flavivirus is covered with E+pre-M protein 

heterodimers which are destroyed and reorganized by proteolytic cleavage during virus release.  

J. Virol. 1989, 63, 2521-2526. 

85. Zheng, A.; Umashankar, M.; Kielian, M. In vitro and in vivo studies identify important features of 

dengue virus pr-E protein interactions. PLoS. Pathog. 2010, 6, e1001157. 

86. Stadler, K.; Allison, S.L.; Schalich, J.; Heinz, F.X. Proteolytic activation of tick-borne 

encephalitis virus by furin. J. Virol. 1997, 71, 8475-8481. 

87. Dejnirattisai, W.; Jumnainsong, A.; Onsirisakul, N.; Fitton, P.; Vasanawathana, S.; Limpitikul, 

W.; Puttikhunt, C.; Edwards, C.; Duangchinda, T.; Supasa, S.; et al. Cross-reacting antibodies 

enhance dengue virus infection in humans. Science 2010, 328, 745-748. 

88. Rodenhuis-Zybert, I.A.; van der Schaar, H.M.; da Silva Voorham, J.; van der Ende-Metselaar, H.; 

Lei, H.Y.; Wilschut, J.;Smit, J.M. Immature dengue virus: a veiled pathogen? PLoS. Pathog. 

2010, 6, e1000718. 

89. Junjhon, J.; Lausumpao, M.; Supasa, S.; Noisakran, S.; Songjaeng, A.; Saraithong, P.; Chaichoun, 

K.; Utaipat, U.; Keelapang, P.; Kanjanahaluethai, A.; et al. Differential modulation of prM 

cleavage, extracellular particle distribution, and virus infectivity by conserved residues at 

nonfurin consensus positions of the dengue virus pr-M junction. J. Virol. 2008, 82, 10776-10791. 

90. Nelson, S.; Jost, C.A.; Xu, Q.; Ess, J.; Martin, J.E.; Oliphant, T.; Whitehead, S.S.; Durbin, A.P.; 

Graham, B.S.; Diamond, M.S.; et al. Maturation of West Nile virus modulates sensitivity to 

antibody-mediated neutralization. PLoS. Pathog. 2008, 4, e1000060. 

 

© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 

 

 


