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Abstract

Background: Flavokawain B (FKB) has been identified from kava root extracts as a potent apoptosis inducer for

inhibiting the growth of various cancer cell lines, including prostate cancer. However, the molecular targets of FKB

in prostate cancer cells remain unknown.

Methods: An in vitro NEDD8 Initiation Conjugation Assay was used to evaluate the neddylation inhibitory activity

of FKB. Molecular docking and a cellular thermal shift assay were performed to assess the direct interaction

between FKB and the NEDD8 activating enzyme (NAE) complex. Protein neddylation, ubiqutination, stability and

expression in cells were assessed with immunoprecipitation and Western blotting methods using specific

antibodies. Deletion and site specific mutants and siRNAs were used to evaluate deep mechanisms by which FKB

induces Skp2 degradation. Cell growth inhibition and apoptosis induction were measured by MTT, ELISA and

Western blotting methods.

Results: FKB inhibits NEDD8 conjugations to both Cullin1 and Ubc12 in prostate cancer cell lines and Ubc12

neddylation in an in vitro assay. Molecular docking study and a cellular thermal shift assay reveal that FKB interacts

with the regulatory subunit (i.e. APP-BP1) of the NAE. In addition, FKB causes Skp2 degradation in an ubiquitin and

proteasome dependent manner. Overexpression of dominant-negative cullin1 (1–452), K720R mutant (the

neddylation site) Cullin1 or the F-box deleted Skp2 that losses its binding to the Skp1/Cullin1 complex causes the

resistance to FKB-induced Skp2 degradation, whereas siRNA knock-down of Cdh1, a known E3 ligase of Skp2 for

targeted degradation, didn’t attenuate the effect of FKB on Skp2 degradation. These results suggest that

degradation of Skp2 by FKB is involved in a functional Cullin1. Furthermore, proteasome inhibitors Bortezomib and

MG132 transcriptionally down-regulate the expression of Skp2, and their combinations with FKB result in enhanced

inhibitory effects on the growth of prostate cancer cell lines via synergistic down-regulation of Skp2 and up-

regulation of p27/Kip1 and p21/WAF1 protein expression. FKB also selectively inhibits the growth of RB deficient

cells with high expression of Skp2.

Conclusion: These findings provide a rationale for further investigating combination of FKB and Bortezomib for

treatment of RB deficient, castration-resistant prostate cancer.
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Background
Targeted and combined cancer treatments have signifi-

cantly increased in demand as the side effects and resistant

mechanisms of common therapies have been researched in

greater detail. Neural Precursor Cell Expressed, Develop-

mentally Down-Regulated 8 (NEDD8), an ubiquitin-like

protein, plays an important role in the modification of

Cullin-1 to turn on the Skp1-Cullin-F box protein (SCF)

complex for regulation of the stability of its target proteins

[1]. The neddylation of Cullin1 occurs via a conjugation

cascade-the neddylation pathway, which is initiated by an

E1 (i.e. NEDD8 activating enzyme, NAE) enzyme consisting

of Amyloid Precursor Protein-binding Protein1 (APP-BP1)

and Ubiquitin-Like Modifier Activating Enzyme 3 (UBA3)

proteins. Activated E1 then transfers NEDD8 to its E2 en-

zyme NEDD8-conjugating enzyme 2M (UBE2M), also

called Ubc12, which causes covalent modulation of Cullin

proteins with NEDD8 for activation of Cullin-RING ubiqui-

tin ligases. Many components of the neddylation pathway,

such as NEDD8, NAE and DCN1, have been reported to

be over-expressed in several cancers [2–4]. In addition, high

levels of NEDD8 mRNA were related to resistance to Bor-

tezomib in multiple myeloma patients [5]. Therefore, the

neddylation pathway could be targeted for development of

novel cancer therapies. Indeed, a small molecule inhibitor

of NAE, MLN4924 (a first-in-class inhibitor of NAE also

named as pevonedistat), has been developed and currently

in multiple phase I/II clinical trials for patients with ad-

vanced solid tumors or hematological tumors [6–10]. How-

ever, results from initial trials suggested that MLN4924 as a

single agent has limited anti-tumor efficacy and is dose lim-

iting because of toxicities. Therefore, there is a need for de-

velopment of more efficient or less toxic NAE inhibitors or

novel combination therapies.

Natural products have long been a rich resource for

identifying novel anti-cancer agents with relatively few

side effects. Flavokawain B (FKB) is a naturally occurring

chalone identified in the Kava plant. FKB has been shown

potent anti-tumor activities in xenograft models of a var-

iety of cancers, including in human gastric carcinoma,

breast and prostate cancers in nude mice [11–17]. We

have demonstrated that FKB selectively inhibited the

growth of androgen receptor negative, castration resistant

prostate cancer cell lines with minimal effects on the

growth of normal prostate epithelial and stroma cells [13].

We and other researchers have observed that the cancer

specific cytotoxicity of FKB is associated with the gener-

ation of intracellular reactive oxygen species and

up-regulation of death receptor-5 and Bim expression,

which leads to induction of G2M arrest and apoptosis [13,

15, 18]. However, the molecular targets of FKB in cancer

cells remain unclear. In this study, we have shown that

FKB inhibits NEDD8 conjugations to both Cullin1 and

Ubc12 in prostate cancer cell lines and Ubc12

NEDDylation in an in vitro assay. Molecular docking

study and a cellular thermal shift assay (CETSA) has fur-

ther indicated that FKB directly interacts with the regula-

tory subunit (i.e. APP-BP1) of the NAE. These results

together suggest that FKB is a novel NAE inhibitor.

The neddylation status of the SCF complex is essential for

its function on degradation of both its substrate and itself

[19]. Moreover, individual components of the SCF complex,

including Cullin1, S-phase kinase associated protein 2

(Skp2), copper metabolism domain containing 1 (Commd1),

and cyclin-dependent kinases regulatory subunit 1(Cks1b)

have been linked to Bortezomib resistance in multiple mye-

loma [20]. Here, we have observed that FKB induces a

proteasome-dependent and ubiquitin-mediated degradation

of Skp2 and that the effect of FKB on Skp2 degradation relies

on a functional Cullin1. We have further shown that FKB

markedly enhances the growth inhibitory and apoptotic ef-

fect of proteasome inhibitors MG132 and Bortezomib via

down-regulation of Skp2 and upregulation of p27/Kip1 and

p21/WAF1 protein expression. In addition, FKB preferen-

tially inhibits the growth of RB deficient cells compared to

RB wild-type cells. Our study suggests that FKB and Borte-

zomib combination deserves further investigation for treat-

ment of RB deficient late stage prostate cancer.

Materials and methods

Cell culture

The prostate cancer cell lines LNCaP and PC3 were ob-

tained from American Type Culture Collection (ATCC,

Manassas, VA), while C4-2B prostate cancer cell lines

were purchased from Urocor Inc. (Oklahoma City, OK).

These cells were characterized and authenticated by

ATCC or Urocor Inc. In addition, all cell lines were tested

for known species of mycoplasma contamination using a

kit from LONZA Inc. (Walkersville, MD). These prostate

cancer cells were cultured in RPMI-1640 media (Fisher

Scientific) supplemented with 10% fetal bovine serum

(FBS), 1% L-Glutamine, and 1% penicillin-streptomycin as

described previously in our publication [12, 13]. RB +/+

and RB −/− mouse embryonic fibroblasts (MEFs) and

mouse prostate epithelial cells (MPECs) were obtained

from Dr. Wen-Hwa Lee at the University of California, Ir-

vine and from Dr. Scott D Cramer at Wake Forest Univer-

sity School of Medicine, respectively. These cells were

grown in Dulbecco’s modified Eagle’s media (DMEM) that

has supplements of 10% FBS, 1% L-Glutamine, and 1%

Penicillin-Streptomycin. All cell lines used in this study at

passage 15–20 were used for all experiments.

Compounds, antibodies, and reagents

FKB with 99% purity was isolated from kava extracts by LKT

Laboratories, Inc. (St. Paul, MN). Bortezomib, MG-132 and

MLN4924 were obtained from Cayman Chemical Inc. (Ann

Arbor, MI). Antibodies against Ubc12, ubiquitin, and

Li et al. Cell Communication and Signaling           (2019) 17:25 Page 2 of 13



β-tubulin were from Santa Cruz Biotechnology, Inc. (Santa

Cruz, CA). Anti-Skp2 antibodies were purchased from Invi-

trogen (Grand Island, NY). Anti-Myc-tag and Anti-cleaved--

PARP antibodies were from Cell Signaling (Boston, MA).

Anti-Cullin-1 and anti-NEDD8 antibodies were from Abcam

(Cambridge, MA). Anti-p27/Kip1 and p21/WAF1 antibodies

were from BD Biosciences (Billerica, MA). 3-(4,

5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide

(MTT) was purchased from Sigma. The Reverse Transcrip-

tion System kit and was from Promega (Mandison, WI). A

quantitative reverse transcription polymerase chain reaction

(RT-PCR) kit was from Bio-Rad (Hercules, CA). Ubiquityla-

tion Assay Kit and 20S Proteasome Assay Kit were from

Cayman and Abcam, respectively.

MTT assay

Cells (2 × 104 cells/well) were grown in 24-well culture

dishes for 24 h, and then treated as indicated in the fig-

ures. Cells were then incubated for another 48 h before

adding 1mg/mL MTT in 20% PBS and 80% culture

medium (v/v) for 2 h. The absorbance was read at 570 nm,

and the dose-response curves for reduction of cell viability

were generated as percentage ratios of vehicle-treated

controls.

Western blot analysis

Cellular protein lysates (20-100μg) were denatured in 2X

loading buffer at 100 °C prior to adding into 8–16%

SDS-PAGE. For non-denatured Western blotting analysis,

non-reducing loading buffer were mixed with protein ly-

sates prior to resolving it in non-denaturing gel (Biorad,

CA). Proteins were transferred to nitrocellulose mem-

branes, probed with indicated antibodies, and visualized by

an enhanced chemiluminescence detection system. The

western blotting bands were semi-quantified using Image J

and adjusted for loading controls, β-actin or tubulin.

Plasmid and siRNA transfection

Plasmids of PcDNA-Skp2/myc and pGL2-Skp2 promo

ter-luciferases (Skp2-Luc) were from Addgene No.

19947 and No. 81119, respectively [21]. PcDNA-Skp2/

myc and control vector PCDNA were transfected into

PC3 cells with Fugene 6 from Roche (Indianapolis, IN),

and stable clones were screened for positive expression

of Skp2 and mixed positive clones used in the experi-

ments. Delta-B box Cullin-1 (dominant-negative

Cullin-1 (1–456)) plasmid was a kindly gift from Dr.

Zhen-Qiang Pan (Derald H. Ruttenberg Cancer Center,

New York) [22]; delet-F-box-Skp2-V5 was a kindly gift

from Dr. Thilo Hagen (National University of Singapore)

[23]. All the siRNAs, including siSkp1, siCSN5, siUbc12,

and siCdh1, were from Qiagene (Valencia, CA). All the

transient transfections were performed using Lipofecta-

min 2000 from Invitrogen.

Promoter activity and luciferase assay

PC3 cells were co-transfected with Skp2-Luc and Renilla

luciferase plasmid pGL 4.71 (Promega) by Lipofectamine

2000 (Invitrogen). After 48 h of transfection, FKB was

added as indicated with triple replications. Then cells

were harvested and luciferase activity was measured with

the Dual-Glo Luiferase assay system (Promega). Renilla

luminescence was used as an inner control for cell num-

bers and transfection efficiency. The relative ratio of lu-

minescence from interested gene promoter to Renilla

luminescence was shown in the figures as promoter

activity.

In vitro NEDD8 initiation conjugation assay

The NEDD8 initiation conjugation assay kit was pur-

chased from Bonston Biochem (Cambridge, MA). A

master mix of 0.4 μM APP-BP1/UBA3 (NEDD8 ligase

E1), 12.5 μM UbcH12 (NEDD8 ligase E2) and 62.5 μM

NEDD8 were prepared in the reaction buffer (pH 8.0, 50

mM HEPES and 50 mM NaCl in final reaction) and dis-

tributed to individual tubes with a volume of 15 μl. A

series of dilutions of FKB were made in DMSO. One

microliter of FKB or DMSO were added to the indicated

tubes and mixed well. The reactions were started by

adding 2.5 mMMg2+ and 1mM ATP (4 μl in mixture),

except the negative control tube was added by equal vol-

ume of ddH2O. The reaction tubes were incubated in

37 °C for 30 min and stopped by adding 5 μl 25 mM

EDTA. Non-reducing western blot was performed with

anti-UbcH12 antibody to detect both Ubc12 bands and

Nedd8 conjugated Ubc12 bands.

Cellular thermal shift assay [24]

PC3 cells were washed in 1X PBS before splitting evenly

at 1 × 106 cells into 2-mL centrifuge tube in complete

medium. One of the 2-mL centrifuge tubes were treated

with 0.1% DMSO, while others were treated with indi-

cated concentrations of FKB. After 2 h incubation at 37 °C

in a water bath, the cells were washed and suspended in

600 μL of 1X cold PBS that containing protease inhibitor.

Each of the treated cells were split evenly into nine new

2-mL centrifuge tubes, labeled with temperature ranging

from 40 to 62 °C in increments of 3 degrees. The cells

were incubated for 3 min at the indicated temperature,

followed by 3min incubation at room temperature before

snap-frozen in liquid nitrogen. The cells were then lysed

via snap-frozen in liquid nitrogen, thawing at 25 °C, and

brief vortexing three times, before being spun down at

13,000 rpm for 15min at 4 °C. Prior to heating at 75 °C for

10min, 40 μL of the supernatants were mixed with 10 μL

5X loading dye containing β-mercaptoethanol, and then

used for Western Blot analysis. Primary antibodies against

the protein of interest were used.
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Cellular isothermal dose response assay [24]

Similarly to the CESTA experiment, PC3 cells were

washed in 1X PBS and split evenly at 1 × 106 cells into

eight 2-mL centrifuge tubes. The eight sets of 2-mL cen-

trifuge tubes were treated with increasing concentrations

of FKB as shown in the Figure legend, leaving one 2-mL

centrifuge tube with 0.1% DMSO as a vehicle control.

After 2 h of incubation at 37 °C, the cells were washed

with 1X PBS and suspended in 40 μL of PBS containing

protease inhibitor. The cells were incubated at an appro-

priate temperature for 3 min and left at room

temperature for 3 min before snap frozen in liquid nitro-

gen. Cells were lysed and Western blotting analysis was

performed as described in the CESTA method.

Statistical analysis

Comparisons of cell viabilities, fold change in levels of

mRNA, caspase activities and ubiquitination and protein

levels between different treatments were conducted

using Student’s t-test. All statistical tests were two sided.

P < 0.05 was considered statistically significant.

Results

FKB inhibits Cullin-1 and Ubc12 neddylation

We have identified that FKB is the most potent apop-

tosis inducer of chalcones isolated from kava root ex-

tracts for inhibition of the growth of prostate cancer cell

lines with minimal effects on normal prostate epithelial

cells [13]. A further screening assay suggested that FKB

may function as a neddylation inhibitor (data not

shown). We therefore examined the expression of

NEDD8 and its modified proteins in PC3 cells after FKB

treatment. FKB treatment decreased neddylation of mul-

tiple proteins, including Cullins, NAE1, UBA3, etc. in

both a dose- and time- dependent manner (Fig. 1a).

Western blotting analysis confirmed that FKB reduced

A B

C D

Fig. 1 FKB inhibits the neddylation of Cullin1 and Ubc12. a, PC3 cells were treated with indicated concentrations of FKB for different periods of

time. Expression of NEDD8 and its modified proteins were measured by Western blotting analysis. b, Western blotting analysis of Cullin1

neddylation in vehicle control (0.1% DMSO) or 8.8 μM FKB treated LNCaP and PC3 cells. c, Cullin1 neddylation was measured via

immunoprecipitation with anti-Cullin1 and then Western blotting analysis of the immunoprecipitates by anti-NEDD8 antibody in vehicle control

or 8.8 μM FKB treated DU145 and PC3 cells. d, PC3 cells were treated with 8.8 μM FKB or 1 μM MLN4924 for 16 h. Neddylation of Cullin1 and

Ubc12 and expression of ubiquitinated proteins and Skp2 were examined by specific antibodies and β-tubulin serves as a loading control
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Cullin-1 neddylation in LNCaP and PC3 cells (Fig. 1b).

In addition, immunoprecipitation experiments were con-

ducted by using anti-Cullin-1 antibody to pull down its as-

sociated complexes and detecting the pull down Cullin-1

with an anti-NEDD8 antibody. The result demonstrates

that the level of NEDD8-modified Cullin-1 decreases in

both DU145 and PC3 cells when treated with FKB (Fig.

1c). In addition, we used a reported neddylation inhibitor,

MLN4924, as a positive control for deneddylation [6–10].

Though the effect of FKB on de-neddylation was weaker

than MLN4924, FKB treatment resulted in an increased

ubiquitination of proteins accompanied by Skp2

down-regulation, whereas MLN4924 neither increase the

expression of ubiquitinated proteins nor decrease Skp2

expression (Fig. 1d). This result suggests that FKB is a

novel neddylation inhibitor with a different mechanism

from the known neddylation inhibitor MLN4924.

FKB interacts with NAE1 regulatory subunit to inhibit

UBC12 neddylation

Computational model was used to determine the potential

binding sites of FKB to NAE1, Ubc12, and Cullin1. NAE1

had the highest predicted inhibition constant of approxi-

mately 986 nM by FKB (Fig. 2a), while best predicted in-

hibitory constant for Ubc12 and Cullin1 were 6.56 μM

and 7.07 μM of FKB (Data not shown), respectively. In

order to verify the direct effect of FKB on neddylation, an

in vitro neddylation initiation experiment was performed

where FKB was added to the reaction system of neddyla-

tion enzymes in a dose-dependent reaction. The inhibition

of Ubc12 neddylation was shown by non-denaturing

Western blotting analysis, and an increasing dose of FKB

was able to inhibit neddylation to Ubc12 (Fig. 2b, top).

The relative density of NEDD8-Ubc12 to the control was

analyzed to have an estimated IC50 of approximately11μM

(Fig. 2b, bottom). These results suggest that FKB inhibits

neddylation by hindering NAE1 activities.

CETSA was also performed to determine the direct

interaction between FKB and NAE1. Of the NAE1 com-

plex, the regulatory subunit, APP-BP1, was found to be

significantly shielded from degradation at an optimal

temperature of 58 °C (Fig. 2c) when co-incubated with

FKB at the optimal peak concentration of 8 .8μM (Fig.

2d), strongly suggesting that FKB directly binds to the

regulatory subunit.

FKB accelerates Skp2 degradation

Next, we have examined the effect of FKA on the

down-stream events of the neddylation pathway, such as

expression of an E3 ligase. FKB was shown to have a

dramatically downregulating effect on Skp2 protein

levels at a concentration of 8.8 μM in both androgen

receptor-positive C4-2B and androgen receptor negative

PC3 cells (Fig. 3a). Subsequently, the protein expression

of p27/Kip1, the major target substrate of Skp2, was also

shown to be increased (Fig. 3a). We then determine the

effects of FKB on Skp2 expression under

androgen-stimulated and androgen-deprived conditions.

Androgen deprivation reduces the protein expression of

Skp2 and addition of synthetic androgen into androgen

deprived media restores the expression of Skp2 in

LNCaP cells. When we treated LNCaP cells in presence

or absence of androgen and with FKB together, we found

Skp2 was decreased by FKB, regardless of if there were a

presence or absence of androgen (Fig. 3b). We next de-

termined whether FKB can affect Skp2 mRNA expres-

sion levels and Skp2 promoter activities. Unlike

proteasome inhibitors MG132 and Bortezomib, we

found that FKB had no significant effect on either Skp2

mRNA expression or the transcriptional activity of the

Skp2 promoter (Fig. 3c). These results indicate that the

decrease of Skp2 was likely due to the reduced protein

stability of Skp2 protein. We therefore employed cyclo-

heximide to block de novo protein synthesis and re-

corded the degradation rate of Skp2 in a time course

treatment of PC3 cells. We analyzed the Skp2 protein

expression levels over time and found that the rate of

Skp2 degradation is significantly increased under FKB

treatment (Fig. 3d).

FKB increases Skp2 ubiquitination leading to its

degradation

To evaluate whether the Skp2 degradation by FKB de-

pends on the proteasome function, PC3 cells with or

without ectopic expression of Skp2 were treated with

FKB, proteasome inhibitor MG132 alone or their com-

bination. Figure 4a shows that FKB and MG132 combin-

ation resulted in enhanced down-regulation of

endogenous Skp2 compared to either alone, whereas the

degradation of ectopically expressed Skp2 protein (which

is driven by the CMV promoter but not endogenous

transcriptional factors) by FKB was completely blocked

by MG132. This result indicates that the FKB induced

Skp2 degradation relies on intact proteasome function.

Figure 4b have further demonstrated that FKB has no ef-

fect on the proteasome function at its concentrations for

inducing Skp2 degradation when compared to MG132.

In addition, we have observed that the ubiquitinated

Skp2 level was increased under FKB treatment in both

Skp2 and ubiquitin immunoprecipitation assays (Fig. 4c

left and middle panel), and the whole ubiquitination level

in cell lysate was also increased marginally (Fig. 4c

right panel). A quantitative analysis of ubiquitination

level of Skp2 also demonstrated a significant increase

in ubiquitin modified Skp2 when treated with FKB

(Fig. 4d). Together, these results demonstrate that

FKB decreases Skp2 by increasing its ubiquitination,

which can be recognized and degraded by proteasome
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and its degradation in the proteasome without affect-

ing the proteasome function itself.

FKB induced Skp2 degradation is dependent on a

functional Cullin-1

There are at least two reported mechanisms involved in

Skp2 ubiquitination and degradation [19]. One is that

Skp2 is ubiquitinated by another E3 ligase complex, such

as the APC/C complex with Cdh1, the other one being

the Skp1-Cullin-1-ROC/Rbx1 complex which is referred

to as self-ubiquitination of Skp2. We first knocked down

Cdh1 by siRNA and found that FKB-induced Skp2 de-

crease is not restored in the Cdh1 knock down

conditions and that Cdh1 knockdown led to increased

protein expression of Skp2 (Fig. 5a). This result suggests

that FKB induced Skp2 degradation is not dependent on

the expression of Cdh1.

We therefore turned our investigation into the

Cullin-1, which is post-transcriptionally modified by

neddylation and serve as a bridge to link ROC/Rbx1/

ubiquitin-conjugating enzyme E2 to the Skp1/Skp2 com-

plex for ubiquitin transfer. A full-length wild-type Cul-

lin1 expression plasmid, a dominant negative Cullin-1

expression plasmid that retains the binding to the Skp1/

Skp2 complex but lacks the E2 (i.e. ROC/Rbx1) binding

domain, or a mutant Cullin-1(K720R) with disruption of

A B

C D

Fig. 2 FKB interacts with the NAE1 to inhibit Ubc12 neddylaton. a, Autodocktools program was used to dock FKB with the NAE1 protein (3gzn),

which has a predicted IC50 of 986.1 nM, and Pymol program was used to observe the superimposed binding of FKB to NAE1. FKB was predicted

to bind within the E1 regulatory subunit (grey) of NAE1. b, In vitro Ubc12 neddylation initiation assay was performed. Ubc12 antibody was used

to detect the changes of NEDD8- conjugated Ubc12 bands, which are inhibited by FKB treatments. Densitometry analysis of Western blotting

bands shows an estimated IC50 of ~ 11 μM for FKB to inhibit Ubc12 neddylation. c, Cellular thermal shift assay was performed using PC3 cells

treated with 8.8 μM FKB or 0.1% DMSO under a range of temperatures from 40cC to 62 °C. Western blotting bands were semi-quantified by

densitometry analysis and adjusted by loading control β-tubulin. The line graph shows relative changes of density ratios from 40cC to 62 °C. Error

bars represent standard deviations of three replicates. d. Cellular isothermal dose response was examined on PC3 cells at 58 °C and treated with

FKB at concentrations ranged from 0.3125 μM to 20 μM, where 0.1% DMSO was used as a vehicle control. The line graph shows relative changes

of density ratios from different concentrations of FKB treatment relative to vehicle control. CT denotes control. Error bars represent standard

deviations of three replicates
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the NEDD8 conjugation site expression plasmid as

shown in Fig. 5b was then transfected into 293 T cells.

After transfection, these transfected cells were treated

with 8.8 μM FKB for 24 h. Western-blot analysis shows

that FKB induced Skp2 degradation was fully blocked

when Cullin1 activities were hindered by expression of

dominant-negative or neddylation site deleted Cullin-1

(Fig. 5c). The expression of F-box-deleted Skp2 protein

that losses its binding to the Cullin-1 complex via Skp1

also cannot be decreased by FKB treatment (Fig. 5d). As

suggested by these results, a functional Cullin1 that acts

as a bridge for transferring ubiquitin from E2 to E3 lig-

ase may be required for FKB induced Skp2 degradation.

Furthermore, NEDD8 is removed from cullins by spe-

cific isopeptidase activity of the COP9/signalosome (CSN)

complex, including CSN5 [25]. siRNA knockdown of

CSN5, Ubc12, or Skp1 in PC3 cells decrease the expres-

sion of Skp2 and is not able to rescue the effect of FKB in-

duced Skp2 degradation. These results suggest that FKB

induced Skp2 degradation doesn’t require the expression

of CSN5, Ubc12 and Skp1 (Additional file 1: Figure S1).

FKB enhances the anti-cancer effects of proteasome

inhibitors via Skp2 down-regulation

We have shown that proteasome inhibitors (MG132 and

Bortezomib) inhibit the mRNA expression and promoter

A

C

B

D

Fig. 3 FKB downregulates Skp2 expression via protein degradation. a, Western blotting analysis of protein expression of Skp2 and p27/Kip1 in

PC3 and C4-2B cells that were treated with vehicle control (0.1% DMSO) or indicated concentrations of FKB for 24 h. β-tubulin was used as a

loading control. b, LNCaP cells were cultured under 10% charcoal stripped FBS with or without 10 nM synthetic androgen R1881 and then

treated with vehicle control (0.1% DMSO) or 8.8 μM FKB for 24 h. The protein expression of Skp2 was decreased by FKB treatment. c, PC3 cells

were treated with 0.5% DMSO, 8.8 μM FKB, 5 μM MG132 or 10 nM Bortezomib for 16 h. Real-time RT-PCR was performed to analyze mRNA

expression of Skp2. PC3 cells were co-transfected with Skp2-Luc along with a Renilla luciferase plasmid pGL 4.71 and Luciferase activities were

measured. Proteasome inhibitors MG132 and Bortezomib but not FKB significantly decrease mRNA expression and promoter activity of Skp2

(Student t test, Ps < 0.05). Bars are mean ± SD of three independent experiments. d, PC3 cells were treated with 10 μg/L of cycloheximide (CHX).

After 16 h of treatment, the cells were treated in absence or presence of 8.8 μM of FKB. Western blotting was performed to determine Skp2

protein levels and quantified by densitometry with Image J software and adjusted for loading control. FKB reduces Skp2 protein stabilities

over time
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activity of Skp2 in PC3 cells, indicating a mechanism

through transcriptional down-regulation of Skp2 (Fig. 3c).

Consistently, proteasome inhibitors (MG132 and Bortezo-

mib) had more potent effect on reducing cell viabilities of

Skp2 overexpressing PC3/Skp2 cells than PC3/PcDNA

cells with less Skp2 expression, which suggests that Skp2

is a potential target for the growth inhibitory effect of

these proteasome inhibitors (Additional file 1: Figure S2).

The IC50s of MG132 and Bortezomib for PC3/Skp2 cells

were estimated to be approximately 252.2 ± 34.1nM and

14. 1 ± 1. 7 nM, respectively, compared to 832.7 ± 45.7nM

and more than 20 nM for PC3/PcDNA cells (Ps < 0.05).

Since FKB targets Skp2 degradation for its growth in-

hibitory effect on prostate cancer cell lines (Fig. 3 and

Additional file 1: Figure S3), we examined whether the

anti-prostate cancer effects of MG132 or Bortezomib

could be enhanced via combination with FKB. Figure 6a

shows that MG132, Bortezomib or FKB alone at

concentrations minimally to slightly inhibit the growth

of prostate cancer cell lines (i.e. C4-2B, DU145 and

PC3), whereas their combinations results in approxi-

mately 30 to 84% growth inhibition on these cell lines,

respectively, suggesting an additive to synergistic ef-

fect dependent on cell lines. Western blotting analysis

further demonstrates that MG132, Bortezomib or FKB

either alone decreases the protein expression of Skp2

by less than 50%, and that their combinations results

in a complete inhibition of Skp2 protein expression

(Fig. 6b and Additional file 1: Figure S4). Further-

more, combination of FKB with MG132 lead to mark-

edly enhanced expression of cell cycle inhibitors p27/

Kip1 and p21/WAF1 (Fig. 6b). Furthermore, combin-

ation of FKB and MG132 causes an increased cleav-

age of PARP and Caspase 3/7 compared to each

treatment alone (Fig. 6c), indicating an enhanced

apoptosis by the combination.

A

C

B

D

Fig. 4 FKB degrades Skp2 protein in a proteasome and ubiquitination dependent manner. a, Western blotting analysis of Myc-Skp2 and

endogenous Skp2 protein expression after PC3/Skp2 or PC3/PCDNA cells were treated with FKB, MG132 or their combination for 24 h. b,

proteasome activities (i.e. OD values) were measured by the 20S Proteasome Assay Kit after PC3 cells were treated with 0.1% DMSO, FKB or

MG132 for 24 h. c, Skp2 ubiquitination was measured by immunoprecipitation with anti-ubiquitin antibody and then Western blotting analysis of

immunoprecipitates by anti-Skp2 after PC3 cells were treated with 0.1% DMSO or FKB (left two panels). 293 cells were transiently transfected with

Skp2 and ubiquitin expression plasmids. After 24 h of transfection, cells were treated with 0.1% DMSO or FKB for 16 h. FKB increases

ubiquitination of Skp2. d, the relative ubiquitination levels were measured by the Ubiquitylation Assay Kit after DU145 cells were treated by 0.1%

DMSO, 8.8 μM FKB, 5 μM MG132 for 16 h
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Defects in the RB1 tumour suppressor are one of the

more common driver alterations in prostate cancer pro-

gression [26–31] and Skp2 was shown to be required for

RB1 loss initiated pituitary tumorigenesis [32]. Here, we

observed that the mRNA levels of Skp2 in RB1 knockout

mouse embryonic fibroblasts (MEFs) are approximately

8 fold higher than those in wild-type MEFs (Fig. 7a). In

addition, we demonstrate that FKB selectively inhibits

the growth of RB1 deficient cells: The IC50s of RB−/−

MEFs and mouse prostate epithelial cells (MPECs) were

estimated to be approximately 12 μM and 10 μM com-

pared to IC50s of their wild type control counterparts

25 μM and 31 μM, respectively (Fig. 7b and c, Ps < 0.05).

Our results can be simply summarized as Fig. 6d,

which indicates that the combination of suppressing

Skp2 transcription by proteasome inhibitors and indu-

cing Skp2 protein degradation via FKB may cause

synergistic downregulation Skp2 expression leading to

pronounced up-regulation of p27/Kip1 andp21/WAFs,

activation of caspase cascade, cell growth inhibition

and apoptosis. RB deficient prostate cancer may be

particularly sensitive to the FKB and Bortezomib

combination therapy.

Discussion

The results from our experiment support the hypothesis

that FKB’s inhibitory effect on prostate cancer cells is

due to FKB’s binding to the NAE1 regulatory subunit

APP-BP1. Our CETSA results confirm that FKB directly

binds to APP-BP1, which in turn was our prediction

based on molecular docking. This binding results in two

distinct events. The first is that FKB treatment prevents

neddylation of Cullin-1 and Ubc12. The second distinct

event is that treatment with FKB simultaneously causes

a downstream ubiquitination and degradation of E3 li-

gases SKP2. These observations suggest that FKB is dis-

tinct from a known neddylation inhibitor MLN4924,

which forms NEDD8-MLN4924 adduct to inhibit neddy-

lation of Cullin-1 and Ubc12 [5–10] but didn’t induce

protein ubiquitination and Skp2 degradation.

A B

C

D

Fig. 5 Degradation of Skp2 by FKB is dependent on Cullin1 activity. a, PC3 cells were transiently transfected with siRNA control or Cdh1siRNAs.

The knockdown effects on Skp2 expression were evaluated by Western blotting analysis. FKB decreases Skp2 expression under Cdh1 knockdown

conditions. b, cartoon depiction of ubiquitin transfer from E2 to E3 substrate in the Cul1–Rbx1–Skp1–F boxSkp2 SCF ubiquitin ligase complex. c,

left panel: PC3 cells stably expressing dominant-negative (DN) Cullin1 or vector control (PcDNA3), middle panel: 293 T cells were transiently

transfected with mutant Cullin-1 (K720R) or PcDNA3, and right panel: 293 T cells were transiently transfected with full-length Cullin1 (1–728). Cells

were treated with 0.1%DMSO or 8.8 μM FKB for 24 h. Skp2 and p27/Kip1 expression was examined by Western blotting analysis. d, PC3 cells were

transfected with F-box deleted Skp2 (V5-del-F-box-Skp2). After 24 h of transfections, cells were treated with 0.1%DMSO or 8.8 μM FKB for 24 h,

and Skp2/V5 expression was examined by Western blotting analysis
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In addition, FKB demonstrates two characteristics

that make FKB or its derivatives valuable for further

investigation of its usefulness in combination therapy

for prostate cancer. The first one is that FKB select-

ively inhibits the growth of RB deficient cells by deg-

radation of Skp2. RB-deficient prostate tumors

present a significant clinical challenge [26–31]. Loss

of RB function was found with high frequency in

castration-resistant prostate cancer [26–31]. In one

way, most RB defective prostate tumors are associated

with high androgen receptor expression, poor progno-

sis, and resistance to hormone therapy [29, 30]. Clin-

ically, prostate cancer patients with early loss of RB

function were often found to be those men whose ab-

solute PSA value does not go down below 0.2 ng/ml

after androgen depletion [29, 30]. In the other way,

prostate cancer small cell/neuroendocrine phenotype,

an increasingly prevalent histologic subtype in castra-

tion resistant prostate cancer with low androgen re-

ceptor activity is also characterized by loss of RB

expression [31]. Our previous studies have demon-

strated that FKB is more potent in reducing cell via-

bilities of androgen receptor negative, castration

resistant prostate cancer cell lines [13], and that FKB

transcriptionally down-regulates the expression of an-

drogen receptor and its target genes leading to

A

B

C

D

Fig. 6 The combined effects of FKB and proteasome inhibitors MG132 and Bortezomib on cell viabilities, apoptosis and expression of Skp2 and

p27/Kip1. a, C4-2B, DU145 and PC3 cells were treated with 0.1%DMSO, 8.8 μM FKB, 5 μM MG132, 5 nM Bortezomib or their combinations for 24 h.

MTT assay was performed to measure cell viabilities. Bars are mean ± SD of three independent experiments. “*” denotes P < 0.05 and “**” denotes

P < 0.01. b, left panels: protein expression of Skp2, p27/Kip1, p21/WAF1, and cleaved PARP was measured after DU145 cells were treated with

0.01% DMSO, 8.8 μM FKB, 5 μM MG132), or their combinations for 24 h. Right panels: DU145 and PC3 cells were treated with 8.8 μM FKB, 20 μM

flavokawain A (FKA), 5 nM Bortezomib, or their combinations. Skp2 protein levels were examined. c, the caspase 3/7 activities were measured by

ELISA kit after DU145 cells were treated with 0.1% DMSO, 8.8 μM FKB, 5 μM MG132, and their combination for 24 h. Bars are mean ± SD of three

independent experiments. d, schematic presentation of mechanisms for the combined effects of FKB and proteasome inhibitors. FKB degrades

Skp2 via inhibition of Ubc12/Cullin1 neddylation, whereas proteasome inhibitors down-regulation of Skp2 expression through transcriptional

suppression. The combination results in enhanced up-regulation of p21/WAF1, p27/Kip1, and cleaved PARP, leading to greater growth inhibition

and apoptosis
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inhibition of in vivo tumor growth in patient derived

xenograft models [12]. Skp2 expression has been

shown to be required for RB loss initiated pituitary

tumorigenesis in mouse models [32]. More recently,

multiple components of the SCFSKPCullin F box con-

taining complex including Skp2 has been identified to

be candidates of highly penetrant, synthetic lethal in-

teractions in RB defective triple negative breast cancer

[33]. Taken together, these results provide a strong

rationale that targeting Skp2 by FKB, its derivatives,

or proteasome inhibitors (i.e. Bortezomib) should be

evaluated as a novel approach for treatment of RB

defective, castration resistant prostate cancer.

While FKB is not as potent as MLN4294 for inhibition

of neddylation, the second characteristic of FKB is that

when combined with the proteasome inhibitors Bortezo-

mib or MG132, the anti-prostate cancer effects were sig-

nificantly enhanced. The combination of Bortezomib

with FKB for enhanced anti-prostate cancer effects is

also mechanistically or rationally justified, given that

Bortezomib and FKB act through two distinct mecha-

nisms for down-regulation of Skp2 expression: one is

through suppression of transcription and the other is

through protein ubiquitination and degradation. Further-

more, inhibition of Skp2 has been shown to overcome

the resistance to Bortezomib in multiple myeloma [20].

Conclusion

In conclusion, FKB is a new inhibitor of protein ned-

dylaiton, which is mechanistically distinct from

MLN4924 (Pevonedistat), a known neddylation inhibi-

tor currently on clinical trials for treatment of cancers

[5–10]. FKB directly interacts with the NAE1 regula-

tory subunit APP-BP1, resulting in deneddylation of

Ubc12 and Cullin1, reduced activity of the SCFSKP2

complex and SKP2 ubiquitination and degradation, as

well as up-regulation of p21/WAF1 and p27/Kip1and

activation of the caspase mediated apoptotic pathway.

When combined with Bortezomib, the growth inhibi-

tory effect was increased than either alone, indicating

A

B C

Fig. 7 FKB selectively inhibits the growth of RB deficient cells compared to RB wild type cells. a, mRNA expression of Rb and Skp2 was analyzed

via RT-PCR and qPCR in MEF wild-type and Rb−/− cell lines. b, Mouse embryonic fibroblasts (MEFs) and c, mouse prostate epithelial cells (MPECs),

wild-type and Rb−/−, were treated with 0.1% DMSO or indicated concentration of FKB for 72 h. Cell viabilities were measured via MTT assays
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FKB as a promising candidate for drug combination

therapy of prostate cancer. Further research will be

directed at the synthetic lethal interaction of RB loss

with Skp2 overexpression in castration-resistant pros-

tate cancer and targeting of Skp2 by combination of

Bortezomib and FKB or its derivatives for treatment

of RB deficient, castration resistant prostate cancer.

Additional file

Additional file 1: Supplmentary Figures S1-S4. (PPTX 392 kb)
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