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ABSTRACT Flavonoids, such as daidzein and genistein, present in dietary plants like soybean, have unique
chemical properties with biological activity relevant to cancer. Many flavonoids and polyphenols, including
resveratrol in red wine and epigallocatechin gallate in green tea, are known antioxidants. Some of these com-
pounds have estrogenic (and antiestrogenic) activity and are commonly referred to as phytoestrogens. A yeast-
based estrogen receptor (ER) reporter assay has been used to measure the ability of flavonoids to bind to ER and
activate estrogen responsive genes. Recently, estrogenic compounds were also shown to trigger rapid, non-
genomic effects. The molecular mechanisms, however, have not been completely detailed and little information
exists regarding their relevance to cancer progression. As a preliminary step toward elucidating rapid phytoestro-
gen action on breast cancer cells, we investigated the effect of 17-� estradiol (E2), genistein, daidzein and
resveratrol on the activation status of signaling proteins that regulate cell survival and invasion, the cell properties
underlying breast cancer progression. The effect of these estrogenic compounds on the activation, via phosphor-
ylation, of Akt/protein kinase B (Akt) and focal adhesion kinase (FAK) were analyzed in ER-positive and -negative
human breast cancer cell lines. E2, genistein and daidzein increased whereas resveratrol decreased both Akt and
FAK phosphorylation in nonmetastatic ER-positive T47D cells. In metastatic ER-negative MDA-MB-231 cells,
all estrogenic compounds tested increased Akt and FAK phosphorylation. The inhibitory action of resveratrol
on cell survival and proliferation is ER dependent. Therefore, all estrogenic compounds tested, including
resveratrol, may exert supplementary ER-independent nongenomic effects on cell survival and migration in
breast cancer cells. J. Nutr. 132: 3482S–3489S, 2002.
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A variety of polyphenolic compounds of dietary origin are
known to inhibit cancer (1). The antioxidant activities of
polyphenols are well recognized and may be responsible for
various health benefits. Free radicals are produced by pollut-
ants in our food, water and air; oxidation-reduction reactions
of lipids and metal ions; and continuous mitochondrial elec-
tron transport reactions in the body. Catechins in green and
black tea and red wine can defuse these aggressive superoxide,
alkyl and hydroxyl free radicals by providing an electron,

thereby preventing attack on DNA and other cell compo-
nents. If not deactivated, the aggressive radicals produce free
radical chain reactions, potentially leading to heart disease,
stroke, memory loss and cancer. In one step, catechins help
subvert these health problems by converting damaging free
radicals to inactive compounds while themselves becoming
low-energy harmless catechin free radicals. In addition to
being powerful antioxidants, catechins such as epigallocat-
echin gallate (EGCG)5 in green tea absorb ultraviolet light in
the 280–320-nm range, preventing the promotion of photo-
induced skin cancer. EGCG also has substantial inhibitory
effects in vivo against a wide variety of tumors and in vitro
against cancer cell lines (2–5). Another effective antioxidant
polyphenol is resveratrol, which is found in high concentra-
tion in red wine as well as in peanuts and grape skins (6).
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trans-Resveratrol may prevent cancer by inhibiting cancer
growth, tumor angiogenesis and cell invasion (7–15).

Some of these compounds have estrogenic (and antiestro-
genic) activity and are commonly referred to as phytoestro-
gens. Soybeans are the main dietary source of two isofla-
vonoids: genistein and daidzein. These compounds may affect
cancer progression as a result of their effects on apoptosis, cell
cycle progression, growth and differentiation as well as their
antioxidant and antiangiogenic effects. Genistein affects cel-
lular function via inhibition of 17�-steroid oxidoreductase (an
enzyme necessary for estrogen synthesis) and tyrosine-specific
protein kinases. Genistein also modulates the activity of to-
poisomerase II, enzymes involved in phosphoinositide turn-
over and transforming growth factor-� (TGF�) signaling cas-
cades (16–22). The exact effect of phytoestrogens on breast
cancer cells and tumors is concentration dependent, where
growth is stimulated at low concentrations (0.1–10 �mol/L)
and inhibited at high concentrations (20–100 �mol/L)
(23–26).

Estrogenic compounds regulate gene transcription via two
specific intracellular estrogen receptors (ERs): ER� and ER�.
The general scheme of estrogen action involves diffusion into
the cytosol, binding to ERs and activation of gene expression
(27,28). Overexpression of ER is considered to be a predictive
and prognostic factor in breast cancer (29,30). Consequently,
inhibition of ER has become a major strategy for preventing
and treating breast cancer (31–35). Loss of ER expression is
common in malignant progression of breast cancer, making
traditional therapy with selective ER modifiers ineffectual.
Therefore much effort is directed toward designing novel ther-
apeutic strategies to combat alternative signaling pathways,
such as epidermal growth factor receptor signaling, that are
dysregulated during breast cancer progression (36).

The mode of action of the common mammalian estrogen
17�-estradiol (E2) in regulating cell proliferation as well as
tumorigenesis via gene transcription is well established. One
method to evaluate estrogenic genomic effects of compounds
and crude mixtures is to measure the ability of compounds to
bind to ER and to activate estrogen-responsive genes (37).
Using a yeast-based ER transactivational reporter system, we
investigated the estrogenic properties of compounds, moni-
tored complex plant extracts and isolated novel estrogenic
compounds via activity-guided fractionation (38,39).

Recent literature, however, indicates that E2 exerts addi-
tional nongenomic effects on cell signaling. Such rapid non-
genomic effects have been reported for a variety of cell types,
such as bone, neuronal, mammary, ovarian and cardiovascular
cells (40–42). These cells contain plasma membrane ERs that
can cross-activate a variety of signaling cascades, including
those mediated by G protein–coupled receptors and tyrosine
kinase–type growth factor receptors. Rapid cellular responses
to estrogen activate both Gs and Gq type G proteins, leading
to stimulation of adenylate cyclase and phospholipase C,
which in turn activate protein kinase A, protein kinase C and
intracellular Ca2� fluxes (42–45). E2-bound ER� associates
with the regulatory subunit of phosphatidylinositol-3-kinase
(PI3-K) and activates the survival factor Akt (protein kinase
B) (46,47) as well as stimulating growth factor receptor activ-
ity (48). These effects of E2 signaling stimulate cell prolifera-
tion via activation of mitogen-activated protein kinase
(MAPK) cascades (42,43). Activation of the tyrosine kinases
Src and Shc by ER has also been linked to direct stimulation
of MAPK signaling (49). Moreover, E2 has been shown to
affect the tyrosine phosphorylation status of key signaling
intermediates such as c-Src and focal adhesion kinase (FAK)
in both ER-positive (�) and ER-negative (�) breast cancer

cell lines (50). Recent studies have shown that MAPK signal-
ing not only affects gene transcription leading to tumorigenesis
but also may promote cancer cell invasion (51,52). Therefore
E2 signaling to MAPK cascades may be relevant for breast
cancer malignancy. The true complexity of estrogen signaling
is only now beginning to be elucidated, and even less is known
about the nongenomic effects of the vast array of related
estrogenic compounds.

In this study the soybean phytoestrogens genistein and
daidzein and resveratrol from red wine were chosen to inves-
tigate the relevance of nongenomic activity of flavonoids in
breast cancer progression. Genistein and daidzein bind to and
transactivate both ER� and ER� and have been extensively
studied for their potential health benefits (39,53,54). In addi-
tion to attenuating cell growth via ER, genistein has been
shown to block the proliferation of normal and cancer cells
stimulated by growth factor and cytokine. High concentra-
tions of genistein act as a tyrosine kinase inhibitor; this func-
tion may underlie its anticancer effects (17,18,37). However,
in one study the antiproliferative effect of genistein was shown
to be uncoupled from its effect as a tyrosine kinase inhibitor,
possibly acting via TGF� signaling (19,55). More studies are
needed to fully evaluate the estrogenic, antiestrogenic and
tyrosine kinase inhibitory effects of genistein on breast cancer
progression.

Resveratrol is structurally similar to the synthetic estrogen
diethylstilbestrol and binds to and activates ER (� and �) to
exert both estrogenic and antiestrogenic effects (56–60). The
antitumor activity of resveratrol is mediated by MAPKs [i.e.,
extracellular signal-regulated protein kinases, c-jun NH (2)-
terminal kinases and p38 kinase]. Resveratrol-induced p38
MAPK-mediated p53 activation has been implicated in inhi-
bition of cell cycle progression and initiation of apoptotic
pathways (61–64). Recently, the stimulatory effect of resvera-
trol on apoptosis was also demonstrated in a novel mitochon-
drial pathway controlled by Bcl-2 (65). Moreover, resveratrol
inhibits tumor promoting agent- or UV-induced activity of the
activator protein 1 transcription factor through inhibition of
c-Src nonreceptor tyrosine kinase and MAPK pathways (66).

These studies implicate phytoestrogens not only in media-
tion of genomic effects via ER but also in more rapid signaling
cascades. In this study, the effects of phytoestrogens on the
activation status of signaling proteins known to control breast
cancer cell survival, proliferation and invasion were monitored
in ER(�) metastatic and ER�(�) nonmetastatic human
breast cancer cell lines. Activation of PI3-K, which catalyzes
the phosphorylation of phosphatidylinositol-4,5-bisphosphate
to generate phosphatidylinositol-3,4,5-bisphosphate (PIP3), is
a key event during signal transduction via cell surface recep-
tors (67). PIP3-induced activation of phosphoinositide-depen-
dent kinase mediates the phosphorylation (in Ser 473 and Thr
308) and activation of Akt. Activated Akt initiates down-
stream signaling cascades that promote cell survival and pro-
liferation potentially leading to cancer malignancy (68,69).
FAK is a tyrosine kinase that is recruited to the membrane in
response to tyrosine kinase–type growth factor and integrin
receptor activation. Activation of FAK by phosphorylation in
Tyr 397 triggers various kinase signaling cascades, including
activity by Src and Shc, nonreceptor tyrosine kinases and
MAPKs. Similarly, these events increase cell proliferation,
motility and invasion (52,70,71).

MATERIALS AND METHODS

Cell lines. Human breast cancer cell lines T47D and MDA-MB-
231 were maintained in Dulbecco’s modified Eagle’s medium
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(DMEM) [10% fetal bovine serum (FBS)] at 37°C with 5% CO2.
Before stimulation with estrogenic compounds, cells were washed
with phenol red–free DMEM. Approximately 3 � 105 cells/well were
transferred to 6-well plates and grown for 48 h in phenol red–free
DMEM with 10% FBS. Next, cells were starved in phenol red–free
DMEM for 24 h before stimulation. Cells were stimulated for 15 min
with either E2 (Sigma Chemical Co., St. Louis, MO), genistein,
daidzein or trans-resveratrol (LKT Laboratories, St. Paul, MN). E2
was used at a concentration of 10 nmol/L, and phytoestrogens were
used at 1, 50, or 100 �mol/L. Dimethylsulfoxide was added as a
vehicle for unstimulated controls.

Western blot analysis. Cells were disrupted in lysis buffer (20
mmol/L Tris-HCl, pH 7.5), 150 mmol/L NaCl, 1 mmol/L EGTA, 1
mmol/L EDTA, 2.5 mmol/L sodium pyrophosphate, 50 mmol/L so-
dium fluoride, 1 mmol/L dithiothreitol, 10% glycerol, 1% Nonidet
P-40, 0.5% deoxycholate, and protease inhibitors) at 4°C. Lysates
were centrifuged at 16,000 � g; the proteins in the supernatant were
eluted with Laemmli’s sample buffer and separated on 10% sodium
dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) gels.
Proteins were transferred to polyvinylidene fluoride membranes,
blocked and probed with specific primary antibodies. Detection was
accomplished using alkaline phosphatase–conjugated secondary an-
tibody and developed with nitro blue tetrazolium/5-bromo-4-chloro-
3-indolyl phosphate reagent (Pierce Chemical, Rockford, IL). Anti-
Akt and anti–phospho-Akt (Ser-473) antibodies were purchased
from Cell Signaling, MA. Anti-FAK or anti–phospho-FAK (Tyr-
397) antibodies were purchased from Upstate Biotechnology (Lake
Placid, NY). The density of positive bands was quantified using NIH
Image software; the results were averaged.

We calculated the the ratio of the amount of phosphorylated-Akt
(P-Akt), as detected with anti–phospho-Akt antibody, to the amount
of total Akt, as detected with anti–Akt antibody. Similarly, we
calculated the ratio of the amount of phosphorylated-FAK (P-FAK),
as detected with anti–phospho-FAK antibody, to the amount of total
FAK, as detected by anti–FAK antibody. The relative activity for
both Akt and FAK was calculated and plotted onto a graph relative
to values for unstimulated controls (i.e., the difference between the
the ratio of P-Akt to Akt with stimulation and the ratio of P-Akt to
Akt without stimulation divided by the the ratio of P-Akt to Akt
without stimulation) for each compound tested.

RESULTS AND DISCUSSION

Nongenomic effects of phytoestrogen. The nongenomic
effects of estrogen on activation of critical oncogenic signaling
molecules are just beginning to be examined. Most studies
have focused only on the effects of phytoestrogens at the gene
transcription level after prolonged (�24 h) exposure (72–75).
Very little is known about the effects of phytoestrogens on
activation of short-term signaling cascades as well as their
effect on prevention of breast tumorigenesis and cancer pro-
gression. Reversible protein phosphorylation is one of the most
prevalent mechanisms for covalent modification of proteins
during signal transduction and control of cellular processes
(76). Therefore as a preliminary step toward phosphopro-
teomic profiling the effects of dietary phytoestrogens in breast
cancer progression, we focused on the rapid activation of key
signaling proteins by phosphorylation in ER(�) and ER�(�)
breast cancer cell lines.

The concentrations of estrogenic compounds that we used
were in agreement with previous concentrations of phytoestro-
gens used to induce gene transcription via both ER� and ER�
(77). Our experimental design of adding low, medium and
high concentrations of phytoestrogens was intended to differ-
entiate the effects of phytoestrogens as estrogenic, antiestro-
genic and tyrosine inhibitory compounds. Our approach of
using two breast cancer cell lines with differential ER status—
ER(�) T47D cells and ER�(�) MB-231—that express low
levels of ER� (78–82) enabled an evaluation of the ER
dependency of the observed effects. Comparison of the total

phosphoproteomic profiles of unstimulated or stimulated
T47D or MB-231 whole-cell lysates by Western blotting with
antibodies specific to phosphoserine or phosphotyrosine dem-
onstrated significant differences in the phosphorylation status
of a number of proteins (data not shown).

Activation of Akt by phytoestrogens. The phosphoryla-
tion status and thus activation of Akt in response to estrogenic
compounds were monitored in breast cancer cells by Western
blotting of unstimulated or stimulated cell lysates with an-
tiphosphoserine 473 Akt antibody to determine phospho-Akt
levels or an anti-Akt antibody to determine total Akt levels.
In ER(�) T47D cells, E2, genistein and daidzein activated
Akt. Interestingly, resveratrol decreased Akt phosphorylation
in a concentration-dependent fashion (Fig. 1). In contrast, in
ER�(�) MDA-MB-231 cells, all estrogenic compounds ex-
cept genistein at high concentrations (100 �mol/L) activated
Akt. Daidzein had a marked effect on Akt activation in
MB-231 cells (Fig. 2). These results agree with a recent report
that demonstrated increased Akt activity in response to E2
with the same MB-231 cell line (47).

Activated ER binds to PI3-K and modulates the activity of
the survival factor Akt in endothelial and neuronal cells
(83–85) and, more recently, in both ER(�) and ER(�) hu-
man breast cancer cell lines (47,86). A study on Akt activa-
tion in the myocardium reported that E2 and genistein ele-
vated nuclear phospho-Akt activation (87). Therefore our
observation of activated Akt in response to E2 agrees with
published reports.

Our results demonstrate that the effects of estrogenic com-
pounds on Akt activation differed depending on the ER status

FIGURE 1 Effect of estrogenic compounds on Akt activity in
ER(�) T47D breast cancer cells. Cell lysates of T47D cells in phenol
red–free and serum-free media stimulated with E2 (0.01 �mol/L),
genistein, daidzein or resveratrol (1, 50 or 100 �mol/L). Equal amounts
of protein were run on SDS-PAGE and Western blotted using either
anti–phospho-Akt (ser-473) or anti-Akt antibodies. (A) Western blot of a
representative experiment from three separate experiments. (B) Rela-
tive Akt activity in response to estrogenic compounds.
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of breast cancer cells. The inhibitory action of resveratrol in
the ER(�) T47D cells, but not in ER�(�) MB-231 cells,
indicates that this effect was probably ER dependent. In
MCF-7 ER(�) breast cancer cells, the same range of resvera-
trol (10–50 �mol/L) antagonizes the E2-mediated gene expres-
sion and growth-stimulatory effect (12) and induces p53-
mediated apoptosis (61). In MCF-7 and MVLN breast cancer
cells, resveratrol demonstrated a biphasic effect by increasing
growth at medium concentrations (10 and 25 �mol/L) and
decreasing growth at a high concentration (50 �mol/L). Low
concentrations (0.1 and 1 �mol/L) had no effect on cell
growth (88). These results agree with our observations that
low concentrations of resveratrol demonstrate little or no
effect on Akt activity, whereas higher (50 and 100 �mol/L)
concentrations demonstrate striking inhibitory effects. More
studies using concentrations in the 10–25 �mol/L range are
necessary to evaluate whether medium concentrations of res-
veratrol increase Akt activity in ER(�) breast cancer cells.

In one study, resveratrol decreased hepatocyte growth fac-
tor–induced cell scattering and invasion in hepatocellular
carcinoma cells independent of Akt activation (15). However,
for the first time in breast cancer cells, we demonstrate that
resveratrol directly modulates Akt activity. Activated Akt is a
strong cellular survival signal that protects cells from apoptosis
by phosphorylation of the proapoptotic Bcl-2 family member
Bad, which is then sequestered and degraded (68,69). Resvera-
trol induces p53 activity that leads to activation of the pro-
apoptotic Bcl-2 family member Bax (61–64). Thus resveratrol-
mediated downregulation of Akt activity coupled with
activation of proapoptotic signaling is predicted to act as a

strong signal to suppress growth and activate apoptosis in
ER(�) breast tumors.

Activation of FAK by phytoestrogens. We also monitored
the effect of phytoestrogens on FAK activity in breast cancer
cells. In the ER(�) T47D cell line, 15-min stimulation with
E2, genistein or daidzein increases phospho-FAK levels,
whereas resveratrol decreases the levels (Fig. 3). The ER�(�)
MB-231 cell line demonstrated increased FAK phosphoryla-
tion in response to all phytoestrogens tested (Fig. 4). Similar
results were obtained by immunoprecipitations of stimulated
cell lysates using an antiphosphotyrosine antibody followed by
Western blotting with an anti-FAK antibody (data not
shown).

For the present study, we used a range of genistein concen-
trations where the low concentration (1 �mol/L) was expected
to act via ER and the high concentrations (50 and 100
�mol/L) were expected to induce tyrosine kinase inhibitory
action. Surprisingly, at all of the concentrations tested, short-
term exposure of genistein to breast cancer cells did not inhibit
tyrosine phosphorylation of FAK (Figs. 3, 4). This may reflect
the general perplexity in the field regarding the exact mech-
anism of action of genistein as a tyrosine kinase inhibitor or an
antiestrogen (89). Traditional studies using genistein as a
tyrosine kinase inhibitor have added genistein to cells in serum
or phenol red–containing media, which contain estrogenic
compounds (37,90). Others have shown that the antiprolif-

FIGURE 3 Effect of estrogenic compounds on FAK activity in
ER(�) T47D breast cancer cells. Cell lysates of T47D cells in phenol
red–free and serum-free media stimulated with E2 (0.01 �mol/L);
genistein, daidzein or resveratrol (1, 50 or 100 �mol/L). Equal amounts
of protein were run on SDS-PAGE and Western blotted using either
anti–phospho-FAK (Tyr-397) or anti-FAK (carboxyl-terminal residues
748-1053) antibodies. (A) Western blot of a representative experiment
from three separate experiments. (B) Relative FAK activity in response
to estrogenic compounds.

FIGURE 2 Effect of estrogenic compounds on Akt activity in
ER�(�) MB-231 breast cancer cells. Cell lysates of MB-231 cells in
phenol red–free and serum-free media stimulated with E2 (0.01 �mol/L);
genistein, daidzein or resveratrol (1, 50 or 100 �mol/L). Equal amounts
of protein were run on SDS-PAGE and Western blotted using either
anti–phospho-Akt (ser-473) or anti-Akt antibodies. (A) Western blot of a
representative experiment from two separate experiments. (B) Relative
Akt activity in response to estrogenic compounds.
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erative effects of genistein are estrogen dependent, including
inhibition of estrogen-induced protein tyrosine kinase activity
(91). Some studies have concentrated on long-term effects of
genistein on the phosphotyrosine status of proteins, where the
reported inhibition of protein tyrosine kinases may result from
alterations in kinase expression (18).

Daidzein, the other major isoflavone in soy that differs
structurally from genistein only by the lack of a hydroxyl
group, was selected to enable the analysis of effects that may be
distinct from the tyrosine kinase inhibitory effects of genistein.
These two structurally related phytoestrogens are thought to
have discrete target sites and mechanisms in their growth
inhibitory action on breast cancer cells (75). In a previous
study using MB-468 breast cancer cells, genistein demon-
strated a concentration-dependent biphasic effect on cell cycle
progression, whereas daidzein was not effective at high con-
centrations (92). Our results demonstrate that both daidzein
and genistein increased FAK phosphorylation at low, medium
and high concentrations. Unstimulated and stimulated cell
lysates of ER(�) T47D and ER�(�) MB-231 were probed
with an antiphosphotyrosine antibody or immunoprecipitated
with an antiphosphotyrosine antibody and probed with a dif-
ferent antiphosphotyrosine antibody to detect overall trends of
phosphorylation in response to phytoestrogens (data not
shown). In these experiments, daidzein increased whereas high
concentrations of genistein decreased overall tyrosine phos-

phorylation. Therefore the enhanced phospho-FAK levels in
the presence of high concentrations of daidzein may reflect a
general effect of daidzein on activation of a protein tyrosine
kinase or inactivation of a protein phosphatase.

In ER�(�) MB-231 cells, all phytoestrogens tested in-
creased FAK activity (Fig. 4). In contrast, resveratrol reduced
FAK phosphorylation in ER(�) T47D cells (Fig. 3). This
result may indicate that FAK activation by soy phytoestrogens
is not dependent on ER�. A single study that investigated the
effect of estrogen on FAK activity in breast cancer used the
nonmetastatic ER(�) MCF-7 human breast cancer cells.
These cells were cultured for 7 d in the presence of E2 at 1
nmol/L, which resulted in decreased tyrosine phosphorylation
of FAK. The E2-induced effect was blocked by the ER antag-
onist 4-hydroxytamoxifen at 100 nmol/L, indicating that de-
phosphorylation of FAK is an ER-mediated event. E2 treat-
ment also resulted in a reduced association between FAK and
paxillin, a focal complex protein that mediates contact be-
tween integrin receptors and the actin cytoskeleton (93).
Thus, unlike as shown here, long-term exposure to E2 may
exert genomic effects on tyrosine kinases or phosphatases that
affect FAK activity.

The anti–phospho-FAK antibody that specifically interacts
with the phosphotyrosine residue 397 consistently detected
two bands: one at 125 kDa and the other at 90 kDa. Our 125
FAK antibody, which was raised against the carboxyl-terminal
residues 748-1053, did not detect the amino-terminal 90-kDa
fragment. The 125-kDa and 90-kDa phospho-FAK bands
probably correspond to calpain digestion of the full-length
FAK (125 kDa) to a 90-kDa fragment that still contains the
phosphotyrosine 397 residue (94). Both fragments were quan-
tified for total phospho-FAK analysis. Unfortunately, the re-
ported data only reflect levels of 125-kDa full-length FAK.
Ongoing experiments are focusing on the detection of non-
phosphorylated FAK using an additional antibody raised
against the amino terminus of FAK.

The tyrosine kinase Src activates calpain proteases that
digest FAK during transformation and invasion (70,95,96).
Calpain-deficient embryonic fibroblasts reduce cell migration,
implying that the cleavage products observed in our breast
cancer cells have invasive potential (97). Interestingly, Src
and thus Shc and MAPK signaling are activated by non-
genomic actions of E2 (86,98,99). We are currently investi-
gating the possible regulation of focal adhesion turnover by
estrogenic compounds via Src-mediated calpain activity.

FAK activation by phosphorylation results in cell prolifer-
ation, motility and invasion (51,52,70,71). Decreased phos-
phorylation levels and reduced association between FAK and
paxillin have been suggested as important steps leading to the
loss of stable focal contacts and loss of growth inhibition
during tumorigenesis (50). However, a recent study demon-
strated that dephosphorylation of FAK and down-regulation of
FAK activity by EGFR induction initiated tumor cell invasion
(100). Our results that demonstrate phytoestrogen-mediated
FAK phosphorylation and cleavage in ER(�) and ER�(�)
breast cancer cells (Figs. 3, 4) may indicate potential modu-
lation of cell migration by phytoestrogens. Rapid turnover of
focal adhesions by regulation of FAK activity via both phos-
phorylation and calpain cleavage has been implicated in cell
migration and invasion through the extracellular matrix
(70,93,96,101). Therefore the observed differences in FAK
activity in response to estrogenic compounds may be relevant
to control of breast cancer progression.

Summary. E2 plays a critical role in the initiation and
progression of breast and gynecological cancers and has been
implicated in modulation of breast cancer cell invasion and

FIGURE 4 Effect of estrogenic compounds on FAK activity in
ER�(�) MB-231 breast cancer cells. Cell lysates of MB-231 cells in
phenol red–free and serum-free media stimulated with E2 (0.01 �mol/L),
genistein, daidzein or resveratrol (1, 50 or 100 �mol/L). Equal amounts
of protein were run on SDS-PAGE and Western blotted using either
anti–phospho-FAK (Tyr-397) or anti-FAK (carboxyl-terminal residues
748-1053) antibodies. (A) Western blot of a representative experiment
from three separate experiments. (B) Relative FAK activity in response
to estrogenic compounds.
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metastasis (102–104). Phytoestrogens are known to act as
agonists or antagonists of E2 and may protect against some
cancers, cardiovascular disease and osteoporosis, as well as to
prevent the undesirable symptoms of menopause (105–108).
Interest in the potential benefits of phytoestrogen consump-
tion continues to increase; however, use of phytoestrogens in
prevention of breast and uterine cancer or as a “natural”
alternative to hormone replacement therapy remains contro-
versial (18,106,109–116). Although phytoestrogens are
thought to protect against breast cancer by regulating ER and
growth factor signaling pathways (18,117), their exact mech-
anism of action needs to be evaluated (118). Moreover, be-
cause of the lack of relevant information, the increased use of
phytoestrogens in human diet does not consider nongenomic
modes of phytoestrogen action at the cellular and molecular
level.

The present data indicate that soybean phytoestrogens in-
crease phosphorylation of both Akt and FAK, molecules that
promote cancer cell survival and invasion, whereas the red
wine phytoestrogen resveratrol inhibits FAK and Akt activity
in an ER-dependent manner. Our novel data demonstrate that
genistein, in addition to its effect as a tyrosine kinase inhibitor
and an antiestrogen via ER, may also have ER-independent
effects on breast cancer cells. With a similar panel of ER(�)
and ER(�) breast cancer cell lines, the antiproliferative effects
of genistein were shown to be dependent on E2, thus leading
the authors to conclude that antiestrogenic effects of genistein
were only operative in ER(�) breast cancer cell lines (91).
However, others have suggested that genistein can inhibit
growth and induce apoptosis in ER(�) highly metastatic MB-
435 breast cancer cells via down-regulation of ErbB-2 and
Bcl-2 and decreased matrix metalloproteinase secretion (119).
The present study suggests that the soy phytoestrogens
genistein and daidzein may exert additional effects on breast
cancer cell survival, proliferation and invasion via activation
of Akt and FAK.

Our data on the effects of resveratrol in ER(�) and
ER�(�) breast cancer cells support the well-established prop-
erties of resveratrol as an ER-dependent antagonist of estro-
genic effects that inhibit cellular events associated with tumor
initiation, promotion and progression (9,59,120). However,
studies performed using ER-transfected cell lines have shown
that resveratrol acts as a mixed agonist and antagonist. In the
absence of E2, resveratrol was shown to exert mixed estrogen
agonist-antagonist activities in T47D and MCF-7 ER(�)
breast cancer cell lines (37). For the first time, the present
study demonstrates ER�-dependent and -independent effects
of resveratrol on Akt and FAK activity in breast cancer cells.
Interestingly, all estrogenic compounds tested increased Akt
and FAK activity in the metastatic ER�(�) breast cancer cell
line. Shorter ER� isoforms have been detected in the ER�(�)
MDA-MB-231 cells that express low levels of ER� (81,82).
Thus the stimulatory effects of phytoestrogens on Akt and
FAK activity in MB-231 cells may be mediated by ER�.
Although the exact mechanism by which phytoestrogens mod-
ulate Akt and FAK activity remains to be elucidated, our
results are intriguing and may be pertinent to concerns of
varied estrogenic effects during breast cancer progression.

A comprehensive evaluation of nongenomic signaling by
phytoestrogens will be achieved by confirming our results in a
wider range of human breast cancer cell lines at different stages
of breast cancer progression. Many kinases and phosphatases
involved in modulation of signaling events have been impli-
cated in a variety of pathological conditions including cancer
predisposition (121). Therefore the phosphoproteins identified
in our studies may represent a rich source of potential targets

for therapeutic intervention in treatment and prevention of
breast cancer as well as markers for early detection of malig-
nant breast cancer.
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