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Abstract

Anthocyanin content of potato tubers is a trait that is attracting increasing attention as the potential nutritional

benefits of this class of compound become apparent. However, our understanding of potato tuber anthocyanin

accumulation is not complete. The aim of this study was to use a potato microarray to investigate gene expression

patterns associated with the accumulation of purple tuber anthocyanins. The advanced potato selections, CO97216-

3P/PW and CO97227-2P/PW, developed by conventional breeding procedures, produced tubers with incomplete

expression of tuber flesh pigmentation. This feature permits sampling pigmented and non-pigmented tissues from

the same tubers, in essence, isolating the factors responsible for pigmentation from confounding genetic,
environmental, and developmental effects. An examination of the transcriptome, coupled with metabolite data from

purple pigmented sectors and from non-pigmented sectors of the same tuber, was undertaken to identify these

genes whose expression correlated with elevated or altered polyphenol composition. Combined with a similar study

using eight other conventional cultivars and advanced selections with different pigmentation, it was possible to

produce a refined list of only 27 genes that were consistently differentially expressed in purple tuber tissues

compared with white. Within this list are several new candidate genes that are likely to impact on tuber anthocyanin

accumulation, including a gene encoding a novel single domain MYB transcription factor.
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Introduction

Anthocyanins are responsible for the deep purple to red
pigmentation of certain fruits and vegetables and play im-

portant ecophysiological roles in both plant abiotic and

biotic stress resistance and as pollination attractants in

flowers. In addition, anthocyanin-rich fruits and vegetables

are bright and attractive to consumers and they have been

documented as excellent sources of polyphenolic antioxi-

dants (for example, Tsuda et al., 2000; Brown et al., 2007).
Epidemiological and mechanistic data have been instrumen-

tal in national campaigns, designed to elevate the impor-

tance of consuming at least five portions of fruits and

vegetables on a daily basis (for example, in the UK, http:

//www.5aday.gov/). While polyphenolic compounds such as

anthocyanins are not suggested to be solely responsible
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for the reported health benefits of fruit and vegetable con-

sumption, a number of reports implicate highly pigmented,

anthocyanin-rich foodstuffs in suppressing or intervening in

several chronic diseases (Renaud et al., 1992; Noda et al.,

2000; Tsuda et al., 2000; Meiers et al., 2001; Matsumoto

et al., 2003; Seeram et al., 2004; Shin et al., 2006; Butelli

et al., 2008).

In many plants, the flavonoid biosynthetic pathway has
been almost completely elucidated (Fig. 1). Genes encoding

the enzymes of the pathway have been cloned from many

model and crop plants (Holton and Cornisch, 1995). Con-

siderable progress has also been made in understanding the

regulation of this pathway, and transcription factors that

control the expression of the structural genes have been

characterized using transposon tagging approaches in model

plants such as maize, Antirrhinum, and Petunia (Holton and
Cornisch, 1995). More recently, similar genes have been

discovered in Arabidopsis, tomato, and grape. In general,

these transcription factors belong to one of two transcription

factor families having sequence similarity to either the

vertebrate proto-oncogene c-MYB or the vertebrate basic-

Helix-Loop-Helix (bHLH) proto-oncogene c-MYC families

(reviewed in Grotewald, 2006). In general, there is conserva-

tion in the structure of these transcription factors and ectopic
expression of transcription factors in different plant species

has become a powerful tool to activate sets of flavonoid

structural genes and thus manipulate the types and amounts

of flavonoids that accumulate. For example, Butelli et al.

(2008) transformed tomato to obtain purple fruit pigmenta-

tion and elevated anthocyanin content by expressing tran-

scription factor regulatory genes (Del) and MYB-related

genes (Ros1) from Antirrihinum majus. Expression of these
genes resulted in increased expression of several key anthocy-

anin pathway genes, higher antioxidant capacity, and

extended life expectancy of Trp53-/-cancer knock-out mice

fed with transgenic tomato.

While potato has not yet been widely recognized as

a potent source of antioxidants for human health, recent

studies suggest certain pigmented genotypes are very rich

sources of polyphenols (Lewis et al., 1998a, b; Brown et al.,
2003; De Jong et al., 2004; Reyes et al., 2003; Stushnoff

et al., 2008). In addition, as potatoes are an important food

staple with wide consumer appeal, there is enormous po-

tential to enhance the overall nutritional status by ensuring

that the consumed product is rich in desirable phytochem-

icals. Indeed there are recent suggestions that potato

anthocyanins may protect against prostate (Reddivari et al.,

2007) and breast cancers (Thompson et al., 2009).
Previous studies have addressed the biosynthesis of

anthocyanin pigments in the potato tuber in both the tuber

skin and flesh. In diploid potato, three classical gene loci; I,

R, and P, are known to control tuber skin anthocyanin

accumulation (Dodds and Long, 1955, 1956). The R locus is

required for the accumulation of red pelargonidin deriva-

tives in the tuber skin, whereas P is required for the mainly

petunidin-derived purple pigments. The I locus is required
for the synthesis of both red and purple skin anthocyanins

and must be present in conjunction with R or P for ac-

cumulation in the skin. These three loci have been mapped

in the potato genome and candidate genes have been sug-

gested for each locus (De Jong et al., 2004). Genetic evi-

dence based on the co-localization in the potato genetic

map of R and I indicated these loci encode dihydroflavonol

4-reductase (dfr) and an R2R3MYB transcription factor

designated an2, respectively. The P locus has been clearly

identified, using a combination of genetic and transgenic
approaches, as encoding flavonoid 3#, 5#-hydroxylase (Jung

et al., 2005).

Genetic and molecular studies have also addressed antho-

cyanin accumulation in the tuber flesh. One locus that is

associated with anthocyanin accumulation in these tissues is

called Pf (De Jong, 1987). Pf is tightly linked to I, whose

map position co-localizes with an2. However, Pf alone is

insufficient for complete tuber pigmentation implying in-
teraction with other genes. Indeed, using genetic approaches

to analyse tuber flesh pigmentation, several QTL for tuber

anthocyanin content were identified on chromosomes 5, 8,

and 9 (Zhang et al., 2009). Our lack of knowledge of the

associated regulatory genes is consistent with the observation

that constitutive over-expression of genes encoding the

enzymes of flavonoid biosynthesis in potato has, in general,

led to relatively modest increases in tuber flesh anthocyanins
and resulted in undesirable pleiotropic effects on plant

development. (Lukaszewicz et al., 2004; Aksamit-Stachurska

et al., 2008, Rommens et al., 2008).

Assessment of germplasm antioxidant properties extant in

the Colorado potato breeding programme revealed that ge-

notypes with purple and red pigmented tuber flesh had sub-

stantially higher antioxidant properties than non-pigmented

types (Stushnoff et al., 2008). Similar observations have been
reported in other potato genotypes (Brown et al., 2003;

Reyes and Cisneros-Zevallos, 2003; Lachman and Hamouz,

2005). The advanced selections, CO97216-3P/PW and

CO97227-2P/PW, developed by conventional breeding proce-

dures, produced tubers with incomplete expression of tuber

flesh pigmentation. This feature permits sampling pigmented

and non-pigmented tissues from the same tubers, in essence,

isolating the factors responsible for pigmentation from
confounding environmental and developmental effects.

In this study, an examination of the transcriptome, coupled

with metabolite data from purple pigmented sectors and from

non-pigmented sectors of the same tuber, was undertaken to

identify genes whose expression correlated with elevated or

altered polyphenol composition. Combined with a similar

study using eight other conventional cultivars and advanced

selections with different pigmentation, our findings expand
knowledge of the associated molecular mechanisms and

facilitate development of unique potato cultivars with nutri-

tionally superior properties.

Materials and methods

Growth and sampling of plant material

Disease–free seed stock of eight cultivars and advanced selections
was used to grow plants in a completely randomized design at the
Colorado State University, San Luis Valley Research Center,
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Fig. 1. Schematic diagram of the biosynthetic pathway for anthocyanins, caffeoylquinates, and other major phenolic derivatives in potato

tuber. Enzymes abbreviated are as follows: ADH, arogenate dehydrogenase; ADT, arogenate dehydratase; AGMT, anthocyanidin-

glycoside-3#-O-methyl transferase; AS, anthocyanin synthase; CHI, chalcone isomerase; CHS, chalcone synthase; C4H, cinnamate-4-

hydroxylase; 4CL, 4-coumarate ligase; CM, chorismate mutase; DFR, dihydroflavonol reductase; F3H, flavonone-3-hydroxylase; F5H,

ferulate 5-hydroxylase; F3#H, flavonoid-3#-hydroxylase; F3#5#H, flavonoid-3#,5#-hydroxylase; FLS, flavonol synthase; HCT, hydroxycinna-

moyl-CoA:shikimate hydroxycinnamoyl transferase; HQT, hydroxycinnamoyl-CoA quinate hydroxycinnamoyl transferase; PAL, phenylala-

nine ammonia lyase; PDH, prephenate dehydratase; PHT, putrescine N-hydroxycinnamoyl transferase. For simplicity, only anthocyanidins

and not glycosylated anthocyanins are shown. The enzymes involved in anthocyanin glycosylation (A3GT, anthocyanidin-3-O-glycosyl

transferase, A5GT, anthocyanidin-5-O-glycosyl transferase, and GFG, UDP-glucose 3-O-flavonoid glucosyltransferase) are not shown

due to space limitations. AGA (anthocyanidin-3#-O-glycoside-6#-O-acyl transferase) which decorates anthocyanin glycosides with

hydroxycinnamoyl groups is also not represented. The steps required for anthocyanidin synthesis are highlighted in the shaded box.
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Center, CO using commercial production practices. Tubers from
five biological replicate plants, were washed and prepared for
lyophilization within 24 h of harvest.
Forty to 60 grams of freshly cut radial slices (4–6 mm thick)

taken only from the centres of three uniform-sized tubers were
flash frozen with liquid nitrogen and freeze-dried using a ‘Virtis’
freeze drier. Freeze-dried samples were ground and passed through
a 100 mesh screen to achieve uniform particle size.

Total RNA extraction from freeze-dried potato tubers

Approximately 1.5 g of freeze-dried tuber tissue was extracted with
14 ml of hot (80 �C) extraction buffer [50 mM TRIS-HCl (pH 8.0),
50 mM LiCl, 5 mM EDTA, 0.5% SDS, and 50% (v/v) phenol].
Sterile distilled water (10 ml) was added and the samples were
vortexed for 2 min. The samples were placed on ice and 16 ml of
chloroform:isoamyl alcohol (24:1 v/v) was added and vortexed as
before. Following centrifugation at 4 �C at 14 000 g for 20 min, the
upper aqueous layer was removed to a fresh, sterile 50 ml Sorval
tube, containing an equal volume (16 ml) of 4 M LiCl. The
samples were shaken prior to incubation overnight at –80 �C,
centrifuged at 4 �C at 14 000 g for 40 min, the supernatant
discarded, and the pellet resuspended in 5 ml sterile distilled water.
One-tenth volume of 3 M sodium acetate (pH 5.2) and 3 vols of
100% ethanol were added and the samples were incubated at –80
�C for at least 1 h.
The precipitated RNA was pelleted by centrifugation at 4 �C at

14 000 g for 40 min, washed with 10 ml of ice-cold 70% (v/v)
ethanol, and centrifuged as in the previous step. The ethanol was
removed and the RNA pellet allowed to air-dry prior to
resuspension in 500 ll sterile distilled water. RNA samples (100
lg) were purified and genomic DNA contamination was removed
using Qiagen RNeasy columns and DNaseI according to the
manufacturer’s protocol (www.qiagen.com). RNA samples were
quantified using a spectrophotometer and quality tested using an
RNA 6000 nano chip on an Agilent 2100 Bioanalyser (www.che-
m.agilent.com). RNA samples were aliquotted in 20 lg (1 lg ll�1)
batches and stored at –80 �C.

Microarray processing

Experimental design, array information, and complete datasets are
available from ArrayExpress (accession numbers, E-TABM-787
and E-TABM-788 available at: http://www.ebi.ac.uk/microarray-
as/aer/?#ae-main[0]). Briefly, two-channel POCI arrays (four in
total) were used to compare white and coloured segments of four
biological replicates each of line CO97216-3P/PW. A dye-swap was
incorporated in a balanced design to minimize any residual dye
effects. For the genotype comparison, single-channel (Cy3) POCI
arrays (16 in total) allowed comparison of the four biological
replicates each of CO97216-3P/PW, Purple Majesty, Rio Grande
Russet, and Russet Nugget. Total RNA was labelled by indirect
incorporation of fluorescent dyes following cDNA synthesis.
Reverse transcription was performed using 10 lg of total RNA in
a 45 ll reaction containing 50 ng ll�1 oligo d(T)18, 0.5 mM each of
dATP, dCTP, and dGTP, 0.2 mM dTTP, 0.3 mM aa-dUTP, 10
mM DTT, and 400 U Superscript II (Invitrogen) in 13 reaction
buffer. Primers and RNA were initially heated to 70 �C for 10 min
followed by cooling on ice, and the entire reaction incubated for 16
h at 42 �C. To denature the remaining RNA, 15 ll of 1 M NaOH
and 15 ll of 0.5 M EDTA (pH 8.0) were added and incubated for
10 min at 65 �C. The reaction was neutralized with 15 ll of 1 M
HCl. Purification of cDNA was performed using MinElute
columns as recommended (Qiagen), substituting phosphate wash
buffer (4.75 mM K2HPO4, 0.25 mM KH2PO4, 84% EtOH) for PB
and phosphate elution buffer (3.8 mM K2HPO4, 0.2 mM KH2PO4)
for EB. Cy-dye esters were added to 10 ll of cDNA in a total
volume of 13 ll, containing 150 mM sodium carbonate and 1 ll of
the appropriate Cy-dye (GE Healthcare) suspended in DMSO (1/
10 supplied aliquot), and incubated for 1 h at room temperature in

the dark. To the labelled cDNA 750 mM hydroxylamine hydro-
chloride was added and incubated for a further 30 min in the dark.
Labelled targets for each array were combined and diluted with 24
ll sterile water and 500 ll of PB buffer (Qiagen) prior to MiniElute
purification and elution with 10 ll of elution buffer. Labelling
efficiency was estimated using spectrophotometry.
Hybridization and washing were conducted according to the

manufacturer’s protocols (Agilent Two-Color Microarray-Based
Gene Expression Analysis, version 5.5). Briefly, 20 ll labelled
samples were added to 5 ll 103 blocking agent (Agilent 5188-
5242) and heat denatured at 98 �C for 3 min then cooled to room
temperature. 23 GE hybridization buffer HI-RPM (25 ll) was
added and mixed prior to hybridization at 65 �C for 17 h at 10
rpm. Array slides were dismantled in Wash 1 buffer (Agilent, 5188-
5327) and washed in Wash 1 buffer for 1 min, then Wash 2 buffer
(Agilent, 5188-5327) for 1 min, and centrifuged dry. Hybridized
slides were scanned using an Agilent G2505B scanner at resolution
of 5 lm at 532 nm (Cy3) and 633 nm (Cy5, for two-channel anal-
ysis) wavelengths with extended dynamic range (laser settings
at 100% and 10%). Microarray images were imported into Agilent
Feature Extraction (v.9.5.3) software and aligned with the
appropriate array grid template file (015425_D_F_20061105).
Intensity data and QC metrics were extracted using the recom-
mended FE protocol (GE1/GE2-v5_95_Feb07). Entire FE datasets
for each array were loaded into GeneSpring (v.7.3) software for
further analysis.

Microarray data analysis

Data were normalized using default settings: for two-channel
arrays, data were transformed to account for dye-swaps and data
from each array were normalized using the Lowess algorithm to
minimize differences in dye incorporation efficiency; for single-
channel arrays, intensity values were set to a minimum of 5.0, data
from each array were normalized to the 50th percentile of all
measurements on the array and the signal from each probe was
subsequently normalized to the median of its values from white
tuber samples. Unreliable data flagged as absent in all replicate
samples by the FE software were discarded. Statistical filtering of
data for each experiment was performed independently using
approaches and algorithms deemed suitable for the two experi-
mental designs used: for the sectional tuber arrays, data were
interpreted for analysis on the basis of flesh colour, and volcano
plots were used to identify probes with significant differential ex-
pression (fold-change >23, t test P value <0.005); for the genotype
comparison, ANOVA (ANalysis Of VAriance, P value <0.05) was
used with Bonferroni multiple testing correction.

Quantitative PCR using the Universal Probe Library

Reverse transcription of 10 lg of RNA was performed using
Invitrogen Superscript� II reverse transcriptase (www.invitrogen.-
com) using random hexamers as primer. cDNA (25 ng) was used
as template for real-time PCR using the Universal Probe Library
System (https://www.roche-applied-science.com/sis/rtpcr/upl/index.
jsp). Reactions were performed in 25 ll containing 13 FastStart
TaqMan� Probe Master (supplemented with ROX reference dye).
Gene-specific primers and probe were used at a concentration of
0.2 lM and 0.1 lM, respectively. Thermal cycling conditions were:
10 min denaturation at 95 �C followed by 40 cycles (15 s at 94 �C,
60 s at 60 �C). The reactions were repeated in triplicate with
independent cDNAs. Relative expression levels were calculated
and the primers validated using the DDCt method (Livak, 1997)
using data obtained with the elongation factor-1 alpha specific
primers as an internal reference control. In the case where relative
efficiencies of the target and reference amplicons were not within
recommended limits an alternative method for calculating relative
quantification was used (Pfaffl, 2001). Universal probe library
(UPL) primer and probe sequences were as follows: StEF1al-
pha_fwd, 5#-CTTGACGCTCTTGACCAGATT-3#, StEF1alpha
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rev, 5#-GAAGACGGAGGGGTTTGTCT-3#, UPL probe number
117 (5#-AGCCCAAG-3#); StAn-1 fwd, 5#-TGGTGGGCAAAT-
ATACTGGAA-3#, StAn-1 rev, 5#-CATGAAGGTAGTGTTCT-
TTCAGCTT-3#, UPL probe number 133 (5#-GGAGAAGG-3#);
MYBTF73 fwd, 5#-CTTGGTTGGTGAGAGGTGGT-3#, MYBTF73
rev, 5#-GGCTGGTGGAATTTCTTGAGT-3#, UPL probe number 11
(5#-GCTGGAAG-3#); StLDOX fwd, 5#-GAAAGTAAGGATTTCA-
TGGGCTATT-3#, StLDOX rev, 5#-AGGGGCTTAAGCATAAT-
CTTCTC-3#, UPL probe number 100 (5#-CTGTGAGC-3#); StDHFR
fwd, 5#-AACGCTGTGGAAAGCAGACT-3#, StDHFR rev, 5#-CA-
GCCTTGAATGGCTTCATC-3#, UPL probe number 86 (5#-GC-
AGTGGA-3#).

Phenolic extraction and analysis

Tubers from selections CO95172-3RU, CO97216-3P/PW, CO97226-
2R/R, and cultivars Colorado Rose, Mountain Rose, Purple Maj-
esty, Rio Grande Russet, and Russet Nugget were washed, sliced,
frozen in liquid N2, and freeze-dried. For the sectional experiment,
four replicate tubers from clone CO97216-3P/PW were selected
from four different plants at the developing tuber stage. Purple and
white sectors of tuber flesh were carefully excised from freeze-dried
radial sections prior to grinding.
For polyphenol metabolite analysis, 600 mg of dried potato

powder was extracted with 10 ml of 80% (v/v) aqueous acetone
and rotated at a velocity sufficient to maintain insoluble material
in suspension for 2 h in the dark at 4 �C (Thompson et al., 2009).
Tubes were centrifuged (5000 g for 15 min at 4 �C) and the su-
pernatants assayed for phenol and anthocyanin content using the
Folin and Ciocalteu method and the differential colorimetric
method for anthocyanins (McDougall et al., 2005). Triplicate 1 ml
subsamples were dried using a Speed-Vac and resuspended in 100
ll of 5% acetonitrile for liquid chromatography–mass spectrome-
try (LC–MS) analysis.
Samples were analysed on an LCQ-Deca system, comprising

Surveyor autosampler, pump, and photodiode array detector
(PDAD) and a ThermoFinnigan ion-trap mass spectrometer. The
PDAD scanned discrete channels at 280 nm, 365 nm, and 520 nm.
The samples were applied to a C18 column (Synergi Hydro C18
with polar endcapping, 4.63250 mm, Phenomenex Ltd.) and
eluted using a linear gradient of 5% acetonitrile (0.1% formic acid)
to 40% acetonitrile (0.1% formic acid) over 60 min at a rate of 400
ll min�1. The LCQ-Deca LC–MS was fitted with an ESI (electro-
spray ionization) interface and analysed the samples in positive
and negative ion modes. There were two scan events; full scan
analysis followed by data-dependent MS/MS of the most intense
ions using collision energies (source voltage) of 45%. The capillary
temp was set at 250 �C, with sheath gas at 60 psi and auxiliary gas
at 15 psi.
Peaks were identified by comparing their relative retention

times, PDA spectra and mass-to-charge ratio (m/z) and MS2

properties with previous reports (Fossen et al., 2003; Eichhorn and
Winterhalter, 2005; Stushnoff et al., 2008) or, where available,
against standard compounds (chlorogenic acid, tyrosine, and phe-
nylalanine). Components were quantified by their m/z peak areas
calculated using the software provided with the instrument and ex-
pressed as average 6standard errors. This approach is not strictly
quantitative, but gives valid relative comparisons of the compo-
nents between different samples or treatments. Samples were also
run at 50% dilution to check that the relative amounts of the com-
ponents were consistent.

Extraction and quantification of ascorbic acid

Ascorbic acid was extracted and quantified by HPLC as previously
described by Tedone et al. (2004) with some modifications.
Powdered lyophilized tuber material was resuspended in 10 vols of
ice-cold 5% metaphosphoric acid (MPA), briefly vortexed, and
placed on a blood rotator for 30 min in a cold room at 4 �C.
Suspended powder was removed by centrifugation (5000 g for 10

min at 1 �C) and the supernatant stored on ice. The pellet was
resuspended in a second aliquot of 5% MPA and mixing repeated.
Following centrifugation, the two supernatants were combined
and filtered through a 0.45 lm filter. For the analysis of reduced
ascorbic acid, 20 ll of filtered supernatant was injected onto a IC-
Sep ICE-Coregel 64H 30037.8 mm column (Transgenomic Inc.,
CA, USA) with an isocratic mobile phase of 8 mM H2SO4

at a flow rate of 0.6 ml min�1. Ascorbic acid was detected and
quantified as described by Tedone et al. (2004). Total ascorbic acid
was quantified following reduction of dehydroascorbic acid by
incubation of supernatant with 5 mM tris(2-carboxyethyl)phos-
phine hydrochloride at 4 �C for 4 h.

Extraction and quantification of glutathione

Glutathione was extracted and quantified using an enzyme recy-
cling assay as previously described by Queval and Noctor (2007).
Freeze-dried powder was extracted as described for ascorbic acid
measurements with the exception that the extraction medium
consisted of 0.2 M HCl. The final supernatant was diluted with
0.1 vol. 0.2 M sodium phosphate buffer, pH 5.6, and 0.8 vol. 0.2
M NaOH in order to neutralize the extract. Total glutathione was
quantified in a microplate following addition of 100 ll 0.2 M
sodium phosphate buffer, pH 7.5, containing 10 mM ethyl-
enediaminetetra-acetic acid, 10 ll 10 mM NADPH, 10 ll 12 mM
5,5#-dithiobis(2-nitro-benzoic acid), and 60 ll distilled H2O to 10
ll extract. The reaction was started by the addition of 10 ll
glutathione reductase (20 U ml�1 in 0.2 M sodium phosphate
buffer, pH 7.5) and OD412 nm was recorded for 5 min. Glu-
tathione quantification was achieved by reference to a standard
curve constructed using authentic glutathione. Oxidized glutathi-
one was quantified in the same way following incubation of 200 ll
of neutralized extract with 1 ll 2-vinylpyridine for 30 min at room
temperature to derivatize free sulphydryl groups.

Correlation matrix

Correlation coefficients were calculated to assess the relationships
between gene expression levels and metabolite content and to
analyse similarities in gene expression patterns using GenStat 11
(VSN International Limited, Hemel Hempstead, UK). Relation-
ships between gene expression levels and metabolite content were
displayed as a heat map. The interrelationships in gene expression
levels between the genes differentially expressed in pigmented
tubers was displayed graphically.

Results

Metabolite and transcriptome analysis of purple
and white tuber sectors

The strategy for this experiment was to compare tuber gene
expression profiles in purple and white sectors of tuber flesh

found in clone CO97216-3P/PW in order to identify changes

in gene expression that correspond with tuber flesh antho-

cyanin accumulation. Throughout the tuber, there are large

areas of purple pigmented tissues and white sectors which

both cross all tissue regions and cell types of the tuber (Fig.

2). Thus, this is excellent material for comparing gene ex-

pression profiles associated with pigment accumulation. As
differentially pigmented segments were excised from the

same tuber, gene expression differences due to genotype, en-

vironmental factors, and tissue type are minimized.

From metabolite analysis, the purple pigmentation in the

tubers was due to the accumulation of anthocyanins within
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the pigmented sections having, on average, 6.5-fold higher

total anthocyanin levels than the non-pigmented sections.

The elevated levels of anthocyanins contributed to an

average 2-fold increase in total phenol levels (results not

shown).

The accumulation of anthocyanins was confirmed by LC-

MS analysis (Fig. 3). The pigmented sections accumulated

a range of ten detectable anthocyanins, but two compo-
nents, malvidin-3-p-coumaroylrutinoside-5-glucoside (trivial

name negretetin) and petunidin-3-p-coumaroylrutinoside-5-

glucoside (trivial name petanin, see Fig. 1; Andersen et al.,

1991) which have been identified previously in purple-

fleshed potatoes (Stushnoff et al., 2008), predominated. The

non-pigmented section also accumulated anthocyanins, but

to a much lesser degree. The ratio of accumulation of indi-

vidual anthocyanins varied between 2.5-fold higher for the

minor components to 20-fold higher for the dominant

anthocyanins. The anthocyanin content as measured by

LC-MS was, on average, 6.7-fold higher in the pigmented

tissues, which fits well with the total anthocyanin measure-

ments quantified by differential spectrophotometry. The pig-

mented tissues also had approximately 2.5-fold higher levels

of chlorogenic acid than the non-pigmented sections, as
noted previously (Lewis et al., 1998a, b; Table 1), suggesting

a general increase in phenolic components. However, the

levels of two other major phenolic components, feruloyl and

caffeoyl putrescine, were not significantly different (Table

1). There were also no significant differences in ascorbate or

glutathione levels or indeed in their oxidation state (data

not shown). However, the major glycoalkaloids, solanine

and chaconine, were elevated in the purple tissue over the
non-pigmented tissues (Table 1).

RNA for microarray analysis was extracted from the same

samples that were subjected to metabolite analysis. Micro-

array data were analysed using standard statistical approaches

in GeneSpring software applicable to the design of each

independent experiment (see Materials and methods). Using

strict selection criteria (2-fold difference in expression level

with a P value less than 0.005), 331 genes were up-regulated in
purple sectors compared with white, whereas eight genes were

down-regulated. Thus, a relatively small proportion of the 42

000 genes on the array were significantly and differentially

expressed (see Supplementary Table S1 at JXB online).

Contained within this gene list were many of the genes known

to encode anthocyanin and flavonoid biosynthetic enzymes, as

well as several genes identified from their annotation as

having regulatory roles. For example, a gene with similarity
to the soybean MYB73 (bf_mxflxxxx_0055g04.t3m.scf_236)

was up-regulated 44-fold in the purple sectors compared with

the white sectors.
Fig. 2. Variegated pigment expression in a section of a CO97216-

3P/PW tuber.

Fig. 3. Anthocyanin composition of coloured and uncoloured sections of tubers of CO97216-3P/PW. Values are means of triplicate

injections 6standard errors. The MS peak areas for each anthocyanin [using M+H m/z values] were calculated using Xcalibur software.

W1–W4 are uncoloured sections and 216P1–216P4 are separate coloured sections. Legend: PgcoumRutGlc, pelargonidin-3-p-

coumaroylrutinoside-5-glucoside; CycoumRutGlc, cyanidin-3-p-coumaroylrutinoside-5-glucoside; PncoumRutGlc, peonidin-3-p-cou-

maroylrutinoside-5-glucoside; PtcoumRutGlc, petunidin-3-p-coumaroylrutinoside-5-glucoside; MvcoumRutGlc, malvidin-3-p-coumaroyl-

rutinoside-5-glucoside; MvcaffRutGlc, malvidin-3-o-caffeoyl rutinoside-5-glucoside; DpcoumRutGlc, delphinidin-3-p-

coumaroylrutinoside-5-glucoside; PtcaffRutGlc, petunidin-3-o-caffeoyl rutinoside-5-glucoside; MvRutGlc, malvidin 3-rutinoside-5-gluco-

side; PtRutGlc, petunidin 3-rutinoside-5-glucoside. Each anthocyanin is appended with the axis it relates to.
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Tuber anthocyanin and transcriptomic comparison
of purple and white-fleshed genotypes

Relatively few genes were differentially expressed between the

purple and white sectors in tubers of CO97216-3P/PW, and

so it was of interest to determine whether differential ex-

pression of these genes was a general feature of high an-

thocyanin tubers. For this reason, metabolite and microarray

analysis was carried out on tubers of eight potato cultivars,
four pigmented and four non-pigmented genotypes.

The pigmented genotypes Purple Majesty (PM), Mountain

Rose (MRR), CO97216-1P/P (216), and CO97226-2R/R (226)

had higher anthocyanin and total phenol contents (Fig. 4)

than the non-pigmented genotypes. The accumulation of

anthocyanins was confirmed by LC–MS analysis. As sug-

gested previously (Stushnoff et al., 2008), the red genotypes,

MR and 226, contained mainly pelargonidin-3-p-coumaroyl-
rutinoside-5-glucoside whereas the purple genotypes, PM and

216, contained a wider range of anthocyanins but petunidin-

and malvidin-3-p-coumaroylrutinoside-5-glucoside derivatives

predominated. It was notable that only 216 contained ap-

preciable amounts of peonidin-3-p-coumaroylrutinoside-5-

glucoside (Fig. 5).

The higher total phenol content was reflected in the levels

of the major polyphenolic component of potato tubers,
chlorogenic acid, which was substantially higher in the pig-

mented genotypes (216, 226, PM, and MRR) than the non-

pigmented genotypes (Table 2). However, this trend did not

apply to all polyphenolic components as illustrated by the

levels of detectable hydroxycinnamic amine derivatives

(data not shown). Two pigmented genotypes (216 and 226)

had considerably elevated levels of glycoalkaloids compared

with other genotypes (Table 2).
As with the sectional experiment, aliquots of the same

samples used for anthocyanin analysis were also subjected

to microarray analysis. Two white-fleshed cultivars (Russet

Nugget and Rio Grande Russet) were compared with two

purple-fleshed genotypes (Purple Majesty and CO97216-1P/

P). In this case, a single-channel arraying approach was

adopted allowing complete transcriptional comparisons to

be made at both the level of flesh colour and also as in-
dependent genotypes. Group-wise interpretation of the data

comparing purple genotypes with the white-fleshed cultivars

identified a set of 1817 genes that was significantly and

differentially expressed (P value of less than 0.05 with strict

multiple testing correction). Of these, 1307 genes were

significantly up-regulated in purple-fleshed tubers, whereas

510 genes were down-regulated (see Supplementary Table 2

at JXB online). The up-regulated gene list contains many of
the genes known to encode anthocyanin biosynthetic

enzymes. Comparing this gene list with the gene list from

the sectional experiment produced a common ‘refined’ list

of only 27 genes, 24 of which were significantly up-regulated

and three down-regulated (Table 3). Based on current

knowledge, 14 of the up-regulated genes (as identified by

microarray annotation) are implicated in anthocyanin bio-

synthesis or transport to the vacuole. The list contains the
potato orthologue of petunia an2 (note that this gene is

called an1 in potato; De Jong et al., 2004), an R2R3MYB

regulator of anthocyanin production that maps to the same

region of the genome as Pf and I (De Jong et al, 2004).

Table 1. Relative amounts of metabolites in a sectional experiment (W denotes the white section, 216P, the purple section, data for four

biological replicates are shown, and values are means of triplicate injections 6standard errors)

The MS peak areas for each component were calculated using Xcalibur software.

Compound White flesh Purple flesh

W1 W2 W4 W5 216P1 216P2 216P4 216P5

Caffeoyl putrescine 30.960.6 49.460.9 34.160.7 21.160.3 15.460.3 46.361.4 2.660.95 65.260.17

Feruloyl putrescine 23.760.7 35.461.1 28.160.6 16.660.3 9.760.2 1960.4 12.260.4 41.661.1

Tyrosine 41.761.3 48.261.4 36.360.7 39.160.6 18.460.4 39.860.8 17.560.6 41.861.1

Phenylalanine 16063.2 243.767.3 15863.2 154.662.5 6661.4 11462.3 47.561.5 124.160.3

Solanine 307.568.9 385611.5 792.4614.0 643.7612.2 1647.4647.7 832622.7 1824636.5 997629.2

Chaconine 136.864.3 160.465.0 323.7610.1 288.369.0 832626.0 383.1612.0 792624.7 486615.2

Chlorogenic acid 25.360.5 26.360.5 32.560.9 28.860.9 79.962.3 7461.4 81.261.4 69.960.2

Fig. 4. Total phenol and anthocyanin contents of tubers of

different potato varieties. Values are triplicate assays 6standard

errors. Legend: PM, Purple Majesty; MRR, Mountain Rose; CRR,

Colorado Rose; RGR, Rio Grande Russet; RN, Russet Nugget;

216, CO97216_1P/P; 172, CO95172-3RU; 226, CO97226-3R/R.
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Within this refined list, are several genes annotated as

encoding the same activity, for example, four genes in the list

encode glutathione S-transferase (genes 4, 8, 20, and 24).

Genes 4 and 8 share 96% sequence identity and may represent

different alleles of the same gene. Genes 1 and 5 share 91%

sequence identity and may represent alternatively spliced

transcripts of the same gene encoding caffeoyl-CoA-methyl-
transferase. Genes 2 and 3 encoding leucoanthocyanidin

dioxygenase share 44% sequence identity and genes 14 and

15 encoding flavonone 3 b-hydroxylase are 60% identical.

Validation of expression patterns

Independent qRT-PCR analysis was carried out for four of

the genes shown to be differentially expressed in the

sectional experiment, which also appear in the common

gene list of 27 genes. For each, similar patterns of ex-

pression were observed whether using the microarray or

qRT-PCR analysis (Fig. 6). As the qRT-PCR assay was

designed to a region outwith the microarray 60-mer probe

sequence, the similarity of patterns would suggest that
expression differences were unlikely to be due to poly-

morphisms affecting one or other of the assays. Previous

work has demonstrated the robustness of using the POCI

microarray for the analysis of gene expression in different

potato genotypes (Ducreux et al., 2008).

Correlation analysis

To further our understanding of the potato tuber anthocy-

anin metabolic map, gene–metabolite correlations were

analysed. This analysis focused on the refined list of 27

genes that the microarray experiments demonstrated were

associated with enhanced tuber anthocyanin content. Co-
expression patterns of gene expression were also carried out

by correlation analysis (Fig. 7). As all of these genes were

differentially expressed in high anthocyanin tubers, a high

degree of correlation would be anticipated between their

expression patterns. In fact, three patterns of gene expres-

sion could be identified. In Fig. 7A, a cluster of genes that

are most strongly up-regulated in pigmented tuber flesh is

shown. This group of 13 includes genes encoding several
pathway structural proteins but also two genes, either not

annotated or not previously associated with anthocyanin

biosynthesis such as the MYB73-like transcription factor

(bf_mxflxxxx_0055g04.t3m.scf_236). Figure 7B shows a set

of 10 genes, also expressed at higher levels in both purple-

fleshed varieties and purple sectors than in non-pigmented

tissues. In this group, however, the difference in expression

level with pigment content is less marked. Nevertheless, this
group contains genes known to be associated with tuber

anthocyanin biosynthesis such as anthocyanin 1. The group

of genes shown in Fig. 7C has either a negative or

Fig. 5. Anthocyanin composition in tubers of different potato varieties. Values are means of triplicate injections 6standard errors. The

MS peak areas for each anthocyanin were calculated using Xcalibur software (legend as for Fig. 3). Anthocyanins which relate to axis B

are indicated on the chart.

Table 2. Relative amounts of metabolites in sectional experiment (abbreviations are as in the legend to Fig. 4)

Values are means of triplicate injections 6 standard errors). The MS peak areas for each component were calculated using Xcalibur software.

Compound White flesh Coloured flesh

CRR RGR RN 172 PM MRR 216 226

Caffeoyl putrescine 160.0 0.760.0 0.960.0 1.460.0 2.460.1 1.260.0 3.160.1 5.160.2

Feruloyl putrescine 1.160.0 0.660.0 260.0 160.0 0.460.0 0.660.0 1.160.0 3.860.1

Tyrosine 4.460.1 18.660.5 3.960.1 14.460.3 1360.3 10.260.3 7.160.2 12.260.2

Phenylalanine 7.760.2 22.860.5 5.560.1 16.560.3 8.660.2 11.260.3 2.660.1 760.1

Solanine 11.763.1 210.766.6 87.162.8 61.261.4 230.365.8 19563.7 871.5622.0 91.1629.4

Chaconine 52.161.6 16465.2 38.461.2 32.561.0 11263.8 138.563.0 364.768.6 443.168.6

Chlorogenic acid 22.160.7 38.961.0 28.360.8 32.960.7 88.362.7 79.561.7 133.364.3 114.262.9
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Table 3. List of common genes that are differentially expressed both in the purple versus white sector experiment and in the comparison

of white and purple cultivars experiment

Gene number POCI Name Annotation Purple/white expression ratio

1 bf_mxlfxxxx_0017d09.t3m.scf_177 Caffeoyl-CoA O-methyltransferase 1305

2 MICRO.15988.C1_487 Leucoanthocyanidin dioxygenase 1265

3 bf_arrayxxx_0035b07.t7m.scf_757 Leucoanthocyanidin dioxygenase 835

4 MICRO.16821.C1_544 Glutathione S-transferase 619

5 MICRO.1634.C1_528 Caffeoyl-CoA O-methyltransferase 386

6 MICRO.5054.C1_619 Dihydroflavonol 4-reductase 344

7 MICRO.18000.C1_1 Cytochrome b5 DIF-F 198

8 bf_mxlfxxxx_0036g04.t3m.scf_804 Glutathione S-transferase 217

9 bf_mxflxxxx_0046h02.t3m.scf_308 Cytochrome b5 83

10 bf_mxflxxxx_0055g04.t3m.scf_236 MYB transcription factor MYB73 44

11 cSTB29K16TH_413 Salicylic acid-binding protein 2 42

12 MICRO.8373.C2_543 Specific tissue protein 2 53

13 MICRO.8373.C1_505 Organ-specific protein S2 41

14 MICRO.349.C3_1054 Flavanone 3 b-hydroxylase 27

15 MICRO.349.C2_986 Flavanone 3 b-hydroxylase 31

16 MICRO.8891.C1_1392 Lipase, class 3 7

17 MICRO.16550.C1_898 Anthocyanin 1 5

18 cSTS30I16TH_684 Putative orcinol O-methyltransferase 5

19 bf_ivrootxx_0042e08.t3m.scf_406 Cytochrome P450 5

20 bf_arrayxxx_0005c08.t7m.scf_152 Glutathione S-transferase 4

21 bf_lbchxxxx_0060e12.t3m.scf_471 Phosphoprotein phosphatase 44

22 MICRO.4660.C1_1394 Putative disease resistance protein 4

23 MICRO.12653.C1_746 NA 3

24 cSTB5C21TH_466 Glutathione S-transferase 3

25 MICRO.4497.C3_1021 Epoxide Hydrolase I 0.16

26 BF_LBCHXXXX_0035A04_T3M.SCF_21 NA 0.14

27 BF_TUBSXXXX_0060C09_T3M.SCF_519 NA 0.14

Fig. 6. Comparison of anthocyanin biosynthesis gene expression profiles in potato tubers as determined by qPCR and microarray

analysis. Cultivars analysed were Rio Grande Russet (RGR), Russet Nugget (RN), CO97216_1P/P (216), and Purple Majesty (PM). Genes

examined were anthocyanin-1 (MICRO.16550.C1_898), dihydroflavonol 4-reductase (MICRO.5054.C1_619), leucoanthocyanidin

dioxygenase (bf_arrayxxx_0035b07.t7m.scf_757), and MYB73-like transcription factor (bf_mxflxxxx_0055g04.t3m.scf_236).
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Fig. 7. Gene expression patterns for genes that are differentially expressed in both the comparison of pigmented and non-pigmented

tubers and from the sector experiment. Gene numbers are as in Table 3.
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weak association with tuber pigment level and contains no

genes currently known to be involved in anthocyanin bio-

synthesis.

Correlation analysis of the gene expression levels of the

refined gene list with the metabolite levels determined

by LC-MS was also carried out (Fig. 8). Extremely high

levels of correlation were observed between the expression

levels of many of the genes and some of the anthocyanin
metabolites. Although these positive correlations might be

predicted for the known anthocyanin pathway structural

and regulatory genes, the correlation with genes of un-

known function (e.g. gene 9), further implicates them as

having important roles in anthocyanin biosynthesis. Inter-

estingly, negative correlations between expression levels and

phenylalanine content were observed and, for some genes,

there were extremely strong negative correlations with the
levels of anthocyanin metabolites (e.g. gene 25; Fig. 7

MICRO.4497.C3, tentatively identified as encoding epoxide

hydrolase I).

Discussion

As evidence accumulates about the potential health benefits

of consuming a diet rich in anthocyanins, so too does our

requirement for understanding the biosynthesis of these com-
pounds in staple foods. Several recent reports have addressed

the biosynthesis of anthocyanins in potato tubers. Using a

genetic approach, Zhang et al. (2009), identified several QTL

for tuber anthocyanin content in a model diploid population.

It was demonstrated that a gene designated as StanI (a bHLH

gene homologous to petunia anthocyanin I (anI)) co-localized

with a QTL for flesh colour on chromosome 9. Marker

studies demonstrated that StanI was present in all 21 analysed

pigmented tuber tetraploids, but was also present in 21 out of

53 white and yellow-fleshed clones, leading to the conclusion

that StanI is necessary but not sufficient for anthocyanin

pigment accumulation. Previous studies have also implicated

a gene designated Pf in tuber anthocyanin accumulation. This
gene maps to chromosome 10 and an orthologue of petunia

an2, encoding an R2R3MYB transcription factor co-localizes

with Pf. However, the population described in Zhang

et al. (2009) was homozygous for Pf and yet 11 out of 214

progeny were unpigmented. Thus like StanI, Pf also appears

to be necessary but not sufficient for tuber anthocyanin

accumulation.

The complex nature of potato tuber anthocyanin accumu-
lation was further illustrated using a transgenic approach.

Rommens et al. (2008) over-expressed an R2R3MYB tran-

scription factor, designated StMtf1 in potato. Although the

map location of this gene was not determined, there are se-

quence similarities with petunia an2 and other potato

R2R3MYB genes that map at the Pf locus such as StAn2.

When expression of StMtf1 was driven by a strong constitu-

tive promoter, Ubi7, anthocyanins accumulated throughout
the potato plant in all tissues apart from the tuber flesh.

Using the tuber-flesh specific GBSS promoter, anthocyanins

accumulated in tuber phloem and periderm cells but were

lacking in other tuber tissues, giving the tubers a mottled

appearance. Thus, both genetic and transgenic studies sug-

gest that there are additional unknown factors required for

potato tuber anthocyanin accumulation.

Fig. 8. Heat map revealing correlations between gene expression levels and metabolites in anthocyanin accumulating potato tubers.

Gene numbers are as in Table 3 and metabolites are shown in the key. The colour key gives the R value for the correlation calculated for

the combined sectional and cultivar datasets.
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This study provides a unique and comprehensive examina-

tion of the differences in gene expression that exists between

pigmented and non-pigmented tuber tissues, seeking to iden-

tify candidate genes that may encode unknown factors as-

sociated with anthocyanin biosynthesis. The approach of

metabolite profiling and transcriptome co-expression analy-

sis is a powerful method for gene discovery. Already in

Arabidopsis, this type of approach has been used to assign
function to novel genes involved in flavonol biosynthesis

(Yonekura-Sakakibara et al., 2008). The POCI chip is the

best microarray platform currently available to analyse

global gene expression in potato representing 42 034 unigene

sequences (described in Kloosterman et al., 2008), thereby

enabling a much more complete analysis of gene expression

than has hitherto been achievable. Approximately 35 000

genes are expressed in tomato (Van der Hoeven et al., 2002)
and a similar number are probably expressed in potato so it

is estimated that this array covers a significant proportion of

the entire potato transcriptome. Our approach to obtaining

a refined gene list of only 27 genes was based on novel two-

stage analysis. Comparing gene expression in white and

purple sectors of the same tuber gave rise to a list of 339

genes that were differentially expressed. Comparison of

purple-fleshed and white genotypes identified a much larger
number of differentially expressed genes (1817) even with

very strict statistical filtering, presumably because other traits

apart from anthocyanin content were different between the

potato types. However, by comparing the gene lists only 27

genes were common to both sets. As expected, a high

proportion (14/27) of these genes is known to be associated

with anthocyanin biosynthesis. Further circumstantial evi-

dence for the importance of some of these candidate genes
was provided by correlation analysis. For example, genes of

unknown function (genes 9 and 11) share expression

correlation with anthocyanin structural genes and seem good

candidates for having roles in anthocyanin biosynthesis.

Moreover, the expression pattern of the MYB73-like gene

(gene 10, bf_mxflxxxx_0055g04.t3m.scf_236) was also closely

correlated with the expression of many of the other known

genes of anthocyanin biosynthesis. There are also different
degrees of correlation (both positive and negative) between

the expression levels of the genes and the accumulation of

metabolites determined by LC–MS. For example, the

expression levels of gene 27 (annotated as unknown) and

gene 25 (annotated as an epoxide hydrolase) are strongly

negatively correlated with the accumulation of tuber antho-

cyanin metabolites. Epoxide hydrolases catalyse the conver-

sion of epoxides to diols and there is considerable knowledge
of their structure and function in many systems, including

potato (Mowbray et al., 2006). Most plant epoxide hydrolase

enzymes are thought to be monomers with a preference

for substrates with long lipid-like substituents of the epox-

ide ring. Their precise biological role is unknown, however,

it may be a reasonable working hypothesis that down-

regulation of these genes may impact on anthocyanin ac-

cumulation. This shows the potential benefit of combining
metabolite and gene expression analysis and reveals the

power to implicate unsuspected gene targets as having a role

in the accumulation of target metabolites. It was also of

interest that the purple segments of tubers from clone

CO97216-3P/PW contained elevated glycoalkaloid levels

compared with the white segments. There are no obvious

common metabolites in the anthocyanin and glycoalkaloid

pathways and so there is no simple explanation for this rela-

tionship. A relationship between chlorogenic acid and gly-

coalkaloid contents in potato tubers has previously been
noted (Dao and Friedman, 1994).

The appearance of the MYB73-like gene in the list of

candidate genes is particularly interesting. The sequence

encoded by this cDNA appears to be a single domain MYB

transcription factor. Although these MYB factors lack

a transcription activation domain, it is thought they exert

their regulation by interacting with other transcription

factors (reviewed in Jin and Martin, 1999). For example,
the Arabidopsis gene CAPRICE (CPC) promotes differenti-

ation of hair-forming cells by controlling a negative regula-

tor, GLABRA2 (GL2), which is preferentially expressed in

hairless cells (Wada et al., 2002). The N terminus of bHLH

proteins interact with CPC and are responsible for GL2 ex-

pression. Very recently it has been demonstrated that CPC

overexpression represses flavonoid biosynthesis in Arabidop-

sis by competing with the R2R3-MYB transcription factor
PAP1/2, an activator of anthocyanin genes (Zhu et al.,

2009). Thus there is a clear precedent for single domain

MYB transcription factors such as the MYB73-like gene

identified in this study, as having a role in anthocyanin

biosynthesis. In contrast to the negative effect of CPC in

Arabidopsis, in potato MYB73-like expression appears to

have a positive effect. Based on the extremely high cor-

relation of the MYB73-like gene expression with other
anthocyanin pathway genes, it is tempting to speculate that

it may encode one of the hitherto unknown co-regulators of

anthocyanin biosynthesis in potato tubers. Further genetic

and transgenic studies using combinations of transgenes will

be required to test this hypothesis and also to investigate

further the roles of other candidate genes identified in this

study.

Supplementary data

Supplementary data are available at JXB online.
Supplementary Table S1. List of genes that are differen-

tially expressed in purple and white sectors of tuber flesh

found in clone CO97216-3P/PW including the normalized

microarray data, probe identity and best BLAST hit.

Supplementary Table S2. List of genes that are differen-

tially expressed in tubers from two white-fleshed cultivars

(Russet Nugget and Rio Grande Russet) compared with two

purple-fleshed genotypes (Purple Majesty and CO97216-1P/P).
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