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Abstract

Inflammation is an essential pillar of the immune defense. On the other hand, chronic inflammation is considered a hall-
mark of cancer initiation and progression. Chronic inflammation demonstrates a potential to induce complex changes at 
molecular, cellular, and organ levels including but not restricted to the stagnation and impairment of healing processes, 
uncontrolled production of aggressive ROS/RNS, triggered DNA mutations and damage, compromised efficacy of the DNA 
repair machinery, significantly upregulated cytokine/chemokine release and associated patho-physiologic protein synthesis, 
activated signaling pathways involved in carcinogenesis and tumor progression, abnormal tissue remodeling, and created 
pre-metastatic niches, among others. The anti-inflammatory activities of flavonoids demonstrate clinically relevant potential 
as preventive and therapeutic agents to improve individual outcomes in diseases linked to the low-grade systemic and chronic 
inflammation, including cancers. To this end, flavonoids are potent modulators of pro-inflammatory gene expression being, 
therefore, of great interest as agents selectively suppressing molecular targets within pro-inflammatory pathways. This paper 
provides in-depth analysis of anti-inflammatory properties of flavonoids, highlights corresponding mechanisms and targeted 
molecular pathways, and proposes potential treatment models for multi-level cancer prevention in the framework of predic-
tive, preventive, and personalized medicine (PPPM / 3PM). To this end, individualized profiling and patient stratification are 
essential for implementing targeted anti-inflammatory approaches. Most prominent examples are presented for the proposed 
application of flavonoid-conducted anti-inflammatory treatments in overall cancer management.
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Abbreviations

4EBP1  Translation repressor protein
ACAN  Aggrecan
ADAM  Metalloproteinase domain-containing 

protein 12
ADAMTS  Disintegrin and metalloproteinase with 

thrombospondin motifs

AKT  Serine/threonine-protein kinase/protein 
kinase B

AMPK  5′ AMP-activated protein kinase
AOM  Azoxymethane
AP-1  Activator protein 1
APR  Acute phase response
Arg-1  Arginase 1
Bad  Bcl-2-associated agonist of cell death
BALP  Bone alkaline phosphatase
Bax  Bcl-2-associated X protein
Bcl-2  B cell lymphoma 2
BMI  Body mass index
BM-MSC  Bone marrow mesenchymal stem cells
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BUB1  Mitotic checkpoint serine/threonine 
kinase

CAFs  Cancer-associated fibroblasts
CAT   Catalase
CCL  C-C motif chemokine ligand
CCNB2  Cyclin B2
CD  Cluster of differentiation
CDC20  Cell division cycle 20
CDK1  Cyclin-dependent kinase 1

c-FLIPL  FADD-like interleukin-1 beta-convert-
ing enzyme inhibitory protein

CINC-1  Cytokine-induced neutrophil 
chemoattractant-1

cMYC  Regulator gene and proto-oncogene
COL2A1  Collagen type II alpha 1 chain
COX-2  Cyclooxygenase 2
CSCs  Cancer stem cells
CSE  Cigarette smoke extracts
CTX-II  C-terminal cross-linked telopeptide of 

type II collagen
CX3CL1  C-X3-C motif chemokine ligand 1
CXCL  C-X-C motif chemokine ligand
CXCR4  C-X-C motif chemokine receptor 4
DMBA  7,12-Dimethylbenz(a)anthracene
DMH  1,2-Dimethylhydrazine dihydrochloride
DSS  Dextran sulfate sodium
E2F5  E2F transcription factor 5
ECM  Extracellular matrix
EGCG   Epigallocatechin-3-gallate
eIF4E  Eukaryotic translation initiation factor 

4E
EMT  Epithelial–mesenchymal transition
eNOS  Endothelial nitric oxide synthase

ERK  Extracellular signal-regulated kinase
ETV6-RUNX1  ETS variant transcription factor 6-runt-

related transcription factor 1
FAK  Focal adhesion kinase
FGF2  Fibroblast growth factor 2
FGFR2  Fibroblast growth factor receptors

G-CSF  Granulocyte colony–stimulating factor
GM-CSF  Granulocyte-macrophage colony–stimu-

lating factor
GSH  Glutathione
GTPs  Green tea polyphenols
HCC  Hepatocellular carcinoma
HGF  Hepatocyte growth factor
HIF-1α  Hypoxia-inducible factor 1α
Hs-CRP  High-sensitivity C-reactive protein
HSP90  Heat shock protein 90
IBD  Inflammatory bowel disease
ICAM-1  Intercellular adhesion molecule 1
ID1  Inhibitor of differentiation 1
IFN-γ  Interferon gamma

IGF-1/IGF-1R  Insulin-like growth factor 1/insulin-like 
growth factor type 1 receptor

IKK  Kappa kinase
IL  Interleukin
ILK  Integrin-linked protein kinase
iNOS  Inducible nitric oxide synthase

JAK  Janus kinase
JNK  c-Jun amino-terminal kinases
Ki67  Proliferative index
LC3B  Autophagy marker light chain
LCSLC  Liver cancer stem–like cells
LIF  Leukemia inhibitory factor
LPS  Lipopolysaccharide
Lyn  LYN proto-oncogene, Src family tyros-

ine kinase
MAMs  Metastasis-associated macrophages
MAPK  Mitogen-activated protein kinase
Mcl-1  MCL1 apoptosis regulator, Bcl-2 family 

member
MCP-1  Monocyte chemoattractant protein-1

M-CSF  Macrophage colony–stimulating factor
MDA  Malondialdehyde
MDSCs  Myeloid-derived suppressor cells
MMPs  Matrix metalloproteinases
MPG  N-Methylpurine DNA glycosylase

mTOR  Mechanistic target of rapamycin

MYBL2  MYB proto-oncogene like 2
NADPH  Nicotinamide adenine dinucleotide 

phosphate
NF-κB  Nuclear factor kappa-light-chain-

enhancer of activated B cells
NLRP3  NOD-, LRR-, and pyrin domain–con-

taining protein 3
NOX2  NADPH oxidase 2
Nrf2  Nuclear factor erythroid 2–related factor 

2
OC  Osteocalcin
OPG  Osteoprotegerin
PARP  Poly (ADP-ribose) polymerase
PBO  Piperonyl butoxide
PCNA  Proliferating cell nuclear antigen
PD-L1  Programmed death-ligand 1
PGE2  Prostaglandin E2
PI3K  Phosphoinositide 3-kinase
PIGF  Placental growth factor
PIINP  Human procollagen II N-terminal 

propeptide
PIM2  Pim-2 proto-oncogene, serine/threonine 

kinase
PPPM / 3PM  Predictive, preventive, and personalized 

medicine
PTEN  Phosphatase and tensin homolog
PTGER2  Prostaglandin E receptor 2
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PTGS2  Prostaglandin-endoperoxide synthase 2
RANKL  Receptor activator of nuclear factor-κB 

ligand
Rap1  Ras-related protein 1
ROS/RNS  Reactive oxygen species/reactive nitro-

gen species
S100A7/RAGE  Receptor for advanced glycation end 

products
S6K1  Ribosomal protein S6 kinase beta-1
SAA  Serum amyloid A
SHP-1  Src homology region 2 domain–contain-

ing phosphatase 1
Slug  SNAI2 snail family transcriptional 

repressor 2

Smad4  SMAD family member 4
Snail  Zinc finger protein SNAI1
SOD  Superoxide dismutase
Sox2  SRY-box transcription factor 2
Src  Proto-oncogene, tyrosine-protein kinase
STAT3  Signal transducer and activator of tran-

scription 3
Syk  Spleen-associated tyrosine kinase
TAMs  Tumor-associated macrophages
TANs  Tumor-associated neutrophils
TGF-β  Transforming growth factor beta
Th17s  T helper IL-17-producing cells
TIMP1  TIMP metallopeptidase inhibitor 1
TLR4  Toll-like receptor 4
TME  Tumor microenvironment
TNF-α  Tumor necrosis factor alpha
TPA  12-O-Tetradecanoylphorbol-13-acetate
TRAIL  TNF-related apoptosis-inducing ligand
Tregs  T-regulatory cells
Twist  Twist family BHLH transcription factor 

1
UV  Ultraviolet
VCAM-1  Vascular cell adhesion molecule 1
VEGF  Vascular endothelial growth factor

VEGFR2  Vascular endothelial growth factor 
receptor 2

WCE  Wedelia chinensis herbal extract
YAP  Yes1-associated transcriptional 

regulator
ZEB1  Zinc finger E-box binding homeobox 1

Introduction

Inflammation is a physiological process necessary for 
homeostasis. Inflammation plays an elementary role in host 
defense against various pathogens through the activation and 
recruitment of immune cells and the consequent actions of 
innate and adaptive immunity. It is imperative for processes 

such as tissue regeneration, repair, and remodeling. Further-
more, its subtle manifestations are essential for the modu-
lation of tissue homeostasis [1]. Cancer cells frequently 
secrete several growth factors that stimulate myelopoiesis 
and recruit myeloid cells to TME. Therefore, the TMEs of 
various cancers are characterized by the high infiltration of 
monocytes, macrophages, granulocytes, and dendritic cells. 
Most myeloid cells within TMEs are present in an imma-
ture form; however, cancer-derived growth factors modify 
these myeloid cells into cells that support carcinogenesis 
by enhancing proliferation, migration, and metastasis and 
enabling cancer cell survival and immune evasion [2].

Acquired data from the oncology research is applicable 
in the novel clinical trend focused on 3PM strategies con-
sidered as the medicine of the future [3, 4]. The presence of 
inflammatory or immune cells in specific tissues/organs was 
evaluated as a predictive marker in cancer therapy. Long-
term oncology research indicates that chronic inflamma-
tion is associated with increased cancer risk and worsened 
disease prognosis [5]. Controlled inflammatory processes 
include specific immune responses—mainly linked with the 
maturation of antigen-presenting cells that promote tissue/
organ healing. On the other hand, amplified, uncontrolled, or 
prolonged inflammation associated with immunosuppression 
is linked with many pathologies, including carcinogenesis 
[6]. It is widely accepted that up to 25% of neoplasms in 
humans are associated with chronic inflammation induced 
by viral and/or bacterial infections, physical and/or chemical 
stimuli, or metabolic pathologies [6–8]. Chronic inflamma-
tion influences tumor initiation and development by modu-
lating critical signaling pathways associated with cellular 
transformation, proliferation, angiogenesis, survival, inva-
sion, and metastasis [9]. The inflammation that initiates car-
cinogenesis exists long before cancer appears. In this regard, 
conditions such as chronic hepatitis, Helicobacter-induced 
gastritis, inflammatory bowel disease, and schistostoma-
induced bladder inflammation increase the risk of several 
cancers, such as liver cancer, stomach cancer, colorectal can-
cer, and bladder cancer [8]. Numerous environmental fac-
tors must be considered, as they initiate and/or promote car-
cinogenesis by inducing organ-specific or systemic chronic 
inflammation. For instance, asbestos and tobacco smoke can 
induce lung and airway inflammation and thus initiate meso-
thelioma and lung carcinoma [10].

Similarly, low-grade systemic inflammation induced by 
hyperglycemia, hyperlipidemia, and obesity is a risk fac-
tor for several cancers, such as liver, pancreatic, colon, and 
breast cancers [11]. Abundant scientific evidence points 
out a significant role of systemic inflammation in cancer 
initiation, development, and progression. Obesity-, tobacco 
smoke–, and bacterial product–induced inflammation 
stimulates neutrophils and causes extracellular trap for-
mation; these processes initiate cancer invasion [12]. The 
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evaluation and modulation of the biological balance between 
controlled inflammation and uncontrolled chronic inflam-
mation are essential for cancer prediction, prognostication, 
and prevention.

In the search for novel therapeutic agents that can pre-
cisely modulate cancer-associated inflammation, plant-
derived natural products hold great promise due to their 
multi-targeting modes of action. Plant-derived compounds 
potently modulate inflammation. In the past several decades, 
many studies reported the anti-inflammatory effects of vari-
ous phytochemicals in vitro and in vivo. In this regard, fla-
vonoids could directly modulate the immune system [13]. 
Flavonoids exert anti-inflammatory actions through the reg-
ulation of immune cells, suppression of pro-inflammatory 
transcription factors, chemokines, cytokines, and COX-2, 
and inhibition of PI3K/AKT and IKK/JNK [14, 15].

This article summarizes the most recent evidence regard-
ing the role of flavonoids as suppressors of pro-inflammatory 
cell signaling pathways that can promote carcinogenesis. 
The evidence supports the preventive and therapeutic poten-
tial of flavonoids in cancer.

The role of chronic in�ammation in di�erent 
stages of carcinogenesis

Cancer initiation

Two main cellular events are necessary for cancer initiation: 
first, the accumulation of genetic and/or epigenetic changes 
in genes that control tumor suppression/oncogenic signaling 
pathways; and second, the formation of transformed and/
or malignant clones. A qualitative change into a tumor fol-
lows; the pro-inflammatory microenvironment can signifi-
cantly support this process. A prolonged pro-inflammatory 
microenvironment contributes to genomic instability and 
cancer initiation. Therefore, pathogenic infections lead to 
DNA damage and/or cellular metabolic deregulation and 
thus change genomic integrity. The TME could trigger the 
recruitment of pro-inflammatory cells, making the environ-
ment rich in chemokines, growth factors, cytokines, and 
DNA-damaging agents (ROS, RNS) that activate DNA 
damage response pathways. Long-term deregulation of 
these factors may cause abnormalities and related patholo-
gies, including cancer [16]. Moreover, the adaptive nature of 
carcinogenesis is highlighted because cell clones with equal 
genetic changes have different propensities for development 
and survival. These processes are strongly affected by the 
TMEs of these clones [17].

Chronic inflammatory processes are associated with oxi-
dative/nitrosative stress, and consequent electron “storms” 
in cells/tissues induce progressive DNA damage. ROS/RNS 
originate from the immune system via specific NADPH 

oxidases that are crucial for pathogen clearance [18]. These 
DNA changes are linked with the deregulation of cellular 
homeostasis and result in genetic aberrations that act as ini-
tiation factors in chronic inflammation–induced pathogen-
esis, including carcinogenesis [19]. For example, chronic 
inflammation and ROS generation in colon epithelial cells 
can affect the Wnt/β-catenin and/or base excision repair 
pathways and thus increase the risk of polyp formation. The 
combination of DNA damage caused by oxidative stress and 
errors in DNA polymerase activity can support C>T transi-
tions in various tissues, leading to a hypermutated cellular 
phenotype [20]. In another study using an inflammatory 
colorectal cancer model, the EMT factor ZEB1 promoted 
inflammation and progression towards inflammation-driven 
carcinoma by suppressing the DNA repair glycosylase MPG 
in epithelial cells [21]. Gobert et al. (2017) reported that 
polyamine- and NADPH-dependent ROS generation during 
Helicobacter pylori infections might lead to the initiation of 
inflammation and consequent carcinogenesis [22].

During chronic inflammation, pro-inflammatory media-
tors are continuously produced. Cytokines, growth factors, 
and acute-phase proteins, all part of the TME modulate the 
inflammatory responses and the crosstalk between signal-
ing pathways involved in cancer initiation. Several papers 
describe the key role of the pro-inflammatory microenviron-
ment in tumor initiation. Following infection or injury, SAA 
represents a critical acute phase protein secreted by hepato-
cytes during the APR. Autophagy is reported to be critical 
in tumors—both pro- and anti-carcinogenic. High levels of 
SAA in the TME contribute to carcinogenesis. SAA affects 
cell-signaling pathways, such as those associated with PI3K 
and MAPK, which modulate autophagy. Dysregulation of 
autophagy can initiate the transformation of normal cells 
to premalignant via metabolic stress, DNA damage, oxida-
tive stress, and endoplasmic reticulum stress. In addition, 
autophagy can support the survival of transformed cells [23]. 
For instance, the type A receptor of IL-17 directly triggers 
pro-carcinogenic signaling in transformed enterocytes.

Moreover, the type A receptor of IL-17 stimulates ERK, 
p38 MAPK, and NF-κB signaling and induces the prolifera-
tion of transformed enterocytes that lack APC tumor sup-
pressor functions [24]. Beneforti et al. (2020) hypothesized 
that infections and inflammation are the most important 
triggers of mutation accumulation in and the malignant 
transformation of ETV6-RUNX1 fusion gene (E/R+) pre-
leukemic cells in childhood acute lymphoblastic leukemia. 
The authors showed that the pro-inflammatory cytokines 
IL-6/TNF-α/IL-1β coact with BM-MSC in promoting the 
emergence of E/R+ Ba/F3 cells (a murine IL-3-dependent 
pro-B cell line) and modulating their survival and prolif-
eration. In addition, BM-MSCs attracted E/R+ Ba/F3 cells 
in a chemokine type 2 receptor–dependent manner; E/R+ 
human  CD34+  IL7R+ progenitors (a supposed population 
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of cells for acute lymphoblastic leukemia) were protected 
in the presence of BM-MSC and IL-6/TNF-α/IL-1β. The 
authors concluded that DNA damage accumulation depends 
on the extent of inflammation in both control and E/R+ Ba/
F3 cells and might lead to the transformation of the apopto-
sis-resistant pre-leukemic clones [25]. Furthermore, Huang 
et al. (2020) found that IL-1β, secreted by macrophages 
stimulated by multi-walled carbon nanotubes, increased the 
release of pro-inflammatory cytokines such as TNF-α, IL-8, 
and IL-6 from mesothelial cells. The authors concluded that 
inflammation-induced NF-κB (p65)/IL-6/STAT3 signaling 
plays a crucial role in the malignant transformation of pleu-
ral mesothelial cells [26].

Different cytokines and chemokines may modulate the 
conversion of normal fibroblasts into CAFs. CAFs syn-
thesize pro-inflammatory cytokines such as IL-6 and LIF, 
which in turn modulate their epigenetic status. This activity 
promotes the pro-tumorigenic function of CAFs by enhanc-
ing actomyosin contractility and ECM remodeling [27]. 
IL-1β is another pro-inflammatory cytokine that initiates 
carcinogenesis and promotes immunosuppression. These 
functions of IL-1β are mainly observed in the early stages 
of carcinogenesis; moreover, its expression significantly 
impacts the process of malignant transformation [28].

Cancer promotion

Like cancer initiation, a pro-inflammatory TME and conse-
quent signaling can support numerous growth factors in pro-
moting carcinogenesis. Cancer promotion can be regulated 
by several pathways associated with inflammation, such as 
those involving NF-κB, STAT3, mTOR, and MAPKs, which 
are triggered by pro-inflammatory cytokines like IL-6, TNF-
α, and IL-1β [29]. Ju et al. (2020) revealed that infiltrated 
macrophages released TNF-α and IL-6, which induced the 
expression of PD-L1 in cancer cells. Consequently, TNF-α 
and IL-6 triggered the activation of the NF-κB and STAT3 
signaling pathways to modulate PD-L1 expression. The 
authors concluded that macrophage-induced increases in 
PD-L1 expression could allow cancer cells to escape from 
cytotoxic T cell surveillance and proliferate [30]. PIM2 is an 
oncomarker highly expressed in HCC which correlates with 
poor prognosis. Functional studies demonstrated that PIM2 
is an enhancer of cell proliferation, cell motility, angiogen-
esis, and chemoresistance in cancer. In this regard, HCC 
cells treated with TNF-α showed increased PIM2 expres-
sion; this consequently increased the expression of TNF-α. 
The same study revealed that PIM2 promotes HCC carcino-
genesis by activating the NF-κB signaling pathway through 
PIM2 receptor phosphorylation [31].

S100A7/RAGE signaling in adjacent endothelial cells 
may behave as a crucial angiocrine effector. Muoio et al. 
(2021) found that IGF-1/IGF-1R signaling increases STAT3 

activation in breast cancer cells. Consequently, activating 
the S100A7/RAGE pathway via STAT3 signaling sustains 
angiogenesis and thus stimulates cancer promotion in breast 
cells [32]. The upregulation of cancer-promoting inflamma-
tory cytokines (host and tumor-secreted), such as NF-κB, 
COX-2, IL-1, IL-6, TNF-α, and IFN-γ, is strongly associated 
with STAT3 and AKT signaling activation in oral squamous 
cell carcinoma in vitro. The suppression of these cytokines 
may decrease tissue inflammation and thus decrease the 
proliferation of oral squamous cell carcinoma cells [33]. 
TAMs play a substantial role in modulating the interactions 
between cancer cells and the immune system. In this regard, 
the TAM microenvironment promoted the growth of triple-
negative breast cancer cells in a study by Deng et al. (2021). 
The authors described that TAMs promoted the growth of 
MDA-MB-231 and MDA-MB-468 cells by upregulating the 
IL-10/STAT3/PD-L1 immunosuppressive signaling pathway 
[34]. Zhang et al. (2017) revealed that TAMs might trigger 
PD-L1 expression by producing IFN-γ via the JAK/STAT3 
and PI3K/AKT signaling cascades in A549 cells [35].

Recent data revealed that MAPK upregulation is crucial 
in modulating inflammation-associated cancer development. 
MAPKs include p38 MAPK, JNK, and ERK. These enzymes 
are serine-threonine protein kinases that affect essential cel-
lular activities, such as proliferation, differentiation, apop-
tosis, survival, inflammation, and innate immunity. The 
described enzymes are upregulated by various types of cel-
lular stress and pro-inflammatory cytokines such as TNF-α 
and IL-1β [36]. In addition, increased p38 MAPK signaling 
is linked with increased proliferation and decreased apop-
tosis of colon and liver cancer cells. Deregulation of the 
mTOR signaling pathway, including the loss of PTEN func-
tion, amplification/mutation of PI3K, and overexpression of 
S6K1, 4EBP1, eIF4E, and AKT, was described in multiple 
cancer types but mainly in melanoma [37]. In a preclini-
cal study, lung cancer–induced osteoclastogenesis in vitro 
was associated with the upregulation of IL-6 and TNF-α 
and consequent activation of the AMPK/mTOR signaling 
pathway [38].

Cancer progression

Cancer metastasis is a highly inefficient process. Most can-
cer cells released from the primary tumor site die before 
creating a distant metastatic site. To further improve the 
ratio of dead cancer cells with invasive phenotypes, it is 
possible to modulate specific “key steps” within the complex 
process of tumor progression that may decrease the “suc-
cess” of metastatic invasion and improve patient survival. 
Metastasis begins with the invasion of tumor cells from the 
epithelium into the surrounding tissues and the concurrent 
EMT. The post-EMT phenotype of cells (often only par-
tial) allows them to cross the basal epithelial membrane and 
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reach lymphatic and/or blood capillaries [8, 39]. A recent 
study described a novel lymphatic pattern in the hypoxic 
TME, wherein TAMs encapsulate lymphatic vessels to form 
an interconnected network. These aggregates are advanta-
geous for and actively involved in early lymph node metas-
tasis [40].

Moreover, research data revealed the importance of the 
pro-inflammatory TME within the ECM in modulating 
tumor-associated processes such as invasion, metastasis, 
angiogenesis, immune cell modulation, and therapeutic 
resistance [41]. Calon et al. (2015) reported that all colo-
rectal cancer subtypes with poor prognosis are characterized 
by stromal cancer cells with a TGF-β-triggered transcrip-
tion program associated with a pro-inflammatory TME. 
The application of TGF-β signaling inhibitors suppressed 
the crosstalk between the TME and cells and thus suppressed 
cancer progression in patient-derived tumor organoids and 
xenografts [42].

CSCs are more effective in metastasis than other (bulk) 
tumor cells. CSCs are essential for cancer metastasis and 
therapeutic resistance. Numerous stimuli such as chronic 
inflammatory signaling, including the activation of the 
STAT3 and NF-κB transcription factors, may drive the 
stemness of CSCs in cancer tissue and enlarge their pro-
portion within the cell population, thereby increasing the 
potential of metastasis. Importantly, CSCs are functionally 
and transcriptionally more related to mesenchymal cells than 
bulk tumor or normal epithelial cells [43]. Cytokines and 
chemokines, both their receptors and signaling pathways, 
are essential factors in the complex interplay and cross-
talk between different cell types and secreted factors in the 
events that lead to cancer metastasis. Numerous cytokines 
and chemokines, such as TNF, IL-6, IL-8, CXCL12, TGF-
β, CXCL8, VEGF, RANKL, CCL2, CX3CL1, IL-1, IL-7, 
CXCL1, and CXCL16, contribute to the regulation of cancer 
metastasis [44, 45].

Moreover, comprehensive data support the role of a pro-
inflammatory TME in the promotion of CSCs. Cytokines 
and chemokines may benefit cancer cells and/or CSCs in 
processes such as cell proliferation, survival, and migration 
[46]. In this regard, there exists a close linkage between 
CSCs and inflammatory components, i.e., inflammatory 
cells such as TAMs and MDSCs and inflammatory cytokines 
(TNF, IL-6, IL-17, IFNs) [47].

Metastatic spread typically occurs through blood and 
lymphatic vessels. Therefore, intravasation and extravasation 
are essential processes in cancer metastasis. These processes 
are modulated by specific adhesion molecules and integrins 
facilitating cell-cell interactions/adhesion and cell move-
ment. In this regard, inflammatory cytokines are important 
inducers of integrins, selectins, and adhesion molecules, 
such as VCAM-1 and ICAM-1. In addition, TAMs produce 
pro-angiogenic growth factors and MMPs. Therefore, they 

support vasculogenesis and consequently the supply of oxy-
gen and nutrients to solid tumors [48]. A preclinical study 
by Horiguchi et al. (2020) demonstrated that local inflam-
mation, characterized by elevated IL-6, TNF-α, and HGF in 
the bronchoalveolar lavage fluid, increased the metastatic 
activity of NL-17 cells in the lung. A pro-inflammatory 
TME significantly upregulated the expression of α2 inte-
grin, VCAM-1, and ICAM-1. An anti-ICAM-1 antibody 
suppressed the invasive activity of NL-17 cells; therefore, 
adhesion molecules have a potential role in lung metastasis 
enhanced by local inflammation [49].

Comprehensive research has described specific cellular 
and molecular events that may cause tumor cells to escape 
immune surveillance, including those involving tumor-
induced myeloid cell–mediated immunosuppression [50]. 
Multiple studies indicate that tumor-infiltrating myeloid 
cells accelerate cancer growth and support angiogenesis, 
metastasis, and therapeutic resistance after their conversion 
into potent immunosuppressive cells. Host and tumor cells 
in the TME secrete pro-inflammatory molecules that stimu-
late MDSCs and trigger their accumulation and suppressive 
activities [51]. Several mechanisms driven by MDSCs sup-
press T cells and activate immunosuppressive cell popula-
tions. Such inflammatory modulation in the TME causes the 
immune system to tolerate cancer cells and enhance their 
growth.

In conclusion, the interruption of the interplay between 
pro-inflammatory cytokines and pro-inflammatory/pro-
carcinogenic cell signaling pathways affects all stages of 
carcinogenesis and might therefore represent a promising 
strategy in oncology research and practice.

Anti-in�ammatory activities of �avonoids: 
implications in carcinogenesis

Flavonoids constitute a group of natural substances with dif-
ferent phenolic structures. They are found in fruits, vegeta-
bles, grains, flowers, tea, bark, roots, and stems. These natu-
ral molecules have well-described beneficial health effects 
in humans. Due to their anti-oxidative, anti-inflammatory, 
anti-mutagenic, anti-carcinogenic, and cellular enzyme 
modulating activities, flavonoids have numerous medicinal, 
pharmaceutical, and cosmetic applications. A substantial 
proportion of non-infectious diseases develops or is wors-
ened by the chronic inflammatory process. Flavonoids are 
reported to combat most inflammatory processes underlying 
chronic conditions such as carcinogenesis [52–61].

Cancer initiation

Pro-inflammatory cytokine production and consequent intra-
cellular ROS and RNS accumulation lead to DNA damage 
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and initiate carcinogenesis. Flavonoids, as antioxidants, 
inhibit regulatory enzymes and transcription factors impor-
tant for controlling inflammatory mediators. Moreover, they 
modulate cellular oxidative stress by interacting with DNA 
and enhancing genomic stability [62]. Flavonoids can inhibit 
DNA adduct formation, enhance DNA repair by interfering 
with genotype damage caused by the upregulation of phase 
II enzymes, and modify relevant signaling pathways [63]. 
It is well documented that specific flavonoids can reduce 
cytokine production; therefore, they may have preventive 
and therapeutic potential in inflammation-related diseases 
(such as cancer) [64]. TNF-α triggers the release of chemo-
tactic proteins, e.g., MCP-1/CCL2. These regulatory mole-
cules direct the infiltration and migration of TAMs, MDSCs, 
Tregs, TANs, Th17s, MAMs, and CAFs. Specific flavonoids 
can attenuate the TNF-α-induced release of MCP-1/CCL2 
and various recruiting cytokines from cancer cells [65, 66]. 
In addition, by targeting TGF-β2, flavonoids suppress the 
cancer cell–mediated differentiation of naive fibroblasts into 
cancer-associated fibroblasts [67].

Cancer promotion

The inhibitory effect of flavonoids on cell proliferation 
and thus cancer promotion is associated with decreased 
phosphorylation of STAT-induced signaling pathway com-
ponents and related transcriptional activators. Hou et al. 
(2019) revealed that flavonoid treatment inhibits recurring 
colitis and colitis-associated tumorigenesis; these flavonoids 
downregulate IL-1β and TNF-α and consequently inhibit 
inflammation-induced colorectal cancer in vitro [68]. NF-κB 
signaling plays a crucial role in inflammation and cancer 
growth. Flavonoids negatively regulate the NF-κB signaling 
pathway by suppressing kinase phosphorylation, inhibiting 
NF-κB translocation into the nucleus, and blocking interac-
tions between DNA and NF-κB. Through these mechanisms, 
flavonoids inhibit inflammatory cascades associated with 
decreased cell proliferation, apoptotic induction, and the 
suppression of vasculogenesis [69]. In addition, flavonoids 
are promising anti-cancer agents that target the inflamma-
tory PI3K/AKT/mTOR/p70S6K and ERK/MAPK signaling 
pathways [70, 71].

Cancer progression

Flavonoids exert chemopreventive effects by protecting 
against cancer progression, inhibiting CSC formation, and 
alleviating lung metastasis in a preclinical model [72]. The 
reduction in cancer metastasis was associated with regulat-
ing the PI3K/AKT, MAPK/ERK, and STAT3 pathways—
central CSC-associated inflammatory signaling cascades. In 
another study, natural mixtures of flavonoids significantly 
downregulated the pro-inflammatory cytokines COX-2, 

iNOS, and TNF-α and the pro-angiogenic factors VEGF 
and eNOS, and induced apoptosis by increasing the Bax/
Bcl-2 ratio in vitro [73]. In this regard, flavonoids are anti-
inflammatory agents that downregulate crucial modulators 
of advanced stages of cancer such as IL-1β, IL-6, IL-10, 
TNF-α, NF-κβ, NOS2, PTGS2, PTGER2, ACAN, COL2A1, 
MMP1, MMP13, ADAMTS4, ADAMTS5, and TIMP1. 
These changes correlated with the reduction of serum levels 
of PGE2, CTX-II, TNF-α, MMP1, MMP13, PIINP, OPG, 
RANKL, OC, and BALP in a rat model [74]. Another study 
found that flavonoids exert their anti-metastatic activities 
by reducing CXCR4 expression and can therefore support 
the blockade of cancer promotion [75]. Furthermore, flavo-
noids target the integrin-modulated ILK/YAP pathway and 
block the EMT and metastasis [76]. Moreover, flavonoids 
block angiogenesis and metastasis by suppressing VEGF-
induced oxidative stress and NF-κB signaling and down-
regulating adhesion molecules such as VCAM-1, ICAM-1, 
and E-selectin; these activities decrease the formation of 
new blood capillaries in cancer tissue [77]. Finally, MDSC 
activation is involved in chronic inflammation-related immu-
nosuppression and  CD4+/CD8+ T cell activation through 
the ERK/IL-6/STAT3 and Arg-1/iNOS/Nox2/NF-κB/STAT3 
signaling pathways. In this regard, flavonoids attenuate 
MDSC-mediated immunosuppression that is crucial for 
cancer growth and metastasis [78, 79].

Flavonoids prevent tumor initiation 
by modulating in�ammatory processes

The concept of cancer chemoprevention by flavonoids 
was investigated in numerous in vivo and in vitro studies 
[80–84]. These natural phenolic compounds can modulate 
different steps of carcinogenesis [85]. As mentioned above, 
chronic inflammation accelerates genetic/epigenetic aberra-
tions that lead to cancer initiation, promotion, and progres-
sion [86]. Prolonged chronic inflammation associated with 
the overexpression of inflammatory mediators in the cell 
microenvironment is a critical step that promotes cancer ini-
tiation [87]. The anti-inflammatory properties of flavonoids 
could prevent, suppress, and reverse cancer initiation [88, 
89]. In the following section of the manuscript, we provide 
an overview of recent studies that analyze the role of flavo-
noids in tumor initiation through the modulation of inflam-
matory responses in vitro and in vivo.

Preclinical research

Baicalin, a flavonoid isolated from the roots of Scutellaria 

baicalensis, exerts different oncostatic effects [90, 91]. ROS 
generation due to constant UV-A exposure causes the for-
mation of inflammatory products and the accumulation of 



566 EPMA Journal (2021) 12:559–587

1 3

DNA mutations [92]. The protective role of baicalin was 
investigated in an animal study that analyzed the associa-
tion between UV-A irradiation, ROS production, and inflam-
mation. The acquired data revealed that baicalin protects 
against UV-A-induced inflammation and oxidative dam-
age by increasing IL-12 and IL-23. These effects are likely 
mediated by suppressing the TLR4 pathway, which has a 
significant role in inflammation [93]. Additionally, baicalin 
can be transformed into baicalein by intestinal microbiota. 
The anti-inflammatory and anti-cancer effects of baicalein 
were evaluated in an animal model of colorectal cancer. The 
authors used a gut-specific C57BL/6J  ApcMin/+/J mouse 
model (APC gene mutants) to evaluate parameters such as 
life span, tumor multiplicity, and organ index. Moreover, the 
expression of inflammatory cytokines was measured. Bai-
calein administration (30 mg/kg/day) decreased the number 
of tumors in the small intestine and colon (after 10 weeks 
of supplementation by baicalein) compared to controls. In 
addition, baicalein administration suppressed the expression 
of pro-inflammatory cytokines (IL-1β, IL-2, IL-6, IL-10, 
GM-CSF, and G-CSF) [94]. Ulcerative colitis is classified 
as a chronic idiopathic IBD [95]. Patients with IBDs are 
at increased risk for the development of extra-intestinal 
malignancies [96]. Rutin is a naturally occurring flavonoid 
with profound effects on different cellular processes associ-
ated with a pathological phenotype [97]. As demonstrated 
in a DSS-induced experimental colitis model in vivo, rutin 
modulated the expression of pro-inflammatory genes. Rutin 
administration significantly suppressed the protein level 
of IL-1β and the expression of IL-1β and IL-6 mRNA in 
the colonic mucosa of mice. Moreover, rutin attenuated 
DSS-induced colitis symptoms, including weight loss and 
colorectal shortening, and improved the histological score 
of colitis in the tested animals [98]. Another flavonoid, 
myricetin, downregulates inflammatory factors including 
TNF-α, IL-6, IL-1β, NF-κB, p-NF-κB, PCNA, COX-2, and 
cyclin D1 in AOM/DSS-induced colitis in mice. Myricetin 
significantly reduced the number of colorectal tumors and 
decreased the size of polyps in the colon [99]. Furthermore, 
naringin prevented AOM/DSS-induced colitis and carcino-
genesis in mice by suppressing MDSCs. A deeper analysis 
identified the downregulation of GM-CSF/M-CSF, IL-6, 
and TNF-α and the inhibition of the NF-κB/IL-6/STAT3 
pathway as further contributors to colitis-associated cancer 
[100].

Chronic arsenic exposure is associated with inflammation 
that could initiate carcinogenesis [101]. EGCG, a natural 
compound isolated from green tea, is a potent anti-inflam-
matory molecule [102]. EGCG exhibited an anti-inflamma-
tory effect against arsenic  (NaAsO2)-induced inflammation 
in mice. The acquired data revealed that EGCG administra-
tion downregulated the pro-inflammatory cytokines IL-1β, 
IL-6, and TNF-α. Additionally, EGCG attenuated oxidative 

stress by upregulating markers such as CAT, SOD, and GSH 
and decreasing MDA content in mice [103]. Furthermore, 
the administration of GTPs influenced UV-B-induced tumor 
development in mice. Likewise, UV-B is strongly associated 
with chronic inflammation and, as mentioned above, there is 
a strong relationship between UV radiation–induced chronic 
inflammation and skin carcinogenesis. GTPs suppressed 
the pro-inflammatory markers COX-2, PGE2, PCNA, and 
cyclin D1. Furthermore, levels of the pro-inflammatory 
cytokines TNF-α, IL-6, and IL-1β were reduced after GTP 
administration [104]. Chronic gastritis and peptic ulcera-
tion—chronic inflammatory disorders caused by Heli-

cobacter pylori infection—are strongly associated with 
an increased risk of cancer development [105, 106]. The 
isoflavonoid genistein exerted anti-inflammatory effects in 
rats infected by Helicobacter pylori. Its anti-inflammatory 
properties were mediated by suppressing pro-inflammatory 
mediators such as TNF-α and CINC-1, NF-κB, and bacte-
rial infection–induced gastric epithelial cell apoptosis [107]. 
Hesperidin, a flavone extracted from citrus fruits, has many 
biological effects [108]. Its impact on ulcerative colitis was 
documented in a study that evaluated the anti-inflammatory 
effect of hesperidin methyl chalcone in an animal model of 
acetic acid–induced colitis. As demonstrated above, chronic 
inflammation promotes colitis-associated cancer; thus, the 
attenuation of pro-inflammatory cytokines is a promising 
way to suppress cancer initiation [109]. Hesperidin sig-
nificantly catalyzed colon antioxidant processes and sup-
pressed pro-inflammatory cytokines (IL-33, IL-1β, IL-6, 
and TNF-α) in vivo [110]. In addition, quercetin exhibited 
anti-inflammatory effects in another model of DSS-induced 
experimental colitis in vivo. Comalada et al. (2005) evalu-
ated the effect of quercitrin, a glycoside of quercetin that is 
cleaved by gut microbiota to generate quercetin. Quercetin 
significantly inhibited cytokine (IL-1β and TNF-α) produc-
tion and induced the expression of iNOS by downregulat-
ing the NF-κB pathway [111]. Moreover, the flavonoid 
luteolin possesses various beneficial properties for human 
health [112–114]. Luteolin significantly reduced malignant 
transformation induced by hexavalent chromium [Cr(VI)] 
in human bronchial epithelial cells (BEAS-2B). Recurrent 
exposure to [Cr(VI)] is connected to persistent inflammation 
and subsequent carcinogenesis [115]. Noteworthy, luteolin 
is known to downregulate AP-1, HIF-1α, COX-2, and iNOS. 
In addition, luteolin prevented the transformation of BEAS-
2B into malignant phenotypes. The obtained data revealed 
decreases in IL-1β, IL-6, IL-8, and TNF-α levels. Western 
blotting uncovered the inhibition of products associated with 
inflammation, including MAPK, NF-κB, COX-2, STAT-3, 
and iNOS in chronic [Cr(VI)]-exposed cells. In addition, 
luteolin reduced tumor incidence in mice injected with 
[Cr(VI)]-exposed BEAS-2B cells [116]. Furthermore, cig-
arette smoke modulates inflammation and induces chronic 
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inflammation. Therefore, Pace et al. (2019) evaluated the 
impact of CSE on normal (16HBE) and cancerous (A549) 
epithelial cells. The study authors applied the naturally 
occurring flavone apigenin, which reduced miR-21 and IL-8 
gene expression in both cell lines [117].

As we described in this chapter, flavonoids possess pleio-
tropic abilities in preventing cancer initiation through the 
suppression of chronic inflammation. The health benefits 
of flavonoids targeting inflammatory pathways identified 
in experimental studies could be translated into the clinical 
area. The investigation of novel therapeutic approaches to 
reverse and prevent cancer initiation through the modulation 
of chronic inflammation falls within the concept of 3PM. 
Table 1 summarizes the effects of flavonoids on molecu-
lar cascades associated with inflammation and subsequent 
carcinogenesis.

Flavonoids as anti-in�ammatory agents 
against tumor promotion in carcinogenesis

Isolated flavonoids in preclinical studies

Chronic inflammation predisposes to cancer development 
and subsequently promotes all stages of tumorigenesis 
[8]. The anti-inflammatory and other anti-cancer effects 
of flavonoids were evaluated in cancer research since the 
last century. GTPs, silymarin, and apigenin inhibited skin 
tumor promotion by decreasing skin papilloma formation 
in DMBA-induced and TPA-promoted SENCAR mice 
[118–120].

As discussed above, various signaling pathways are asso-
ciated with chronic inflammation, including the MAPK, 
AKT, mTOR, STAT3, and/or NF-κB pathways, and can 
potentially lead to tumor promotion. Therefore, in the 
twenty-first century, studies emphasize the precise molecular 
mechanisms and signaling pathways leveraged by flavonoids 
against inflammation in various stages of carcinogenesis.

Quercetin inhibited the PI3K/AKT/mTOR, Wnt/β-
catenin, and STAT3 signaling pathways in BC3, BCBL1, 
and BC1 primary effusion lymphoma cells. Further, querce-
tin inhibited tumor promotion by downregulating the pro-
inflammatory cytokines IL-6 and IL-10; pro-survival mol-
ecules downstream of PI3K/AKT/mTOR, Wnt/β-catenin, 
and STAT3 such as c-FLIPL; and molecules linked to cell 
proliferation, including cyclin D1 and cMyc [121].

Moreover, icaritin from a Chinese herbal medicine (Epi-

medium species) inhibited proliferation and tumor growth 
and induced apoptosis of K562 and primary chronic mye-
loid leukemia cells. A mouse model also revealed that 
icaritin modulates signaling pathways associated with 
chronic inflammation such as MAPK/ERK/JNK and JAK2/
STAT3/AKT by upregulating p-JNK and p-C-JUN and 

downregulating p-ERK, p-P38, JAK-2, p-JNK, p-STAT3, 
and p-AKT in a dose- and time-dependent manner [122].

Furthermore, fisetin suppressed the expression of inflam-
matory mediators and ICAM-1 in IL-1β-promoted inflam-
mation in A549 lung adenocarcinoma cells. Further, admin-
istrating fisetin downregulates COX-2, PGE2, IL-8, CCL5, 
MCP-1, TNF-α, and IL-6. Moreover, fisetin exerted anti-
inflammatory effects through the suppression of the NF-κB 
and ERK1/2 signaling pathways in IL-1β-stimulated A549 
cells, suggesting to prevent tumor promotion [123]. In 
another study, fisetin induced apoptosis by increasing cas-
pase-3 expression and regulating the inflammatory PI3K/
AKT/NF-κB signaling pathway in TU212 head and neck 
squamous cell carcinoma cells. Further, the suppression 
of TU212 cell proliferation and consequent changes in the 
tumor volume and weight of nude mice after fisetin treat-
ment were connected to decreased Ki67 levels and the inac-
tivation of ERK1/2- and PI3K/AKT-regulated mTOR [124]. 
Additionally, the combination of fisetin with carnosic acid 
enhanced their anti-inflammatory effects against tumor pro-
motion of HCC827 and H358 human lung cancer cell lines 
and their murine xenografts. Co-treatment of fisetin and car-
nosic acid induced apoptosis by upregulating caspase-3, Bax 
and Bad, and death receptor of TRAIL, and downregulating 
the anti-apoptotic Bcl-2 and Bcl-xl proteins [125].

Interestingly, luteolin inhibited U251 and LN229 glioma 
cell proliferation through the induction of apoptosis. The 
apoptosis of U251 and LN229 cells was mediated by the 
anti-inflammatory effects of luteolin and associated acti-
vation of MAPKs (JNK, ERK, and p38) and death recep-
tors (FADD) that regulated apoptotic proteins (caspase-8, 
caspase-3, and PARP). Further, luteolin promoted cell 
autophagy by upregulating LC3B II/I and downregulating 
p62 [126]. Moreover, luteolin reduced the expression of the 
STAT3 signaling pathway target gene Mcl-1, Survivin, and 
Bcl-xl—downregulation of which reduced inflammation in 
SGC7901, SGC7901/DDP, HGC27, MGC803, BGC803, 
and BGC823 gastric cancer cell lines. Inhibition of the 
STAT3 pathway after luteolin administration was mediated 
by the disruption of HSP90-STAT3 binding, which promoted 
its interaction with SHP-1. The anti-cancer efficacy of luteo-
lin was confirmed in SGC7901, SGC7901/DDP, and HGC27 
murine xenograft models [127]. Furthermore, luteolin and 
its derivative apigenin had a synergistic effect against H358 
murine xenografts and Lewis lung carcinoma in vivo. Luteo-
lin and apigenin inhibited lung cancer cell growth, induced 
apoptosis, and reduced IFN-γ-induced PD-L1 expression at 
inflammatory sites by suppressing STAT3 phosphorylation 
[128]. Due to its anti-inflammatory and antioxidant prop-
erties, apigenin also inhibited tumor promotion of HepG2 
HCC through inhibited cell proliferation and induced apop-
tosis and autophagy via PI3K/AKT/mTOR pathway inhibi-
tion [129]. Moreover, apigenin inhibited the phosphorylation 
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Table 1  Flavonoids targeting inflammatory pathways associated with cancer initiation

Flavonoid Study design Mechanisms Dosage of the tested flavonoid References

Baicalin Female C3H/HeN mice Baicalin treatment inhibited ROS 
production via the downregulation of 
 p47phox, a key component of NADPH 
oxidase. Furthermore, baicalin inhib-
ited inflammatory cascades through 
TLR4 suppression

4 mg baicalin per mouse [93]

Baicalein C57BL/6J ApcMin/+/J mouse model Baicalein reduced the number of tumors 
in the small intestine (P<0.01) and 
colon (P<0.05) in the baicalein-treated 
group compared to the non-treated 
group. Additionally, ELISA analysis 
of small intestine and colon tissue 
revealed the downregulation of pro-
inflammatory cytokines, including 
IL-1β, IL-2, IL-6, IL-10, GM-CSF, and 
G-CSF

30 mg/kg/day [94]

Rutin Female ICR mice ELISA analyses revealed the downregu-
lation of IL-1β in the colonic mucosa. 
Moreover, the mRNA levels of IL-1β 
and IL-6 were decreased after rutin 
administration. Symptoms of DSS-
induced colitis were attenuated by rutin

6 mg/day, 0.6 mg/day and 60 mg/day [98]

Myricetin Male BALB/c mice Myricetin administration reduced tumo-
rigenesis and inflammation in vivo. 
Western blot and qPCR analyses 
revealed decreases in the levels of 
pro-inflammatory markers (TNF-α, 
IL-6, IL-1β, NF-κB, p-NF-κB, PCNA, 
COX-2, and cyclin D1) in mice

40 mg/kg and 100 mg/kg [99]

Naringin Male C57BL/6 mice Oral administration of naringin pre-
vented colitis and carcinogenesis 
induced by AOM/DSS through the 
reduction of GM-CSF/M-CSF, IL-6, 
and TNF and inhibition of the NF-κB/
IL-6/STAT3 pathway

50 and 100 mg/kg [100]

EGCG Male BALB/c mice EGCG decreased oxidative stress 
(increased SOD, CAT, and GSH activ-
ity, and decreased MDA and nitric 
oxide). EGCG decreased the levels of 
pro-inflammatory cytokines, including 
IL-1β, IL-6, and TNF-α

10 mg/kg [103]

GTPs Female C3H/HeN mice, IL-
12p40KO mice on a C3H/HeN 
background

GTPs inhibited UV-B-induced skin 
carcinogenesis by downregulating pro-
inflammatory markers (COX-2, PGE2, 
PCNA, TNF-α, IL-6, and IL-1β) in 
wild-type mice. GTP administration in 
their counterparts, IL-12p40 knockout 
mice, was less effective than in WT 
mice.

Water containing GTPs (0.2%, w/v) [104]

Genistein Sprague-Dawley rats Genistein inhibited Helicobacter p.-
induced gastropathy by suppressing 
pro-inflammatory cytokine (TNF-α and 
CINC-1) production, NF-κB activity, 
and gastric cell apoptosis.

16 mg/kg [107]
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of the signaling molecules Lyn, Syk, phospholipase Cγ1, 
ERK, and JNK and the expression of the cytokines TNF-α, 
IL-4, IL-5, IL-6, IL-13, and COX-2—all of which induce 
inflammation and promote carcinogenesis—in RBL-2H3 
rat leukemia cells [130]. Another study indicated that api-
genin inhibited IL-6 expression and cell proliferation and 
promoted apoptosis by activating PARP and caspase-8 in 
Eca-109 and Kyse-30 human esophageal cancer cells [131].

Plant extracts rich in flavonoids

Beyond isolated flavonoids, various plant extracts and fla-
vonoids in whole plant foods exert beneficial effects against 
inflammation and associated tumor promotion. Co-admin-
istration of bilberry extracts and enzymatically modified 
isoquercitrin suppressed the promotion of HCC in PBO-
promoted rats. This combination inhibited proliferation by 
reducing Ki67 and microsomal ROS levels. Bilberry extracts 
and isoquercitrin decreased p-PTEN, p-AKT, and Smad4 
signaling—the downregulation of which was also connected 
with the inhibition of inflammation in PBO-promoted cases 
[132, 133]. Furthermore, Id1 is overexpressed in non-
small-cell lung carcinoma and exerts pro-inflammatory 
and tumor-promoting effects. Scutellaria flavonoids, espe-
cially the three prominent representatives (baicalin, baica-
lein, and wogonin), inhibited Id1 through the activation of 
Rap1-GTP binding and the dephosphorylation of AKT and 

Src in A549 cells, H1299 non-small-cell lung carcinoma 
cells, and murine A549 xenografts [134]. In another study, 
baicalein and baicalin inhibited tumor promotion by down-
regulating PD-L1 and pro-inflammatory cytokine IFN-γ. 
These results were associated with STAT3 suppression in 
the SMMC-7721 and HepG2 human liver cancer cell lines 
[135]. Moreover, flavonoid-rich ethanol extracts of whole 
dried sugarcane reduced NF-κB phosphorylation and IL-8 
secretion in SW480 colon cancer cells [136].

Clinical studies

Only limited clinical studies are based on the consistent 
molecular mechanisms of flavonoids against inflammation 
in different tumor stages. A botanical drug called APG-157 
containing multiple polyphenols suppressed tumor cells 
due to its antioxidant and anti-inflammatory properties, as 
demonstrated by reduced IL-1β, IL-6, and IL-8 concentra-
tions in the salivary supernatant fluid of oral cancer patients 
[137]. Moreover, fisetin improved the inflammatory status 
of colorectal cancer patients by reducing IL-8 and hs-CRP 
levels [138]. Furthermore, consumption of green tea reduced 
NF-κB-associated inflammation in the radical prostatectomy 
tissue of men compared with black tea and water controls, 
suggesting that GTPs play a beneficial role in prostate can-
cer prevention and treatment [139]. Despite the known anti-
inflammatory effects of soy in men with prostate cancer 

Table 1  (continued)

Flavonoid Study design Mechanisms Dosage of the tested flavonoid References

Hesperidin Male Swiss and LysM-eGFP mice Hesperidin demonstrated anti-inflam-
matory effects by inhibiting ROS 
generation and IL-33, IL-1β, IL-6, and 
TNF-α cytokine production through 
the inhibition of NF-κB. In addition, 
hesperidin attenuated colitis symptoms, 
including bowel edema, colon shorten-
ing, and macroscopic lesions.

10, 30, or 100 mg/kg in saline [110]

Quercetin Female Wistar rats Administration with Quecetrin (1mg/
kg/day) suppressed IL-1β, TNF-α, and 
iNOS expression through the inhibition 
of the NF-κB pathway in a rat model of 
dextran sulfate sodium–induced colitis.

1 mg/kg/day [111]

Luteolin BEAS-2B cells; [Cr(VI)]-induced 
BEAS-2B cells injected into mice

Luteolin treatment suppressed the 
promoter activity of AP-1, HIF-1α, 
COX-2, and iNOS and the production 
of IL-1β, IL-6, IL-8, and TNF-α in 
BEAS-2B cells. Western blot analysis 
revealed decreases in MAPK, NF-κB, 
COX-2, STAT-3, iNOS, and TNF-α 
protein levels in vitro. Reduction of 
tumor frequency in mice injected with 
[Cr(VI)]-exposed BEAS-2B cells

1 and 2 μM [116]

Apigenin 16HBE and A549 cells Apigenin reduced miR-21 and IL-8 
mRNA expression in normal and can-
cerous cells exposed to CSE

20 μM [117]
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[140], in women with early-stage breast cancer with the 
potential of tumor promotion and progression, soy supple-
ments rich in genistein and daidzein led to the overexpres-
sion of cell cycle transcripts, including those that promote 
cell proliferation such as FGFR2, E2F5, BUB1, CCNB2, 
MYBL2, CDK1, and CDC20 [141].

Flavonoids can suppress tumor promotion of various can-
cer types through diverse anti-inflammatory mechanisms. 
Therefore, the evaluation of molecular and cellular mecha-
nisms of tumor-promoting inflammation is essential for 
developing preventive and anti-cancer therapies in the pre-
clinical and clinical spheres. Discussed anti-inflammatory 
effects of flavonoids against tumor promotion are summa-
rized in Table 2. Moreover, Fig. 1 depicts the efficacy of fla-
vonoids in tumor initiation and promotion, and the affected 
signaling molecules and pathways.

Flavonoids as anti-in�ammatory agents 
against tumor progression

As discussed above, cancer progression is a complex process 
related to a broad spectrum of cellular and molecular signals; 
however, current research, especially preclinical in vitro and 
in vivo analyses, increasingly supports the efficacy of natu-
rally occurring flavonoids against inflammation-associated 
migration, invasion, and metastasis, which are significant 
inducers of cancer progression [53, 55, 78, 142, 143].

Preclinical research

Biochanin A, an O-methylated isoflavone, inhibited the 
release of pro-inflammatory cytokines TNF-α and IL-6 from 
A427 lung cancer cells using the cocultured method. Moreo-
ver, biochanin A repressed the coculture-stimulated invasion 
of A427 cells accompanied by the modulation of EMT mark-
ers—downregulation of Snail and induction of E-cadherin. 
Indeed, due to the association between pro-inflammatory 
responses and tumor metastasis, the administration of bio-
chanin A might alter the TME and thus hinder cancer migra-
tion and invasiveness [144]. Similarly, diosmetin isolated 
from Dracocephalum peregrinum L. repressed the migration 
and invasion of U251 glioma cells in vitro, as demonstrated 
by inhibition of the TGF-β signaling pathway and upregula-
tion of E-cadherin [143]. Also, hesperetin suppressed NF-κB 
activation and reduced the secretion of pro-inflammatory 
TNF-α and IL-6 in HepG2 hepatic cancer cells; the anti-
inflammatory effects of hesperetin are attributed to reduced 
ROS overproduction by the Nrf2 pathway [145].

Furthermore, EGCG suppressed the invasion, migration, 
and metastasis of Panc-1 and MIA PaCa-2 pancreatic cancer 
cells by the inhibition of the AKT pathway and modula-
tion of EMT markers, specifically upregulated E-cadherin 

and downregulated N-cadherin and the mesenchymal mark-
ers TCF8/ZEB1, β-catenin, and vimentin [146]. Moreover, 
the novel synthetic flavonoid LFG-500 blocked the EMT 
and metastasis by downregulating YAP activity via ILK in 
MCF-7 breast cancer and A549 lung cancer cell models of 
TGF-β-induced EMT [76]. In addition, myricetin inhibited 
the invasion and migration of radioresistant A549-IR lung 
cancer cells, as demonstrated by the suppression of MMP-2 
and MMP-9 (through FAK-ERK inhibition) and the EMT 
marker Slug [147]. Similarly, myricetin treatment potently 
inhibited the cytokine-induced migration and invasion of 
KKU-100 cholangiocarcinoma cells, mediated partially 
through STAT3 suppression; myricetin also suppressed 
downstream target genes of STAT3, including ICAM-1, 
MMP-9, iNOS, and COX-2 [148]. In addition, the newly 
synthesized flavonoid derivative GL-V9 suppressed the inva-
sion and migration of HCT116 and SW480 colorectal cancer 
cells by inhibiting PI3K/AKT and MMP-2/9 signaling [149]. 
Moreover, baicalein showed anti-metastatic activity in breast 
cancer in vitro and in vivo demonstrated by the inhibition 
of STAT3 activity and suppressed IL-6 [150]. Also, chrysin 
and daidzein decreased CXCL1 and MMP-9, essential mol-
ecules released by the TME that facilitate tumor progres-
sion in the rat model of colorectal cancer; therefore, chrysin 
and daidzein have potential in preventing colorectal cancer 
angiogenesis and metastasis [151].

Moreover, chrysin inhibited the pro-inflammatory 
cytokine-induced EMT phenotype and CSC-like character-
istics in HeLa cervical cancer cells by blocking the NF-κB/
Twist axis [142]. Also, the citrus peel–derived flavonoid 
tangeretin inhibited breast CSC formation by suppressing 
STAT3 and reducing Sox2 levels [152]. In addition, the 
capacity of 8-bromo-7-methoxychrysin to reverse the M2 
polarization of TAMs by inhibiting NF-κB highlights its 
potential to disrupt interactions between LCSLC and TAMs; 
indeed, M2 polarization of TAMs in the TME promotes the 
LCSLC capability of self-renewal [153].

Due to the association between inflammation and angi-
ogenesis in tumor cells, Gong et al. (2018) evaluated the 
effects of flavonoids in the extract of Scutellariae Radix on 
inflammation-induced angiogenic responses. Eventually, 
Scutellariae Radix extract at various concentrations (0.03, 
0.1, 0.3, 1.0 mg/mL) applied for 48 h decreased pro-inflam-
matory cytokines IL-1β, IL-6, and TNF-α, and suppressed 
the expression of the angiogenic biomarkers NF-κB, Cox-2, 
iNOS, and VEGF in LPS pre-treated cultured macrophage 
RAW 264.7 cells [154]. In addition, luteolin showed a potent 
capacity to target HIF-1α/VEGF signaling–mediated EMT 
and angiogenesis, as demonstrated by EMT suppression 
(increased E-cadherin and decreased N-cadherin and vimen-
tin) and the downregulation of p-AKT, HIF-1α, VEGF-A, 
p-VEGFR-2, MMP-2, and MMP-9 in A375 and B16-F10 
melanoma cells [155]. Moreover, EGCG and silibinin 



571EPMA Journal (2021) 12:559–587 

1 3

Ta
b

le
 2

 
 S

up
pr

es
si

on
 o

f 
tu

m
or

 p
ro

m
ot

io
n 

by
 a

nt
i-

in
fla

m
m

at
or

y 
eff

ec
ts

 o
f 

fla
vo

no
id

s

Fl
av

on
oi

d
C

an
ce

r
St

ud
y 

de
si

gn
A

nt
i-

in
fla

m
m

at
or

y 
eff

ec
ts

 a
nd

/o
r 

m
ec

ha
ni

sm
s 

of
 tu

m
or

 
su

pp
re

ss
io

n
R

ef

P
r
e
c
li

n
ic

a
l 

st
u

d
ie

s

  G
re

en
 te

a 
po

ly
ph

en
ol

s
Sk

in
 tu

m
or

Si
x-

w
ee

k-
ol

d 
fe

m
al

e 
SE

N
C

A
R

 m
ic

e
↓ 

St
ag

e 
I 

an
d 

st
ag

e 
II

 s
ki

n 
tu

m
or

 p
ro

m
ot

io
n,

 ↓
 s

ki
n 

pa
pi

llo
m

a 
fo

rm
at

io
n,

 ↓
 tu

m
or

 m
ul

tip
lic

ity
, ↓

 tu
m

or
 

in
ci

de
nc

e,
 ↓

 tu
m

or
 g

ro
w

th

[1
18

]

  S
ily

m
ar

in
↓ 

St
ag

e 
I 

an
d 

st
ag

e 
II

 s
ki

n 
tu

m
or

 p
ro

m
ot

io
n,

 ↓
 s

ki
n 

pa
pi

llo
m

a 
fo

rm
at

io
n,

 ↓
 tu

m
or

 m
ul

tip
lic

ity
, ↓

 tu
m

or
 

in
ci

de
nc

e,
 ↓

 tu
m

or
 g

ro
w

th

[ 1
19

]

  A
pi

ge
ni

n
↓ 

Sk
in

 p
ap

ill
om

a 
fo

rm
at

io
n,

 ↓
 in

ci
de

nc
e 

of
 c

ar
ci

no
m

as
/

pa
pi

llo
m

as
[ 1

20
]

  Q
ue

rc
et

in
Pr

im
ar

y 
eff

us
io

n 
ly

m
ph

om
a

B
C

3,
 B

C
B

L
1,

 a
nd

 B
C

1 
pr

im
ar

y 
eff

us
io

n 
ly

m
ph

om
a 

ce
lls

↓ 
PI

3K
/A

K
T

/m
T

O
R

, ↓
 W

nt
/β

-c
at

en
in

, ↓
 S

TA
T

3,
 ↓

 I
L

-6
, 

↓ 
IL

-1
0,

 ↓
 c

-F
L

IP
L
, ↓

 c
yc

lin
 D

1,
 ↓

 c
M

yc
[1

21
]

  I
ca

ri
tin

C
hr

on
ic

 m
ye

lo
id

 le
uk

em
ia

K
56

2 
an

d 
pr

im
ar

y 
ch

ro
ni

c 
m

ye
lo

id
 le

uk
em

ia
 c

el
ls

; 
6–

8-
w

ee
k-

ol
d 

fe
m

al
e 

N
O

D
-S

C
ID

 n
ud

e 
m

ic
e

↓ 
Pr

ol
if

er
at

io
n,

 ↓
 tu

m
or

 g
ro

w
th

, ↑
 a

po
pt

os
is

, r
eg

ul
at

io
n 

of
 M

A
PK

/E
R

K
/J

N
K

, r
eg

ul
at

io
n 

of
 J

A
K

2/
ST

A
T

3/
A

K
T

, 
↑ 

p-
JN

K
, ↑

 p
-C

-J
U

N
, ↓

 p
-E

R
K

, ↓
 p

-P
38

, ↓
 J

A
K

-2
, ↓

 
p-

JN
K

, ↓
 p

-S
TA

T
3,

 ↓
 p

-A
K

T

[ 1
22

]

  F
is

et
in

L
un

g 
ca

nc
er

IL
-1

β-
pr

om
ot

ed
 in

fla
m

m
at

or
y 

re
sp

on
se

s 
of

 A
54

9 
lu

ng
 

ad
en

oc
ar

ci
no

m
a 

ce
lls

↓ 
IC

A
M

-1
, ↓

 C
O

X
-2

, ↓
 P

G
E

2,
 ↓

 I
L

-8
, ↓

 C
C

L
5,

 ↓
 m

on
o-

cy
te

 c
he

m
ot

ac
tic

 p
ro

te
in

 1
, ↓

 T
N

F-
 α

, ↓
 I

L
-6

, ↓
 N

F-
κB

, 
↓ 

E
R

K
1/

2

[1
23

]

L
ar

yn
ge

al
 c

ar
ci

no
m

a
T

U
21

2 
he

ad
 a

nd
 n

ec
k 

sq
ua

m
ou

s 
ce

ll 
ca

rc
in

om
a 

ce
lls

; 
6–

8-
w

ee
k-

ol
d 

SP
F 

m
al

e 
B

A
L

B
/c

 n
ud

e 
m

ic
e

↑ 
A

po
pt

os
is

, ↑
 c

as
pa

se
-3

, r
eg

ul
at

io
n 

of
 P

I3
K

/A
K

T
/

N
F-

κB
 s

ig
na

lin
g,

 ↓
 p

ro
lif

er
at

io
n,

 ↓
 tu

m
or

 v
ol

um
e 

an
d 

w
ei

gh
t, 
↓ 

K
I6

7,
 ↓

 E
R

K
1/

2,
 ↓

 P
I3

K
/A

K
T

-r
eg

ul
at

ed
 

m
T

O
R

[1
24

]

  F
is

et
in

 +
 c

ar
no

si
c 

ac
id

L
un

g 
ca

nc
er

H
C

C
82

7 
an

d 
H

35
8 

hu
m

an
 lu

ng
 c

an
ce

r 
ce

ll 
lin

es
; 8

-w
ee

k-
ol

d 
at

hy
m

ic
 n

ud
e 

m
ic

e 
in

je
ct

ed
 w

ith
 H

C
C

82
7 

an
d 

H
35

8 
ce

lls

↑ 
A

nt
i-

in
fla

m
m

at
or

y 
eff

ec
ts

, ↑
 a

po
pt

os
is

, ↑
 c

as
pa

se
-3

, 
↑ 

B
ax

, ↑
 B

ad
, ↓

 B
cl

-2
, ↓

 B
cl

-x
l, 
↑ 

de
at

h 
re

ce
pt

or
 o

f 
T

R
A

IL

[1
25

]

  L
ut

eo
lin

G
lio

m
a

U
25

1 
an

d 
L

N
22

9 
gl

io
m

a 
ce

lls
↓ 

Pr
ol

if
er

at
io

n,
 ↑

 a
po

pt
os

is
, ↑

 M
A

PK
, ↑

 J
N

K
, ↑

 E
R

K
, 

↑ 
p3

8,
 ↑

 F
A

D
D

, ↑
 c

as
pa

se
-8

, ↑
 c

as
pa

se
-3

, ↑
 P

A
R

P,
 ↑

 
au

to
ph

ag
y,

 ↑
 L

C
3B

 I
I,

 ↑
 L

C
3B

 I
, ↓

 p
62

[1
26

]

G
as

tr
ic

 c
an

ce
r

SG
C

79
01

, S
G

C
79

01
/D

D
P,

 H
G

C
27

, M
G

C
80

3,
 B

G
C

80
3,

 
an

d 
B

G
C

82
3 

ga
st

ri
c 

ca
nc

er
 c

el
l l

in
es

; 6
-w

ee
k-

m
al

e 
nu

de
 B

al
b/

c 
SG

C
79

01
, S

G
C

79
01

/D
D

P,
 a

nd
 H

G
C

27
 

m
ur

in
e 

xe
no

gr
af

ts

↓ 
ST

A
T

3,
 ↓

 M
cl

-1
, ↓

 S
ur

vi
vi

n,
 ↓

 B
cl

-x
l, 

di
sr

up
tio

n 
of

 th
e 

bi
nd

in
g 

of
 H

SP
-9

0 
to

 S
TA

T
3,

 ↓
 tu

m
or

 g
ro

w
th

[1
27

]

  L
ut

eo
lin

 +
 a

pi
ge

ni
n

L
un

g 
ca

nc
er

H
35

8 
m

ur
in

e 
xe

no
gr

af
ts

 a
nd

 L
ew

is
 lu

ng
 c

ar
ci

no
m

a 
in

 v
iv

o 
m

od
el

↓ 
L

un
g 

ca
nc

er
 c

el
l g

ro
w

th
, ↑

 a
po

pt
os

is
, ↓

 I
FN

-γ
-i

nd
uc

ed
 

PD
-L

1 
ex

pr
es

si
on

, ↓
 S

TA
T

3 
ph

os
ph

or
yl

at
io

n
[ 1

28
]

  A
pi

ge
ni

n
H

C
C

H
ep

G
2 

H
C

C
↓ 

C
el

l p
ro

lif
er

at
io

n,
 ↑

 a
po

pt
os

is
, ↑

 a
ut

op
ha

gy
, ↓

 P
I3

K
/

A
K

T
/m

T
O

R
 p

at
hw

ay
[1

29
]

L
eu

ke
m

ia
R

B
L

-2
H

3 
ra

t l
eu

ke
m

ia
 c

el
ls

↓ 
L

yn
, ↓

 S
yk

, ↓
 p

ho
sp

ho
lip

as
e 

C
γ1

, ↓
 E

R
K

, ↓
 J

N
K

, ↓
 

T
N

F-
α,

 ↓
 I

L
-4

, ↓
 I

L
-5

, ↓
 I

L
-6

, ↓
 I

L
-1

3,
 ↓

 C
O

X
-2

[ 1
30

]

E
so

ph
ag

ea
l c

an
ce

r
E

ca
-1

09
 a

nd
 K

ys
e-

30
 h

um
an

 e
so

ph
ag

ea
l c

an
ce

r 
ce

lls
↓ 

IL
-6

, ↓
 c

el
l p

ro
lif

er
at

io
n,

 ↑
 a

po
pt

os
is

, ↑
 P

A
R

P,
 ↑

 
ca

sp
as

e-
8

[ 1
31

]

  B
ilb

er
ry

 e
xt

ra
ct

s 
+

 is
oq

ue
rc

itr
in

H
C

C
PB

O
-p

ro
m

ot
ed

 r
at

s
↓ 

Pr
ol

if
er

at
io

n,
 ↓

 K
i6

7,
 ↓

 m
ic

ro
so

m
al

 R
O

S,
 ↓

 p
-P

T
E

N
, ↓

 
p-

A
K

T
, ↓

 S
m

ad
4,

[1
32

]



572 EPMA Journal (2021) 12:559–587

1 3

↑ 
in

cr
ea

se
d/

ac
tiv

at
ed

; ↓
, d

ec
re

as
ed

/in
hi

bi
te

d

Ta
b

le
 2

 
 (c

on
tin

ue
d)

Fl
av

on
oi

d
C

an
ce

r
St

ud
y 

de
si

gn
A

nt
i-

in
fla

m
m

at
or

y 
eff

ec
ts

 a
nd

/o
r 

m
ec

ha
ni

sm
s 

of
 tu

m
or

 
su

pp
re

ss
io

n
R

ef

  S
cu

te
ll

a
ri

a
 fl

av
on

oi
ds

 (
ba

ic
al

in
, 

ba
ic

al
ei

n,
 a

nd
 w

og
on

in
)

N
on

-s
m

al
l-

ce
ll 

lu
ng

 c
ar

ci
no

m
a

A
54

9 
ce

lls
 a

nd
 H

12
99

 n
on

-s
m

al
l c

el
l l

un
g 

ca
rc

in
om

a 
ce

lls
; m

ur
in

e 
A

54
9 

xe
no

gr
af

ts
 (

6-
w

ee
k-

ol
d 

m
al

e 
B

al
b/

c 
th

ym
ic

 n
ud

e 
m

ic
e)

↓ 
Id

1,
 ↑

 R
ap

1-
G

T
P 

bi
nd

in
g,

 d
ep

ho
sp

ho
ry

la
tio

n 
of

 A
K

T
 

an
d 

Sr
c

[1
34

]

  B
ai

ca
le

in
 a

nd
 b

ai
ca

lin
L

iv
er

 c
an

ce
r

SM
M

C
-7

72
1 

an
d 

H
ep

G
2 

hu
m

an
 li

ve
r 

ca
nc

er
 c

el
ls

↓ 
PD

-L
1 

ex
pr

es
si

on
, ↓

 I
FN

-γ
, ↓

 S
TA

T
3 

ac
tiv

ity
[ 1

35
]

  S
ug

ar
ca

ne
C

ol
on

 c
an

ce
r

SW
48

0 
co

lo
n 

ca
nc

er
 c

el
ls

↓ 
N

F-
κB

 p
ho

sp
ho

ry
la

tio
n,

 ↓
 I

L
-8

[1
36

]

C
li

n
ic

a
l 

st
u

d
ie

s

  A
PG

-1
57

O
ra

l c
an

ce
r

A
 d

ou
bl

e-
bl

in
d,

 r
an

do
m

iz
ed

, p
la

ce
bo

-c
on

tr
ol

le
d 

tr
ia

l; 
no

rm
al

 s
ub

je
ct

s 
(n

 =
 1

3)
 a

nd
 p

at
ie

nt
s 

w
ith

 o
ra

l c
an

ce
r 

(n
 =

 1
2)

; t
w

o 
do

se
s 

of
 A

PG
-1

57
 (

10
0 

m
g 

or
 2

00
 m

g)
 

w
er

e 
de

liv
er

ed
 tr

an
so

ra
lly

 e
ve

ry
 h

ou
r 

fo
r 

3 
h

↑ 
A

nt
io

xi
da

nt
 a

ct
iv

ity
, ↑

 a
nt

i-
in

fla
m

m
at

or
y 

ac
tiv

ity
, ↓

 
IL

-1
β,

 ↓
 I

L
-6

, ↓
 I

L
-8

[ 1
37

]

  F
is

et
in

C
ol

or
ec

ta
l c

an
ce

r
A

 d
ou

bl
e-

bl
in

d,
 r

an
do

m
iz

ed
 p

la
ce

bo
-c

on
tr

ol
le

d 
cl

in
ic

al
 

tr
ia

l, 
co

lo
re

ct
al

 c
an

ce
r 

pa
tie

nt
s 

(n
 =

 3
7)

 u
nd

er
go

in
g 

ch
em

ot
he

ra
py

 w
er

e 
as

si
gn

ed
 to

 r
ec

ei
ve

 e
ith

er
 1

00
 m

g 
fis

et
in

 (
n
 =

 1
8)

 o
r 

pl
ac

eb
o 

(n
 =

 1
9)

 fo
r 

7 
co

ns
ec

ut
iv

e 
w

ee
ks

Im
pr

ov
em

en
t o

f 
in

fla
m

m
at

or
y 

st
at

us
, ↓

 I
L

-8
, ↓

 h
s-

C
R

P
[1

38
]

  G
re

en
 te

a
Pr

os
ta

te
 c

an
ce

r
E

xp
lo

ra
to

ry
, o

pe
n-

la
be

l, 
ph

as
e 

II
 tr

ia
l; 

m
en

 w
ith

 p
ro

st
at

e 
ca

nc
er

 (
n
 =

 1
13

) 
w

er
e 

ra
nd

om
iz

ed
 to

 c
on

su
m

e 
si

x 
cu

ps
 

da
ily

 o
f 

br
ew

ed
 g

re
en

 te
a,

 b
la

ck
 te

a,
 o

r 
w

at
er

 (
co

nt
ro

l)
 

pr
io

r 
to

 r
ad

ic
al

 p
ro

st
at

ec
to

m
y

↓ 
N

F-
κB

 in
fla

m
m

at
or

y 
pa

th
w

ay
[1

39
]

  S
oy

B
re

as
t c

an
ce

r
R

an
do

m
iz

ed
, p

la
ce

bo
-c

on
tr

ol
le

d 
st

ud
y;

 w
om

en
 w

ith
 

ea
rl

y-
st

ag
e 

br
ea

st
 c

an
ce

r 
(n

 =
 1

40
);

 s
oy

 p
ro

te
in

 s
up

pl
e-

m
en

ta
tio

n 
(n

 =
 7

0)
 o

r 
pl

ac
eb

o 
(n

 =
 7

0)
 fo

r 
7 

to
 3

0 
da

ys

↑ 
C

el
l c

yc
le

 a
nd

 p
ro

lif
er

at
io

n,
 ↑

 F
G

FR
2,

 ↑
 E

2F
5,

 ↑
 

B
U

B
1,

 ↑
 C

C
N

B
2,

 ↑
 M

Y
B

L
2,

 ↑
 C

D
K

1,
 ↑

 C
D

C
20

[ 1
41

]



573EPMA Journal (2021) 12:559–587 

1 3

suppressed the migration of endothelial and lung tumor cells 
and downregulated VEGF, VEGFR2, and pro-angiogenic 
members of the miR-17-92 cluster [156].

Also, WCE rich in flavonoids suppressed IL-6, CXCL1, 
and CXCL8 thus reducing tumor-elicited infiltration 
MDSCs, TAMs, and endothelial cells accompanied by 
reduced STAT3 activation, in MDSCs in PC-3 and DU145 
prostate cancer xenografts. At the same time, these effects 
resulted in the inhibition of angiogenesis and metastasis 
[157]. Furthermore, EGCG attenuated immunosuppres-
sion in a 4T1 murine model of breast cancer by decreas-
ing the accumulation of MDSCs and increasing  CD4+ and 
 CD8+ T cell numbers, suggesting that EGCG could effec-
tively enhance the anti-tumor response [78]. Also, limonin 
decreased inflammation by reducing TNF-α and enhanced 
the adaptive immune response by promoting the immu-
nophenotyping of CD8, CD4, and CD19 lymphocytes in a 
Balb/c murine model of colorectal carcinogenesis; limonin 
thus demonstrated immune-stimulating effects [158]. Fig-
ure 2 depicts the anti-inflammatory effects of naturally 
occurring flavonoids targeting the progression of cancer.

In conclusion, the results of current preclinical research 
highlight the effectiveness of flavonoids against inflamma-
tion-associated cancer progression (Table 3).

Clinical studies

The above-discussed results of preclinical investiga-
tions support the need for further clinical evaluation of 

flavonoids to target the inflammation-induced progression 
of cancer. Indeed, Polyphenon E, which contains mainly 
EGCG and epicatechin, epigallocatechin, and epicatechin-
3-gallate in lesser amounts, significantly reduced VEGF 
and HGF levels in a study of 26 men with positive pros-
tate biopsies scheduled for radical prostatectomy [159]. 
Moreover, a randomized, phase II trial (conducted on 
32 patients with prostate cancer) revealed that consum-
ing bread enriched in soy isoflavones is associated with 
reduced pro-inflammatory cytokine levels and reduced 
ratios of T regulatory cells to CD8+ cells and MDSCs 
in peripheral blood. These results support the potential 
efficacy of flavonoids in promoting immune surveillance 
during cancer progression [140]. In addition, the positive 
effects of lifestyle modifications, including physical activ-
ity and diets rich in fruits and vegetables, were demon-
strated by a clinical trial that revealed decreased TNF-α 
levels in BRCA1/2+ breast cancer survivors following a 
yearlong lifestyle modification program [160].

In conclusion, pre-clinical and clinical investigations 
point to the potential of flavonoids modulating all stages 
of the complex process of carcinogenesis associated with 
inflammation. Obtaining data to enable the implementa-
tion of agents precisely targeting specific stages of car-
cinogenesis will allow the utilization of predictive, preven-
tive, and personalized approaches that increase efficiency 
and decrease cancer management costs.

Fig. 1  Suppression of tumor 
initiation and promotion by 
flavonoids. Abbreviations: 
↑ increased/activated; ↓ 
decreased/inhibited
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Exempli�ed 3PM pathways

As detailed above, non-physiologic inflammation may 
initiate carcinogenesis and evidently contribute to tumor 
development and progression as well as it deteriorates 
individual outcomes in the cohort of cancer patients [161]. 
The good news is that, due to their evident anti-inflamma-
tory properties, flavonoids are clinically relevant candi-
dates as preventive and therapeutic agents to improve indi-
vidual outcomes in diseases linked to the non-physiologic 
inflammation. The challenge is, however, to diagnose well 
in time an individual predisposition to non-physiologic 
inflammatory processes such as low-grade chronic inflam-
mation that is definitely the task for predictive diagnos-
tics tools and targeted individualized prevention. Clinical 
translation is a process of application of preclinical obser-
vations and results after clinical validation into medical 
practice. All described flavonoids targeting specific signal-
ing cascades associated with inflammation are components 
of different plants, and their synergic/additive effects are 
associated with supporting human health. The implication 
of 3PM as a concept of medicine of the twenty-first cen-
tury into routine clinical practice is, among other things, 
based on increasing the amount of flavonoid intake from 
food due to their beneficial aspect in the prevention of 
various pathologies. Table 4 links the previously referred 
preclinical research on some flavonoids to the practical 
amount of particular food in the daily diet.

To this end, individualized profiling based on special-
ized survey and specific multi-diagnostic patterns has been 

demonstrated as instrumental for primary, secondary, and 
tertiary healthcare exemplified below.

A. Primary healthcare: prediction of relevant suboptimal 
health conditions such as family (genetic) predisposi-
tion, abnormal BMI (both overweight and underweight), 
abnormal stress reactions, disturbed microcirculation, 
and delayed healing, among others [171–175]; based on 
anti-inflammatory properties of flavonoids, correspond-
ing individualized mitigating measures may be consid-
ered as follows. Healthy and balanced diet rich in natu-
rally occurring phytochemicals including flavonoids is 
essential to prevent non-communicable diseases associ-
ated with non-physiologic inflammation [55, 176, 177]. 
In particular, flavonoids show significant efficacy to 
maintain optimal weight, including less likeliness to be 
obese [176, 178, 179]. Preclinical research elaborate the 
effectiveness of flavonoids to prevent inflammation asso-
ciated with obesity [180, 181]; moreover, these results 
are supported by clinical studies conducted on specific 
parts of the population evaluating individual health con-
ditions. Indeed, a randomized clinical trial by Lee et al. 
(2016) demonstrated the efficacy of anthocyanin-rich 
black soybeans to reduce abdominal fat and lipid pro-
files in overweight or obese paticipants [182]. Moreover, 
anthocyanin exerted beneficial metabolic effects dem-
onstrated through the prevention of insuline resistance 
in subjects with type 2 diabetes [183]; besides, current 
evidence highlights the association between cancer and 
insulin resistance, which is common in obese individuals 

Fig. 2  The effectiveness of flavonoids as anti-inflammatory agents against tumor progression. Abbreviations: ↑ increased/activated; ↓ decreased/
inhibited
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and type 2 diabetes [184]. Also, flavonoids are efficient 
agents mitigating chronic stress and improving overall 
brain health [185, 186]. Cocoa products were found to 
induce anti-inflammatory effects demonstrated through 
decreased IL-10 and IL-1β in healthy and hypercholes-
terolaeic individuals [187]. Similarly, results of a dou-
ble-blinded randomized trial showed the association of 
high-polyphenol chocolate and increased ICAM-1 in 
type 2 diabetes when compared with control [188]. The 
potent capacity of flavonoids in the primary healthcare 
mediated through multiple mechanisms of action includ-
ing the anti-inflammatory capacity is demonstrated also 
by the maintenance of cardiovascular health [189, 190] 
or wound healing [191, 192]. Clinical evidence demon-
strate honey, a rich source of flavonoids [193], to exert 
efficacy during healing of wounds and ulcers that had 
failed to heal using conventional approaches [194]; 
thus, honey possesses the ability to resolve the inflam-
matory state of chronic wounds [195]. Also, clinical 
and epidemiological data support the notion of effec-
tiveness of flavonoids to prevent conditions associated 
with increased risk of malignant diseases [89, 196–198]. 
Indeed, soy isoflavone was found to increase serum 
IL-6 in postmenopausal women and thus enhancing the 
immune surveillance associated with lower incidence of 
cancer in parts of the world characterized by higher soy 
intake [199]. Furthermore, mediterranean diet exerted 
potential beneficiary effects in primary breast cancer 
prevention [200] preventing all breast cancer subtypes 
[201], presumably through various anti-cancer mecha-
nisms including anti-inflammatory activity. Therefore, 
due to their anti-inflammatory capacity, naturally occur-
ring flavonoids and flavonoid-rich plant food represent 
potent agents for primary healthcare  of suboptimal 
health conditions  and/or specific disease predisposition 
associated with the risk of cancer .

B. Secondary healthcare: prediction of tumor progression 
and increased risk of pre-metastatic niches/metastatic 
disease [4, 202, 203]; as mentioned above, flavonoids 
were comprehensively documented to prevent the onset 
of the cancer invasiveness in preclinical research via the 
modulation of numerous signaling pathways involved in 
critical steps of metastatic spread. In addition, flavonoids 
were described to be effective oncostatic substances 
in highly aggressive cancer models including various 
in vivo approaches. Regarding oncology practice, fla-
vonoids demonstrated promising results applied in the 
combination with conventional chemotherapeutics in 
metastatic cancer disease. However, in-depth analyses 
of re-sensitizing cancer cells by flavonoids towards con-
ventional chemotherapy and assessing the activities of 
flavonoids on cancer stem cells survival, affecting the 
relapse and multidrug resistance, are needed [55].Ta
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  There are only limited clinical data evaluating the 
effectiveness of flavonoids against advanced cancer dis-
ease. Curcumin has been documented to suppress cancer 
cells due to its anti-inflammatory and antioxidant effects. 
On the other hand, its effectiveness is limited by poor 
absorption after oral administration. A botanical drug 
APG-157 containing multiple polyphenols, including 
flavonoids, demonstrated improved bioavailability and 
clinical activity in patients with oral cancer. APG-157 
was well absorbed, reduced parameters of inflamma-
tion, and upregulated expression of genes linked with 
differentiation and T cell recruitment to the TME. These 
data shows the potential using of APG-157 in combi-
nation with anti-cancer therapies including advanced 
disease [137]. In another clinical study, fisetin reduced 
the plasma levels of IL-8, hs-CRP, and MMP-7 levels 
(p < 0.02) [138]. Green tea and its constituents, mainly 
EGCG, show anti-inflammatory activities associated 
with reduced VEGF and HGF levels in prostate cancer 
patients [139, 159]. Oral administration of soy isofla-
vone–enriched bread significantly suppressed proinflam-

matory cytokines and immunosuppressive cells in men 
with prostate cancer [140]. Finally, lifestyle modifica-
tions in BRCA1/2+ breast cancer survivors, including 
physical activity and diets rich in flavonoids (in fruits 
and vegetables), revealed decreased TNF-α levels 
[160]. All these mentioned clinical data suggest anti-
metastatic potential of fisetin, green tea, soy, and fruit 
and vegetrables rich in flavonoids in cancer patients. 
Based on preclinical research, there are numerous stud-
ies demonstrating high effectiveness of flavonoids and 
flavonoid-rich extracts as anti-inflammatory agents 
against tumor progression. These include biochanin A, 
diosmetin, hesperetin, EGCG, synthetic flavonoids LFG-
500 and GL-V9, myricetin, baicalein, chrysin, daidzein, 
tangeretin, 8-bromo-7-methoxychrysin, Scutellariae 
Radix extract, luteolin, silibinin, WCE, and limonin (see 
Table 3).

C. Tertiary healthcare: prediction in palliative care [204]; 
in this regard, flavonoids were described to block an 
activation of numerous cellular regulatory proteins such 
as cytokines and transcription factors involved in cel-

Table 4  Content of flavonoids 
in foods

Flavonoids Food source Amounts of flavonoids in 
food mg/100g

References

(-)-Epicatechin Apples (raw, with skin) 15.12 [162]

Peaches (raw) 12.24 [162]

Cranberries (raw) 25.93 [162]

Cocoa (dry powder) 183.49 [162]

Red wine (table) 20.49 [162]

Myricetin Blueberries 1.26 [162]

Garlic 1.61 [162]

Red wine 0.83 [163]

Biochanin A Peanut 0.06 [164]

Baicalein Welsh onion 1.80e-03 [165]

Quercetin-3-O-glucoside Onions 21.40 [162]

Kale 22.58 [162]

Daidzein Tempeh 22.66 [166]

Tangeretin Orange juice 0.3 [167]

Soybean 61.33 [166]

Genistein Tofu 12.99 [166]

Tempeh 36.15 [166]

Soy milk 4.94 [168]

Diosmetin 7-O-rutinoside Lemon—pure juice 2.92 [169]

Peppermint 95.50 [169]

Hesperetin Lemon juice 14.47 [162]

Orange juice 20.39 [162]

Apigenin Spices, celery seed 83.70 [162]

Peppermint 8.71 [162]

Luteolin Green peppers 4.71 [162]

Olive oil 0.36 [170]

Pistachio 0.10 [170]
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lular inflammatory responses and pain. From the clini-
cal point of view, it could be very beneficial to develop 
protective delivery formulations containing flavonoids 
to treat inflammation and pain. Flavonoids suppress the 
expression of wide spectrum of inflammatory molecules 
such as NO, TNF-α, IL-1β, and COX-2; downregulate 
ICAM-1 and VEGF synthesis; and, moreover, activate 
STAT3, NF-kB, NLRP3 inflammasome, and finally 
MAPK cellular pathways. Based on mentioned multi-
target activities of flavonoids, they have great potential 
in clinical sphere, including oncology practice, due to 
their anti-inflammatory and analgesic properties [205].

  There are several examples of specific flavonoids that 
should be beneficial in palliative care in cancer patients. 
In the case report, the breast cancer patient showed pro-
gressive liver failure despite several chemotherapy treat-
ments, including paclitaxel, capecitabine, and vinorel-
bine. Silibinin application improved hepatic failure due 
to extensive liver infiltration in this patient. After the 
initiation of therapy, the patient showed clinical and 
liver improvements that permitted the continuation of 
palliative chemotherapy [206]. Harati et al. (2017) docu-
mented that EGCG and silibinin represent potential can-
didate molecules as mild therapeutic options for patients 
with solid sarcomas that require palliative treatment and 
are not suitable for doxorubicin-based chemotherapy 
[207]. In another preclinical study, baicalelin and 6-gin-
gerol reduced 5-fluorouracil-induced overexpression of 
CXCL1 in the colon and prevented the development of 
neutrophil recruitment and weakened diarrhea develop-
ment by the suppression of NF-κB activity [208]. Data 
from another preclinical study point out to protective 
role of quercetin coadministered with vitamin E in the 
prevention of doxorubicin-induced toxicity in uterine 
and ovarian tissues in rats [209]. The administration of 
casticin in male rats demonstrated a palliative effects 
against cisplatin-induced renal damage and recovered 
all renal parameters to normal levels [210].

   Besides cancer, there are also other  life-threatening 
disease/condition  in which flavonoids show positive pal-
liative effects. Using mouse model, EGCG significantly 
reduced osteoarthritis disease progression and exerts 
palliative effects [211]. Kaswan et al. (2021) described 
that the serotonergic pathway (via the 5-HT1A recep-
tor subtype in the central nervous system) is essential 
for cardamonin to suppress neuropathic pain in chronic 
constriction injury–induced neuropathic pain animal 
model [212]. EGCG administration modulating the 
Wnt/β-catenin signaling pathways reduced postoperative 
pain related to inflammatory and neurochemical altera-
tions [213]. Most of the above data are from preclinical 
research; therefore, well-controlled clinical studies are 
needed to validate the positive effects of flavonoids in 

palliative care in patients with cancer as well as other 
diseases.

Strengths and limitations

Phytochemicals represent naturally occuring anti-cancer 
agents affecting numerous cellular pathways. However, the 
utilization of flavonoids in clinical practice to prevent or 
treat cancer still faces difficulties associated with limita-
tions of  studies performed. The efficacy of flavonoids as 
anti-inflammatory agents in vivo is  strongly dependent on 
its bioavailability affected by various factors on the side of 
the individual recipient or properties of the flavonoid itself 
including low absorption, an extensive metabolization, 
rapid elimination, or structural complexity of flavonoids 
within subclasses [55]. For example, catechins appear to be 
absorbed in amount smaller than intake due to their rapid 
metabolization [214]. Therefore, an increase in the bioavail-
ablity of flavonoids envisaged by current research [215]. To 
this end, complexity and chronicity as basic characteristcs of 
plenty of human diseases as well as sex, age, comorbidities, 
genetic similarity, and environmental factors should be care-
fully considered and appropriately modeled in research and 
individualised application of flavonoids [216].

The abovementioned limitations associated with the eval-
uation of anti-cancer effects of phytochemicals in vitro and 
in vivo are, further, exemplified below. Preclinical in vitro 
studies demonstrate potent capacity of soy isoflavones to 
suppress prostate carcinogenesis [217]. However, as stated 
by Miltyk et al. (2003), despite the capacity of isoflavone 
to induce genetic damage of prostate cancer cells in vitro, 
similar effects were not observed in human subjects [218]. 
Similarly, isoflavones exerted no effects on markers of 
inflammation [219] and had no effect on prostate-specific 
antigen or hormone levels in prostate cancer patients [220]. 
However, the evaluation of other doses and duration of the 
administration in further research of anti-cancer efficacy of 
isoflavones in prostate cancer might be beneficial for the data 
interpretation [219].

The preventive efficacy of EGCG was supported by the 
detection of methylated and nonmethylated forms of EGCG 
in prostate tissue after short-term green tea intervention 
[221]. Further, potent capacity of a mixture of natural agents 
to protect human lymphocytes in vitro in comparison with 
single agents [222] was further emphasized by a proof-of-
concept study in humans in vivo [223]. Phytochemicals, 
for example tannins, chelate metal ions that generate ROS 
and thus stabilize potential pro-oxidant activity [224]. , In 
conclusion, to overcome persisting limitations in the field, 
intensified preclinical  [225] and clinical research [159, 
225] on phytochemicals is essential to be performed in  
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the framework of predictive, preventive and personalized 
medicine. 
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