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Abstract Flavonoids are a class of phenolic natural

products, well-identified in traditional and modern

medicines in the treatment of several diseases includ-

ing viral infection. Flavonoids showed potential

inhibitory activity against coronaviruses including

the current pandemic outbreak caused by the severe

acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) and designated as COVID-19. Here, we have

collected all data related to the potential inhibitory

mechanisms of flavonoids against SARS-CoV-2

infection and their significant immunomodulatory

activities. The data were mapped and compared to

elect major flavonoids with a promising role in the

current pandemic. Further, we have linked the global

existence of flavonoids in medicinal plants and their

role in protection against COVID-19. Computational

analysis predicted that flavonoids can exhibit potential

inhibitory activity against SARS-CoV-2 by binding to

essential viral targets required in virus entry and/ or

replication. Flavonoids also showed excellent

immunomodulatory and anti-inflammatory activities

including the inhibition of various inflammatory

cytokines. Further, flavonoids showed significant

ability to reduce the exacerbation of COVID-19 in

the case of obesity via promoting lipids metabolism.

Moreover, flavonoids exhibit a high safety profile,
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suitable bioavailability, and no significant adverse

effects. For instance, plants rich in flavonoids are

globally distributed and can offer great protection

from COVID-19. The data described in this study

strongly highlighted that flavonoids particularly quer-

cetin and luteolin can exhibit promising multi-target

activity against SARS-CoV-2, which promote their

use in the current and expected future outbreaks.

Therefore, a regimen of flavonoid-rich plants can be

recommended to supplement a sufficient amount of

flavonoids for the protection and treatment from

SARS-CoV-2 infection.

Keywords COVID-19 � SARS-CoV-2 � Flavonoids �

Treatment � Immunomodulatory � Global distribution

Abbreviations

ACE2 Angiotensin converting enzyme II

ADME Absorption, distribution, metabolism,

and excretion of a drug molecule

ALI Acute lung injury

ARDS Acute respiratory distress syndrome

CCL5 Inflammatory chemokines

COVID-19 Coronavirus disease-2019

DG Binding energy

DCs Dendritic cells

E protein Envelope protein

ERK Extracellular-signal regulated kinase

pathway

I.P. Intraperitoneal

C50 The concentration of drug required for

50% inhibition

IL-6 Interleukin-6

LPH Lactase phloridzin hydrolase

LPS Lipopolysacccharides

M protein Membrane glycoprotein

MED Mediterranean

MERSCoV Middle East respiratory syndrome

coronavirus

Mpro Main protease

N protein Nucleocapsid protein

NF-jB Nuclear factor kappa B pathway

Nsps Non-structural proteins

PDB Protein data bank

PLpro Papain-like protease

PD Peptidase domain

RBD Receptor binding domain

RdRp RNA dependent RNA Polymerase

SARS-

CoV-2

Severe acute respiratory syndrome

SGLT1 Intestinal Na ?—dependent glucose

co-transporter

Sprotein Spike protein

TMPRSS2 Type 2 transmembrane serine protease

TNF-a Tumor necrosis factor alpha

WHO World Health Organization

Introduction

On December 2019, a novel coronavirus outbreak was

reported as a severe acute respiratory disease syn-

drome coronavirus 2 (SARS-CoV-2) (Rabi et al. 2020;

Yang and Shen 2020). Early on January 12, 2020, the

World Health Organization (WHO) announced an

unprecedented pandemic outbreak of new discovered

virus from the betacoronavirus family that has not

been previously identified in human and was named

2019 novel coronavirus or ‘‘2019 nCoV’’ (Chen et al.

2020b). Subsequently, on February 11, 2020, WHO

announced the official name of the disease caused by

2019-nCoV as Coronavirus Disease 2019, which is

abbreviated as COVID-19.

COVID-19 is the sixth CoV outbreak identified

globally (WHO 2020). SARS-CoV-2 is closely related

to SARS-CoV (Ge et al. 2013; Lau et al. 2005). In

addition to COVID-19 outbreak, coronavirus has

caused three zoonotic outbreaks within the last two

decades that belong to betacoronavirus family (Boo-

pathi et al. 2020). These include acute respiratory

syndrome coronavirus (SARS-CoV), Middle East

respiratory syndrome coronavirus (MERS-CoV) in

China during the 2001 to 2003 period and from 2012 to

2015 in Saudi Arabia (Boopathi et al. 2020). SARS-

CoV-2 can develop severe complications including

septic shock and multiple organ failure that may result

in death especially in people at high risk including

immunocompromised and those with underlying

medical conditions such as cancers, diabetes, cardio-

vascular disease, and chronic respiratory diseases. The

common disease symptoms of COVID-19 can include

fever, cough, shortness of breath, and dyspnea, while

in severe cases, SARS-CoV-2 infection can cause

pneumonia, severe acute respiratory syndrome, organ

failure, and death (Wang et al. 2020).
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SARS-CoV-2 contains four essential proteins

including membrane glycoprotein (M), spike (S) pro-

tein, envelope (E) protein and nucleocapsid (N) protein

(Fig. 1) (Mahmoud et al. 2020). The first three

proteins are embedded in a lipid bilayer, while the N

protein coats the single-stranded positive-sense viral

RNA (Jin et al. 2020). E protein plays a vital role in the

virus assembly (Gupta et al. 2020), whereas M protein

is the most abundant protein that is considered as a

central organizer for coronavirus assembly (Boopathi

et al. 2020). The N protein plays an important role in

virus transcription and translation (Boopathi et al.

2020). There are several non-structural proteins (nsps)

such as nsp12 for RNA-dependent-RNA polymerase

(RdRp), nsp3 for papain-like protease (PLpro) and

nsp5 for the viral main protease (Mpro) (Dai et al.

2020). The S protein is located on the surface of the

virus (Dai et al. 2020) and facilitates the SARS-CoV-2

entry into the human cell by binding to the host cell

surface receptor angiotensin converting enzyme-2

(ACE-2) (Kirchdoerfer et al. 2016; Simmons et al.

2013). The S protein is composed of two main

functional domains, the N-terminal S1 and C-terminal

S2 subunits (Beniac et al. 2006). The S1 contains

receptor binding domain (RBD) that is necessary for

the binding with the host cell receptors (Wong et al.

2004), and S2 mediates the membrane fusion (Walls

et al. 2020). SARS-CoV-2 RBD has 10–20-fold higher

ACE-2 binding affinity than SARS-CoV RBD (Kirch-

doerfer et al. 2018; Wrapp et al. 2020).

Coronavirus infective cycle can be summarized in

Fig. 2 (Al-Horani et al. 2020). The S protein of the

virus first binds to ACE-2 receptor (Astuti and Ysrafil

2020), which is proteolytically activated by cleavage

with human type 2 transmembrane serine (TMPRSS2)

(Russo et al. 2020) into two subunits, S1 and S2

(Astuti and Ysrafil 2020), which allows the virus

entery (Yang and Shen 2020). Subsequently, the viral

particle is uncoated to deliver the positive sense

single-stranded RNA [(?)ssRNA] into the cytoplasm

(Liu et al. 2020). RNA-dependent RNA polymerase

(RdRp) is an essential enzyme required for viral

replication and transcription (Oostra et al. 2007).

The outbreak due to SARS-CoV-2 infection creates

devastating social, economic, political, and global

health problems, while a number of vaccines and

medications were either approved or in clinical studies

(Wang et al. 2020). Recently, several vaccine plat-

forms were entered into the clinical evaluation (Le

et al. 2020). These include (i) Nucleic acid vaccines as

mRNA-based-vaccines such as Moderna (Mahase

2020), BioNTech/Pfizer (Müller et al. 2021), Cur-

eVac/ Bayer (Rosales-Mendoza et al. 2020), and

Inovio as DNA-based vaccines (Calina et al. 2020);

(ii) Viral vector vaccines as Ad vector (ChAdOx1)

developed by AstraZeneca (Wise 2021), Johnson –

Johnson vaccine developed by Janssen Vaccines

(Livingston et al. 2021) and Sputnik V (Jones and

Roy 2021) developed by Gamaleya Research Institute

of Epidemiology and Microbiology; (iii) Inactivated

virus as Sinovac vaccine (Palacios et al. 2020)

developed by China Sinovac biotech company; (iv)

Antigen-based vaccine EpiVacCorona that was devel-

oped by the Vector Institute (Ryzhikov et al. 2021).

On the other hand, the treatments suggested for

COVID-19 are limited to those either still in clinical

trials such as favipiravir (Pilkington et al. 2020),

ribavirin (Khalili et al. 2020), lopinavir-ritonavir

(Dalerba et al. 2020), emetine (Choy et al. 2020),

hydroxychloroquine (Chen et al. 2020a), methionine

(Zhang et al. 2020), homoharringtonine and iver-

mectin (Elgazzar et al. 2020) or initially approved by

U.S. FDA such as remdesivir (Beigel et al. 2020).

Furthermore, CR3022 monoclonal antibody with

binding affinity to the RBD of SARS-CoV-2 S protein

was suggested as a therapeutic approach (Lee et al.

2020). IFN-I with an established role in suppression

Fig. 1 Diagrammatic cartoon drawing of SARS-CoV-2 show-

ing the main structural features of the virus. The red frame and

cross sign indicated a critical therapeutic target
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and treatment of SARS-CoV, MERS-CoV and SARS-

CoV-2 infections was also suggested (Lee and Shin

2020).

Natural products can provide effective antiviral

activity against SARS-CoV-2. For instance, flavo-

noids are phenolic phytochemicals (Solnier and

Fladerer 2020) that show various important biological

activities including antiviral, antioxidant, and anti-

inflammatory activities (Krych and Gebicka 2013;

Ragab et al. 2014; Tian et al. 2013; Zhang et al. 2015).

Flavonoids are widely distributed in medicinal plants,

vegetables, fruits, nuts, seeds, tea, honey, and propolis

(Ahmad et al. 2015; Yahia 2019). This review

highlights the importance of flavonoids as treatment

and prophylaxis against SARS-CoV-2, their predicted

therapeutic targets and proposed regimen

supplements.

Flavonoids-mediated inhibition mechanisms

of SARS-CoV-2: in silico study

All flavonoids identified in silico as potential inhibi-

tors to SARS-CoV-2 are listed in Fig. 3 and Table 1. It

has been identified that Mpro is necessarily required for

the replication of SARS-CoV (Yang et al. 2003).

Further analysis showed that Mpro of SARS-CoV-2

and SARS-CoV are very similar (Tahir Ul Qamar et al.

2020). Therefore, targeting Mpro is of great therapeutic

value. A molecular docking study revealed that

naringenin can bind to Mpro by forming H-bond with

the amino acids of the Mpro active site, indicating the

inhibition capability of naringenin to SARS-CoV-2

Mpro (Khaerunnisa et al. 2020). Recent studies showed

that hesperidin has an inhibitory activity against

SARS-CoV-2 by binding to SARS-CoV-2 Mpro, the

receptor-binding domain of S protein (RBD-S) and the

peptidase domain of ACE-2 (PD-ACE-2) (Adem et al.

2020; Tallei et al. 2020; Utomo et al. 2020). An in

Fig. 2 Diagrammatic drawing of the virus life cycle and critical therapeutic targets indicated in red frame and cross sign
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silico study showed that quercetin has potential

inhibitory activity against SARS-CoV-2 (Sekiou

et al. 2020). Quercetin showed excellent binding

affinity to Mpro (Sekiou et al. 2020). Another in silico

study was performed to identify the inhibitory activity

of some food bioactive flavonoids against SARS-

CoV-2. The results showed that cyanidin and genistein

have a comparable binding affinity to Mpro and RdRp

compared to Nelfinavir and Lopinavir (Pendyala and

Patras 2020). Furthermore, a computational study

indicated the potential importance of several flavo-

noids including kaempferol, quercetin, luteolin-7-

glucoside, apigenin-7-glucoside, naringenin, catechin,

and epigallocatechin as potential inhibitors to SARS-

CoV-2 Mpro (Khaerunnisa et al. 2020). Additionally,

rutin was suggested as a potential anti-SARS-CoV-2
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Fig. 3 Major flavonoids

identified with potential

inhibition activity against

SARS-CoV-2
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Mpro following a virtual screening of 2030 natural

compounds (Xu et al. 2020).

A well-identified therapeutic strategy is by target-

ing the ACE-2 receptor. Due to the high similarities of

the receptor-binding domain of S protein between

SARS-CoV and SARS-CoV-2, both viruses showed

excellent ability to bind to human ACE-2 receptor

(Wan et al. 2020). Molecular docking studies were

performed to investigate the binding affinity of several

flavonoids to ACE-2 and/ or S protein. It has been

shown that hesperetin, myricetin, linebacker and

caflanone showed excellent binding affinity to S

protein, helicase and ACE-2 receptor and hence can

block the entry of the virus (Ngwa et al. 2020).

Another study showed that naringenin has low binding

energy to the ACE-2 receptor, indicating a high

binding affinity to ACE-2 (Cheng et al. 2020). A

computational study revealed that baicalin flavonoid

showed excellent binding affinity to S protein com-

pared to abacavir and hydroxychloroquine. Baicalin

was also reported with antiviral activity against other

viral infections (Pandey et al. 2021).

Human TMPRSS2 is a critical protease used by the

virus for its activation via S protein cleavage (Hoff-

mann et al. 2020). A computational study was

performed and the results showed that neohesperidin,

myricitrin, quercitrin, naringin, and icariin flavonoids

have a strong binding affinity towards TMPRSS2

(Chikhale et al. 2020). A comprehensive computa-

tional study also indicated that silybin may have a high

binding affinity to TMPRSS2 that is required for viral

entry, and chrysin with outstanding binding affinity to

the Mpro of SARS-CoV, MERS-CoV and SARS-CoV-

Table 1 Flavonoid classes identified in silico as potential inhibitors to SARS-CoV-2 targets

Flavonoid class and

compound

SARS-CoV-2

target

Binding energy (DG) References

Flavanones

Naringenin

Hesperidin

Neohesperidin

Naringin

Mpro, ACE-2

Mpro, ACE-2,

RBD-S

TMPRSS2

TMPRSS2

- 7.89 (Mpro), - 6.05 (ACE - 2)

- 8.3 (Mpro), - 9.50 (ACE - 2),

- 10.4 (RBD - S)

- 8.82

- 7.57

(Cheng et al. 2020; Khaerunnisa et al. 2020)

(Adem et al. 2020; Ngwa et al. 2020; Tallei et al.

2020; Utomo et al. 2020)

(Chikhale et al. 2020)

(Chikhale et al. 2020)

Anthocyanidins

Cyanidin Mpro, RdRp - 7.9 (Mpro), - 8.8 (RdRp) (Pendyala and Patras 2020)

Flavanols

Catechin

Epigallocatechin

Mpro

Mpro

- 7.24

- 6.67

(Khaerunnisa et al. 2020)

(Khaerunnisa et al. 2020)

Flavones

Apigenin

Luteolin

Caflanone

Mpro

Mpro, ACE-2, S

ACE2

- 7.83

- 8.17 (Mpro)

- 7.9

(Khaerunnisa et al. 2020)

(Khaerunnisa et al. 2020)

(Ngwa et al. 2020)

Isoflavones

Genistein Mpro, RdRp - 7.6 (Mpro), - 8.6 (RdRp) (Pendyala and Patras 2020)

Flavonols

Quercetin

Kaempferol

Myricetin

Icariin

Linebacker

Mpro, TMPRSS2,

ACE-2, S

Mpro, TMPRSS2

ACE-2,

TMPRSS2

TMPRSS2

ACE-2

- 8.47 (Mpro), - 6.90 (TMPRSS2)

- 8.58

- 8.9 (ACE - 2), - 4.83

(TMPRSS2)

- 8.83

- 9.2

(Chikhale et al. 2020; Khaerunnisa et al. 2020;

Sekiou et al. 2020)

(Khaerunnisa et al. 2020)

(Chikhale et al. 2020; Ngwa et al. 2020)

(Chikhale et al. 2020)

(Ngwa et al. 2020)
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2. Chrysin also inhibited the interaction of ACE-2 with

the S protein of SARS-CoV-2 (Jha et al. 2020).

Flavonoids-mediated inhibition mechanisms

of SARS-CoV-2: in vitro study

Quercetin has displayed significant inhibition activity

against SARS-CoV Mpro, expressed in Pichia pas-

toris, at IC50 73 lM (Nguyen et al. 2012). Quercetin

showed anti-SARS-CoV-2 and immunomodulatory

activities particularly when co-administered with

vitamin C. Both exert synergistic effect and can be

employed for prophylaxis in high-risk populations

(Colunga Biancatelli et al. 2020). Similarly, herbace-

tin, rhoifolin and pectolinarin flavonoids can effi-

ciently block the enzymatic activity of SARS-CoV

Mpro (Jo et al. 2020). Fractionation-based anti-papain

protease activity of the methanolic extract of Paulow-

nia tomentosa fruits identified different geranylated

flavonoid derivatives as potent inhibitory activity to

SARS-CoV papain protease (Báez-Santos et al. 2015).

The aforementioned data indicated that several

flavonoids showed potential inhibition activity to

SARS-CoV-2 by possible targeting of essential pro-

teins in the viral life cycle. However, a limited number

of flavonoids have been tested in vitro. Therefore, it is

important to validate the computational study by

performing an appropriate biological activity.

Immunomodulatory and anti-inflammatory

activities of flavonoids

Severe cases of COVID-19 have been characterized by

developing cytokine storm (Mahmudpour et al. 2020),

a life-threatening complication associated with the

acute respiratory distress syndrome (ARDS). Those

cases may represent more than 33% of COVID-19

hospitalized patients and * 40% mortality rates

(Tzotzos et al. 2020). Comparative analysis of blood

samples showed that severe COVID-19 patients have

higher plasma levels of GCSF, IP10, MCP1, MIP1A,

IL-2, IL-6, IL-7, IL-10 and TNF-a, indicative of high

serum levels of pro-inflammatory cytokines (Cheng

et al. 2020). Inhibition of hyperinflammatory response

and regulation of immune responses is an important

strategy to attenuate cytokine storm (Mahmudpour

et al. 2020). Interestingly, flavonoids exhibit

significant immunomodulatory and anti-inflammatory

activities (Hodek et al. 2002; Hosseinzade et al. 2019),

which can be employed as a possible treatment or

amelioration of complicated COVID-19 symptoms.

Below are the most important flavonoids classes that

can be employed as immunomodulators (Table 2).

Flavanones: naringenin and hesperetin

Naringenin has been shown to exhibit promising

immunomodulatory activity by reducing the severity

of inflammatory responses (Tutunchi et al. 2020). A

study that examined the effect of naringenin on rats’

lungs, exposed to benzo[a]pyrene, showed that narin-

genin exerted a protective effect by reducing the pro-

inflammatory cytokines through inhibition of NF-jB

(Ali et al. 2017), which results in reducing the

expression of COX-2 and restoring the normal histol-

ogy of the rat lungs (Ali et al. 2017). Another study

showed that the administration of naringenin can

significantly reduce the expression of NF-jB, iNOS

and TNF-a in rats’ lungs with sepsis (Fouad et al.

2016). Besides, naringenin markedly reduced the

inflammatory cytokine production, pulmonary

oedema, IL-6 and MPO activity (Fouad et al. 2016).

Current therapies shorten the duration of illness but do

not improve survival (Coz Yataco and Simpson 2020).

Therefore, naringenin could be employed as an

immunomodulatory agent in SARS-CoV-2 infection,

following further investigations.

An in vitro study on mouse adipocytes showed that

hesperetin and naringenin downregulate the expres-

sion of TNF-a inflammatory mediator. This resulted in

the inhibition of ERK and NF-jB pathways, leading to

inhibition of IL-6 transcription (Yoshida et al. 2010).

Further research study on rats suffering from acute

lung injury indicated that hesperetin increases the

expression of peroxisome proliferators activated

receptor gamma. Subsequently, it inhibits the NF-jB

pathway, results in a significant reduction in the

production of inflammatory cytokines including IL-6,

IL-1b, and TNF-a (Ma et al. 2015). Pre-treatment of

acute lung injury (ALI) mice model by hesperetin

caused a protective effect against pulmonary inflam-

mation, meanwhile, hesperetin decreases the TNF-a

and IL-6 expression (Ye et al. 2019).
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Flavonols: quercetin and fisetin

Quercetin caused inhibition of OVA-induced airway

inflammation and leukocyte recruitment to the airways

in murine mice asthma model (Park et al. 2009).

Quercetin can regulate the Th1/ Th2 balance (Park

et al. 2009). Oral administration of quercetin-loaded

micro-emulsion in murine asthma model showed

similar effects to dexamethasone, indicated by a

significant reduction in mucus production in the lungs

(Rogerio et al. 2010). Quercetin micro-emulsion also

showed inhibition of NF-jB and selectively restrains

Th2 cytokine (Rogerio et al. 2010). COVID-19

patients showed elevatedMUC1 andMUC5ACmucin

protein levels (Lu et al. 2020). Interestingly, quercetin

inhibits tyrosine phosphorylation of EGFR and NF-jB

pathways resulted in the suppression of mucin syn-

thesis in rat lungs and reduction of MUC5AC in

human airway epithelial NCI-H292 cells, and hence it

reduces the mucus production and difficulty in

breathing (Yang et al. 2012). Furthermore, quercetin

exerts immunomodulatory effects on human dendritic

cells (DCs) by direct the binding of aryl hydrocarbon

receptor to CD83 promoter causing down expression

of CD83 (Michalski et al. 2020). This impairs T-cell

activation and migration of matured DCs (Michalski

et al. 2020).

Fisetin showed significant anti-inflammatory and

immunomodulatory effect. Pre-treatment of IL-1b-

stimulated human lung epithelial cells with fisetin

caused inhibition of COX-2 and reduction in IL-6, IL-

8, TNF-a, CCL5, MCP1, and prostaglandin E2 (Peng

et al. 2018). Fisetin also downregulates the NF-jB

pathway and interferes with the phosphorylation of

proteins in the ERK1/2 pathway, leading to a signif-

icant reduction in ICAM1 expression, which is

involved in monocyte adhesion (Peng et al. 2018).

Fisetin negatively modulates the PKC-d activity in

human airway epithelial cells, which is essential for

the activation of the TNF-a/IKK/NF-jB signalling

cascade (Lee et al. 2018). Inhibition of PKC-d

significantly reduces the TNF-a-induced IL-8 levels.

Interestingly, fisetin has a similar effect to the broad

protein kinase inhibitor, Staurosporine, hence it can be

Table 2 Immunomodulatory and anti-inflammatory effects of various flavonoid classes

Flavonoid Immunomodulatory mechanism References

Flavanones

Naringenin Inhibits ERK and NF-jB pathways, reduces COX-2, iNOS and TNF-a

expression and reduces IL-6 and MPO activity

(Ali et al. 2017; Fouad et al. 2016; Yoshida

et al. 2010)

Hesperetin Inhibits ERK and NF-jB pathways, works as PPAR-c agonist and

reduces IL-6, IL-1b and TNF-a expression

(Ma et al. 2015; Ye et al. 2019; Yoshida

et al. 2010)

Flavonoles

Quercetin Regulates Th1/Th2 balance, inhibits tyrosine phosphorylation of EGFR

and NF-jB pathways and binds to aryl hydrocarbon receptor, and

impairs T-cell activation

(Michalski et al. 2020; Park et al. 2009;

Rogerio et al. 2010; Yang et al. 2012)

Fisetin Inhibits NF-jB and phosphorylation of ERK1/2 pathways, inhibits PKC-

d activity, COX-2 and prostaglandin E2 production and decreases IL-6,

IL-8, TNF-a, CCL5 and MPC1 levels

(Lee et al. 2018; Peng et al. 2018)

Flavones

Chrysin Inhibits NF-jB pathway, works as PPAR-c agonist, inhibits COX-2 and

MPO activity, inhibits TNF-a, IL-1b, IL-8 and iNOS levels, stimulates

macrophage lysosomal activity, and inhibits the production of nitric

oxide

(Sassi et al. 2017; Shen et al. 2015; Zeinali

et al. 2017)

Apigenin Inhibits IL-6, CCL5, ICAM1and VCAM1 (Zhang et al. 2014)

Luteolin Increases the number of CD4?CD25? regulatory T-cells, decreases the

number of immune cells such as CD19?B, CD4?T, CD3-CCR3? and

CD11b?Gr-1?, inhibits MARK and NF-jB pathways, reduces TNF-a,

IL-6, IL-1b levels and inhibits MPO activity

(Kim et al. 2018; Kuo et al. 2011; Liu et al.

2018)

Caflanone Inhibits microsomal prostaglandin E synthase 1 and 5-lipoxyganse (Erridge et al. 2020)
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employed as a potential immunomodulator in lung

inflammation (Lee et al. 2018).

Flavones: Chrysin, apigenin, luteolin

and caflanone

An extensive overview of immunomodulatory and

anti-inflammatory effects of chrysin concluded that

chrysin has multiple mechanisms. Chrysin can sup-

press NF-jB, which controls the expression of genes

encoding the pro-inflammatory cytokines, COX-2 and

iNOS (Zeinali et al. 2017). Besides, it is an agonist to

PPAR-c, which downregulates COX-2, MPO and

iNOS (Zeinali et al. 2017). Pre-treatment of mice,

exposed to cigarette smoking to induce inflammation

of airway epithelial cells, with chrysin ameliorated the

inflammation by suppressing the release of TNF-a, IL-

1b, IL-8, and MPO expression in the lung tissue (Shen

et al. 2015). Chrysin also inhibits ERK and p38

phosphorylation (Shen et al. 2015). In another study to

analyse the immunomodulatory effect of chrysin on

rat peritoneal macrophages, chrysin stimulates macro-

phage lysosomal activity, which involved in killing

and digesting the microbial pathogens and inhibited

the production of nitric oxide (Sassi et al. 2017).

Docking study indicated that chrysin can bind weakly

to COX-1, but strongly to COX-2 enzymes, indicating

that it has relative selectivity to COX-2, and hence

reduces the possibility of undesired GIT adverse

effects (Rauf et al. 2015). Similarly, pre-treatment of

pre-inflamed human macrophage with apigenin

showed significant inhibition of IL-6 secretion and

stability of IL-6 mRNA (Zhang et al. 2014). Apigenin

did not inhibit only the pro-inflammatory cytokines,

but also the inflammatory chemokines (CCL5) and

adhesion molecules (ICAM1 and VCAM1) (Zhang

et al. 2014).

Luteolin significantly increases the number of

CD4 ? CD25 ? regulatory T-cells in murine splenic

CD4 ? -T cells that were stimulated by anti-CD3/

anti-CD28 (Kim et al. 2018). Luteolin also presented

immunomodulatory activity by decreasing the number

of immune cells such as CD19 ? B, CD4 ? T, CD3-

CCR3 ? , and CD11b ? Gr-1 ? in the lung of

inflamed airway mouse model (Kim et al. 2018).

Luteolin also inhibits the NF-jB pathway, reduces

TNF-a, IL-6, IL-1b levels and significantly inhibits

MPO activity (Liu et al. 2018). Luteolin also showed a

protective effect against lipopolysaccharides (LPS)-

induced ALI mice model by inhibition of MAPK

pathways, leading to inhibition of the NF-jB pathway

and IKB degradation (Kuo et al. 2011). Caflanone

possesses anti-inflammatory activity by inhibition of

microsomal prostaglandin E synthase 1 and 5-lipoxy-

genase (Erridge et al. 2020).

The data described here indicated the significant

immunomodulatory activities of many flavonoids,

while their antiviral activities still need to be validated

to complement their potential inhibition activity

against SARS-CoV-2.

Potential anti-SARS-CoV-2 activity of flavonoids

in the case of complication by obesity

A case study of COVID-19 patients in Shenzhen,

China concluded that obesity increases the risk of

developing severe COVID-19 (Cai et al. 2020).

Obesity may exacerbate infection by SARS-CoV-2

and can result in severe COVID-19 cases. An expla-

nation for that can be attributed to the higher

expression of ACE-2 in adipose tissues located in

the lung (Jia et al. 2020). Furthermore, it has been

shown that host lipids represent a critical factor in

SARS-CoV-2 infection and completion of the life

cycle (Alketbi et al., 2021).

Different studies indicated that flavonoids can be

employed to reduce the body fat mass by generating a

feeling of satiety by reducing the food intake (Panda

and Shinde 2017). Flavonoid-rich foods can target the

lipid-regulating enzymes and prevents lipid accumu-

lation (Wu et al. 2010). Furthermore, flavonoids can

reduce the weight of abdominal adipose tissue due to

their effect on decreasing the hepatic and plasma

triglyceride (TG) levels by regulating the rate-limiting

enzymes involved in the fatty acid synthesis and

oxidation in the liver (Kamisoyama et al. 2008).

Interestingly, consuming tea catechin, a flavan-3-ol, is

good for the suppression of high-fat diet-induced

obesity via activation of lipid metabolism in the liver

(Murase et al. 2002). Collectively, a diet rich in

flavonoids can reduce the exacerbation of COVID-19

by reducing body fat mass, a factor that can increase

SARS-CoV-2 load.
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Safety and efficacy of flavonoids

Generally, flavonoids exhibit a high safety profile and

LD50 as indicated in Table 3. It has been shown that

oral administration of quercetin possesses no signif-

icant mutagenicity/ genotoxicity effects on mice and

rats (Harwood et al. 2007). Quercetin is a well-

tolerated compound and did not induce any adverse

effects when administered orally and intravenously up

to 1 g/day and at * 10.8 mg/kg to human, respec-

tively (Ferry et al. 1996; Shoskes et al. 1999).

Similarly, oral administration of 450 mg citrus dry

extract containing at least 90% of catechin of total

polyphenols and at least 20% of naringenin of total

flavanones to healthy overweight individuals did not

induce any adverse effects (Dallas et al. 2014). No

adverse effects have been observed in patients with

muscular dystrophy when administered Flavomega,

an oral dosage form that contains roots of Scutellaria

and dry extract of green tea as a source of flavonoids

(Sitzia et al. 2019). Intraperitoneal administration of

apigenin, up to 100 mg/kg in mice does not induce any

toxic effects (Viola et al. 1995).

The extent of absorption, distribution, metabolism

and excretion of flavonoids are affecting its efficacy

(Miranda et al. 2012). Different sources of flavonoids

have different absorption and bioavailability (Ross

and Kasum 2002). Sugar moiety attached to aglycone

plays a major role in flavonoid absorption and

bioavailability (Hollman 2009). Since most flavonoids

found in diets are b-glycosides, they can be absorbed

in two ways at the small intestine either by lactase

phloridzin hydrolase (LPH) or intestinal Na?- depen-

dent glucose co-transporter (SGLT1) (Hollman 2009).

Although flavonoids have poor oral absorption and

bioavailability (Ross and Kasum 2002; Thilakarathna

and Rupasinghe 2013) because of the hydrophilic

nature of the flavonoid glycosides (Hollman 2009), the

aglycones have a strong affinity to plasma; indicating

their activity at low concentration (Xiao and Kai

2012). Moreover, flavonoids undergo extensive meta-

bolism in the intestine and liver leading to the

formation of conjugated forms, which is increasing

the ability of their elimination (Thilakarathna and

Rupasinghe 2013). Therefore, the low bioavailability

of flavonoids may hinder their oral administration

(Thilakarathna and Rupasinghe 2013). On the other

side, several approaches were employed to improve

the bioavailability of the flavonoids including nano-

formulations to improve the intestinal absorption, and

microemulsions or complexing with b-cyclodextrin to

improve the bioavailability (Thilakarathna and Rupas-

inghe 2013). Flavonoids encapsulated in smart

nanoparticles with the ability to target ACE-2 recep-

tors were administered by inhalation to mice to

enhance their bioavailability and efficacy (Ngwa

et al. 2020). Nano-emulsion and nano-liposomal

formulations not only enhance the oral bioavailability

of naringenin but also enhance the therapeutic efficacy

and stability (Zobeiri et al. 2018). Fisetin encapsula-

tion in nano-liposomal formulation enhanced the

bioavailability by 47 folds when compared to free

fisetin (Seguin et al. 2013).

Potential flavonoids with multi-targeting activity

According to the aforementioned data, one can

conclude that flavonoids such as naringenin, apigenin,

luteolin and quercetin can exert multiple activities as

indicated in Table 4. Molecular docking studies of

these flavonoids were further tested to validate the

binding affinity to major targets including Mpro, ACE-

2 and TMPRSS2 (Table 4 and Figs. 4, 5, 6). The 3D

structures of flavonoids and 3D crystal structures of

proteins were downloaded and saved in PDBQT

format using Chimera software. The binding modes

between the elected flavonoids and target proteins

Table 3 Flavonoids LD50 Flavonoids LD50 References

Naringenin [ 5000 mg/kg (Oral) (Ortiz-Andrade et al. 2008)

Hesperidin [ 2000 mg/kg (Oral) (Bigoniya and Singh 2014)

Quercetin [ 160 mg/kg (Oral) (Sullivan et al. 1951)

Chrysin = 4350 mg/kg (Oral) (Yao et al. 2019)

Apigenin [ 5000 mg/kg (I.P.) (Zarei et al. 2017)

Luteolin [ 5000 mg/kg (Oral) (Liming 1985)
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were performed using PyRx Autodock binding

engines. Flavonoids were screened against Mpro

(PDB: 6LU7), TMPRSS2 (PDB: 2OQ5), ACE-2

(PDB: 1R4L),) and RdRp (PDB: 7BV2). The two-

dimensional interaction with different amino acids

was presented using Discovery Studio software.

The results indicated that quercetin and luteolin

showed good binding energy with the binding pocket

of Mpro (PDB: 6UL7) lower than that of GC376

inhibitor, indicating the formation of a stable complex.

The superiority of quercetin and luteolin binding is

due to the vicinal hydroxyl groups that act as metal

chelators for the target enzyme (Fig. 4). Similarly,

quercetin and luteolin showed good binding affinity to

ACE-2 receptor with lower binding energy in com-

parison to enalaprilat (Fig. 5). Furthermore, quercetin

and apigenin showed binding affinity to TMPRSS2

similar to Camostat (Fig. 6). The displayed binding

Table 4 Potential

flavonoids with dual

activity against viral and

human proteins

Flavonoid Targets binding energy (Kcal/mol) Immunomodulatory activity

Host Target Viral Target

ACE-2 receptor TMPRSS2 Mpro RdRp

Quercetin - 9.1 - 7.7 - 7.0 - 8.5 Anti-inflammatory

Luteolin - 8.9 - 7.4 - 7.1 - 8.3 Reduces IL-6 expression

Apigenin - 8.5 - 7.7 - 6.7 - 7.8 Inhibits IL-6

Naringenin - 8.5 - 7.3 - 6.8 - 7.7 Reduces IL-6 expression

Enalaprilat - 8.8

Camostat - 7.7

GC376 - 6.0

Remedisivir - 8.9

Fig. 4 Binding affinity of flavonoids to Mpro
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affinity of flavonoids is mainly owing to the hydropho-

bicity of the aromatic rings and the hydrophilic

hydroxyl groups. However, they all showed lower

binding affinity to RdRpwhen compared to remdesivir

(Table 4).

The ADME properties were further screened using

a Swiss-ADME server (Daina et al. 2017). The elected

flavonoids comply with the Lipinski rule of 5

(HBD\ 5, HBA\ 10, Logp\ 5, and Mwt\ 500).

The compounds showed good gastrointestinal adsorp-

tion, good solubility with log s\ 4 and hence good

bioavailability. Notably, they were safe and non-toxic

(Fig. 7 and Table 5).

The results obtained highlight the importance of

flavonoids as lead for the development of novel

antiviral drugs. These flavonoids particularly querce-

tin and luteolin should be employed for further clinical

investigations as a promising therapy against SARS-

CoV-2.

Potential sources of flavonoids and environmental

impact

Flavonoids are a large and diverse group of phenolic

secondary metabolites widely distributed in plants. It

has been reported that the richest sources of flavonols

(Quercetin, kaempferol, and myricetin) are yellow

onions (up to 1.2 g/kg fresh wt) and curly kale (up to

0.6 g/kg fresh wt) (Manach et al. 2004). Other sources

with moderate levels of flavonols (0.1–0.225 g/kg

fresh wt) are leeks, cherry tomato, broccoli, and

blueberries (Manach et al. 2004). Furthermore, other

sources with lower concentrations of flavonols were

reported in black Curran, apricot, apple, red apple,

beans, black grape, tomato, black and green tea

(Manach et al. 2004). Flavones (apigenin and luteolin)

present in parsley, celery, capsicum, and pepper.

Flavanones such as hesperetin, naringenin, and erio-

dictyol are rich in tomatoes, orange, grapefruit, and

lemon (Manach et al. 2004). Several other flavonoids

have been identified in many wild plants such as

Atriplex hortensis, Betula alba, Brassica rapa, Ephe-

dra alata, Hibiscus sabdariffa, Juniperus communis,

Fig. 5 Binding affinity of elected flavonoids to ACE-2 receptor
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Antirrhinum majus, and Artemisia campestris (Al-

Snafi 2020).

The types and concentration of flavonoids in plants

are changed in response to the duration and frequency

of environmental conditions associated with different

geographic regions including the temperature, light

duration, intensity and quality (Oh et al. 2009).

Abouleish et al. 2020, showed that environmental

factors can significantly affect the concentration and

types of plant phytochemicals with potential activity

against SARS-CoV-2 (Abouleish 2020). They have

described the impact of the season, temperature, and

drought on the yield and composition of plant

phytochemicals including flavonoids. Besides, other

environmental factors including the time of harvest,

processing, and storage can affect the flavonoid

Fig. 6 Binding affinity of elected flavonoids to TMPRSS2

Fig. 7 Bioavailability radar of flavonoids. The figures indicated the acceptable pharmacokinetics and within conformity range. The

pink area indicates preferred properties range
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contents in medicinal plants (El-Keblawy et al. 2017;

Manach et al. 2004). Therefore, assessing the impact

of environmental conditions on plant flavonoids can

help in the selection of the most suitable flavonoid-rich

plants per geographical area (Sehlakgwe et al. 2020).

The most common and richest sources with several

types of flavonoids for human intake are citrus and

black and green teas (Manach et al. 2004). The intake

of these plants was recommended as a therapy for

COVID-19. Several investigators have indicated that

environmental factors prevailing during the growth

and development of citrus (Zandalinas et al. 2017) and

tea (Table 6) can affect the types and accumulation of

different flavonoids.

Global intake of flavonoids

The intake of flavonoids differs from a country to

another. This is mainly due to the difference in the type

and amount of food rich in flavonoids taken in each

country (Table 7 and Fig. 8). The worldwide con-

sumption of flavonoids ranges between

150–600 mg/day expressed as aglycones present in

Table 5 Predication of

ADME properties of elected

flavonoids

Models Quercetin Luteolin Apigenin Naringenin

TPSA 131.6 111.13 90.9 90.9

Molecular formulae C15H10O7 C15H10O6 C15H10O5 C15H10O5

Molecular weight 302.24 286.24 270.24 272.25

HBA 7 6 5 5

HBD 5 4 3 3

Log p 1.63 1.86 1.89 1.75

GI Absorption High High High High

Bioavailability score 0.55 0.55 0.55 0.55

P-glycoprotein Substrate Non-substrate Non-substrate Non-substrate Non-substrate

BBB permeability No No No No

CYP2C19 inhibitor No No No No

CYP1A2 inhibitor Yes Yes Yes Yes

Lead likeness violations 0 0 0 0

Synthetic accessibility 3.23 3.02 2.96 3.01

No of rotatable H bond 1 1 1 1

ESOL solubility Soluble Soluble Soluble Soluble

Solubility (mg/mL) 0.211 0.0563 0.0307 0.0874

Log s - 3.16 - 3.71 - 3.94 - 3.49

Table 6 Effect of environmental factors on the flavonoid contents in tea leaves (Camellia sinensis)

Region/country Environmental condition Flavonoid content References

Jeju Island, South Korea High temperature Low (Lee et al. 2010)

Malawi High temperature Low (Owuor et al. 2008)

Phoenix Mountain, China High altitude High (Chen et al. 2010)

Phoenix Mountain, China Autumn growing season High (Chen et al. 2010)

Australia Warm growing season High (Yao et al. 2005)

Seogwipo Si, Republic of Korea High light intensity High (Ku et al. 2010)

Barcelona, Spain Drought High (Hernández et al. 2006)

Anhui, China High temperature High (Wang et al. 2012)

Anhui, China Drought High (Wang et al. 2012)
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black tea(Zamora-Ros et al. 2016). This is varied

between populations according to the black tea

consumption levels and various dietary patterns. The

intake of flavonoids varies greatly by geographical

region (Tresserra-Rimbau et al. 2013). The intake of

total flavonoids in European countries ranges between

Table 7 Intake of total flavonoids in representative countries

Country Intake (mg/day) Main source Major class Reference

Australia 225 Black tea Flavanols (Johannot and Somerset 2006)

Spain 443 Fruits PA (Tresserra-Rimbau et al. 2013)

Italy 364 Fruits PA (Vitale et al. 2018)

France 436 Fruits, tea, red wine PA (Perez-Jimenez et al. 2011)

Finland 209 Berries, fruit PA (Ovaskainen et al. 2008a, b)

Poland 898 Tea, cocoa, apples Flavanols (Grosso et al. 2014)

United Kingdom 1000 Tea Flavanols, PA (Tresserra-Rimbau et al. 2013)

US 203 Tea Flavanols, PA (Xiao et al. 2014)

Mexico 235 Fruits and orange PA (Zamora-Ros et al. 2018)

Brazil 54.6 Citrus fruits and beans Flavanones (Miranda et al. 2016)

China 225 Soy, pome fruit Flavanols (Zhang et al. 2014)

Korea 318 Fruit, tofu, onions PA (Jun et al. 2016)

Iran 1652 Vegetables, fruits Flavanols (Sohrab et al. 2013)

MED 449 Fruits PA (Zamora-Ros et al. 2016)

Non-MED 522 Fruits-black tea PA (Zamora-Ros et al. 2016)

MED = Mediterranean countries; Non-MED = Non-Mediterranean countries; PA = Proanthocyanidins

Fig. 8 Global heat map indicated the consumption of flavonoid-rich foods in representative countries. The heat map was generated by

reporting the consumption of flavonoids per country (ElDohaji et al. 2020)
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250–400 mg/day, which is lower than in non-Mediter-

ranean (MED, northern European) countries

(350–600 mg/day). This can be attributed to the

higher intake of tea in non-MED countries relative to

MED countries (Tresserra-Rimbau et al. 2013). In

Mediterranean countries, like Spain, the major

polyphenols source in the diet is the fruits and coffee,

but the factor that mainly differentiates them from

other countries is the consumption of polyphenolics

from olive oil and olives(Tresserra-Rimbau et al.

2013). Because of the conventional tea community,

the highest overall flavonoids consumption in Europe

is in the UK (*500 to[ 1000 mg/day) (Zamora-Ros

et al. 2016). On the other hand, Eastern European

countries such as Poland showed a high intake of total

flavonoids (600 mg/day) due to the high consumption

of tea (Zamora-Ros et al. 2013), while the southern

regions such as France has an intermediate intake of

total flavonoids (Witkowska et al. 2015). The intake of

total flavonoids in Scandinavian countries, such as

Finland, is 200–250 mg/day, which is lower than in

MED countries, because of lower tea and fruit

consumption (Ovaskainen et al. 2008a, b).

Australia has a high intake of total flavonoids

(650–700 mg/day), because of high tea consumption.

Black tea consumption contributes to at least 75% of

total polyphenols (Kent et al. 2015). The mean intake

of total flavonoids in the US ranges from 250 to

400 mg/day (Kim et al. 2016). Although tea con-

sumption is not very high, tea is still the primary

source of total flavonoids in the US, possibly due to the

low fruit and vegetable consumption. In Mexico and

Brazil, the consumption of total flavonoids is about

150 and 50 mg/day, respectively. These countries are

known globally as the lowest consumers of total

flavonoids. Citrus in Mexico and beans in Brazil are

the primary source of total flavonoids (Miranda et al.

2016).

In the Eastern Asian countries, such as China(Z-

hang et al. 2014), total flavonoids intake ranges

between 65–225 mg/day (Zhang et al. 2014), since

Chinese people drink green tea, but not black tea. The

consumption of total flavonoids is significantly higher

in South Korea (320 mg/day) (Chun et al. 2007). Soy

and its derived products (the major food sources of

isoflavones) are one of the most significant contribu-

tors to total flavonoids in East Asian countries, while

proanthocyanidins and flavan-3-ol in South Korea and

China are the most abundant flavonoids. Japan, China

and South Korea depend on isoflavones as a source of

flavonoids, because of their phytoestrogenic effects

(Barnes 2004). On the other hand, the mean intake of

total flavonoids in the Middle East was estimated at

1650 mg/day (Sohrab et al. 2013). This is the world’s

highest cumulative consumption of flavonoids, which

is attributed to the high consumption of black tea.

In summary, there is high variability in the total

flavonoids intake between different countries. Those

with high consumption of tea, especially black tea, are

the populations with a higher intake of total flavo-

noids. Fruits are the primary food sources, and

proanthocyanidins are the main contributors to total

flavonoids. There is a need for more studies on the

content of flavonoids in foods to enhance the existing

data regarding the food composition and their role/

relation in fighting against pathogens including SARS-

CoV-2.

Suggested regimen of globally existed flavonoid-

rich plants

Based on the aforementioned data described here for

the possible use of flavonoids as a treatment and

protection against SARS-CoV-2, we are suggesting a

protective and treatment regimen made of easily

accessible plants and globally distributed. For exam-

ple, fresh parsley (Petroselinum crispum), raw wild

rocket (Diplotaxis tenuifolia) and raw oranges are

globally accessible vegetables and fruits. Interest-

ingly, they contain significant amounts of flavonoids.

Fresh parsley contains 215.45 mg/100 g apigenin and

1.09 mg/100 g luteolin, raw wild rocket contains

66.19 mg/100 g quercetin and raw orange contains

27.25 mg/100 g hesperetin and 15.32 mg/100 g

naringenin (Haytowitz 2018). Therefore, a regimen

made of oranges with 420 g total weight, 300 g fresh

parsley and 300 g raw rocket per day would supple-

ment a total of * 1 g flavonoids sufficient for the

protection and treatment of SARS-CoV-2 infection

(Di Matteo et al. 2020). This suggested regimen is still

under investigation and needs further confirmation by

clinical trials on COVID-19 patients. Current clinical

trials employing 1000 mg/day of quercetin as a

treatment and 500 mg/day as prophylaxis against

SARS-CoV-2 infection are in the investigation pro-

cess (Di Matteo et al. 2020).
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Conclusion

Consumption of flavonoids and flavonoids-rich plants

can be of significant importance for the prevention and

treatment of SARS-CoV-2, while providing enough

safety on the human body. In fact, flavonoids have

been shown to exhibit potential inhibitory activity

against critical viral targets, required to facilitate their

entry and replication, including Mpro, RBD of the S

protein, RdRp, in addition to the human ACE-2

receptor and TMPRSS2. Further, the immunomodu-

latory activity of flavonoids has been proven via the

inhibition of various pro-inflammatory cytokines and

pathways involved in inflammatory reactions. Fur-

thermore, flavonoids can reduce the COVID-19 exac-

erbation via their significant effect on the body fat

mass. Flavonoids promote the satiety effect and lipids

metabolism. Based on the global existence of

flavonoid-rich plants, a preventive safe regimen can

be recommended against SARS-CoV-2 following

further clinical investigations.
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