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Abstract: Flavonoids are polyphenolic compounds subdivided into 6 groups: isoflavonoids, 

flavanones, flavanols, flavonols, flavones and anthocyanidins found in a variety of plants. Fruits, 

vegetables, plant-derived beverages such as green tea, wine and cocoa-based products are the main 

dietary sources of flavonoids. Flavonoids have been shown to possess a wide variety of anticancer 

effects: they modulate reactive oxygen species (ROS)-scavenging enzyme activities, participate in 

arresting the cell cycle, induce apoptosis, autophagy, and suppress cancer cell proliferation and 

invasiveness. Flavonoids have dual action regarding ROS homeostasis—they act as antioxidants 

under normal conditions and are potent pro-oxidants in cancer cells triggering the apoptotic 

pathways and downregulating pro-inflammatory signaling pathways. This article reviews the 

biochemical properties and bioavailability of flavonoids, their anticancer activity and its 

mechanisms of action. 
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1. Introduction 

Flavonoids are polyphenolic compounds synthesized in plants as bioactive secondary 

metabolites [1] responsible for their color, flavor and pharmacological activities [2]. The main 

flavonoid sources are fruits and vegetables [3], and they are also abundant in cocoa products (cocoa 

powder, chocolate) [4], black and green tea [3,5] and red wine [3,6]. Among the fruits, berries [7,8], 

plums, cherries [9,10] and apples [10,11] are the richest in flavonoids, whereas tropical fruits are poor 

in flavonoids [12]. Among the vegetables, the highest levels of flavonoids are found in broad beans 

[13], olives [14], onions [15], spinach [16] and shallot [17]. 

Flavonoids are potent antioxidants [11] protecting plants from unfavorable environmental 

conditions [1], therefore they have attracted attention and have been used in numerous 

epidemiological and experimental studies to assess their possible beneficial effects in multiple acute 

and chronic human disorders [18]. In vitro and in vivo studies have shown that flavonoids could 

exert anti-inflammatory, immunomodulatory [19] and strong anticancer activities [18,20,21]. 

2. Chemical Properties of Flavonoids 

All flavonoids possess the basic flavan skeleton—a 15-carbon phenylpropanoid chain (C6-C3-

C6 system), which forms two aromatic rings (A and B) linked by a heterocyclic pyran ring (C) (Figure 

1). Based on their chemical structure, degree of oxidation, and linking chain unsaturation flavonoids 
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could be further classified into 6 major groups: isoflavonoids, flavanones, flavanols, flavonols, 

flavones and anthocyanidins [20,22,23]. 

 

Figure 1. Main chemical structures of flavonoids. 

A chromane ring (A and C) is attached to a B ring (Figure 1) at C2 in flavonoids or C3 in 

isoflavonoids [22]. The main isoflavonoids are genistein and daidzein (Figure 2). 

 

Figure 2. Chemical structures of the main isoflavonoids. 

A saturated, oxidized C ring is present in flavanones, also described as di-hydroflavones [22]. 

Main flavanones are hesperetin and naringenin (Figure 3) [22]. 

 

Figure 3. Chemical structures of main flavanones. 

A saturated, unoxidized C ring with a hydroxyl group at C3 is common for flavanols, also known 

as green tea catechins. The most common catechin stereoisomers are cis ((-)-epicatechin) or trans ((+)-
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catechin according to C2 and C3 position in the molecule [5,24,25]. Flavanols can form gallic acid 

conjugates epicatechin gallate, epigallocatechin and epigallocatechin gallate during esterification 

with gallate groups (Figure 4) [5,24,25]. 

 

Figure 4. Chemical structures of main flavanols. 

Flavonols possess an unsaturated C ring at the C2–C3 position, which is usually hydroxylated 

at C3 and oxidized at C4 [22]. The main flavonols are quercetin and kaempferol, followed by 

myricetin, isorhamnetin, fisetin and galangin found in lesser amounts (Figure 5). The –OH moieties 

in flavonols are responsible for their biological activities. 

 

Figure 5. Chemical structures of main flavonols. 

An unsaturated C ring at C2–C3, non-hydroxylated C3 and a ketonic group at C4 position are 

present in flavones [22]. The main flavones include apigenin, chrysin, luteolin, and tangeritin (Figure 

6). 
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Figure 6. Chemical structures of main flavones. 

Anthocyanidins are water-soluble, unoxidized, unsaturated, flavonoids, mainly found as pH-

dependent plant pigments. Anthocyanidins are based on the basic structure of the 2-phenyl-

benzopyrylium chromophore–flavylium ion. They are hydroxylated at C3 position and at carbon 

atoms 3, 4 and 5 in the ring B of the molecule [20]. The main anthocyanidins include cyanidin, 

delphinidin, pelargonidin, peonidin, petunidin and malvidin (Figure 7) [20]. 

 

Figure 7. Chemical structures of main anthocyanidins. 

Flavonoids exist either as glycosides with linked sugars or as aglycones without linked sugars 

[18,20]. In the cytosol (pH 7.4), flavonoids form a mixture of phenolate anions and neutral phenols. 

Their proportion depends on the pKa of each phenolic group. Since flavonoids are weak hydrophobic 

acids, depending on their lipophilicity they have potential to cross cellular and mitochondrial 

membranes and act as protonophores [26–28]. 
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3. Bioavailability of Flavonoids 

Flavonoids can interact with other nutrients [29,30]: they can decrease glucose absorption due 

to suppression of carbohydrate-hydrolyzing enzymes (alpha-amylase and alpha-glucosidase) [31] 

and glucose transporter in the brush border [31]. Fat intake improves flavonoid bioavailability and 

increases their intestinal absorption via augmented secretion of bile salts which increase micellar 

incorporation of flavonoids [31]. However, protein intake can decrease flavonoid bioavailability 

[32,33], affecting both antioxidant efficacy and protein digestibility [32]. The gut microbiome is very 

important for the absorption and metabolism of flavonoids. After consumption, prior to absorption 

intestinal or colon microflora are able to hydrolyze glycosylated flavonoids such as flavones, 

isoflavones, flavonols and anthocyanins into their respective aglycones [33,34]. Aglycones are 

lipophilic, and therefore passive diffusion is responsible for their pathway to the intestinal epithelial 

cells while the uptake of glycosides into the intestinal epithelial cells is regulated by the epithelial 

transporters [34]. After absorption, flavonoids undergo metabolic transformations first in the small 

intestine, liver and kidney [34]. Methylation, sulfation, or glucuronidation of flavonoids before they 

reach the circulation and, afterwards, the tissues, could influence their biological activities. 

Unabsorbed flavonoids remaining in the proximal intestine are further digested in the colon by 

microbes able to split their heterocyclic oxygen containing ring and the hydroxylated phenyl 

carboxylic acids formed could be absorbed [34]. The highest concentration of plasma flavonoids in 

humans usually is reached 1 to 2 h after the intake of flavonoid-rich foods [35]. This depends on the 

type of flavonoid; for example, catechins and anthocyanins are characterized by a half-life elimination 

that is 5 to 10 times less compared to flavonols [33]. The concentration of plasma quercetin metabolites 

are found from 0.7 to 7.6 µM since quercetin is the most abundant dietary flavonoid [35]. 

Anthocyanins and pro-anthocyanidins have the lowest bioavailability, while quercetin glucosides, 

catechin, flavanones, isoflavones and gallic acid have the highest bioavailability [18]. 

4. Anticancer Effects of Flavonoids 

The ability of flavonoids to scavenge free radicals, regulate cellular metabolism, and prevent 

oxidative stress–related diseases have been demonstrated in numerous studies [18–21,36,37]. There 

is accumulating evidence that many flavonoids exert anticancer activity, however, the molecular 

mechanisms responsible for this effect have not been fully elucidated yet. 

Cancer is a heterogeneous disease characterized by uncontrolled proliferation and impaired cell 

cycle leading to the growth of abnormal cells that invade and metastasize to other parts of the body 

[38,39]. Oxidative stress, hypoxia, genetic mutations and lack of apoptotic function are the main 

internal causes of cancer, whereas the external causes are related to increased exposure to stress, 

pollution, smoking, radiation and ultraviolet rays [40]. Altered metabolism, impaired cell cycles, 

frequent mutations, resistance to immune response, chronic inflammation, formation of metastasis, 

and induction of angiogenesis are the main characteristics of the cancer cells [38] (Figure 8). There is 

emerging evidence that cancer is a metabolic disease determined by various degrees of mitochondrial 

dysfunctions and metabolic alterations [38,39,41]. Mitochondria play essential roles in cellular energy 

supply, regulation of metabolism, cell death signaling and reactive oxygen species (ROS) generation. 

The main metabolic alterations of the tumor cells involve increased aerobic glycolysis [42], 

deregulated pH [43], impaired lipid metabolism [44], increased generation of ROS [45], and 

compromised enzyme activities [38,46] (Figure 8). As a direct consequence, the extracellular 

environment becomes acidic and more favorable to inflammation [47], glutamine-driven lipid 

biosynthesis increases and upregulates the pathways involved in tumorigenesis initiation and 

metastasis [48], cardiolipin levels decrease in membranes causing impaired enzyme activities [49–

51], mitochondria are hyperpolarised [38], and this effect correlates with the malignancy and 

invasiveness of cancer cells [38]. 

Flavonoids exert a wide variety of anticancer effects: they modulate ROS-scavenging enzyme 

activities, participate in arresting the cell cycle, induce apoptosis, autophagy, and suppress cancer 

cell proliferation and invasiveness [18–21,36,37]. 
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Figure 8. The main characteristics of tumor mitochondria and tumor cells. 

4.1. Flavonoids in Oxidative Stress 

When the cellular homeostasis between the pro-oxidant activities and antioxidant defense is 

impaired, the production of ROS increases, and free radicals accumulate [18]. ROS are mainly 

generated in the electron transport chain in mitochondria as the byproducts of oxidative 

phosphorylation in the cell [52]. The amount of ROS produced causes oxidative stress which is 

involved in the development of inflammation processes leading to many degenerative diseases and 

cancer. Flavonoids have dual action regarding ROS homeostasis—they act as antioxidants under 

normal conditions and are potent pro-oxidants in cancer cells triggering the apoptotic pathways 

[53,54] (Figure 9).  

 

Figure 9. Antioxidant and pro-oxidant activities of flavonoids in oxidative stress. ROS—reactive 

oxygen species, NADPH-oxidase—nicotinamide adenine dinucleotide phosphate oxidase, GSH—

glutathione, SOD—superoxide dismutase, CAT—catalase, GPx—glutathione peroxidase, GR—

glutathione reductase. 

Flavonoids can directly scavenge ROS, and chelate metal ions [55] due to their ability stabilize 

the free radicals due to the presence of phenolic hydroxyl groups [56]. Indirect flavonoid antioxidant 

effects are related to activation of antioxidant enzymes, suppression of pro-oxidant enzymes, and 
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stimulating production of antioxidant enzymes and phase II detoxification enzymes [55]. Both 

antioxidant and pro-oxidant activities are involved in flavonoid anticancer effects [57,58]. 

Isoflavone genistein promoted breast cancer cell arrest at G2/M phase and subsequent ROS 

dependent apoptosis [59]. Daidzein promoted apoptosis in breast cancer MCF-7 cells due to the ROS 

generation [60]. Flavanone hesperetin induced apoptosis of gall bladder carcinoma [61], esophageal 

cancer [62], hepatocellular carcinoma [63] and human breast carcinoma MCF-7 cells [64] via 

activating the mitochondrial apoptotic pathway by increasing the ROS production. Flavanone 

naringenin exerted anti-cancer effects on choriocarcinoma JAR and JEG 3 cell lines by inducing the 

generation of ROS and activation of signaling pathways [65]. It also initiated an apoptotic cascade in 

human epidermoid carcinoma A431 cells [66]. In prostate cancer PC3 and LNCaP cell lines, 

naringenin suppressed proliferation and migration and induced apoptosis and ROS generation [67]. 

Furthermore, naringenin reduced ROS generation and enhanced the activity of superoxide 

dismutase, catalase, glutathione in chronic diseases and cancer [68]. Cocoa catechins and 

procyanidins have been shown to induce apoptotic morphological changes, DNA damage and 

apoptosis in epithelial ovarian cancer cells due to their prooxidant properties [69]. Cocoa 

polyphenolic extract activated the ERK1/2 pathway, thus increasing the activities of glutathione 

peroxidase and reductase in HepG2 cells [70]. Cocoa catechins and procyanidins also protected Caco2 

cells against an induced oxidative stress and subsequent cellular death by reducing ROS production 

[71]. Due to antioxidant properties, cocoa flavanols exerted beneficial effects in the protection from 

colon cancer [72,73]. Flavonol quercetin exerted potent cancer chemopreventive properties [74,75]. 

Recent studies showed that quercetin reduced the proliferation of hepatocellular carcinoma HepG2 

cells decreasing the intracellular ROS level [76]. It increased ROS production and the apoptotic cell 

number in human gastric cancer AGS [77] and human breast cancer MCF-7 cells [78]. Flavonol 

kaempferol inhibited the growth of cancerous bladder cells due to ROS level modulation-induced 

apoptosis and S phase arrest [79]. It activated caspases due to ROS generation and stimulated 

apoptosis in colorectal cancer HCT116, HCT15, and SW480 cell lines [80]. Furthermore, kaempferol 

exerted cytotoxic effects on rat hepatocellular carcinoma cells via ROS-mediated mitochondrial 

targeting [81]. The anticancer activities of flavones apigenin and luteolin in ovarian cancer cell lines 

(A2780, OVCAR-3 and SKOV-3) were also related to the changes in ROS signaling, as well as to the 

promotion of apoptosis [82,83]. Moreover, apigenin activated apoptosis also in human cervical 

cancer-derived cell lines including HeLa (human papillomavirus/HPV 18-positive), SiHa (HPV 16-

positive), CaSki (HPV 16 and HPV 18-positive), and C33A (HPV-negative) cells due to increased ROS 

generation and launched mitochondrial apoptotic pathways [84]. Flavone chrysin was reported to 

augment ROS and lipid peroxidation levels, leading to the death of choriocarcinoma (JAR and JEG3) 

[85], bladder cancer [86] and ovarian cancer (ES2 and OV90) cells [87]. The antioxidant activity of 

flavonoids was also investigated in humans. It was found that serum total antioxidant capacity 

correlates with anthocyanin consumption in the diet [88]. Furthermore, cyanidin induced cell death 

via ROS modulation in the DU145 and LnCap human prostatic cancer cells [89]. Cyanidin and 

delphinidin accelerated cellular ROS accumulation, suppressed glutathione reductase, and depleted 

glutathione resulting in cytotoxicity in metastatic (LoVo and LoVo/ADR) colorectal cancer cells [90]. 

Thus, numerous studies show beneficial effects of flavonoids as potent antioxidants under 

normal and pro-oxidants under pathological conditions, capable of activating apoptosis and 

suppressing proliferation and inflammation. 

4.2. Flavonoids in Apoptosis 

Cancer cells are resistant to apoptosis—a programmed cell death, usually induced by a series of 

signal transduction pathways and pro-apoptotic proteins—caspases and Bcl-2 family proteins [20,91]. 

There are two main signaling cascades of apoptosis—extrinsic, related to tumor necrosis factor (TNF) 

superfamily with main signaling protein—caspase 8; and intrinsic—mitochondrial pathway, where 

Bcl-2 family proteins launch the activation of caspases 9, 3 and 7 (Figure 10) [20,91]. There is an 

overexpression of oncogenic genes (e.g., c-Myc), leading to cellular proliferation and p53 suppression, 

and activated anti-apoptotic proteins of Bcl-2 family in cancer cells [92], whereas pro-apoptotic 
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proteins and caspases could be downregulated [91,92]. Flavonoids could target apoptotic signaling 

cascade stimulating the cell death pathways [20,21] (Figure 10). 

 

Figure 10. Flavonoid targets in extrinsic and intrinsic apoptosis pathways. TNF—tumor necrosis 

factor, tBid—truncated Bid, Bcl-2—B-cell lymphoma protein 2, Bcl-xL—Bcl-2 homologue splice 

variants, Cyt c—cytochrome c, SMAC—second mitochondrial activator of caspases, IAPs—inhibitor 

of apoptosis proteins, APAF-1—apoptotic protease activating factor 1. Yellow arrows show the effect 

of flavonoids (activation or suppression). 

Flavonoids acting as pro-oxidants could suppress proliferation of cancer cells by inhibition of 

epidermal growth factor receptor/mitogen activated protein kinase (EGFR/MAPK), 

phosphatidylinositide 3-kinases (PI3K), protein kinase B (Akt) as well as nuclear factor kappa-light-

chain-enhancer of activated B cells (NF-κB) [18,20,38]. 

Isoflavonoid genistein could regulate estrogen receptor-α expression and change Bax/Bcl-2 ratio 

downregulating proliferation, differentiation, and activating apoptosis in MCF-7 and 3T3-L1 cells 

[93]. Moreover, genistein suppressed Bcl-2, Bcl-xL, c-inhibitor of apoptosis protein 1 (c-IAP1), 

survivin, and NF-κB in C200 and A2780 cells [94], increased caspase-3 activity in HT-29 colon cancer 

cells [95] and activated intrinsic apoptotic signaling pathway in HCT-116 and LoVo cells [96]. 

Isoflavonoid daidzein also acted as phytoestrogen [97]. It promoted cytochrome c release from 

mitochondria, leading to caspase 7 and 9 activation and also altered Bax/Bcl-2 ratio in MCF-7 cells 

[60,98]. Daidzein induced apoptosis in the HCCSK-HEP-1 cell line via Bak upregulation and 

downregulation of anti-apoptotic proteins, resulting in cytochrome c release from mitochondria and 

activating subsequent apoptotic pathway involving caspases 3 and 9 [99]. Flavanone hesperetin 

induced cytochrome c release, activation of caspases-3 and -9, and reduced Bax to Bcl-2 ratio in gastric 

cancer cells [100], in the Eca109 cell line [62] as well as in the HT-29, MCF-7, and MDA-MB-231 cell 

lines [64,101]. In H522 cells, hesperetin induced extrinsic apoptotic pathway due to overexpression 

of TNF-protein superfamily members, caspase-9 activation, and decrease in p53 level [102]. 

Furthermore, hesperetin inhibited the NF-κB signaling pathway and reduced Bcl-2 transcription and 

translation in PC-3 cells [103]. Flavanone naringenin could induce apoptosis via increased p53 

expression, Bax and caspase-3 cleaving, and downregulated Bcl-2 and survivin in SGC-7901 cell line 

[104,105]. Naringenin-induced extrinsic apoptotic pathway was related to overexpression of TNF-
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family proteins [20]. Flavanols catechins, especially epigallocatechin galate, induced apoptosis and 

cell-cycle arrest, inhibited NF-κB, leading to cyclooxygenase-2 (COX) overexpression [106]. 

Moreover, it increased Bax/Bcl-2 ratio, upregulated p53, p21, caspases-3, and -9, and down-regulated 

PI3K, Akt, and Bcl-2 in T47D and HFF cells [107]. Catechins could also alter the expression of anti- 

and pro-apoptotic genes [108–110]. Cocoa flavanols have been shown to moderate apoptosis 

pathways in HepG2 [111,112] and Caco-2 cells [72]. Flavonol quercetin, a widely abundant 

phytoestrogen [20], was able to induce intrinsic apoptotic pathway via Bax and caspase-3 

upregulation and downregulation of Bcl-2 in MCF-7 cells [113–115]. Quercetin activated apoptosis in 

PC-3 and LNCaP cells regulating the p53 signaling pathway [116]. In HL-60 cells, quercetin activated 

intrinsic apoptotic cascade-modulating COX-2, activating caspase-3, modulating Bax, Bad, Bcl-2 

expression and inducing cytochrome c release from mitochondria [117]. In a human hepatoma cell 

line, quercetin induced apoptosis via caspase activation, regulation of Bcl-2, and inhibition of PI-3-

kinase/Akt and extracellular-signal-regulated kinase (ERK) pathways [118]. Quercetin was also able 

to suppress cancer cell proliferation due to inhibition of PI3K/Akt pathway [119]. Flavonol 

kaempferol, a phytoestrogen [120], induced intrinsic apoptosis in A2780/CP70, A2780wt and 

OVCAR-3 cell lines. Its main effects were related to the activation of caspases 3 and 7, the 

upregulation of p53, Bax and Bad and the downregulation of Bcl-xL protein [121]. In HeLa cells, 

kaempferol activated apoptosis elevating the Bax/Bcl-2 ratio [122]. Flavone apigenin also was 

reported to have estrogenic activity [123]. In PC-3 and DU145 cell lines apigenin induced Bax 

overexpression, the downregulation of Bcl-2 and Bcl-xL proteins, and stimulated cytochrome c 

release from mitochondria and subsequent activation of signaling cascades [124,125]. Apigenin 

upregulated p53 in ACHN, Caki-1 RCC cell lines [126]. In T24 cell line, apigenin inactivated PI3K/Akt 

signaling pathway, activated the intrinsic apoptotic pathway, promoted the cytochrome c release 

from mitochondria, inhibited Bcl-xL [127,128]. In HCT-116 cells, apigenin activated both extrinsic and 

intrinsic apoptotic pathways [129]. Flavone chrysin activated apoptosis in HeLa cells due to increased 

DNA fragmentation and stimulated p38 and NF-κB pathways [20]. Chrysin upregulated caspase 3 in 

the U937 cell line [130]. In SP6.5 and M17 melanoma cells, chrysin induced the intrinsic apoptotic 

pathway due to cytochrome c release-driven activation of caspases 3 and 9 [131]. Anthocyanidin 

pelargonidin stimulated the cytochrome c release from mitochondria, activated Bax, Bid, caspases 3 

and 9, and inhibited the expression of Bcl-2 and Bcl-xL in HT-29 cells [132,133]. Furthermore, 

pelargonidin downregulated the PI3K/Akt signaling pathway thus suppressing proliferation of 

U2OS cell line [132]. Cyanidin could activate cytochrome c and upregulate Bax protein expression 

[20]. In U87 cells, cyanidin promoted Bax and p53 expression and downregulated Bcl-2 expression 

[134]. Delphinidin decreased proliferation of the SKOV3 cell line due to the suppression of PI3K/Akt 

and ERK1/2/MAPK signaling pathways [135]. Delphinidin was also able to activate caspases 3 and 9 

in the NSCLC cell line [136]. 

Thus, flavonoids could activate cell death signaling pathways in cancer cells by a dual 

mechanism—activating anti-apoptotic proteins and suppressing pro-apoptotic proteins and 

caspases. 

4.3. Immunomodulatory and Anti-Inflammatory Effects of Flavonoids 

Chronic inflammation leads to tumor development, modulating cellular transformation, 

survival, proliferation, invasion, metastasis, and angiogenesis pathways [137]. Flavonoids were 

shown to exert anti-inflammatory action via immune cell regulation, suppression of chemokines, 

COX-2, cytokines and pro-inflammatory transcription factors, inhibition of PI3K/Akt, inhibitor of 

kappa kinase/c-Jun amino-terminal kinases (IKK/JNK) [19,21,137]. The NF-kB signaling pathway is 

crucial in the regulation of inflammation [19,21,137] and is related to the modulation of a wide variety 

of oncogenes (Figure 11) [137]. 

The immune system is a key player in protecting an organism from infections and cancer. B and 

T lymphocytes and macrophages are the major cells responsible for the immunity. B cells secret 

antibodies which are able to attach to pathogens, marking them so they are recognized and destroyed 

by phagocytes [138,139]. T cytotoxic cells are able to kill tumor cells directly, and T helper cells secrete 
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cytokines and mediators which regulate the activities of B lymphocytes and macrophages [138,139]. 

Flavonoids have been shown to modulate directly the differentiation and count of the cells belonging 

to the immune system [138,139]. Furthermore, flavonoids can inhibit the activity of the mammalian 

target of rapamycin (mTOR) and thus reduce T effector differentiation and induce T regulatory cells 

[140]. Programmed cell death protein 1 (PD-1) is present on the surface of B cells, T cells and 

macrophages [141]. When programmed death-ligand 1 (PD-L1)—a protein present on the surface of 

tumor cells—binds the PD-1, the signal is sent to suppress the immune system response; therefore, 

the inhibitors of PD-L1/PD-1 signaling pathway could be promising agents in cancer immunotherapy 

[141]. The studies on flavonoids as possible suppressors of PD-L1/PD-1 immune checkpoint have not 

been very intense yet, nevertheless the first encouraging results were obtained demonstrating the 

inhibition of PD-L1 expression by flavone apigenin in A375 melanoma cells [142] and PD-1/PD-L1 

inhibition in vitro by flavonols quercetin [143] and fisetin [143] as well as isoflavonoid glyasperin C 

[144]. 

Isoflavone genistein has been shown to modulate the expression of several genes involved in 

cell cycle regulation, migration, inflammation, and the PI3K and MAPK pathways in HeLa cells [145]. 

Genistein exerted influence on the expression of inflammatory-related genes in breast cancer MCF-7 

(high ERα/ERβ ratio), T47D (low ERα/ERβ ratio), and MDA-MB-231 (ERα-negative) cell lines [146]. 

Furthermore, genistein inhibited the increased M2 polarization of macrophages and stemness of 

ovarian cancer SKOV3 and OVCA-3R cell lines by the co-culture of macrophages with ovarian cancer 

stem-like cells through disrupting the interleukin (IL)-8/STAT3 signaling axis [147]. Isoflavone 

daidzein downregulated the pro-inflammatory NF-kB and JNK signaling pathways in adipocyte and 

macrophage co-cultures [148]. Flavanone hesperetin suppressed secretion of TNF-α, IL-6, and IL-1β; 

decreased inducible nitric oxide synthase (iNOS) and COX-2 gene expression; down-regulated NF-

κB (p65) phosphorylation in lipopolysaccharide -induced RAW 264.7 cells [149]. Hesperetin inhibited 

cell proliferation markers, angiogenic growth factors, COX-2 mRNA expression in 1,2-

dimethylhydrazine-induced colon cancer [150]. 

 

Figure 11. Flavonoid targets during inflammation processes. TNF—tumor necrosis factor, IL—

interleukin, AP-1—activator protein 1, NF-κB—nuclear factor kappa-light- chain-enhancer of 

activated B cells, STAT3—signal transducer and activator 3, NOX—NADPH oxidase, COX-2—

cyclooxygenase-2, iNOS—inducible nitric oxide synthase, AMPK—AMP—activated protein kinase, 

PI3K—phosphatidylinositide 3-kinases, Akt—protein kinase B, mTOR—mammalian target of 

rapamycin, MAPK—mitogen activated protein kinase, ERK—extracellular-signal-regulated kinase, 

JNK—c-Jun N-terminal kinase, p38—p38 kinse, IκB—IκB kinase, JAK—Janus kinase. 

Quercetin and naringenin prevented the lowered mRNA expression of liver IL-4, p53 and Bcl-2 

in a diethylnitrosamine/2-acetylaminofluorene-induced hepatocarcinogenesis model in rats [151]. 

Naringenin inhibited the migration of breast cancer MDA-MR-231 cell line via modulation of 
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inflammatory and apoptotic signaling pathways [152]. It also suppressed the migration and invasion 

of glioblastoma cells due to inhibition of ERK and p38 activities [153]. Catechins, especially 

epigallocatechin galate, inhibited NF-κB pathway and suppressed COX-2 overexpression [106]. 

Epicatechin induced NF-κB, AP-1 and Nrf2 via PI3K/AKT and ERK signalling in HepG2 cells [112]. 

Cocoa polyphenols prevented inflammation in the colon of azoxymethane-treated rats and in TNF-

α-stimulated Caco-2 cells [154]. Flavonol quercetin inhibited the expression of matrix 

metallopeptidases MMP9 and MMP2 in human glioblastoma U251 cell line [155]. In ascite cells of 

Dalton’s lymphoma-bearing mice, quercetin downregulated the phosphorylation of Akt and PDK1 

resulting in suppressed phosphorylation of downstream survival factors such as Bad, glycogen 

synthase kinase-3 (GSK-3β), mTOR, and nuclear factor of kappa light polypeptide gene enhancer in 

B-cells inhibitor alpha (IkBα) [156]. Furthermore, quercetin attenuated the levels of angiogenic factor 

vascular endothelial growth factor A (VEGF-A) and inflammatory enzymes COX-2 and iNOS [156]. 

Quercetin inhibited the migration and invasion of the human colon cancer Caco-2 cell line via 

regulation of the toll-like receptor 4 (TLR4)/NF-kB pathway [157]. Quercetin has been shown to be a 

potent inhibitor of mTOR activity and the PI3K/Akt signaling pathway in cancer cells [158]. Flavonol 

kaempferol downregulated TNF-alpha induced IL-8 promoter activation and gene expression in 

HEK 293 cells [159]. Furthermore, kaempferol reduced the plasma levels of the cytokines IL-6, IL-1β 

and TNF-α and suppressed the MAPK and NF-κB signaling pathways [160–162]. Flavone apigenin 

downregulated TNF-α-related inflammatory signaling in the A375 human melanoma cell line [163]. 

Apigenin decreased myeloperoxidase (MPO), inflammatory cytokine and COX-2 levels and 

downregulated NF-κB and STAT3, thereby inhibiting inflammation and inflammation-induced 

carcinogenesis in an inflammatory bowel disease and colitis-associated cancer model [164]. Apigenin 

could suppress Akt, ERK, MAPK, COX-2, IL-6, TNF-α, IL-1, iNOS activities in vitro and in vivo 

[163,165]. Flavone chrysin inhibited iNOS and COX-2 expression, and decreased the levels of 

proinflammatory cytokines IL-6, TNF-α, and prostaglandin E(2) (PGE(2)) in a renal cancer model in 

rats [166]. Cyanidin has been shown to inhibit pro-inflammatory cytokine interleukin-17A (IL-17A) 

[167]. Pelargonidin suppressed the production of TNF-α or IL-6 and the activation of NF-κB or ERK½ 

in vitro [168]. Cocoplum anthocyanins inhibited the production of TNF-α, IL-6 and the activation of 

NF-κB or ERK ½ in HT-29 colorectal adenocarcinoma cells [169]. Delphinidin suppressed the 

activation of NF-κB through MAPK signaling pathways in MCF-7 human breast carcinoma cells 

[170]. 

Chronic inflammation often precedes tumor development, therefore anti-inflammatory effects 

of flavonoids could be very important in decreasing the inflammation and enhancing the antitumor 

activity of immune cells. 

4.4. Effects of Flavonoids on Mitochondrial Functions 

Tumor-cell metabolism is altered compared to normal cells due to highly abnormal 

mitochondrial functions (Figure 8) [171]. Therefore, recent interest in natural compounds reverting 

the mitochondria to normal mode has emerged, and flavonoids have also been tested among 

potential drug candidates [20,36,37]. 

Hexokinase and voltage-dependent anion channel (VDAC) coupling in mitochondria prevents 

induction of apoptosis in tumors [14]. In human breast carcinoma (MDA-MB-231 and MCF-7) cells, 

an O-methylated flavone oroxylin A was reported to promote the detachment of hexokinase from 

mitochondria, resulting in inhibition of glycolysis [17]. Overexpression of antiapoptotic proteins of 

the BCL-2 family in mitochondria results in resistance to apoptotic pathways [37]. Flavanone 

hesperetin reduced antiapoptotic BCL-2 family protein transcription and translation in the human 

prostate cancer PC-3 cell line [103]. Naringenin and epigallocatechin-3-gallate decreased the BCL-2 

expression accordingly in gastric cancer (SGC-7901) cells [104] and in cholangiocarcinoma (HuCC-

T1) cells [172]. Mitochondrial adenine nucleotide translocase is a protein embedded in the 

mitochondrial inner membrane and responsible for ATP/ADP exchange [173]. It is one of the 

component of mitochondrial permeability transition pore complex, which is a key factor triggering 

apoptosis [174]. Quercetin (50 µM) was able to inhibit adenine nucleotide translocase by 46% in 
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mitochondria isolated from rat kidney cortex [175], whereas apigenin (20 µM) inhibited it in human 

prostate cancer DU145 cells [176]. A procyanidin-rich French maritime pine (Pinus pinaster) bark 

extract inhibited the electron transport chain in isolated rat liver mitochondria and in 

submitochondrial particles, affecting complexes I, II and III [177]. An isoflavone genistein induced 

mitochondrial permeability transition in isolated rat liver mitochondria due to increased ROS 

generation at the complex III of the mitochondrial respiratory chain [178]. Epigallocatechin-3-gallate 

suppressed the growth of highly aggressive malignant pleural mesothelioma cells inhibiting complex 

I, II, and ATP synthase [179]. Moreover, epigallocatechin-3-gallate modulated mitochondrial 

bioenergetic functions and regulated apoptosis signaling cascade [180]. Anthocyanins were able to 

reduce cytosolic cytochrome c preventing apoptosis and support the electron transfer between 

NADH dehydrogenase and cytochrome c [181,182]. The inhibition of the tricarboxylic acid (TCA) 

cycle is one of the hallmarks of cancer [37]. Quercetin [183], kaempferol [184], hesperetin and 

naringenin [185] have been shown to stimulate the TCA cycle shifting anaerobic glycolysis to 

oxidative phosphorylation, normally suppressed in cancer cells. The effects of flavonoids on 

mitochondrial functions are summarized in Figure 12. 

In tumor cells, mitochondria are usually hyperpolarized, and their membrane potential reaches 

220 mV [186,187] making them resistant to cell death signaling. Our group evaluated direct effects of 

selected flavonoids on the functions of cardiac mitochondria respiring on pyruvate and malate as 

substrates [188–191]. The results demonstrated that (-)-epicatechin [190,191], procyanidin B2 

[190,191], hyperoside [189,190], quercetin [189,190], quercitrin [189,190] and rutin [189,190] 

uncoupled oxidation from phosphorylation. Furthermore, all flavonoids were reported to induce 

apoptosis (reviewed in [20]) and initially decrease mitochondrial membrane potential [20]. 

 

Figure 12. Indirect and direct effects of flavonoids on mitochondrial functions. 

Most flavonoids have pKa values ranging between 6 and 9, i.e., close to the physiological pH of 

the cytosol and mitochondrial compartments, and favorable distribution coefficients [26–28], and 

therefore they have the ability to reach the mitochondrial matrix and release a proton in its relatively 

basic environment (pH 7.8). This effect might be crucial in the chemoprevention of cancer since the 

mild mitochondrial uncoupling effectively protects cells from oxidative stress. 
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4.5. Effects of Flavonoids on Gut Microbiota 

The gastrointestinal tract, and especially the intestinal barrier, is very important in sustaining 

health [192,193]. Intestinal epithelium, besides nutrient absorption, provides a barrier controlling the 

entrance of microorganisms, their metabolic products and toxins as well as toxins present in ingested 

foods [194]. Due to anti-inflammatory action, flavonoids could protect the integrity of the intestinal 

barrier [192,195,196]. Flavanol epicatechin and flavonol quercetin suppressed systemic inflammation 

in rodent models of overfeeding (high fructose and high fat diets) [197–199]. Plant extracts rich in 

anthocyanins and pure anthocyanins could protect Caco-2 cell monolayers from permeabilization 

due to inflammation [200,201], whereas O-glucosides of delphinidin and cyanidin were more potent 

than the O-glucosides of petunidin, peonidin and malvidin [200]. In several metaanalysis, flavones, 

flavanols, flavonols, isoflavones, anthocyanidins and proanthocyanidins could reduce colorectal 

cancer risk [202–205]. Thus, some flavonoids were able to prevent and cure metabolic diseases 

directly at the gastrointestinal tract [206].  

Flavonoids could suppress the activity of gut metabolizing enzymes—α-glucosidase, pancreatic 

lipoprotein lipase and amylase [192]. In vivo, proanthocyanidins inhibited triglyceride absorption in 

mice and in humans [207]. Oolong tea-derived epigallocatechin galate suppressed α-amylase [208]. 

In the gastrointestinal tract lumen, the decreased activities of α-glucosidase, pancreatic lipoprotein 

lipase and amylase would lead to a suppressed absorption of glucose from complex carbohydrates 

and fatty acids from triglycerides [192,209]. 

The microbiota present in the intestinal lumen is very important for the whole body. The link 

between pathological conditions, ingested food and the gut microbiota has not been established yet, 

although the primary investigations let hypothesize that it might be possible to prevent chronic 

diseases by modulating the intestinal microflora [210–212]. Most flavonoids (except flavanols) are 

naturally attached to sugars as β-glycosides, therefore they are not readily absorbed in the small 

intestine [213,214], and glycosylated flavonoids reach the colon [34] where the microbiota digest the 

flavonoids forming phenolic acids and other metabolites, which can later be absorbed [213,215]. Thus, 

flavonoids in the colon could influence the gut microbiome, whereas microbes could modulate 

flavonoid activity and bioavailability metabolizing them and these processes may be beneficial for 

health [192]. Flavonoids are known to exert antimicrobial activity, inhibiting specific microbes, such 

as pathogenic and commensal microorganisms [209]. Quercetin was shown to suppress the growth 

of Lactobacillus sp., Bacteroides galacturonicus and Ruminococcus gauvreauii [216]. The polyphenols 

present in cloudberry could decrease the growth of Candida albicans, Bacillus cereus, Helicobacter pylori, 

Campylobacter jejuni, Staphylococcus epidermidis, Staphylococcus aureus and Clostridium perfingens [217]. 

Furthermore, flavonoids could promote the growth of specific microbes in the gut [192]. Mice 

ingesting food rich in apple flavonoids demonstrated higher levels of bacteria belonging to a 

combined group of Bacteroides–Prevotella–Poryphyromonas and Bifidobacterium spp. but significantly 

decreased levels of Lactobacillus spp. [218]. Quercetin and rutin increased the growth of 

Bifidobacterium bifidum in vitro [219]. These studies show that flavonoids can affect microbial 

populations by changing endotoxin production, converting primary into secondary bile acids [220], 

sustaining immune homeostasis [221] and participating in bioactive and nutrient absorption and 

metabolism, thereby regulating short-chain fatty acid formation [222]. 

Thus, ingestion of flavonoids is related to the suppression of inflammatory markers via the 

downregulation of the transcription factor NF-κB signaling pathway in the gastrointestinal tract that 

could be a promising strategy in therapeutic approaches preventing chronic diseases and controlling 

inflammation due to the modulation of the microbiota. However, at high doses flavonoids could exert 

pro-oxidant properties, act as mutagens and inhibit enzymes involved in hormone metabolism [223–

225]. Since adverse effects due to flavonoid overdose may outweigh the beneficial activities, the 

excessive intake of flavonoids in diets should be avoided [224,225].  

5. Conclusions and Future Perspectives 

Flavonoids are natural molecules, present in human foods and beverages since ancient times; 

therefore, they do not have dangerous side effects as synthetic anti-cancer drugs Numerous studies 
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have shown their strong positive activities in reducing inflammation, modulating immune response, 

and supporting and restoring the normal functions of cells. Flavonoids exert a wide range of 

anticancer effects and, therefore, they could serve as potential compounds for further studies on the 

development of novel cancer chemopreventive agents and on understanding their detailed 

mechanisms of action. Furthermore, the daily intake of flavonoids as flavonoid-rich foods or 

flavonoid supplements could induce favorable changes in the gut microbiota, decreasing the risk of 

cancer and normalizing vital functions at cellular level. 
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