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Abstract Flavonoids are widely distributed as secondary

metabolites produced by plants and play important roles in

plant physiology, having a variety of potential biological

benefits such as antioxidant, anti-inflammatory, anticancer,

antibacterial, antifungal and antiviral activity. Different

flavonoids have been investigated for their potential

antiviral activities and several of them exhibited significant

antiviral properties in in vitro and even in vivo studies. This

review summarizes the evidence for antiviral activity of

different flavonoids, highlighting, where investigated, the

cellular and molecular mechanisms of action on viruses.

We also present future perspectives on therapeutic appli-

cations of flavonoids against viral infections.

Introduction

Throughout human history, thousands of biologically

active plants have been identified and used in medicine.

Virtually all cultures around the world continue to rely on

medicinal plants for primary health care. According to the

World Health Organization report, about 80% of the

world’s population depend on medicinal plants to satisfy

their health requirements [30]. Furthermore, there are

currently hundreds of modern drugs based on active com-

pounds isolated from plants. Plants have the ability to

produce a wide range of compounds including flavonoids,

phytoalexins, lignans, and tannins, which are responsible

for key functions in plant growth and development. Fla-

vonoids or polyphenolics comprise the largest group of

secondary metabolites found in vegetables, fruits, seeds,

nuts, spices, stems as well as in red wine and tea (Table 1)

[88]. These compounds are synthesized in response to

various abiotic stress conditions such as ultraviolet radia-

tion and play an important role as defense agents against

plant pathogens and insects [9, 84]. The first evidence of a

biological activity of flavonoids was reported by Albert

Szent-Gyorgyii in 1938, who showed that citrus peel fla-

vonoids prevent capillary bleeding and fragility associated

with scurvy [109]. Since then, a broad spectrum of bio-

logical activities such as anti-inflammatory, antioxidant,

antibacterial, antiviral, anticancer, and neuroprotective has

been described for flavonoids [40, 53, 65, 95, 137].

Research for antiviral agents isolated from plants started in

1950s, when the activity of 288 plants against influenza A

virus was evaluated in embryonated eggs [14]. During the

last 60 years, several plants and plant-derived compounds

with antiviral properties were identified. In this article, we

review the results of both in vitro and in vivo experiments

demonstrating the antiviral activity of flavonoids, espe-

cially focusing on those classes of flavonoids that have

been extensively investigated.

Chemistry of flavonoids

There are now more than 6000 varieties of flavonoids

that have been structurally identified [35]. All these

compounds comprise a flavan nucleus and a fifteen-
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carbon skeleton consisting of two benzene rings (A- and

B-rings, as shown in Fig. 1) connected via a heterocyclic

pyrene ring (C-ring, as shown in Fig. 1). Flavonoids are

divided into several classes such as anthocyanidins, fla-

vones, flavonols, flavanones, flavan, isoflavanoids,

biflavanoids, etc (Table 1) [24]. The various classes of

flavonoids differ in the level of oxidation and pattern of

substitution of the pyrene ring, whereas individual

compounds within the classes differ in the pattern of

substitution of benzene rings. While in flavonoids the

B-ring links to the C-ring at the C2 position, the B-ring

of isoflavonoids is substituted at position C3 (Fig. 1).

Biflavonoids comprise of two identical or non-identical

flavonoid units conjoined through an alkyl- or alkoxy-

based linker (Fig. 1).

In plants, flavonoids generally occur as aglycones, gly-

cosides and methylated derivatives. They are biosynthe-

sized through the phenylpropanoid pathway, transforming

phenylalanine into 4-coumaroyl-CoA, which then enters

the flavonoid biosynthesis pathway [32]. Depending on the

plant species, a group of enzymes, such as hydroxylases

and reductases, modify the basic flavonoid skeleton,

resulting in the different flavonoid classes. Finally, trans-

ferases modify the flavonoid skeleton with sugar, methyl

groups and acyl moieties. These modifications alter the

solubility and reactivity of flavonoids [6]. A large body of

evidence supports the role of light in the regulation of

flavonoid biosynthesis [156].

Antiviral activity of flavones

Flavones constitute a major class in the flavonoid family

based on a 2-phenyl-1-benzopyran-4-one backbone. Natural

flavones include apigenin, baicalein, chrysin, luteolin,

scutellarein, tangeritin, wogonin and 6-hydroxyflavone. The

antiviral activity of flavones is known from the 1990s, when

it was showed that the simultaneous application of apigenin

with acyclovir resulted in an enhanced antiviral effect on

herpes simplex virus types 1 and 2 (HSV-1 and HSV-2) in

cell culture [92]. Apigenin is most commonly isolated in

abundance from the family Asteraceae. The organic and

aqueous extracts from Asteraceae plants with apigenin as a

major compound were found to be active against HSV-1,

poliovirus type 2 and hepatitis C virus (HCV) [85, 127].

Apigenin isolated from sweet basil (Ocimum basilicum)

showed a potent antiviral activity against adenoviruses

(ADV) and hepatitis B virus in vitro [17]. Besides these

DNA viruses, apigenin was found to exert antiviral effect

against African swine fever virus (ASFV), by suppressing

the viral protein synthesis and reducing the ASFV yield by 3

log [46]. Apigenin is also active against RNA viruses. For

picronaviruses, it has been shown that apigenin is able to

inhibit viral protein synthesis through suppressing viral

IRES activity [82, 107]. Furthermore, apigenin affects

enterovirus-71 (EV71) translation by disrupting viral RNA

association with trans-acting factors regulating EV71 trans-

lation [153]. Shibata et al. [115] showed that apigenin has

Table 1 Classification and sources of different flavonoids

Class Flavonoid Source(s)

Flavone Apigenin Chamomile tea (Matricaria chamomilla), leaves of parsley (Petroselinum crispum), celery

(Apium graveolens) and spinach (Spinacia oleracea)

Baicalein Roots of baical skullcap (Scutellaria baicalensis) and blue skullcap (Scutellaria lateriflora)

Luteolin Leaves of basil (Ocimum basilicum), parsley (Petroselinum crispum) and spinach (Spinacia

oleracea), seeds of pepper (Capsicum annuum)

Flavonol Quercetin Red (grape) wines, leaves of radish (Raphanus raphanistrum subsp. sativus) and fennel

(Foeniculum vulgare), seeds of pepper (Capsicum annuum)

Kaempferol Raspberry (Rubus idaeus), capers (Capparis spinosa), Brussels sprout (Brassica oleracea),

black bean (Phaseolus vulgaris) and fruit of grapes

Rutin Seeds of Tartary buckwheat (Fagopyrum tataricum), leaves and petioles of rhubarb (Rheum

rhabarbarum), fruits of orange (Citrus aurantium) and lemon (Citrus limon)

Fisetin Leaves of acacias (Acacia greggii and Acacia berlandieri), fruits of strawberry (Fragaria

ananassa) and grapes

Flavan Catechin Cocoa bean (Theobroma cacao), argan oil (Argania spinosa), leaves of tea plant (Camellia

sinensis)

Epigallocatechin gallate Leaves of tea plant (Camellia sinensis), skin of apple (Malus pumila) and plums

Isoflavone Genistein, glycitein, daidzein,

puerarin, ononin

Seeds of fava beans (Vicia faba) and soybeans (Glycine max)

Anthocyanidin Cyanidin, peonidin, apigenidin Seeds and skin of cherry (Prunus avium), blackberry (Rubus genus), bilberry (Vaccinium

genus).

2540 H. Zakaryan et al.

123



antiviral effect on HCV through the reduction of mature

microRNA122, a liver-specific microRNA which positively

regulates HCV replication.

Among flavones, baicalein and luteolin have been also

extensively investigated with respect to their antiviral

activity. Baicalein significantly reduced the levels of

Fig. 1 Basic structure of

various flavonoids
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human cytomegalovirus (HCMV) early and late proteins,

as well as viral DNA synthesis, although it had no effect on

viral polymerase activity [23, 31]. Baicalein impaired avian

influenza H5N1 virus replication in both human lung

epithelial cells and monocyte-derived macrophages by

interfering with neuraminidase activity [116]. Other studies

showed that oral administration of baicalein to BALB/c

mice infected with influenza H1N1 virus decreased the

lung virus titer and increased the mean time to death [139].

Similar effects were recorded on mice infected with Sendai

virus [28]. These inhibitory effects in vivo were mediated

by serum baicalin, a metabolite of baicalein which has a

glucose residue [26]. Baicalin alone exerts its anti-in-

fluenza activity by modulating the function of NS1 protein,

which down-regulates IFN induction [99]. Further studies

indicated that baicalin can directly induce IFN-c produc-

tion in human CD4? T cells and CD8? T cells and act as a

potent inducer of IFN-c during influenza virus infection

[19]. Recently, novel baicalein analogs with B-rings sub-

stituted with bromine atoms demonstrated extremely potent

activity against influenza H1N1 Tamiflu-resistant virus,

indicating that baicalein and its analogs can be favorable

alternatives in the management of Tamiflu-resistant viruses

[21]. In vitro replication of HIV-1 was suppressed by

baicalin when infected cells were treated during the early

stage of the virus replication cycle [66]. HIV-1 envelope

protein was found to be the target site of baicalin’s antiviral

action via the interference of interactions between the virus

structural protein and specific host immune cells [75].

Baicalein and baicalin were also investigated against den-

gue virus (DENV). They exerted a significant virucidal

effect on extracellular viral particles and interfered with

different steps of DENV-2 replication [91, 148, 150]. In

silico studies revealed that baicalein has strong binding

affinity with DENV NS3/NS2B protein (-7.5 kcal/mol),

and baicalin may interact closely with the virus NS5 pro-

tein at a binding affinity of -8.6 kcal/mol [47]. For baicalin,

computational studies also showed a high binding affinity

(-9.8 kcal/mol) against chikungunya virus (CHIKV) nsP3

protein, suggesting that baicalin can potentially interfere

with CHIKV infection [114].

It was found that luteolin has antiviral effect on HIV-1

reactivation by blocking both clade B- and C-Tat-driven

LTR transactivation [87]. Luteolin also showed significant

inhibition of Epstein-Barr virus (EBV) reactivation in cells

[133]; it suppressed the activities of the immediate-early

genes Zta and Rta by deregulating transcription factor Sp1

binding. Xu et al. [142] tested 400 highly purified natural

compounds for inhibition of EV71 and coxsackievirus A16

infections and found that luteolin exhibited the most potent

inhibition through disruption of viral RNA replication.

Besides these antiviral activities, luteolin or luteolin-rich

fractions showed antiviral effects against severe acute

respiratory syndrome coronavirus (SARS-CoV), rhesus

rotavirus, CHIKV and Japanese encephalitis virus (JEV)

[33, 67, 94, 146].

Antiviral activity of flavonols

Flavonols are characterized by a 3-hydroxy-2-phenyl-

chromen-4-one backbone. Among flavonols the antiviral

effect of quercetin was the most extensively investigated.

Early in vivo studies showed that oral treatment with

quercetin protected mice from lethal Mengo virus

[44, 125]. Furthermore, an enhanced protection was

observed when quercetin was administered in combina-

tion with murine type I interferon (IFN) [125]. Quercetin

also demonstrated a dose-dependent antiviral activity

against poliovirus type 1, HSV-1, HSV-2, and respiratory

syncytial virus (RSV) in cell cultures [60, 83]. Epimedium

koreanum Nakai, which contains quercetin as the major

active component, has been shown to induce secretion of

type I IFN, reducing the replication of HSV, Newcastle

disease virus (NDV), vesicular stomatitis virus (VSV)

in vitro, as well as influenza A subtypes (H1N1, H5N2,

H7N3 and H9N2) in vivo [18]. Hung et al. [51] have

suggested possible mechanisms whereby quercetin may

exert its anti-HSV activity. They revealed that quercetin

inhibits the infection of HSV-1, HSV-2 and acyclovir-

resistant HSV-1 mainly by blocking viral binding and

penetration to the host cell. They also reported that

quercetin suppresses NF-jB activation, which is essential

for HSV gene expression. Recent investigations also

pointed out the antiviral activity of quercetin against a

wide spectrum of influenza virus strains. It interacts with

influenza hemagglutinin protein, thereby inhibiting viral-

cell fusion [136]. In addition, in silico analysis revealed

that quercetin may be a potential inhibitor of the neu-

raminidase of influenza A H1N1 and H7N9 viruses

[79, 80]. Molecular docking analysis also found that

quercetin may interact with HCV NS3 helicase, NS5B

polymerase and p7 proteins [34, 86]. These results cor-

relate with experimental studies showing the anti-HCV

activity of quercetin through inhibition of NS3 helicase

and heat shock proteins [4, 81]. Besides these viruses, the

inhibitory activity of quercetin and its derivatives have

been reported for other viruses, including ADVs, arthro-

pod-borne Mayaro virus, porcine reproductive and respi-

ratory syndrome virus, canine distemper virus, JEV,

DENV-2, porcine epidemic diarrhea virus, and equid

herpesvirus 1 [11, 16, 27, 38, 41, 59, 118, 149]. Quercetin

also possesses anti-rhinoviral effects by inhibiting endo-

cytosis, transcription of the viral genome and viral protein

synthesis [37]. In mice infected with rhinovirus, quercetin

treatment decreased viral replication and attenuated virus-

induced airway cholinergic hyper-responsiveness [37].
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Kaempferol is another flavonol extracted from different

medicinal herbs. Kaempferol and its derivatives bearing

acyl substituents have shown inhibitory activity against

HCMV [89]. Kaempferol derivatives isolated from Ficus

benjamina leaves were more effective against HSV-1 and

HSV-2 than their aglycon form [145]. Kaempferol

derivatives with rhamnose residue turned out to be potent

inhibitors of the 3a channel of coronavirus, which is

involved in the mechanism of virus release [112]. One of

the kaempferol derivative, kaempferol 3-O-a-L-
rhamnopyranoside, obtained from Zanthoxylum piperitum

was shown to significantly inhibit the replication of influ-

enza A virus in vitro [45]. Behbahani et al. found that

kaempferol and kaempferol-7-O-glucoside have strong

HIV-1 reverse transcriptase inhibitory activity [5]. These

compounds exerted their effects, at a concentration of 100

lg/ml, on the early stage of HIV replication in target cells.

Recently, kaempferol-3,7-bisrhamnoside isolated from

Chinese medicinal Taxillus sutchuenensis was shown to

have potent in vitro activity on HCV NS3 protease function

[144]. Antiviral activity of kaempferol on the influenza

viruses H1N1 and H9N2 were mentioned in a study con-

ducted by a group of researchers in South Korea. Mecha-

nistic and structural studies suggested that the compound

acts on the virus neuraminidase protein and specific func-

tional groups are responsible for kaempferol’s efficacy

[57]. A study comparing the antiviral activities of kaemp-

ferol and an isoflavone, daidzein, showed that kaempferol

exerted more potent inhibitory activities on JEV replication

and protein expression, than daidzein. JEV’s frameshift site

RNA (fsRNA) has been proposed as the target site for

kaempferol’s inhibitory activity against this flavivirus

[152]. Seo et al. conducted a study comparing the potency

of different classes of flavonoids against two RNA viruses,

namely murine norovirus and feline calicivirus. Their

findings demonstrated that, among the flavonoids tested,

kaempferol exhibited the most potent inhibitory activity

against these two viruses [113].

There are number of other flavonols and derivatives

acting as antivirals. For example, sulfated rutin, which is

modified from glycoside rutin, demonstrated significant

activity against different HIV-1 isolates [123]. This com-

pound inhibited HIV-1 infection by blocking viral entry

and virus-cell fusion, likely by interacting with HIV-1

envelope glycoproteins. Rutin at 200 lM concentration

was shown to inhibit EV71 infection by suppressing the

activation of MEK1-ERK signal pathway, which is

required for EV71 replication of [129]. Rutin and fisetin

also inhibited the replication of EV-A71 by affecting the

enzymatic activity of the 3C protease [76]. Fisetin treat-

ment caused a dose-dependent decrease in the production

of CHIKV nonstructural proteins and inhibition of viral

infection [73]. Moreover, Zandi et al. showed that DENV-2

RNA copy number was significantly reduced following

addition of fisetin to infected cells [149]. Yu et al. found

that myricetin may serve as chemical inhibitor of SARS-

coronavirus because it affects the ATPase activity of the

viral helicase [147].

Antiviral activity of flavans

Flavans are characterized by a 2-phenyl-3,4-dihydro-2H-

chromene skeleton. These compounds include flavan-3-ols,

flavan-4-ols and flavan-3,4-diols. Among flavan-3-ols, the

antiviral activity of catechin and its derivatives epicatechin,

epicatechin gallate, epigallocatechin (EGC), and epigallo-

catechin gallate (EGCG), which are found in tea, has been

largely investigated [122]. Among different viruses studied

as potential targets, influenza virus has received the most

attention after an initial report by Nakayama et al. showing

that tea catechins, particularly EGCG, are able to bind to

the haemagglutinin of influenza virus, preventing its

adsorption to Madin-Darby canine kidney cells [98]. Fur-

thermore, it has been suggested that EGCG may be able to

damage the physical properties of the viral envelope,

resulting in the inhibition of hemifusion events between

influenza virus and the cellular membrane [66]. Recently,

Colpitts and Schang reported that EGCG competes with

sialic acid for binding to influenza A virus, thereby

blocking the primary low-affinity attachment to cells [22].

Another tea catechin, EGC, exerted the inhibitory effect on

the acidification of endosomes and lysosomes, thereby

reducing viral entry via clathrin-mediated endocytosis [52].

A structure-function relationship analysis of tea catechins

revealed the important role of the 3-gallolyl group of the

catechin skeleton for its antiviral activity [120]. The results

also showed that modification of the 3-hydroxyl position

significantly affected the antiviral activity. Catechin

derivatives containing carbon chains at 3-hydroxyl position

demonstrated potent anti-influenza activity in vitro and in

ovo [121].

Several reports have demonstrated that tea catechins

have an antiviral effect against HIV infection. Among tea

catechins, EGCG is the most effective because it exerts its

antiviral effect throughout several steps of the HIV-1 life

cycle. It directly binds to CD4 molecules with consequent

inhibition of gp120 binding, an envelope protein of HIV-1

[62, 134]. These studies identified Trp69, Arg59 and Phe43

of CD4 as potential sites for interaction with the galloyl

moiety of EGCG. The same residues are involved in

interaction with viral gp120 [135]. Furthermore, early

studies from Nakane and Ono showed that EGCG and ECG

were effective at inhibiting HIV-1 reverse transcriptase

in vitro [96, 97]. Tillekeratne et al. modified the molecular

structure of EGCG to determine the minimum structural

characteristics necessary for HIV-1 reverse transcriptase
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inhibition [124]. In their study, the gallate ester moiety was

found to be important for inhibition. Besides these effects,

EGCG has the ability to reduce viral production in

chronically infected monocytoid cells [143]. The inhibitory

effect was increased by approximately 25%, when EGCG

was modified with lyposomes.

Tea catechins are also effective against herpesviruses.

EGCG has been shown to block EBV lytic cycle by

inhibiting expression of viral genes including Rta, Zta and

EA-D [13]. Further studies indicated that one of the

mechanisms by which EGCG may inhibit EBV lytic cycle

involves the suppression of MEK/ERK1/2 and PI3-K/Akt

signaling pathways, which are involved in the EBV lytic

cycle cascade [78]. Isaacs et al. found that EGCG can

inactivate HSV virions by binding to the envelope glyco-

proteins gB and gD, which are essential for HSV infectivity

[54]. The EGCG digallate dimers theasinensin A, P2, and

theaflavin-3,3’-digallate inactivated HSV-1 and HSV-2

more effectively than did monomeric EGCG [55]. These

dimers are stable at vaginal pH, indicating their potential to

be antiviral agents against HSV infections.

The inhibitory effect of green tea extracts against HBV

has been reported [140]. In HepG2.117 cells, EGCG

inhibited HBV replication through impairing HBV

replicative intermediates of DNA synthesis, thereby

reducing the production of HBV covalently closed circular

DNA [48]. In contrast, Huang et al. found that EGCG

decreased HBV entry into immortalized human primary

hepatocytes by more than 80% but had no effect on HBV

genome replication [50]. Furthermore, EGCG is able to

enhance lysosomal acidification, which is an unfavorable

condition for HBV replication [155].

Besides these viruses, EGCG has been found to exert

antiviral activity against HCV by preventing the attach-

ment of the virus to the cell surface and suppressing RNA

replication steps [8, 15]. A recent study also showed

inhibitory activity of EGCG against another flavivirus,

Zika virus (ZIKV): in this study, foci forming unit reduc-

tion assays were performed to evaluate the antiviral activity

of EGCG on ZIKV at different stages of virus replication.

Foci observed showed more than 90% inhibition when the

cells were treated with EGCG during virus entry [10].

Similarly, EGCG is able to block CHIKV attachment to

target cells, but has no effect on other stages of infection

[132].

Antiviral activity of other flavonoids

Naringenin, which belongs to the flavanones class, has

been shown to reduce the replication of a neurovirulent

strain of Sindbis virus in vitro [102]. It also reduced

Sindbis virus- and Semliki Forest virus-induced cytopathic

effect in virus yield experiments [105]. Interestingly,

naringin, the glycoside form of naringenin did not have

anti-Sindbis virus activity, indicating that the rutinose

moiety of this flavanone blocks its antiviral effect. Narin-

genin is also able to block the assembly of intracellular

HCV particles and long-term treatment leads to 1.4 log

reduction in HCV [39, 64]. The alphavirus CHIKV was

effectively inhibited when infected Vero cells were treated

with naringenin at the post-entry stage. In the same study,

hesperetin, another flavanone which is found richly in

citrus fruits, was found to exert most potent anti-CHIKV

effect during the virus intracellular replication, with an

IC50 of 8.5 lM [1]. Molecular docking and molecular

dynamics studies by Oo et al. also revealed strong and

stable interactions between hesperetin and CHIKV non-

structural protein 2 (nsP2) as well as non-structural protein

3 (nsP3), suggesting that these proteins may be the target of

hesperetin’s anti-CHIKV activity [101].

Genistein is an isoflavonoid found in a number of plants

including soybeans and fava beans. As a tyrosine kinase

inhibitor, genistein reduced bovine herpesvirus type 1 and

New World arenavirus Pichinde replication, by preventing

the phosphorylation of viral proteins [2, 126]. Kinase

inhibitor cocktails containing genistein displayed a broad-

spectrum antiviral activity against arenaviruses and filo-

viruses [68]. Genistein was shown to inhibit HIV infection

of resting CD4 T cells and macrophages through interfer-

ence with HIV-mediated actin dynamics [42]. Furthermore,

it may act against HIV ion channel since it has the ability to

block the viral Vpu protein, which is believed to form a

cation-permeable ion channel in infected cells [110].

Genistein also exerted its antiviral effects on the replication

of HSV-1, HSV-2, and avian leucosis virus subgroup J, by

inhibiting virus transcription [3, 106]. The antiviral activity

of other flavonoids is presented in Table 2.

Future perspectives

In spite of the wide range of biological health benefits

which flavonoids possess, in addition to their high avail-

ability in humans’ daily diets, there are challenges ahead

for researchers before these natural compounds can be

applied as therapeutic options in the clinical setting.

Bioavailability, defined by the US Food and Drug

Administration as ‘‘the rate and extent to which the active

ingredient or active moiety is absorbed from a drug product

and becomes available at the site of action’’, has been the

main stumbling block to further advances in the potential

use of flavonoids in the medical community. Intake of

metabolic derivatives of flavonoids from various food

sources leads to relatively large differences in the final

amount being successfully absorbed and utilized by

humans [71]. Factors such as molecular sizes, glycosyla-

tion, esterification, lipophilicity, interactions with the
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enteric microorganisms, pKa, and other metabolic conju-

gations along the alimentary tract, affect the absorption and

bioavailability of flavonoids in humans

[49, 56, 69, 90, 93, 111, 133]. Hence, efforts in enhancing

the bioavailability of flavonoids upon intake by humans are

vitally necessary in order to develop these natural com-

pounds into potential antiviral drugs. The following are a

few examples of efforts being carried out to tackle this

issue which can be used as platforms for further successes

in the future.

In the past, researchers have looked into alternative

methods to improve the compounds’ solubility or to switch

the site of absorption in the gut, with the aim of enhancing

their bioavailability. A structural modification to hes-

peretin-7-glucoside, which resulted in a change in site of

absorption from the large to the small intestine, has suc-

cessfully yielded a higher plasma level of hesperetin in

healthy subjects [100]. Wang et al. [130] formulated a way

to increase the oral bioavailability of flavonols extracted

from sea buckthorn, by forming a phospholipid complex

via solvent evaporation method. Relative to the parent

compounds, oral bioavailability of the tested flavonols was

172% - 242% higher when the phospholipid complex was

administered into rats [130]. Flavonoids loaded in engi-

neered nanoparticles have also been tested for their

bioavailability following oral consumption. Improved sta-

bility of catechin and EGCG in chitosan nanoparticles have

been shown to result in a higher rate of intestinal absorp-

tion [29]. Poly (D, L-Lactide) (PLA) nanoparticles and

polymeric micelles contributed to a more sustainable

release of quercetin, which has poor bioavailability and

undergoes substantial first-pass metabolism, as well as of

the poorly absorbed apigenin [70, 124, 151]. Self-Mi-

croemulsifying Drug Delivery System (SMDDS) is another

technology which has been used to overcome the problem

of low bioavailability of hydrophobic molecules. Upon

entering the lumen of the intestine, an oil-in-water

microemulsion containing the drug will be formed. The

microemulsion increases the intestinal absorption of the

drug or compound by avoiding the dissolution process

Table 2 Antiviral activity of other flavonoids

Flavonoids Class Source(s) Antiviral activity Other biological activities

Myricetin Flavonol Red (grape) wine, leaves of sweet potato

(Ipomoea batatas), parsley

(Petroselinum crispum), tea plant

(Camellia sinensis), and fruits of

blueberries (Vaccinium genus)

Moloney murine leukemia virus [7],

SARS-CoV [63], influenza viruses

[77], HIV-1 [103], Rauscher murine

leukemia virus [104]

Anticarcinogenic,

antioxidant,

antithrombotic and anti-

inflammatory activity

Hesperetin Flavanone Fruits of orange (Citrus aurantium),

lemon (Citrus limon), mandarin

(Citrus reticulata) and peppermint

(Mentha piperita)

CHIKV [1],

yellow fever virus [12], HSV-1 [61],

Sindbis virus [102]

Antioxidant,

anti-inflammatory, anti-

allergic, hypolipidemic,

vasoprotective and

anticarcinogenic activity

Chrysin Flavone Honeycomb, leaves of passion flowers

(Passiflora caerulea and Passiflora

incarnata) and chamomile (Matricaria

chamomilla)

HSV-1 [111], coxsackie B virus type

3 [117], EV71 [131]

Antioxidant,

anticarcenogenic, anti-

hypertension, anti-diabetic

and antibacterial activity

Galangin Flavonol Propolis, leaves of lesser galangal

(Alpinia officinarum) and rhizome of

Alpina galanga

Coxsackie B virus type 1 [18], HCV

[74], HSV-1 [111]

Antibacterial and

anticarcinogenic activity

Morin Flavonol Bark, leaves and stem of white mulberry

(Morus alba), leaves and fruit of

Osage orange (Maclura pomifera),

guava (Psidium guajava), and leaves

of old fustic (Maclura tinctoria)

Canine distemper virus [11],

Moloney murine leukemia virus

[20], potato virus X [36], equid

herpesvirus 1 [41]

Antihypertensive, anti-

angiogenic,

hepatoprotective,

neuroprotectant and anti-

inflammatory activity

Tangeretin Flavone Peels of tangerine (Citrus tangerina),

orange (Citrus aurantium), lemon

(Citrus limon), mandarin (Citrus

reticulata)

RSV [141] Anticarcinogenic activity

Wogonin Flavone Leaves of baical skullcap (Scutellaria

baicalensis)

HBV [43], influenza H1N1 virus [58] Anticarcinogenic and

anticonvulsant activity

Silymarin Complex of

flavonolignans

Seeds of milk thistle (Silybum

marianum), artichoke (Cynara

scolymus), roots of black cohosh

(Actaea racemosa)

CHIKV [72], influenza A virus [119],

HCV [128]

Anticarcinogenic,

hepatoprotective and

antioxidant activity
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[60, 108]. Puerarin, an isoflavone isolated from the root of

Pueraria lobata, exhibited 2.6-fold higher bioavailability

when prepared using SMDDS [154].

However, it is worth noting that while the bioavailability

of flavonoids can be increased via different methodologies,

it is vital that their biological efficacies are not affected, but

maintained or enhanced. For instance, phosphorylated

icariin has been found to inhibit duck hepatitis virus A

more effectively than the parent compound [138].

Isorhamnetin is a methylated flavonol derived from the

structure of quercetin. Dayem et al. investigated the

antiviral potency of isorhamnetin against influenza A

H1N1 virus and discovered that the methyl group on the B

ring enhances its antiviral activity compared with the other

tested flavonoids [25]. The efficacy of isorhamnetin against

influenza virus was also shown when in vivo and in ovo

models were tested [25]. Improvement in bioavailability

will definitely enhance the efficacy of different biological

effects of all classes of flavonoids. Hence, in addition to

discovering the hidden potentials of flavonoids, scientists

should also aim to identify ways to increase the amount of

flavonoids available for the health benefits of human

beings.

Conclusion

Natural compounds have been the center of attention

among researchers working in various fields, including

those related with antiviral drug development, due to their

high availability and low side effects. The phytochemicals

flavonoids, which are abundantly found in our daily diets

of fruits and vegetables, have been actively studied as

potential therapeutic options against viruses of different

taxa in the past decade. Numerous positive findings have

been reported on the in vitro efficacy of flavonoids, but

less promising results have been obtained for most com-

pounds in in vivo studies. Multiple factors contributed to

this scenario, and in vivo studies must be prioritized by

researchers. It is well-known that flavonoids possess

enormous potential to be included in the daily prescrip-

tions by physicians treating illnesses ranging from infec-

tious and oncogenic to inflammatory and chronic

degenerative diseases. However, it is time for researchers

worldwide to take the initiative in making these com-

pounds a success not only in the in vitro stage of

research, but also in animal models, as well as in sub-

sequent clinical studies. Biochemistry and mechanistic

studies on the flavonoids’ inhibitory activities can

improve our understanding of how these natural com-

pounds work and, on the other hand, identify the stum-

bling block that is hindering further improvements in

flavonoids antiviral research.
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