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A.P. 70-543, C.P. 04510 Distrito Federal, Mexico

b Institute for High Energy Physics, 142281 Protovino, Russia and
Institute of Theoretical and Experimental Physics, 117259 Moscow, Russia

c Institut für Theoretische Physik, Universität Regensburg,
93040 Regensburg, Germany

d School of Physics and Astronomy, University of Edinburgh,
Edinburgh EH9 3JZ, UK

e Theoretical Physics Division, Department of Mathematical Sciences,
University of Liverpool, Liverpool L69 3BX, UK

f Center for Computational Sciences, University of Tsukuba, Tsukuba,
Ibaraki 305-8577, Japan

g Institut für Theoretische Physik, Universität Leipzig,
04109 Leipzig, Germany

h Deutsches Elektronen-Synchrotron DESY,
15738 Zeuthen, Germany

i Deutsches Elektronen-Synchrotron DESY,
22603 Hamburg, Germany

j Konrad-Zuse-Zentrum für Informationstechnik Berlin,
14195 Berlin, Germany

1

http://arxiv.org/abs/1102.5300v1


Abstract

QCD lattice simulations with 2+1 flavours typically start at rather large
up-down and strange quark masses and extrapolate first the strange quark
mass to its physical value and then the up-down quark mass. An alternative
method of tuning the quark masses is discussed here in which the singlet
quark mass is kept fixed, which ensures that the kaon always has mass less
than the physical kaon mass. Using group theory the possible quark mass
polynomials for a Taylor expansion about the flavour symmetric line are
found, first for the general 1 + 1 + 1 flavour case and then for the 2 + 1
flavour case (when two quark flavours are mass degenerate). These enable
highly constrained fits to be used in the extrapolation of hadrons to the
physical pion mass. Numerical results for the 2 + 1 flavour case confirm
the usefulness of this expansion and an extrapolation to the physical pion
mass gives hadron mass values to within a few percent of their experimental
values. Singlet quantities remain constant which allows the lattice spacing
to be determined from hadron masses (without necessarily being at the
physical point). Furthermore an extension of this programme to include
partially quenched results is also given.
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1 Introduction

The QCD interaction is flavour blind. Neglecting electromagnetic and weak in-
teractions, the only difference between quark flavours comes from the quark mass
matrix, which originates from the coupling to the Higgs particle. We investigate
here how flavour blindness constrains hadron masses after flavour SU(3) is broken
by the mass difference between the strange and light quarks, to help us extrapo-
late 2 + 1 flavour lattice data to the physical point. (By 2 + 1 we mean that the
u and d quarks are mass degenerate.)

We have our best theoretical understanding when all 3 quark flavours have the
same masses (because we can use the full power of flavour SU(3)); nature presents
us with just one instance of the theory, with mR

s /m
R

l ≈ 25 (where R denotes the
renormalised mass). We are interested in interpolating between these two cases.

We consider possible behaviours near the symmetric point, and find that
flavour blindness is particularly helpful if we approach the physical point, denoted
by (mR ∗

l , mR ∗
s ), along a path in the (mR

l –m
R

s ) plane starting at a point on the
SU(3) flavour symmetric line (mR

l = mR

s ) and holding the sum of the quark
masses mR

u + mR

d +mR

s ≡ 2mR

l +mR

s ≡ 3m constant, [1], as sketched in Fig. 1.
The usual procedure (path) is to estimate the physical strange quark mass and
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Figure 1: Sketch of the path (red, solid line) in the (mR

l ,m
R
s ) plane to the physical

point denoted by (mR ∗
l ,mR ∗

s ). The dashed diagonal line is the SU(3)-symmetric line.

then try to keep it fixed, i.e. mR

s = constant, as the light quark mass is reduced
to its physical value. However the problem is that the kaon mass is always larger
than its physical value. By choosing instead a path such that the singlet quark
mass is kept fixed, this has the advantage that we can vary both quark masses
over a wide range, with the kaon mass always being lighter than its physical value
along the entire trajectory. Starting from the symmetric point when masses are
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degenerate is particularly useful for strange quark physics as we can track the
development of the strange quark mass. Also if we extend our measurements
beyond the symmetric point we can investigate a world with heavy up-down
quarks and a lighter strange quark.

The plan of this article is as follows. Before considering the 2 + 1 quark
flavour case, we consider the more general 1 + 1 + 1 case in section 2. This
also includes a discussion of the renormalisation of quark masses for non-chiral
fermions. Keeping the singlet quark mass constant constrains the extrapolation
and in particular it is shown in this section that flavour singlet quantities remain
constant to leading order when extrapolating from a flavour symmetric point.
This motivates investigating possible quark mass polynomials – we are able to
classify them here to third order in the quark masses under the SU(3) and S3

(flavour) groups.
In section 3 we specialise to 2 + 1 flavours and give quark mass expansions

to second order in the quark masses for the pseudoscalar and vector octets and
baryon octet and decuplet. The relation of this expansion to chiral perturbation
theory is discussed in section 4. In section 5 we extend the formalism to the
partially quenched case (when the valence quarks of a hadron do not have to have
the same mass as the sea quarks). This is potentially useful as the same expansion
coefficients occur, which could allow a cheaper determination of them. We then
turn to more specific lattice considerations in section 7 with emphasis on clover
fermions (i.e. non-chiral fermions) used here. This is followed by section 8, which
first gives numerical results for the constant singlet quark mass results used here.
Flavour singlet quantities prove to be a good way of defining the scale and the
consistency of some choices is discussed. We also investigate possible finite size
effects. Finally in section 9 the numerical results for the hadron mass spectrum
are presented in the form of a series of ‘fan’ plots where the various masses fan
out from their common value at the symmetric point. Some conclusions are given
in section 10. Several Appendices provide some group theory background for this
article, discuss the action used here and give tables of the hadron masses found.

2 Theory: 1 + 1 + 1 flavours

Our strategy is to start from a point with all 3 sea quark masses equal,

mR

u = mR

d = mR

s ≡ mR

0 , (1)

and extrapolate towards the physical point, (mR∗
u , m

R∗
d , m

R∗
s ), keeping the average

sea quark mass
mR = 1

3(m
R

u +mR

d +mR

s ) (2)

constant. For this trajectory to reach the physical point we have to start at a
point where mR

0 ≈ 1
3m

R∗
s . As we approach the physical point, the u and d quarks
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become lighter, but the s quark becomes heavier. Pions are decreasing in mass,
but K and η increase in mass as we approach the physical point.

2.1 Singlet and non-singlet renormalisation

Before developing the theory, we first briefly comment on the renormalisation
of the quark mass. While for chiral fermions the renormalised quark mass is
directly proportional to the bare quark mass, mR

q = Zmmq, the problem, at least
for Wilson-like fermions which have no chiral symmetry, is that singlet and non-
singlet quark mass can renormalise differently [2, 3]1

mR

q = ZNS

m (mq −m) + ZS

mm, q = u, d, s , (3)

where mq are the bare quark masses,

m = 1
3(mu +md +ms) , (4)

ZNS

m is the non-singlet renormalisation constant, and ZS

m is the singlet renormal-
isation constant (both in scheme R). It is often convenient to re-write eq. (3)
as

mR

q = ZNS

m (mq + αZm) , (5)

where

αZ = rm − 1 , rm =
ZS

m

ZNS
m

(6)

represents the fractional difference between the renormalisation constants. (Nu-
merically we later see that this factor αZ is ∼ O(1), and is thus non-negligible.)
This then gives

mR = ZNS

m (1 + αZ)m. (7)

This means that even for Wilson-type actions it does not matter whether we keep
the bare or renormalised average sea quark mass constant. Obviously this also
holds for a reference point on the flavour symmetric line, i.e.

mR
0 = ZS

mm0 = ZNS

m (1 + αZ)m0 . (8)

Furthermore introducing the notation

δmR

q ≡ mR

q −mR

0 , δmq ≡ mq −m0 , q = u, d, s , (9)

for both renormalised and bare quark masses, we find that

δmR
q = ZNS

m δmq . (10)

1Perturbative computations showing this effect, which starts at the two-loop order, are given
in [4, 5].
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So by keeping the singlet mass constant we avoid the need to use two different
Zs and as we will be considering expansions about the flavour symmetric point,
they will be similar using either the renormalised or bare quark masses. (Of
course the value of the expansion parameters will be different, but the structure
of the expansion will be the same. We shall discuss this point a little further in
section 2.4.)

So in the following we need not usually distinguish between bare and renor-
malised quark masses.

Note that
δmu + δmd + δms = 0 , (11)

so we could eliminate one of these symbols. However we shall keep all three
symbols as we can then write some expressions in a more obviously symmetrical
form.

2.2 General strategy

With this notation, the quark mass matrix is

M =





mu 0 0
0 md 0
0 0 ms





= m





1 0 0
0 1 0
0 0 1





+1
2(δmu − δmd)





1 0 0
0 −1 0
0 0 0



+ 1
2δms





−1 0 0
0 −1 0
0 0 2



 . (12)

The mass matrix M has a singlet part (proportional to I) and an octet part,
proportional to λ3, λ8. We argue here that the theoretically cleanest way to
approach the physical point is to keep the singlet part of M constant, and vary
only the non-singlet parts.

An important advantage of our strategy is that it strongly constrains the pos-
sible mass dependence of physical quantities, and so simplifies the extrapolation
towards the physical point. Consider a flavour singlet quantity, which we shall
denote by XS, at the symmetric point (m0, m0, m0). Examples are the scale2

Xr = r−1
0 , or the plaquette P (this will soon be generalised to other singlet quan-

tities). If we make small changes in the quark masses, symmetry requires that
the derivatives at the symmetric point are equal

∂Xr

∂mu

=
∂Xr

∂md

=
∂Xr

∂ms

. (13)

2There is no significance here to using r0 or r−1

0
; however defining Xr = r−1

0
is more

consistent with later definitions.
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If we keep mu +md +ms constant, δms = −δmu − δmd so

δXr =
∂Xr

∂mu

δmu +
∂Xr

∂md

δmd +
∂Xr

∂ms

δms = 0 . (14)

The effect of making the strange quark heavier exactly cancels the effect of making
the light quarks lighter, so we know that Xr must be stationary at the symmet-
rical point. This makes extrapolations towards the physical point much easier,
especially since we find that in practice quadratic terms in the quark mass ex-
pansion are very small. Any permutation of the quarks, such as an interchange
u ↔ s, or a cyclic permutation u → d → s → u doesn’t change the physics, it
just renames the quarks. Any quantity unchanged by all permutations will be
flat at the symmetric point, like Xr.

We can also construct permutation-symmetric combinations of hadrons. For
orientation in Fig. 2 we give the octet multiplets for spin 0 (pseudoscalar) and

π

η
+

+

0

0

−

8

π0

Y

+1−1

K(us)

K(su) K(sd)

K(ds)

(ud)

I3

(du)−π +

8

0

Y

+1−1

K(us)K(ds)

(ud)

I3

(du)−

∗0 ∗+

ω

ρ ρ ρ

K(su)
∗−

K(sd)
∗0

Figure 2: The octets for spin 0 (pseudoscalar) and spin 1 (vector) mesons.

spin 1 (vector) mesons and in Fig. 3 the lowest octet and decuplet multiplets for
the spin 1

2 and for the 3
2 baryons (all plotted in the I3–Y plane).

For example, for the decuplet, any permutation of the quark labels will leave
the Σ∗0(uds) unchanged, so the Σ∗0 is shown by a single black point in Fig. 4.
On the other hand, a permutation (such as u → d→ s) can change a ∆++(uuu)
into a ∆−(ddd) or (if repeated) into an Ω−(sss), so these three particles form a
set of baryons which is closed under quark permutations, and are all given the
same colour (red) in Fig. 4. Finally the 6 baryons consisting of two quarks of one
flavour, and one quark of a different flavour, form an invariant set, shown in blue
in Fig. 4.

If we sum the masses in any of these sets, we get a flavour symmetric quan-
tity, which will obey the same argument we gave in eq. (14) for the quark
mass (in)dependence of the scale r0. We therefore expect that the Σ0∗ mass
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+

0−

0

Y

+1−1

Ξ

Σ Σ

p(uud)n(udd)

Ξ (uss)(dss)

(uds) (uus)

I3
Λ0(uds)

Σ −
(dds)

Σ

Y

I3

Ω

Ξ (uss)0∗Ξ (dss)

Σ ∗−
(dds) ∗0(uds) Σ ∗+(uus)

−1 +1

−2

∗−

∆0(udd)0

−(sss)

∆+(uud) ∆++(uuu)

−1

∆−(ddd)

Figure 3: The lowest octet and decuplets for the spin 1
2 and for the 3

2 baryons (plotted
in the I3–Y plane.

must be flat at the symmetric point, and furthermore that the combinations
(M∆++ +M∆− +MΩ) and (M∆+ +M∆0 +MΣ∗+ +MΣ∗− +MΞ∗0 +MΞ∗−) will
also be flat. Technically these symmetrical combinations are in the A1 singlet
representation of the permutation group S3. This is the symmetry group of an
equilateral triangle, C3v. This group has 3 irreducible representations, [6], two
different singlets, A1 and A2 and a doublet E, with elements E+, E−. Some de-
tails of this group and its representations are given in Appendix A, while Table 1
gives a summary of the transformations.

A1 E A2

Op E+ E−

Identity + + + +
u ↔ d + + − −
u↔ s + mix −
d ↔ s + mix −

u→ d → s→ u + mix +
u→ s→ d → u + mix +

Table 1: A simplified table showing how the group operations of S3 act in the different
representations: + refers to unchanged; − to reflection.

We list some of these invariant mass combinations in Table 2. The per-
mutation group S3 yields a lot of useful relationships, but cannot capture the
entire structure. For example, there is no way to make a connection between the
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Figure 4: The behaviour of the octet and decuplet under the permutation group S3.
The colours denote sets of particles which are invariant under permutations of the quark
flavours (red or filled triangles, blue or open diamonds and black or filled squares).

Pseudoscalar X2
π = 1

6(M
2
K+ +M2

K0 +M2
π+ +M2

π− +M2

K
0 +M2

K−) blue

mesons X2
η8

= 1
2(M

2
π0 +M2

η8
) black

Vector Xρ =
1
6(MK∗+ +MK∗0 +Mρ+ +Mρ− +M

K
∗0 +MK∗−) blue

mesons Xφs
= 1

3(2Mρ0 +Mφs
) black

Octet XN = 1
6(Mp +Mn +MΣ+ +MΣ− +MΞ0 +MΞ−) blue

baryons XΛ = 1
2(MΛ0 +MΣ0) black

Decuplet X∆ = 1
3(M∆++ +M∆− +MΩ−) red

baryons XΞ∗ = 1
6(M∆+ +M∆0 +MΣ∗+ +MΣ∗− +MΞ∗0 +MΞ∗−) blue

XΣ∗ =MΣ∗0 black

Table 2: Permutation invariant mass combinations, see Fig. 4. φs is a fictitious ss
particle; η8 a pure octet meson. The colours in the third column correspond to Fig. 4.

∆++(uuu) and the ∆+(uud) by permuting quarks. To go further, we need to
classify physical quantities by SU(3) (containing the permutation group S3 as a
subgroup), which we shall now consider.

2.3 Taylor expansion

We will Taylor expand about a symmetric reference point

(mu, md, ms) = (m0, m0, m0) . (15)

Our results will be polynomials in the quark masses, we will express them in terms
of the δmq of eq. (9). The main idea is to classify all possible mass polynomials
by their transformation properties under the permutation group S3 and under
the full flavour group SU(3), and classify hadronic observables the same way.
The Taylor expansion of a given observable can only include the polynomials of
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the same symmetry. The Taylor expansions of hadronic quantities in the same
SU(3) multiplet but in different S3 representations will have related expansion
coefficients.

We can always arrange polynomials to be in definite permutation group states.
When we get to polynomials of O(δm2

q) we find that a polynomial may be a
mixture of several SU(3) representations, but the classification is still useful. In
Table 3 we classify all the polynomials which could occur in a Taylor expansion

Polynomial S3 SU(3)
1 X A1 1

(m−m0) A1 1
δms X E+ 8

(δmu − δmd) X E− 8

(m−m0)
2 A1 1

(m−m0)δms E+ 8
(m−m0)(δmu − δmd) E− 8
δm2

u + δm2
d + δm2

s X A1 1 27
3δm2

s − (δmu − δmd)
2 X E+ 8 27

δms(δmd − δmu) X E− 8 27

(m−m0)
3 A1 1

(m−m0)
2δms E+ 8

(m−m0)
2(δmu − δmd) E− 8

(m−m0)(δm
2
u + δm2

d + δm2
s) A1 1 27

(m−m0) [3δm
2
s − (δmu − δmd)

2] E+ 8 27
(m−m0)δms(δmd − δmu) E− 8 27

δmuδmdδms X A1 1 27 64
δms(δm

2
u + δm2

d + δm2
s) X E+ 8 27 64

(δmu − δmd)(δm
2
u + δm2

d + δm2
s) X E− 8 27 64

(δms − δmu)(δms − δmd)(δmu − δmd) X A2 10 10 64

Table 3: All the quark-mass polynomials up to O(m3
q), classified by symmetry prop-

erties. A tick (X) marks the polynomials relevant on a constant m surface. These
polynomials are plotted in Fig. 6.

about the symmetric point, eq. (15), up to O(δm3
q). Many of the polynomials

in the table have factors of (m −m0), these polynomials drop out if we restrict
ourselves to the surface of constant m = m0, leaving only the polynomials marked
with a tick (X) in Table 3.

Since we are keeping m constant, we are only changing the octet part of the
mass matrix in eq. (12). Therefore, to first order in the mass change, only octet
quantities can be affected. SU(3) singlets have no linear dependence on the quark
mass, as we have already seen by the symmetry argument eq. (14), but we now
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see that all quantities in SU(3) multiplets higher than the octet cannot have
linear terms. This provides a constraint on the hadron masses within a multiplet
and leads (as we shall see) to the Gell-Mann Okubo mass relations [10, 11].

When we proceed to quadratic polynomials we can construct polynomials
which transform like mixtures of the 1, 8 and 27 multiplets of SU(3), Table 3.
This covers all the structures that can arise in the octet mass matrix, but the
decuplet mass matrix can include terms with the symmetries 10, 10, and 64, which
first occur when we look at cubic polynomials in the quark masses, Table 3.

In a little more detail constructing polynomials with a definite S3 classifi-
cation is fairly straightforward, we simply have to see what happens to each
polynomial under simple interchanges (e.g. u↔ d) and cyclic permutations (e.g.
u → s, s → d, d → u). The S3 column of Table 3 is easy to check by hand.
The SU(3) assignment of polynomials is less straightforward. Only the simplest
polynomials belong purely to a single SU(3) multiplet; most polynomials contain
mixtures of several multiplets. The non-singlet mass is an octet of SU(3), so
quadratic polynomials in δmq can contain representations which occur in 8 ⊗ 8,
cubic polynomials representations which occur in 8⊗8⊗8. We can find out what
representations are present in a given polynomial by using the Casimir operators
of SU(3) [12, 13]. That operator was programmed in Mathematica, and used to
analyse our polynomial basis. Some more details are presented in Appendix B.2.
The results of the calculation are recorded in the SU(3) section of Table 3.

The allowed quark mass region on the m = const. surface is an equilateral tri-
angle, as shown in Fig. 5. Plotting the polynomials of Table 3 then gives the plots
in Fig. 6, where the colour coding indicates whether the polynomial is positive
(red) or negative (blue). As a first example of the use of these tables, consider
the Taylor expansion for the scale r0/a. As discussed previously, this is a gluonic
quantity, blind to flavour, so it has symmetry A1 under the S3 permutation group.
Therefore its Taylor expansion only contains polynomials of symmetry A1. If we
keep m, the average quark mass, fixed, the expansion of r0/a must take the form

r0
a

= α + β(δm2
u + δm2

d + δm2
s) + γ δmuδmdδms + . . . , (16)

with just 3 coefficients. Interestingly, we could find all 3 coefficients from 2 + 1
data, so we would be able to predict 1 + 1 + 1 flavour results from fits to 2 + 1
data. This is common. If we are not on a constant m surface, we would need
7 coefficients to give a cubic fit for r0; if we did not have any information on
the symmetry of r0 we would need 20 coefficients. If we additionally use r0 data
from the equal mass calculations we also have a good estimate of the coefficient
of (m −m0), which we can use to estimate the effect of shifting from one value
of m to another.
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Figure 5: The allowed quark mass region on the m = const. surface is an equilateral
triangle. The black point at the center is the symmetric point, the red star is the
physical point. 2 + 1 simulations lie on the vertical symmetry axis. The physical point
is slightly off the 2 + 1 axis because md > mu.

��� ��� ��� �	�


���������


��� � � �


��� � � �


��� � ���

Figure 6: Contour plots of the polynomials relevant for the constant m Taylor ex-
pansion, see Table 3. A red(dish) colour denotes a positive number while a blue(ish)
colour indicates a negative number. If mu = md (the 2+ 1 case), only the polynomials
in the A1 and E+ columns contribute.
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2.4 O(a)-improvement of quark masses

Before classifying the hadron mass matrix, we pause and consider the O(a) im-
provement of quark masses. (If we are considering chiral fermions, we have ‘au-
tomatic O(a) improvement’, see eg [7] for a discussion.) In writing down expres-
sions for bare and improved quark masses, it is natural to expand about the chiral
point, all three quarks massless, which means setting m0 = 0 in the expressions
in Table 3. Later, when we consider lattice results, we want our expansion point
to be a point where we can run simulations, so we will normally have a non-zero
m0.

Improving the quark masses requires us to add improvement terms of the
type am2

q to the bare mass. We can add SU(3)-singlet improvement terms to
the singlet quark mass, SU(3)-octet improvement terms to the non-singlet quark
mass. We are led to the following expressions for the improved and renormalised
quark masses

mR = ZS

m

[

m+ a
{

b1m
2 + b2(δm

2
s + δm2

u + δm2
d)
}]

δmR

s = ZNS

m

[

δms + a
{

b3mδms + b4(3δm
2
s − (δmu − δmd)

2)
}]

, (17)

together with ZS

m = ZNS

m rm, eqs. (5), (6). We have improved m by adding the two
possible singlet terms from the quadratic section of Table 3, and improved δms

by adding the two possible E+ octet polynomials. These 4 improvement terms
match the 4 terms introduced in [8]3. We get expressions for the u and d quark
mass improvement by flavour-permuting eq. (17)

δmR

u = ZNS

m

[

δmu + a
{

b3mδmu + b4(3δm
2
u − (δmd − δmu)

2)
}]

δmR

d = ZNS

m

[

δmd + a
{

b3mδmd + b4(3δm
2
d − (δms − δmd)

2)
}]

(18)

δmR

u − δmR

d = ZNS

m [δmu − δmd + a {b3m(δmu − δmd) + 6b4δms(δmd − δmu)}] .

The improvement terms for δmu − δmd are proportional to the two E−, SU(3)-

3Ref. [8] gives the O(a) improved quark mass as

mR
q = ZNS

m

[

mq + (rm − 1)m

+a
{

bmm2

q + 3bmmqm+ (rmdm − bm)m2 + 3(rmdm − bm)m2

}]

,

where m2 = 1

3
(m2

u+m2

d+m2

s). This is an expansion around the chiral point (mq = 0) while we
have an expansion about a flavour symmetric point, m0 (m0 = 0 here). So we have to match
the expansions, which gives the results

bm = 6b4
bm = 1

3 b3 − 4b4
dm = 3b2
dm = 1

3 b1 − b2

, or

b1 = 3dm + dm
b2 = 1

3dm
b3 = 3bm + 2bm
b4 = 1

6bm

.
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octet, quadratic polynomials4.
Table 3 is based purely on flavour arguments, we would hope that all the

results are true whether we use bare or renormalised quantities, and also in-
dependently of whether we work with a naive bare mass, or a bare mass with
O(a) improvement terms. Let us check if this is true. The first thing we need
to know is whether the zero-sum identity eq. (11) survives renormalisation and
improvement. Using the previous equations we find

δmR

u + δmR

d + δmR

s = ZNS

m [(δmu + δmd + δms) + b3am(δmu + δmd + δms)

+b4a(δmu + δmd + δms)
2
]

= 0 , (19)

showing that eq. (11) is not violated by improvement or renormalisation.
The next point we want to check is whether the symmetry of a polynomial

depends on whether we expand in terms of improved masses or unimproved. As
an example, let us look at the quadratic polynomial

δmR

s (δm
R

d − δmR

u) , (20)

which has permutation symmetry E−, and SU(3) content octet and 27-plet.
Expanding to first order in lattice spacing a we find

δmR

s (δm
R

d − δmR

u) = (ZNS

m )2 [δms(δmd − δmu)

+a (2b3mδms(δmd − δmu) (21)

+ 2b4(δmu − δmd)(δm
2
u + δm2

d + δm2
s)
)]

.

The mass improvement terms have generated two extra cubic polynomials, but
they are both polynomials with the same symmetry as the initial polynomial,
showing that Table 3 applies both to improved and unimproved masses.

Thus our conclusion is that the flavour expansion results are true whether we
use bare or renormalised quantities, and also independently of whether we work
with a naive bare mass, or a bare mass with O(a) improvement terms.

2.5 SU(3) and S3 classification of hadron mass matrices

In eq. (12) we split the quark mass matrix into a singlet part and two octet parts.
We want to make a similar decomposition of the hadron mass matrices. We start
with the decuplet mass matrix because it is simpler than the octet mass matrix.

4We have to use the identity, eq. (11), to bring the result to the desired form – which will
often be the case in what follows.
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2.5.1 The decuplet mass matrix

The decuplet mass matrix is a 10×10 diagonal matrix. From SU(3) group algebra
we know

10⊗ 10 = 1⊕ 8⊕ 27⊕ 64 . (22)

The singlet matrix is the identity matrix, the octet representation contains 2
diagonal matrices (λ3 and λ8), the 27-plet has 3 diagonal matrices, and the 64-
plet includes 4 diagonal matrices, see Fig. 7. This gives us a basis of 10 diagonal

Figure 7: The octet, 27-plet and 64-plet representations of SU(3). The number of
spots in the central location gives the number of flavour-conserving operators in each
multiplet. In the octet, the 2 operators form an E doublet of the permutation group.
In the 27-plet the 3 operators are an A1 singlet and an E doublet. In the 64-plet the
centre operators are an A1 singlet, an E doublet and an A2 singlet.

matrices, into which we can decompose the decuplet mass matrix.
We can use the Casimir operator to project out the diagonal matrices in a

particular SU(3) representation. We find, for example, that the octet matrix
with S3 symmetry E− is:

∆− ∆0 ∆+ ∆++ Σ∗− Σ∗0 Σ∗+ Ξ∗− Ξ∗0 Ω− (23)
































−3 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 3 0 0 0 0 0 0
0 0 0 0 −2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0

































≡

−3 −1 1 3

−2 0 2

−1 1

0
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where we have used a more compact notation to record the diagonal elements
on the right-hand side. The entry in the ∆− column of the matrix is −3, so on
the right-hand side we put a −3 in the position of the ∆− in the usual decuplet
diagram, and so on. In Fig. 8 we show all 10 diagonal matrices, in this compact

Figure 8: The matrices for projecting out decuplet mass contributions of known
symmetry – see eq. (23) for an explanation of the notation.

notation. These matrices are orthogonal, in the sense

Tr[τaτb] = 0 if a 6= b , (24)

so they can be used to project out mass combinations which have simple quark
mass dependencies, see Fig. 8, and Table 4. As an example of a mass formula we
look at the singlet of the decuplet mass matrix. This gives from Table 4,

M∆− +M∆0 +M∆+ +M∆++

+MΣ∗− +MΣ∗0 +MΣ∗+ +MΞ∗− +MΞ∗0 +MΩ−

= 10M0 +B1 (δm
2
u + δm2

d + δm2
s) + C1 δmuδmdδms + . . . . (25)

As a further example for the 27-plet component of the decuplet mass matrix,
we see from Table 4 that there are three mass combinations which transform as
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∆− ∆0 ∆+ ∆++ Σ∗− Σ∗0 Σ∗+ Ξ∗− Ξ∗0 Ω− S3 SU(3)
1 1 1 1 1 1 1 1 1 1 A1 1

−1 −1 −1 −1 0 0 0 1 1 2 E+ 8
−3 −1 1 3 −2 0 2 −1 1 0 E− 8
3 −1 −1 3 −1 −3 −1 −1 −1 3 A1 27

−3 7 7 −3 −5 0 −5 −2 −2 6 E+ 27
−3 −1 1 3 3 0 −3 4 −4 0 E− 27
2 −3 −3 2 −3 12 −3 −3 −3 2 A1 64

−1 0 0 −1 3 0 3 −3 −3 2 E+ 64
−1 2 −2 1 1 0 −1 −1 1 0 E− 64
0 −1 1 0 1 0 −1 −1 1 0 A2 64

Table 4: Decuplet mass matrix contributions, classified by permutation and SU(3)
symmetry, see Fig. 8.

27-plets, giving three related mass relations

3M∆− −M∆0 −M∆+ + 3M∆++

−MΣ∗− − 3MΣ∗0 −MΣ∗+ −MΞ∗− −MΞ∗0 + 3MΩ−

= b27
[

δm2
u + δm2

d + δm2
s

]

+ 9c27δmuδmdδms + . . .

−3M∆− + 7M∆0 + 7M∆+ − 3M∆++

−5MΣ∗− − 5MΣ∗+ − 2MΞ∗− − 2MΞ∗0 + 6MΩ−

= b27
[

3δm2
s − (δmu − δmd)

2
]

+ 3c27δms

(

δm2
u + δm2

d + δm2
s

)

+ . . .

−3M∆− −M∆0 +M∆+ + 3M∆++

+3MΣ∗− − 3MΣ∗+ + 4MΞ∗− − 4MΞ∗0

= 2b27(δmd − δmu)δms + c27(δmu − δmd)
(

δm2
u + δm2

d + δm2
s

)

+ . . . .(26)

Note that we can find all the coefficients in these equations from a 2+1 simulation,
and use them to (fully) predict the results of a 1 + 1 + 1 simulation.

2.5.2 The octet mass matrix

We can analyse the possible terms in the octet mass matrix in the same way as
we did for the decuplet. However there is a complication in the octet case which
we do not have in the decuplet, caused by the fact that we have two particles
(the Λ and Σ0) with the same Y and I3 quantum numbers. If mu 6= md these
states mix. There are interesting connections between the elements of the Λ/Σ0

mixing matrix and the splittings of the other baryons, but since in this article we
are concerned with 2 + 1 simulations, where this mixing does not arise, we will
not discuss this further here.
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We can however pick out several useful mass relations which are unaffected
by Λ/Σ0 mixing.

Mn +Mp +MΛ +MΣ− +MΣ0 +MΣ+ +MΞ− +MΞ0

= 8M0 + b1(δm
2
u + δm2

d + δm2
s) + c1δmuδmdδms + . . . .

Mn +Mp − 3MΛ +MΣ− − 3MΣ0 +MΣ+ +MΞ− +MΞ0

= b27(δm
2
u + δm2

d + δm2
s) . (27)

At order δm3
q we meet some quantities in the baryon octet masses (the 10 and

10 combinations) which can not be deduced from 2 + 1 flavour measurements –
though valence 1 + 1 + 1 on a 2 + 1 background would be a possible method of
estimating these quantities. (We also do not pursue this further here.)

2.6 The Coleman-Glashow mass relation

One early prediction concerning hyperon masses was the Coleman-Glashow rela-
tion [9]

Mn −Mp −MΣ− +MΣ+ +MΞ− −MΞ0 ≈ 0 . (28)

Deviations from this relation are barely detectable. This mass combination ap-
pear in Table 5 as one of the A2 quantities. We can understand the success of the

n p Σ− Σ0 Λ Σ+ Ξ− Ξ0 S3 SU(3)
1 1 1 1 1 1 1 1 A1 1

−1 −1 0 0 0 0 1 1 E+ 8a
−1 1 −2 0 0 2 −1 1 E− 8a
1 1 −2 −2 2 −2 1 1 E+ 8b

−1 1 0 mix 0 1 −1 E− 8b
1 1 1 −3 −3 1 1 1 A1 27
1 1 −2 3 −3 −2 1 1 E+ 27

−1 1 0 mix 0 1 −1 E− 27

1 −1 −1 0 0 1 1 −1 A2 10,10
0 0 0 mix 0 0 0 A2 10,10

Table 5: Mass matrix contributions for octet baryons, classified by permutation and
SU(3) symmetry. Note that the first two octet quantities (the 8a) are proportional to
the hypercharge Y and to isospin I3 respectively.

Coleman-Glashow relation by noting that the only polynomial in Table 3 with
A2 symmetry is O(δm3

q), so that the predicted violation of the Coleman-Glashow
relation is

Mn −Mp −MΣ− +MΣ+ +MΞ− −MΞ0

= c10(δms − δmu)(δms − δmd)(δmu − δmd) . (29)
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The polynomial is zero if any pair of quarks have the same mass, so we would
need to measure the masses of baryons in a 1+1+1 setting to determine c10 and
predict the violation of the Coleman-Glashow relation.

3 Theory: 2 + 1 flavours

If we take any mass relation from the 1 + 1 + 1 section, and put mu = md = ml

we will get a valid mass relation for the 2 + 1 case. In the 2 + 1 case only one
parameter is needed to measure the symmetry breaking, because of eq. (11),

δms = −2δml , (30)

where

δml = ml −m0 . (31)

In the 2 + 1 limit the decuplet baryons have 4 different masses (for the ∆, Σ∗,
Ξ∗, and Ω). Similarly, for the octet baryons there are also 4 distinct masses,
(N,Λ,Σ,Ξ); and for octet mesons, 3 masses. In the meson octet the K and
K must have the same mass, but there is no reason why the N and Ξ (which
occupy the corresponding places in the baryon octet), should have equal masses
once flavour SU(3) is broken.

Again we have the singlet quantities XS which are stationary at the symmetry
point as given in Table 2, but which now simplify to give Table 6. In the notation

Pseudoscalar X2
π = 1

3(2M
2
K +M2

π) blue
mesons X2

η8 =
1
2(M

2
π +M2

η8) black

Vector Xρ =
1
3(2MK∗ +Mρ) blue

mesons Xφs
= 1

3(2Mρ +Mφs
) black

Octet XN = 1
3(MN +MΣ +MΞ) blue

baryons XΛ = 1
2(MΣ +MΛ) black

Decuplet X∆ = 1
3(2M∆ +MΩ) red

baryons XΞ∗ = 1
3(M∆ +MΣ∗ +MΞ∗) blue

XΣ∗ =MΣ∗ black

Table 6: Permutation invariant mass combinations, see Fig. 4. φs is a fictitious ss
particle; η8 a pure octet meson. The colours in the third column correspond to Fig. 4.

we have now assumed isospin invariance, so that for example M∆ ≡ M∆++ =
M∆− = M∆+ = M∆0 . (The corresponding mass values we use in this article are
given in section 9.)

Furthermore this can obviously be generalised. Let us first define mη = (ml+
2ms)/3 and mK = (ml +ms)/2. Then ml +mη = 2m and ml + 2mK = 3m are
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constants on our trajectory and so δml + δmη = 0 and also δml +2δmK = 0. For
example, this means that any functions of the form

2f(mK) + f(ml) or g(ms) + 2g(ml) or h(mη) + h(ml) , (32)

will also have zero derivative at the symmetric point.
The corresponding results to Table 4 or eq. (26) are given in Tables 7, 8 and

9. We can see how well this works in practice by looking, for example at the
physical masses of the decuplet baryons. If we look at the physical values of the 4
decuplet mass combinations in Table 9 and using mass values given in section 9,
we get

4M∆ + 3MΣ∗ + 2MΞ∗ +MΩ = 13.82 GeV singlet ∝ (δml)
0

−2M∆ +MΞ∗ +MΩ = 0.742 GeV octet ∝ δml

4M∆ − 5MΣ∗ − 2MΞ∗ + 3MΩ = −0.044 GeV 27plet ∝ δm2
l

−M∆ + 3MΣ∗ − 3MΞ∗ +MΩ = −0.006 GeV 64plet ∝ δm3
l , (33)

with a strong hierarchy in values, corresponding to the leading term in the Taylor
expansion. Each additional factor of δml reduces the value by about an order
of magnitude, the 64-plet combination is more than 2000 times smaller than the
singlet combination. This suggests that the Taylor expansion converges well all
the way from the symmetric point to the physical point. (Though of course it is
possible that the singlet and octet curvature terms are larger than those in the
27 and 64.) Unfortunately, even with noise reduction techniques, it may be very
difficult to see a signal in the 64-plet channel.

We can now ‘invert’ the results in Tables 8, 9 to give the expansion for each
hadron mass from the symmetry point (m0, m0, m0). This leads to the constrained
fit formulae

M2
π = M2

0 + 2αδml + (β0 + 2β1)δm
2
l

M2
K = M2

0 − αδml + (β0 + 5β1 + 9β2)δm
2
l

M2
ηs = M2

0 − 4αδml + (β0 + 8β1)δm
2
l , (34)

Mρ = M0 + 2αδml + (β0 + 2β1)δm
2
l

MK∗ = M0 − αδml + (β0 + 5β1 + 9β2)δm
2
l

Mφs
= M0 − 4αδml + (β0 + 8β1)δm

2
l , (35)

MN = M0 + 3A1δml + (B0 + 3B1)δm
2
l

MΛ = M0 + 3A2δml + (B0 + 6B1 − 3B2 + 9B4)δm
2
l

MΣ = M0 − 3A2δml + (B0 + 6B1 + 3B2 + 9B3)δm
2
l

MΞ = M0 − 3(A1 − A2)δml + (B0 + 9B1 − 3B2 + 9B3)δm
2
l , (36)
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SU(3) Mass Combination Expansion
1 3M2

π + 4M2
K +M2

η8
1, δm2

l , δm3
l , . . .

8 −3M2
π + 2M2

K +M2
η8

δml, δm2
l , δml3, · · ·

27 −M2
π + 4M2

K − 3M2
η8 δm2

l , δm3
l , · · ·

1 3Mρ + 4MK∗ +Mφ8
1, δm2

l , δm3
l , · · ·

8 −3Mρ + 2MK∗ +Mφ8
δml, δm2

l , δm3
l , · · ·

27 −Mρ + 4MK∗ − 3Mφ8
δm2

l , δm3
l , · · ·

Table 7: Meson mass combinations classified by SU(3) representation, in the 2 + 1
case. Octet-singlet mixing is not taken into account.

SU(3) Mass Combination Expansion
1, 27 2M2

K +M2
π 1, δm2

l , δm3
l , . . .

8, 27 M2
K −M2

π δml, δm2
l , δm3

l , . . .

1, 27 2MK∗ +Mρ 1, δm2
l , δm3

l , . . .
8, 27 MK∗ −Mρ δml, δm2

l , δm3
l , . . .

Table 8: Meson mass combinations free from mixing problems, classified by SU(3)
representation. These combinations have been chosen to eliminate the η/η′ and ω/φ
states, so they now contain mixtures of different SU(3) representations.

SU(3) Mass Combination Expansion
1 2MN + 3MΣ +MΛ + 2MΞ 1, δm2

l , δm3
l , . . .

8 MΞ −MN δml, δm2
l , δm3

l , . . .
8 −MN + 3MΣ −MΛ −MΞ δml, δm2

l , δm3
l , . . .

27 2MN −MΣ − 3MΛ + 2MΞ δm2
l , δm3

l , . . .

1 4M∆ + 3MΣ∗ + 2MΞ∗ +MΩ 1, δm2
l , δm3

l , . . .
8 −2M∆ +MΞ∗ +MΩ δml, δm2

l , δm3
l , . . .

27 4M∆ − 5MΣ∗ − 2MΞ∗ + 3MΩ δm2
l , δm3

l , . . .
64 −M∆ + 3MΣ∗ − 3MΞ∗ +MΩ δm3

l , · · ·

Table 9: Baryon mass combinations classified by SU(3) representation, in the 2 + 1
case.
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M∆ = M0 + 3Aδml + (B0 + 3B1)δm
2
l

MΣ∗ = M0 + 0 + (B0 + 6B1 + 9B2)δm
2
l

MΞ∗ = M0 − 3Aδml + (B0 + 9B1 + 9B2)δm
2
l

MΩ = M0 − 6Aδml + (B0 + 12B1)δm
2
l . (37)

(The values of the constants are obviously different for each octet or decuplet.)
We see that the linear terms are highly constrained. The decuplet baryons have
only one slope parameter, while the octet baryons have two slope parameters.
Mesons have fewer slope parameters than baryons because of constraints due to
charge conjugation, again giving one slope parameter. The quadratic terms are
much less constrained; indeed only for the baryon octet is there any constraint5.

Note also that for the pseudoscalar octet,Mηs is a fictitious ss particle. In the
real world there is no pure ss meson (i.e. the ‘strange pion’) because its quarks
can annihilate and mix with uu and dd to form the η, but lattice simulations can
observe this ηs meson. While for the pseudoscalar octet we have non-perfect η-η′

mixing, for the vector octet the situation is different. Due to near perfect mixing
between the φ and ω the Mφ is (almost) a perfect ss state, so that Mφs

≈ Mφ.
Note also that for lattice simulations, even these fictitious particles still contain
useful information, due to the constrained fit.

As eqs. (34)–(37) have been derived using only group theoretic arguments,
they will be valid for results derived on any lattice volume (though the coefficients
are still functions of the volume).

Finally there is the practical question of whether fits should be against the
(light) quark mass or alternatively against the pseusoscalar pion mass. In Ap-
pendix C we argue that ‘internally’ at least the fits should be made against the
quark mass. Of course this is only a useful observation when quadratic or higher
terms are involved. To leading order eqs. (35)–(37) can be written as

δM ≡M −M0 = cMδml , (38)

(together with δM2 ≡ M2 −M2
0 = cMδml in the case of pseudoscalar mesons,

eq. (34)). The coefficients cM can be found from these equations. Thus an
expansion in δml is equivalent to an expansion in δM or δM2.

4 Applications to chiral perturbation theory

Almost all leading order χPT results follow simply from flavour blindness, without
any input from chiral symmetry. The linear terms in mq, which are usually called

5The coefficients of the δm2

l terms appear complicated; indeed there seem to be too many
for the baryon octet, eq. (36). In section 5 we generalise these formulae to the case of different
valence quark masses to sea quark masses or ‘partially quenching’ when this choice of coefficients
becomes relevant.
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LO χPT results, were originally discovered by Gell-Mann and Okubo [10, 11],
using the (non-chiral) SU(3) argument we are using in this article.

The only case where we need to invoke chiral symmetry is for the pseudoscalar
meson mass formula, where it is chiral symmetry which tells us that we have
massless Goldstone bosons if 2 or more quark masses vanish.

Beyond leading order we cannot derive the χPT result in full solely from
flavour blindness, but we can still make useful statements about the form that
higher order contributions must take.

4.1 Decuplet baryon masses at O(M3/2)

O(M3/2) χPT is based on one-loop graphs, all with a pseudo-Goldstone boson. So
we should expect that the individual terms in the χPT answer will be functions
of Mπ or ofMK or of Mη, with no mixed terms (such as M2

πM
2
K), which can only

arise at the two-loop level.
As an example, let us examine the NLO results for the decuplet baryon masses,

[15]. Taking the formulae for individual masses, and grouping them into the
multiplets of Table 9, we know that in each case we are only allowed chiral
perturbation theory expressions in the corresponding multiplet:

4M∆ + 3MΣ∗ + 2MΞ∗ +MΩ = 10M0 + 20(γM − 3σM)m (39)

− 5H2

72πf 2

5

3

[

3M3
π + 4M3

K +M3
η

]

− C2

(4πf)2
5

3
[3F−(Mπ) + 4F−(MK) + F−(Mη)]

−2M∆ +MΞ∗ +MΩ = −10γMδml (40)

− 5H2

72πf 2

1

2

[

−3M3
π + 2M3

K +M3
η

]

− C2

(4πf)2
1

3
[−3F−(Mπ) + 2F−(MK) + F−(Mη)]

4M∆ − 5MΣ∗ − 2MΞ∗ + 3MΩ =
5H2

72πf 2

7

9

[

−M3
π + 4M3

K − 3M3
η

]

(41)

− C2

(4πf)2
7

9
[−F−(Mπ) + 4F−(MK)− 3F−(Mη)]

−M∆ + 3MΣ∗ − 3MΞ∗ +MΩ = 0 , (42)

where F−(Mi) is short-hand for the function F(Mi,−∆, µ) defined in [15]. We
see that on the right-hand side we only get meson combinations of the same
symmetry as we have on the left-hand side, for example in the 27-plet case,
eq. (41), all the terms on the right-hand side have the structure of the mesonic
27-plet of Table 7.
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We proved a weaker version of this result in [1], using the permutation group
instead of full SU(3).

The meson mass matrix, 8 ⊗ 8, contains no 64, there are no possible 1-loop
terms to place on the right-hand side of eq. (42), so this mass combination must
be zero in NLO χPT. We have already noted in Table 9 that this combination
has a Taylor expansion beginning at O(δm3

l ) and is very small experimentally,
eq. (33).

4.2 Relationships between expansion coefficients

Finally we show that there is a relation between the parameters of χPT and the
Taylor coefficients in our approach, eqs. (34) – (37).

For example for the pseudoscalar octet, using the results in [18] and assuming
their validity up to the point on the flavour symmetric line, we find

M2
0 = χ

[

1− 16χ

f 2
0

(3L4 + L5 − 6L6 − 2L8) +
χ

24π2f 2
0

ln
χ

Λ2
χ

]

α = Q0

[

1− 16χ

f 2
0

(3L4 + 2L5 − 6L6 − 4L8) +
χ

8π2f 2
0

ln
χ

Λ2
χ

]

β0 = − Q2
0

6π2f 2
0

β1 =
Q2

0

f 2
0

[

−32 (L5 − 2L8) +
1

24π2

(

7 + 4 ln
χ

Λ2
χ

)]

β2 =
Q2

0

f 2
0

[

16 (L5 − 2L8)−
1

24π2

(

3 + 2 ln
χ

Λ2
χ

)]

, (43)

with Q0 = BR

0Z
NS

m , χ = 2Q0(1+αz)m, where the Lis are appropriate Low Energy
Constants or LECs.

We first note that when expanding the χPT about a point on the SU(3)
flavour symmetry line gives, as expected, to leading order only one parameter,
α. (This means, in particular, that flavour singlet combinations, XS, vanish to
leading order, as discussed previously.) Secondly, while we can fit to α and β0,
β1 and β2, it will be difficult to determine the individual LECs. The best we can
probably hope for are these combinations.

5 Partial quenching

In Partial Quenching (PQ) measurements are made with the mass of the valence
quarks different from the sea quarks. In this case the sea quark masses ml,
ms remain constrained by m = const., but the valence quark masses µl, µs are
unconstrained. We define

δµq = µq −m0 , q = l, s . (44)
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When µ → m (i.e. return to the ‘unitary line’) then the following results collapse
to the previous results of eqs. (34) – (37). In the following we sketch some results,
see [17] for more details.

5.1 PQ decuplet baryons

In the partially quenched case we know that the hadron mass formulae should
have an SU(3) symmetry for interchanging the sea quarks, and another SU(3)
symmetry for operations on the valence quarks. The sea quark symmetry will
always be singlet, the valence quark terms for a hadron in the irreducible repre-
sentation N can be in any representation which occurs in N ⊗N .

Let us see what sort of mass relations symmetry allows us, taking the decuplet
baryons as our example. Starting with linear terms in the quark masses, we can
form two polynomials of the valence masses, a singlet combination (2δµl + δµs)
and an octet combination with E+ symmetry, (δµs − δµl). (A first-order term
in the sea quark masses is ruled out because we are keeping 2ml +ms constant.)
We can read off the coefficients each polynomial must have from Fig. 8. So, at
first sight we would expect

M∆ = M0 + α1(2δµl + δµs)− α2(δµs − δµl)

MΣ∗ = M0 + α1(2δµl + δµs)

MΞ∗ = M0 + α1(2δµl + δµs) + α2(δµs − δµl)

MΩ = M0 + α1(2δµl + δµs) + 2α2(δµs − δµl) , (45)

with no connection between α1 and α2. However, it is clear that the ∆ mass
can not know anything about the strange valence mass, and the Ω mass must
similarly be independent of δµl. These constraints are both satisfied if

α1 = α2 ≡ A , (46)

giving us a leading-order formula

M∆ = M0 + 3Aδµl

MΣ∗ = M0 + A(2δµl + δµs)

MΞ∗ = M0 + A(δµl + 2δµs)

MΩ = M0 + 3Aδµs . (47)

We can continue this procedure to the quadratic level. Again, the number of
terms is reduced by keeping the sum of the sea quark masses fixed; and we again
find the number of coefficients reduced by the constraint that the ∆ mass is
independent of δµs, and the Ω mass independent of δµl. We obtain the quadratic
results

M∆ = M0 + 3Aδµl +B0δm
2
l + 3B1δµ

2
l
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MΣ∗ = M0 + A(2δµl + δµs) +B0δm
2
l +B1(2δµ

2
l + δµ2

s) +B2(δµs − δµl)
2

MΞ∗ = M0 + A(δµl + 2δµs) +B0δm
2
l +B1(δµ

2
l + 2δµ2

s) +B2(δµs − δµl)
2

MΩ = M0 + 3Aδµs +B0δm
2
l + 3B1δµ

2
s . (48)

These formulae apply when the sum of the sea quark masses are held constant,
1
3(2ml +ms) = m0, but the valence quark masses are completely free, because at
this level (terms up to second order) a restriction on valence masses would not
lead to any reduction in the number of free parameters.

Let us use these formulae to illustrate how partially quenched measurements
might help us fit masses on the constant sea-quark line. In these equations,
M∆ and MΩ are fully unquenched baryon masses along the constant sea-quark
line 1

3(2ml + ms) = m0, and MPQ

∆ is a partially quenched ∆, measured on the
symmetric configuration ml = ms = m0. From eq. (48) we can read off the
relevant mass relations

M∆ = M0 + 3Aδml + (B0 + 3B1)δm
2
l −mR

0 < δmR

l <
1
2m

R

0

MΩ = M0 + 3Aδms + (14B0 + 3B1)δm
2
s −mR

0 < δmR

s < 2mR

0

MPQ

∆ = M0 + 3Aδµl + 3B1δµ
2
l −mR

0 < δµR

l . (49)

The unquenched quark masses can only be varied through a rather small range,
but the partially quenched quark mass can be varied much further, giving us a
better lever-arm to measure curvatures. Data on the partially quenched ∆ could
give the parameters A and B1, which would predict the Ω-∆ splitting and the
Ξ-Σ splitting in the fan plot. We could also find the parameter B2 by looking at
mixed-mass partially quenched decuplet baryons.

There are some combinations of the partially quenched masses, eqs. (48) which
have simpler dependences on the valence quark masses. Examples include

−M∆ +MΣ∗ +MΞ∗ −MΩ = 2B2(δµs − δµl)
2

MΞ∗ −MΣ∗ = A(δµs − δµl) +B1(δµ
2
s − δµ2

l )

MΩ −M∆ = 3A(δµs − δµl) + 3B1(δµ
2
s − δµ2

l ) . (50)

5.2 PQ octet mesons

The mass formulae for mesons takes the form:

M2
π = M2

0 + 2αδµl + β0δm
2
l + 2β1δµ

2
l

M2
K = M2

0 + α(δµl + δµs) + β0δm
2
l + β1(δµ

2
l + δµ2

s) + β2(δµs − δµl)
2

M2
ηs = M2

0 + 2αδµs + β0δm
2
l + 2β1δµ

2
s . (51)

Again the ηs is the meson made of a partially quenched svalsval quarks, (i.e.
the ‘strange pion’) which in the partially quenched framework can be observed
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and can yield useful information about the extrapolation constants. Some useful
combinations, which avoid the delicate η sector, are

M2
K −M2

π = α(δµs − δµl) + β1(δµ
2
s − δµ2

l ) + β2(δµs − δµl)
2

2M2
K +M2

π = 3M2
0 + α(4δµl + 2δµs) + 3β0δm

2
l

+β1(4δµ
2
l + 2δµ2

s) + 2β2(δµs − δµl)
2 . (52)

M2
K −M2

π is useful as a measure of the quark mass splitting, 2M2
K +M2

π as a
quantity which is nearly constant along our trajectory.

The same form, mutatis mutandis, applies to the other meson octets, e.g. the
ρ, K∗, φ system. We thus have

Mρ = M0 + 2αδµl + β0δm
2
l + 2β1δµ

2
l

MK∗ = M0 + α(δµl + δµs) + β0δm
2
l + β1(δµ

2
l + δµ2

s) + β2(δµs − δµl)
2

Mφ = M0 + 2αδµs + β0δm
2
l + 2β1δµ

2
s , (53)

following the pattern of eq. (51).

5.3 PQ octet baryons

The number of free coefficients in the meson case was reduced by the requirement
that K and K have the same masses, there is no similar constraint linking N and
Ξ, so more coefficients are allowed, both at the linear and quadratic levels. We
find

MN = M0 + 3A1δµl +B0δm
2
l + 3B1δµ

2
l

MΛ = M0 + A1(2δµl + δµs)− A2(δµs − δµl) +B0δm
2
l

+B1(2δµ
2
l + δµ2

s)− B2(δµ
2
s − δµ2

l ) +B4(δµs − δµl)
2

MΣ = M0 + A1(2δµl + δµs) + A2(δµs − δµl) +B0δm
2
l

+B1(2δµ
2
l + δµ2

s) +B2(δµ
2
s − δµ2

l ) +B3(δµs − δµl)
2

MΞ = M0 + A1(2δµl + δµs)− A2(δµs − δµl) +B0δm
2
l

+B1(δµ
2
l + 2δµ2

s)− B2(δµ
2
s − δµ2

l ) +B3(δµs − δµl)
2 . (54)

As usual, the nucleon mass has been made independent of δµs. Some useful
combinations, which only depend on a few parameters, are

2MN −MΣ − 3MΛ + 2MΞ = (B3 − 3B4)(δµs − δµl)
2 (55)

MΞ −MΣ = (A1 − 2A2)(δµs − δµl) + (B1 − 2B2)(δµ
2
s − δµ2

l ) .

As mentioned previously, we can check that when µ → m (i.e. return to the
‘unitary line’) then these results return to the previous results of eqs. (34) – (37).
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5.4 The potential usefullness of PQ

There are several possible advantages to considering PQ results.

1. The coefficients that appear in the expansions about the flavour symmetric
line in the PQ case are the same as those that appear on the ‘unitary’ case.
Hence this may be a computationally cheaper way of obtaining them.

2. PQ results can be helpful in choosing the next point to simulate, because
the meson masses measured in the partially quenched approximation are
very close to those found in a full calculation, giving us a preview of results
on the next simulation point. We understand theoretically why this works
well on our trajectory, with m held fixed. The reason is that the effect
on the sea of making the u and d quarks lighter is largely cancelled by
the effect of making the s quark heavier (the cancellation is perfect at the
flavour symmetric point). Therefore partially quenching works best when
only the non-singlet part of the quark mass matrix is varied (as is the case
here). If the singlet part (the average sea-quark mass) is changed, there is
no compensation, and the partial quenched results are less reliable.

3. We can use partial quenching to get a good estimate of results at the phys-
ical point, by taking configurations generated with quark masses some dis-
tance short of the physical point, and then at the measurement stage using
valence quarks chosen to give the physical π and K masses. Important
physical effects, such as the light pion cloud, would be incorporated in the
results. The effects of partially quenching can be further reduced by repeat-
ing the calculation with several choices of sea-quark masses, and making an
extrapolation towards the physical sea-quark mass values.

We can also show that on this trajectory the errors of the partially quenched
approximation are much smaller than on other trajectories. In leading order χPT
(terms linear in the quark mass), the suggested procedure (valence quarks at the
physical value, sea quarks anywhere on the physical constant msea) is exact. See
Table VIII of [16] for the leading order formulae for both octet and decuplet
baryon masses. At this order partial quenching moves all the octet baryons by
the same amount, and all decuplets also move together. The leading order partial
quenching errors are

MPQ

oct −M phys

oct = 6σM(mlat

sea
−mphys

sea
)

MPQ

dec −M phys

dec = −6σM(mlat

sea
−mphys

sea
) , (56)

(using [16] notation for quark masses and the σ coefficients). Since we have tuned
mlat

sea
to be equal to the physical value, the partial quenching error vanishes on

our trajectory, but not on other trajectories, which vary mlat

sea
.
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We can give a partial derivative argument, like that of section 1 or [1], which
explains why this is so. Take the proton mass as an example, but any quantity
will work the same way. The proton mass will depend on the valence quark
masses and the sea quark masses, so we can write

MPQ

p (mval

u , mval

d ;msea

u , msea

d , msea

s ) . (57)

The dependence on the three sea masses must be completely symmetrical, unlike
the dependence on valence masses. At the symmetric point

∂MPQ

p

∂msea
u

=
∂MPQ

p

∂msea

d

=
∂MPQ

p

∂msea
s

, (58)

so if the sea quark masses are changed in a way which preserves msea, while the
valence masses are held constant, MPQ

p will not change (to leading order).

6 The path to the physical point

In section 1 the proposed path to the physical point was introduced. We shall
now discuss this a little further.

For the simulation it is easiest to keep the (bare) singlet quark mass fixed,

m = 1
3(2ml +ms) = m0 = const. , (59)

starting from some reference point (m0, m0) on the flavour symmetric line. We
can use the singlet combinations from Table 6 to locate the starting point of our
path to the physical point by fixing a dimensionless ratio such as

X2
π

X2
N

= physical value . (60)

Note also that Xπ = mπ|0 at the flavour symmetric point so this determines our
starting pion mass from Table 11 to be ∼ 410MeV.

However this is only strictly true at lowest order. While at this order it does
not matter whether we kept the quark mass singlet constant, eq. (59), or a particle
mass singlet constant, eq. (60), higher order terms mean that it now does. If we
make different choices of the quantity we keep constant at the experimentally
measured physical value, for example

X2
π

X2
N

,
X2

π

X2
∆

,
X2

π

X2
ρ

, . . . , (61)

we get slightly different trajectories. The different trajectories begin at slightly
different points along the flavour SU(3) symmetric line. Initially they are all
parallel with slope −2, but away from the symmetry line they can curve, and will
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all meet at the physical point. (Numerically we shall later see that this seems to
be a small effect.)

An additional effect comes from the choice of Wilson lattice fermions (for
chiral fermions there is no effect). The physical domain is defined by

mR

l ≥ 0

mR

s ≥ 0 , (62)

which using eq. (5) translates to

ml ≥ −
1
3αZ

(1 + 2
3αZ)

ms , ms ≥ −
2
3αZ

(1 + 1
3αZ)

ml , (63)

leading to non-orthogonal axes and possibly negative bare quark mass. (These
features disappear of course for chiral fermions when αZ = 0.)

These two features are sketched in Fig. 9, which shows possible paths in the

(ml

*
,ms

*
) ms=ml

m
−−

=const

ml

ms

Figure 9: Sketch of some possible paths (red lines) in the (ml,ms) plane to the
physical point (m∗

l ,m
∗
s).

(ml, ms) plane starting from the flavour symmetric line.

7 The lattice – generalities

After the general discussion of SU(3) flavour expansions described in sections 2–5
(which are lattice independent) we now turn to more specific lattice considera-
tions.
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7.1 Lattice simulations

We use a clover action for 2+1 flavours with a single iterated mild stout smearing
as described in Appendix D. Further details are given in [19] together with a non-
perturbative determination of the improvement coefficient for the clover term,
using the Schrödinger functional method.

The bare quark masses are defined as

amq =
1

2

(

1

κq
− 1

κ0;c

)

, (64)

where vanishing of the quark mass along the SU(3) flavour symmetric line deter-
mines κ0;c. We then keep m = const. ≡ m0 which gives

κs =
1

3
κ0

− 2
κl

. (65)

So once we decide on a κl this then determines κs.
Furthermore note that we are not expanding about the chiral limit, but have

expansions around a flavour symmetric point which does not require a knowledge
of κ0;c. This follows as

δmq = mq −m0

=
1

2a

(

1

κq
− 1

κ0

)

. (66)

HMC and RHMC were used for the 2 and 1 fermion flavours respectively, [20],
to generate the gauge configurations. We note the following in connection with
the simulations and our path choice:

• HMC simulations should equilibriate quickly from one point to another
along this path.

• The HMC cost change should be moderate for this path. This may be
motivated by the following crude cost argument. Modelling the HMC cost,
C, as

C ∝ 1

amR

l

+
k

amR
s

, (67)

gives on the line am = const = am0

C ∝ 1

αZ + ξ
+

k

(3 + αZ)− 2ξ
, (68)

with

ξ =
ml

m0
. (69)

This is plotted in Fig. 10. There is little change in a reasonably large range
of ξ starting from ξ = 1.

Both these points are indeed found in practice (at least approximately).
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ξ = ml/m0

0

5
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C
(ξ

)

αZ=1, k=2

Figure 10: Simulation cost C(ξ) against ξ where ξ = ml/m0 (with, for example,
αZ = 1 and k = 2).

7.2 O(a)-improvement of the coupling constant

O(a)-improvement leads to a change in the coupling constant (or β) via

g20 → g̃20 = g20 (1 + bgam) , (70)

where bg is some function of g20. In general when we vary a quark mass then g0
must be changed to keep g̃0 constant. However for our choice of path (m = const.)
the relation between g0 and g̃0 is fixed, so only a small overall shift of results might
be necessary – nothing else changes as we traverse our path.

Not much is known about the value of bg. For Wilson glue and α = 0 (i.e. no-
stout smeared links) Wilson-Dirac fermions the lowest order perturbative result
is bg = 0.01200nfg

2
0 + O(g40), [21], which is small but increasing with nf (here

nf = 3). A crude estimate was made in [22] and indicated a possible 1–2% effect
(but with considerable uncertainty). In the following we shall not consider the
effect of bg any further.

7.3 Hadron ‘wavefunctions’

The operators (wave functions) used to determine the hadron masses are uni-
formly taken to be Jacobi smeared ([23] and [24] (Appendix C)) and to be non-
relativistic, NR, ([25], [26] and [27] (Appendix C)). Specifically, we consider the
following hadron wave functions:

• Pseudoscalar meson octet

Mπ(x) = d(x)γ5u(x)

MK(x) = s(x)γ5u(x)

Mηs(x) = s(x)γ5s(x) (71)
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• Vector meson octet

Mρ i(x) = d(x)γiu(x)

MK∗ i(x) = s(x)γiu(x)

Mφs i(x) = s(x)γis(x) (72)

• Baryon octet

BN α(x) = ǫabcu
a
α(x)

[

ub(x)TDCγ5d
c(x)

]

BΛα(x) = ǫabc
(

2saα(x)
[

ub(x)TDCγ5d
c(x)

]

+daα(x)
[

ub(x)TDCγ5s
c(x)

]

− uaα(x)
[

db(x)TDCγ5s
c(x)

])

BΣα(x) = ǫabcu
a
α(x)

[

ub(x)TDCγ5s
c(x)

]

BΞα(x) = ǫabcs
a
α(x)

[

sb(x)TDCγ5u
c(x)

]

(73)

• Baryon decuplet

B∆ iα(x) = ǫabc
(

2uaα(x)
[

ub(x)TDCγ−d
c(x)

]

+ daα(x)
[

ub(x)TDCγ−u
c(x)

])

BΣ∗ α(x) = ǫabc
(

2uaα(x)
[

ub(x)TDCγ−s
c(x)

]

+ saα(x)
[

ub(x)TDCγ−u
c(x)

])

BΞ∗ α(x) = ǫabc
(

2saα(x)
[

sb(x)TDCγ−u
c(x)

]

+ uaα(x)
[

sb(x)TDCγ−s
c(x)

])

BΩα(x) = ǫabcs
a
α(x)

[

sb(x)TDCγ−s
c(x)

]

(74)

where C = γ2γ4 and γ− = 1
2
(γ2 + iγ1) and

TD is a transpose in Dirac space. The
u and d quarks are considered as distinct, but of degenerate mass.

The correlation functions (on a lattice of temporal extension T ) we use are
given by

CπO
(t) =

1

Vs

〈

∑

~y

MπO
(~y, t)

∑

~x

MπO
(~x, 0)

〉

∝ A
(

e−MπO
t + e−MπO

(T−t)
)

, πO = π,K, ηs

CρO(t) =
1

3Vs

∑

i

〈

∑

~y

MρO i(~y, t)
∑

~x

MρO i(~x, 0)

〉

∝ A
(

e−MρO
t + e−MρO

(T−t)
)

, ρO = ρ,K∗, φs

CNO
(t) =

1

Vs
TrDΓunpol

〈

∑

~y

BNO
(~y, t)

∑

~x

BNO
(~x, 0)

〉

∝ Ae−MNO
t +Be

−M ′

NO
(T−t)

, NO = N,Σ,Ξ

CNΛ
(t) =

1

Vs
TrDΓpol

〈

∑

~y

BNΛ
(~y, t)

∑

~x

BNΛ
(~x, 0)

〉
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∝ Ae−MNΛ
t +Be

−M ′

NΛ
(T−t)

,

C∆O
(t) =

1

Vs
TrDΓpol

〈

∑

~y

B∆O
(~y, t)

∑

~x

B∆O
(~x, 0)

〉

∝ Ae−M∆O
t +Be

−M ′

∆O
(T−t)

, ∆O = ∆,Σ∗,Ξ∗,Ω (75)

with Γunpol =
1
2
(1 + γ4) and Γpol = Γunpol(1 + iγ3γ5). M

′ is the lowest excited
state with opposite parity to M .

8 The lattice – results

All the results given in this article will be at β ≡ 10/g20 = 5.50, α = 0.1, together
with csw = 2.65, see Appendix D. (This β value was located by an initial series of
short degenerate quark mass runs, to give a rough idea of the associated scale.)

8.1 Locating κ0 and the mR

s–m
R

l plane

From the discussion in section 6 for our path choice, we must first determine the
starting value on the flavour symmetric line. A series of runs along the SU(3)
flavour line determines this point, κ0, by looking when X2

π/X
2
S, S = N , ∆, ρ

are equal to their physical values, see eqs. (60), (61). (This would also include
S = r if we have previously determined the physical value of r0.) On the flavour
symmetric line obviously all the particles in the multiplet are mass degenerate,
so for example taking S = N means that

(amπ)
2

(amN )2
=

X2
π

X2
N

∣

∣

∣

∣

∗

, (76)

where, to emphasise that the left-hand side are the lattice measurements, we
temporarily include the lattice spacing.

Once we have located a promising κ0 (or better a small range of κ0s) then
we keep m = const. and pick appropriate (κl, κs) values, using eq. (65). Again
setting X2

π/X
2
N = physical value eq. (60) can be re-written as

2M2
K −M2

π

X2
N

= cN + 2
M2

π

X2
N

, cN = 3
X2

π

X2
N

∣

∣

∣

∣

∗

, (77)

considering for the present only lowest order in the flavour expansion. In Fig. 11
we plot (2m2

K − m2
π)/X

2
N versus M2

π/X
2
N . This is equivalent to a plot of the

mR

l -m
R
s plane. (The runs on 243×48 lattices have O(2000) trajectories, while the

runs on 323 × 64 lattices have O(1500) trajectories.) Note that simulations with
a ‘light’ strange quark mass and heavy ‘light’ quark mass are possible – here the
right most points. In this inverted strange world we would expect p → Σ or Λ
decays.
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Figure 11: (2m2
K−m2

π)/X
2
N versus M2

π/X
2
π for κ0 = 0.12090 (left panel) and 0.12092,

0.12095 (right panel). The dashed black line, y = x represents the SU(3) flavour
symmetric line. Filled points are on 323 × 64 lattices while open points are on a
243×48 sized lattice. Shown are points on the flavour symmetric line (orange) followed
by results with m = const. The fits are from eq. (77) with cN a free parameter. Physical
values are denoted by stars.

Also shown in Fig. 11 are fits using eq. (77) leaving cN as a free parameter
starting from the flavour symmetric points

κ0 = 0.12090 , κ0 = 0.12092 , κ0 = 0.12095 , (78)

(the latter two points are reference points.) It is seen from the figure that this
range covers the possible paths to the physical point. There are two observations
to be made. Firstly we note that there does not seem to be much non-linearity in
the data, i.e. the leading order in the expansion about the flavour symmetric line
already seems sufficient. So if cN = 3(X2

π/X
2
N)|∗ then the lines would go exactly

through the physical point. Also this means from the discussion in section 6 that
using other singlet scale choices should lead to a similar result. Secondly, as noted
before at the end of section 3, as the expansions have been derived using only
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group theoretic arguments, they will be valid for results derived on any lattice
volume (though the coefficients of the expansion are still functions of the volume).
So here, to test this, we have made separate fits for the two volumes — 243 × 48
and 323 × 64. Indeed this shows that finite size effects are present but small.

Thus our present conclusion is that kappa in the range 0.12090 – 0.12095 is
within a few percent of the reference κ0. Most of the results reported here will
be at κ0 = 0.12090.

8.2 Determination of κ0;c, αZ

Although not strictly necessary, we briefly indicate here the determination of κ0;c,
αZ to illustrate some of the discussion in section 6. Using lowest order χPT (i.e.
the fact that the pion mass vanishes if the light quarks vanish) and

(amπ)
2 ∝ aml + αZam , (79)

where the constant of proportionality from eq. (43) is 2aα = 2aQ0 = 2aBR

0 Z
NS

m ,
we first determine κ0;c (the critical hopping parameter on the flavour symmetric
line) as defined in eq. (64). In Fig. 12 we show the plot of (amπ)

2 versus 1/κl

8.24 8.25 8.26 8.27 8.28
1/κ l

0.00
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0.04
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m
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3
x48

κ0=0.12090 32
3
x64

κ0

Figure 12: (amπ)
2 versus 1/κl for both the flavour symmetric case (blue points) and

for the κ0 = 0.12090 case.

together with linear fits. From the blue points we find

1

κ0;c
= 8.25977(21) , or κ0;c = 0.121069(25) , (80)
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which is in good agreement with the Schrödinger functional determination, see
Appendix D. This gives in turn for κ0 = 0.12090,

am =
1

2

(

1

κ0
− 1

κ0;c

)

= 0.00576(21) . (81)

Note that for κl < κ0;c then the bare amq is negative (but the renormalised mR

q

is always positive).
αZ can then be estimated using the m = const. line as here (amps)

2 vanishes
at κc, giving

αZ = −amq|κ=κc

am
=

(

1
κ0;c

− 1
κc

)

(

1
κ0

− 1
κ0;c

) . (82)

Using the 323 × 64 data only (green points) gives

1

κc
= 8.24753(19) , or κc = 0.121248(23) . (83)

Hence this gives here

αZ =
0.01224(28)

0.01153(21)
= 1.062(31) . (84)

Note that the determination is quite sensitive to small changes in κ0;c and κc. We
conclude that for clover fermions at present day lattice spacings αZ is substantial
∼ O(1).

8.3 Singlet quantities and the scale

We take Fig. 11 as a sign that singlet quantities are very flat and the fluctuations
are due to low statistics. We now investigate this further. In Fig. 13 we show
aXS for S = ∆, N , ρ and π against M2

π/X
2
π for κ0 = 0.12090, 0.12092, together

with constant fits. This indicates that other singlet quantities are also rather flat
(we interpret variations in X∆ to be due statistical fluctuations). Again fits are
made for each lattice volume separately.

8.3.1 Finite size effects

In Fig. 13 there are again indications of relatively small finite size effects. We now
briefly investigate this a little more. While we do not attempt to formally derive
a formula here, we do have the obvious constraint that the finite size XS must
also be flat at the symmetry point. Thus from eq. (32) and as we shall consider
only the lowest order term from eq. (38), we expect the finite size functional form
to be

XS(L) = XS

(

1 + cS
1
3 [fL(Mπ) + 2fL(MK)]

)

, (85)
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Figure 13: aXS for S = ∆, N , ρ and π versus M2
π/X

2
π for κ0 = 0.12090 (left panel)

and 0.12092, 0.12095 (right panel) together with constant fits. Filled points and lines
are for 323 × 64 lattices, while opaque points and dashed lines are for 243 × 48 lattices.
In the right panel the lower filled points and lines are for κ0 = 0.12095.

To lowest order χPT indicates that a suitable form for fL(M) is

fL(M) = (aM)2
e−ML

(ML)
3
2

. (86)

In Fig. 14 we plot (fL(Mπ) + 2fL(MK))/3 against aXS for S = ∆, N , ρ, π and r
on 323×64, 243×48 and 163×32 lattices for κ0 = 0.12090. The fits are linear. A
reasonable agreement is seen. (The noisiest signal is for S = ∆.) We see that the
extrapolated (i.e. L→ ∞) results are very close to the largest lattice results (i.e.
323 × 64), so we conclude that using the largest lattice size available should only
introduce small errors. We shall also go a little further and assume that finite
size effects for masses are similar to those of XS for each mass of the appropriate
multiplet. Thus we shall later consider ratios M/XS for all the available lattice
data; finite size results then tend to cancel in the ratio.
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Figure 14: aXS versus (fL(Mπ) + 2fL(MK))/3 for κ0 = 0.12090, with S = ∆, N , ρ,
π and r. The left-most clusters of points are from the 323× 64 lattices (L = 32a), then
follow 243 × 48 and finally 163 × 32 lattices. The dashed lines are linear fits.

8.3.2 Scale estimation

The result of section 8.3.1 is that the largest volumes available seem to have small
finite size effects, so we now simply take the largest volume available. In Fig. 15
we plot aXS/XS ≡ (aXS)

lat/Xphys

S , for S = N , ∆, ρ, π using the largest volume
fitted results from Fig. 13 (together with smaller data sets for κ0 = 0.12080,
κ0 = 0.12095). This ratio gives estimates for the lattice spacing a for the various
scales. We expect convergence to a common scale where the lines cross, assuming
all O(a2) corrections are negligible. We would expect most variation of the ratio
with Xπ. This appears to be the case, with the exception of the decuplet scale.
However this is the channel with the worst signal, so presently we just consider
the approximate crossing of the other lines giving a ∼ 0.075 – 0.078 fm with
κ0 ≈ 0.12092.

As discussed in section 8.3.1 we expect a (partial) cancellation of finite size
effects (and also statistical fluctuations) within the same multiplet so we shall
adopt the philosophy when considering the hadron spectrum of first finding the
ratio of the mass to the singlet quantity from the same multiplet. For example,
we can take as our base singlet quantity the baryon octet XN (not only are these
stable particles under QCD interactions and so might physically be considered a
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Figure 15: aXS/XS against 1/κ0 for S = N , ∆, ρ, π and κ0 = 0.12080, 0.12090,
0.12092 and 0.12095.

good choice, but XN also has smaller numerical errors than X∆). To translate
from one scale to another we then need the ratio XS/XN . In Fig. 16 we plot
XS/XN for various XS (with S = ∆, ρ, π). Also shown are constant fits to the
two volumes — 243× 48 and 323× 64. The change in the ratios between the two
volumes is seen to be small. Note also that all ratios are close to their physical
values. We use the results of the largest volume, which are given in Table 10.
In the last column of this table we have used the experimental values of XS (as

Ratio κ0 = 0.12090 ×XN/XS

aXπ/aXN 0.3766(13) 1.054(4)
aXρ/aXN 0.7211(37) 0.972(5)
aX∆/aXN 1.2350(110) 1.030(10)

Table 10: Lattice ratios of singlet quantities aXS/aXN , S = π, ρ, ∆ from 323 × 64
lattices. In the last column we have multiplied by the experimental inverse ratio, taken
from Table 11.

given in Table 11) to form the ratio aXS/aXN ×XN/XS. This should be one. As
can be seen from Fig. 16, this is the case and Table 10 confirms that the ratios
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Figure 16: XS/XN versus M2
π/X

2
π for S = N , ∆ and ρ for κ0 = 0.12090. The dashed

vertical line represents the physical value, while the dotted line gives the SU(3) flavour
symmetric point. Filled points are on 323×64 lattices while open points are on 243×48
sized lattice. Dashed horizontal lines represent constant fits to either the 323 × 64 or
243 × 48 results. For illustration, we also show physical values – denoted by stars.

are one within a few percent.

9 Spectrum results for nf = 2 + 1 flavours

9.1 Experimental values

To minimise u–d quark mass differences (and also electromagnetic effects) for
the experimental data, we average the particle masses as given in the Particle
Data Group tables [29] over isospin I3 (i.e. horizontally in Figs. 2, 3). This gives
the experimental values (which we give later together with the measured lattice
values) in Table 12. Using these experimental numbers, the experimental values
for the hadron singlet quantities used here are then given in Table 11.

9.2 Mass hierarchy

We now consider the lattice results for the mass spectrum. First we check whether
there is a strong hierarchy due to the SU(3) flavour symmetry as found in eq. (33).
In Fig. 17 we plot (4M∆ + 3mΣ∗ + 2MΞ∗ +MΩ)/X∆, (−2M∆ +MΞ∗ +MΩ)/X∆,
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Singlet GeV

Xπ =
√

(M2
π + 2M2

K)/3 0.4109
Xρ = (Mρ + 2MK)/3 0.8530
XN = (MN +MΣ +MΞ)/3 1.1501
X∆ = (2M∆ +MΩ)/3 1.3788

Table 11: Experimental values for the XS singlet quantities, S = π, N , ∆.

(4M∆ − 5MΣ∗ − 2MΞ∗ +MΩ)/X∆ and (−M∆ +3MΣ∗ − 3MΞ∗ +MΩ)/X∆ against
M2

π/X
2
π for κ0 = 0.12090. Also shown are the experimental values. There is

reasonable agreement with these numbers. Well reproduced, as expected, is the
order of magnitude drop in the hadron mass contributions with each additional
power of δml. (See [28] for a similar investigation of octet baryons.) It is also
seen that while (−2M∆ +MΞ∗ +MΩ)/X∆ has a linear gradient in the pion mass,
in the other fits any gradient is negligible as expected. To check for possible finite
size effects we also plot a run at the same (κl, κs) but using 243×48 lattice rather
than 323 × 64. There is little difference and so it appears that considering ratios
of quantities within the same multiplet leads to (effective) cancellation of finite
size effects.

9.3 ‘Fan’ plots

We now show a series of plots of the hadron masses from a light quark mass
just above the flavour symmetric line down to the physical point. As the masses
(of a particular octet or decuplet) are all degenerate from a point on the flavour
symmetric line, then we would expect a ‘fanning’ out of masses from this point.
We consider second order fits in the quark mass, but show plots using the pseu-
doscalar mass on the x-axis, i.e. from eq. (34). Thus we are using the quark mass
as an ‘internal parameter’.

In Fig. 18 we show M2
πO
/X2

π (πO = π, K, ηs) against M
2
π/X

2
π together with

the combined fit. A typical ‘fan’ structure is seen with results radiating from the
common point on the symmetric line. Note that one point has a light strange
quark and a heavy ‘light’ quark. There is however little real content in this plot
– the πO = π line is trivial, for the πO = K line the chiral limit and gradient are
known. However the graph does tell us that for the fictitious ηs particle, there
is very little curvature, which as this is a constrained fit, must hold for all the
pseudoscalar octet particles, including the fictitious one. We also note that ratios
within the same multiplet do indeed tend to give cancellation of finite size effects.

In Fig. 19 we plot the vector octet multipletMρO/Xρ againstM
2
π/X

2
π for ρO =

ρ, K∗, φs. Again finite volume effects tend to cancel in the ratio (normalising with
the singlet quantity from the same octet) and so both volumes have again been
used in the fit. The combined fit uses eqs. (35), (34) again with the bare quark

42



0.00 0.25 0.50 0.75 1.00 1.25
Mπ

2
/Xπ

2

−0.04

−0.02

0.00

0.02

0.04
experiment
(−M∆+3MΣ*−3MΞ&+MΩ)/X∆

0.0

0.2

0.4

0.6 experiment
(−2M∆+MΞ*+MΩ)/X∆

(4M∆−5MΣ*−2MΞ*+3MΩ)/X∆

9.8

10.0

10.2 experiment
(4M∆+3MΣ*+2MX∗ +ΜΩ)/X∆

Figure 17: (4M∆ + 3MΣ∗ + 2MΞ∗ +MΩ)/X∆, (−2M∆ +MΞ∗ +MΩ)/X∆, (4M∆ −
5MΣ∗ −2MΞ∗ +MΩ)/X∆ and (−M∆+3MΣ∗ −3MΞ∗ +MΩ)/X∆ (filled circles) against
M2

π/X
2
π together with a fit of constant, linear quadratic and cubic term in δml re-

spectively. Extrapolated values are shown as opaque circles. Experimental values are
denoted by stars. The opaque triangle is a run at the same (κl, κs), but on a 243 × 48
lattice rather than a 323 × 64 lattice.

mass being an ‘internal’ parameter. Some moderate curvature is now seen in the
extrapolations. Note that as mφs

≈ mφ then we have almost perfect mixing.
Continuing in Fig. 20 we plot the nucleon octet MNO

/XN (for NO = N , Λ,
Σ, Ξ) against M2

π/X
2
π and similarly in Fig. 21 we plot the corresponding baryon

decuplet M∆D
/X∆ for ∆O = ∆, Σ∗, Ξ∗, Ω against M2

π/X
2
π. Although we have

included quadratic terms in the fit, there is really very little curvature in the
results.

All these figures illustrate the ‘fanning’ of the results. The correct ordering of
the particle spectrum has been achieved (also behind the symmetric point when
we have heavy u quark masses and a light s quark mass). The masses (using the
scale determined by the appropriate XS) are given in Table 12. The results are
already within a few percent of their experimental values. If we wish to convert
these numbers to a base scale, say XN , then these numbers can be converted
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(‘sym. pt.’) when κ0 = 0.12090 is denoted as a red point. Experimental values are
denoted by stars. The opaque triangle is a run at the same mass but on a 243 × 48
lattice rather than 323 × 64.
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of eqs. (35), (34) (the dashed lines). Same notation as Fig. 18.
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fit of eqs. (36), (34) (the dashed lines). Same notation as Fig. 18.
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/X∆ (∆D = ∆, Σ∗, Ξ∗, Ω) against M2
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π together with the com-
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particle expt[GeV] M/XS result[GeV]

Mπ = (Mπ+ +Mπ0 +Mπ−)/3 ll 0.1380
MK = (MK+ +MK−)/2 ls 0.4937
Mηs ss 2.778(18) 1.141(7)

Mρ = (Mρ+ +Mρ−)/2 ll 0.7755 0.9119(80) 0.778(7)(22)
MK∗ = (MK∗+ +MK∗−)/2 ls 0.8917 1.044(4) 0.891(3)(25)
Mφs

∼ Mφ ss 1.0195 1.195(12) 1.019(10)(29)

MN = (Mp +Mn)/2 lll 0.9389 0.8276(130) 0.952(15)
MΛ = MΛ0 lls 1.1157 0.9783(196) 1.125(22)
MΣ = (MΣ+ +MΣ0 +MΣ−)/3 lls 1.1932 1.036(12) 1.192(14)
MΞ = (MΞ0 +MΞ−)/2 lss 1.3183 1.137(8) 1.308(9)

M∆ lll 1.232 0.9100(108) 1.255(15)(38)
MΣ∗ = (MΣ∗+ +MΣ∗0 +MΣ∗−)/3 lls 1.3846 1.007(8) 1.388(11)(41)
MΞ∗ = (MΞ∗0 +MΞ∗−)/2 lss 1.5334 1.097(12) 1.513(17)(45)
MΩ = MΩ− sss 1.6725 1.180(22) 1.627(30)(49)

Table 12: The hadron masses. The third column, ‘expt’, gives the isospin averaged
masses. The fourth column, ‘results’ gives the numerical results from Figs. 18 – 21. The
first error is from these fits, while the second is from scale uncertainties as discussed in
section 8.3.2 and the text here.

using the numbers in the last column of Table 10 as

MSO
=
aMSO

aXN

XN =

(

aMSO

aXS

XS

)(

aXS

aXN

XN

XS

)

, (87)

where the second factor is given in this table. These numbers are all ∼ 1 (within
a few percent) and we shall just regard them here as a possible additional source
of error (the second error in the last column). It is to be noted that the largest
source of error appears to come from the uncertainty, not in the determination of
the scale itself, but in the consistency with the use of a different flavour singlet
quantity to determine the scale.

9.4 Partially quenched results

We illustrate partially quenching using baryon splittings as an example. The
splittings depend mainly on mval

s − mval
l and only weakly (at second order) on

other quark combinations. In the PQ data shown here, we have points with a
large splitting between ms and ml reaching up to points where ms −ml is equal
to its physical value. We can therefore make partially quenched splitting plots
reaching down to the physical point.

We have generated partially quenched results on an ensemble with κ0 =
0.12090 and lattice volume 243 × 48. The first octet splitting diagram, Fig. 22,
shows just the PQ data. The second, Fig. 23, shows the PQ data in grey,

46



Figure 22: Partially quenched data, (MNO
−MΣ)/XN versus (M2

π −M2
K)/X2

N . The
experimental points are denoted by a red stars.

Figure 23: A comparison between partially quenched and full data from 243 × 48
lattices, (MNO

−MΣ)/XN versus (M2
π −M2

K)/X2
N . Same notation as in Fig.22.
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compared with the 243 × 48 data in colour. While only to be taken as an an
illustration, it shows that the PQ data has the potential to be a good predictor
of real data.

10 Conclusions

We have outlined a programme to systematically approach the physical point
starting from a point on the SU(3) flavour symmetric line by keeping the singlet
quark mass constant. This leads to highly constrained extrapolations (i.e. fits).
Exploratory results for the hadron mass spectrum show that indeed this occurs,
with all fits for the pseudoscalar, vector and baryon octets and baryon decuplet
being highly linear. This is also seen when considering flavour singlet quantities,
which remain constant as we approach the physical point. This enables the lattice
spacing to be determined, and indeed allows the consistency of various definitions
to be discussed. We have also extended these results to the partially quenched
case and illustrated that they contain useful information. (We plan to discuss
this further in [17].) We are also applying this method to the computation of
matrix elements, some initial results are given in [32, 33].
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Appendix

A The permutation group S3

If we have three quarks u, d, s with different masses, physics should be unchanged
if we simply permute the names we give to the quarks. The permutation group
is not the complete symmetry group - for example we could also perform U(1)
phase rotations on any particular quark flavour – but it is already enough to tell
us something useful.

The permutation group of 3 objects, S3, is the same as the symmetry group
of an equilateral triangle, C3v. There are 6 group operations

1. The identity

u→ u , d → d , s→ s . (88)

2. Two cyclic permutations

u→ d , d→ s , s→ u and u→ s , s→ d , d→ u , (89)

which correspond to rotations of the triangle through ±120o, and rotations
of the (I3, Y ) diagram through ±120o.

3. Three pair interchanges

u↔ d , s→ s; u↔ s , d→ d; d ↔ s , u → u , (90)

which correspond to the 3 reflection symmetries of the triangle, and reflec-
tions in the I3–Y plane.

If an equation is to respect flavour blindness, both sides of the equation should
transform the same way under all 6 operations. The representations of the group
allow us to arrange for this to hold.

The permutation group S3 is a subgroup of SU(3) and has 3 irreducible rep-
resentations [6], two different singlets, A1 and A2; and a doublet E.

A.1 Singlet representation A1

The representation A1 includes objects which are invariant under all 6 group
operations. Examples include gluonic quantities, such as glueball masses, r0,
V (r), . . . as well as certain averages over hadron multiplets. (We shall collectively
denote these objects by X .) A1 is a singlet representation. Examples of quark
masses with A1 symmetry (complete up to O(m3

q)) are

1
mu +md +ms

(mu +md +ms)
2 , m2

u +m2
d +m2

s

(mu +md +ms)
3 , (mu +md +ms)(m

2
u +m2

d +m2
s) , m3

u +m3
d +m3

s

(91)
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and linear combinations of these.

A.2 Singlet representation A2

This consists of objects which are invariant under the cyclic quark permutations,
(triangle rotations), but which change sign under the pair exchanges, (reflections).
A2 quantities automatically vanish if any two quark masses are the same. The
lowest A2 quantity for quark masses is O(m3

q),

mum
2
s −mdm

2
s +m2

dms −m2
ums +m2

umd −m2
dmu

= (δms − δmu)(δms − δmd)(δmu − δmd) . (92)

Baryon mass combinations with A2 symmetry are

Mp −Mn +MΣ− −MΣ+ +MΞ0 −MΞ− , (93)

and the corresponding decuplet quantity, with the p and n replaced by ∆+ and
∆0. Because particle and antiparticle have the same mass, the mesonic analogue
of eq. (93) vanishes.

Group theory tells us that in a 1 + 1 + 1 flavour world, the splitting eq. (93)
would be proportional to eq. (92) and terms of even higher order inmq (neglecting
electromagnetic effects).

A.3 Doublet representation E

By considering A2 we have found a fairly useless mass splitting formula, but by
looking at the doublet E we are able to find some more useful formulae.

The E representation has two states, which mix under the cyclic permutations.
We can choose to make one state of the doublet even under the reflection u↔ d ,
and the other state odd. (We could just as well choose any interchange to classify
our states, but it makes best sense to choose u↔ d, because the hadronic universe
is almost invariant under that operation.) We have called the even member of
the doublet E+, the odd member E−. (There does not appear to be a standard
notation.)

An example of an E doublet would be the states

1√
6
(2|s〉 − |u〉 − |d〉) and

1√
2
(|u〉 − |d〉) , (94)

It is easily checked that under any group operation they just mix with each other,
for example under the cyclic operation u→ d, d→ s, s→ u:

1√
6
(2|s〉 − |u〉 − |d〉) → 1√

6
(2|u〉 − |d〉 − |s〉) (95)

=

√
3

2

1√
2
(|u〉 − |d〉)− 1

2

1√
6
(2|s〉 − |u〉 − |d〉)
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and so on. In other words, the matrix for a cyclic permutation has the form

R =

(

cos θ ∓ sin θ
± sin θ cos θ

)

(96)

with θ = 120o.
Quark mass terms with E doublet symmetry are

{

1√
6
(2ms −mu −md) , 1√

2
(mu −md)

}

{

1√
6
(2m2

s −m2
u −m2

d) , 1√
2
(m2

u −m2
d)
}

{

1√
6
(mums +mdms − 2mumd) , 1√

2
(mums −mdms)

}

{

1√
6
(2m3

s −m3
u −m3

d) , 1√
2
(m3

u −m3
d)
}

{

1
2
(mum

2
s +mdm

2
s −m2

umd −mum
2
d) ,

1√
12
(mum

2
s +mdm

2
s + 2m2

ums − 2m2
dms +m2

umd +mum
2
d)
}

{

1√
12
(mum

2
s +mdm

2
s − 2m2

ums − 2m2
dms +m2

umd +mum
2
d)

, 1
2
(−mum

2
s +mdm

2
s +m2

umd −mum
2
d)
}

(97)

The normalisations and phases have been chosen so that each pair transforms
in the same way as eq. (94) under all group operations i.e. the matrices which
represent the group operations are the same for every pair.

B Some group theory

If the three quarks have equal masses, the QCD Lagrangian is invariant under a
global U(1) transformation of the quark fields

ψ → eiθψ , ψ → ψe−iθ , (98)

(corresponding to baryon number conservation) and a global SU(3) flavour trans-
formation

ψ → Uψ , ψ → ψU † , (99)

with U a unitary matrix with determinant 1.
If the quarks are all given different masses we still have the freedom to change

the phase of each flavour separately, without changing the action, so we have
conserved currents for each of the three flavours, and three independent U(1)
symmetries.

When the quarks have different masses, flavour SU(3) is no longer a symmetry
of the action, a global SU(3) rotation no longer leaves the action unchanged, but
we can still use SU(3) to understand the action. Consider the transformation

M → UMU † ≡ M′ (100)
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(the flavour analogue of a global gauge rotation in colour). If the quarks have
different masses, M′ 6= M, but they are physically equivalent in the sense that
the two matrices have the same eigenvalues as each other, but the eigenvectors
are rotated

ψ′ = Uψ, ψ
′
= ψU † . (101)

B.1 Flavour permutations, S3, as a subgroup of SU(3)

We want to concentrate initially on a set of SU(3) matrices which map a diagonal
mass matrix to another diagonal matrix when used in eq.(100). These are

• the identity matrix,

I =





1 0 0
0 1 0
0 0 1



 (102)

• the cyclic permutations of the quark flavours,




0 0 1
1 0 0
0 1 0



 = exp







i
2π

3
√
3





0 i −i
−i 0 i
i −i 0















0 1 0
0 0 1
1 0 0



 = exp







−i 2π

3
√
3





0 i −i
−i 0 i
i −i 0











(103)

• pair interchanges,




0 −1 0
−1 0 0
0 0 −1



 = exp







i
π

2





1 1 0
1 1 0
0 0 −2















0 0 −1
0 −1 0
−1 0 0



 = exp







i
π

2





1 0 1
0 −2 0
1 0 1















−1 0 0
0 0 −1
0 −1 0



 = exp







i
π

2





−2 0 0
0 1 1
0 1 1











(104)

Note that when we interchange a quark pair, we also have to change the sign
of the quarks, to keep the determinant equal to 1, as required for a matrix in
SU(3). These six matrices are all unitary with determinant 1, so they are all
members of SU(3). We have also shown that all the matrices can be written
in the canonical SU(3) form exp{i

∑

αjλj}. These matrices form a closed set
under multiplication, with a multiplication table matching that of the group S3,
showing that the symmetries of the equilateral triangle are a subgroup of SU(3).
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B.2 Group classification of quark mass polynomials

This subsection explains how the final column of Table 3 was calculated.
We can establish many useful results from the S3 subgroup, but it has its

limitations, it does not connect particles in different permutation sets, see Fig. 4.
By considering S3 alone we cannot write down a formula for the mass difference
between the Σ0 and Σ−, we cannot even show that the two particles have the
same mass in the 2 + 1 case. To go further we need to consider the full SU(3)
group, even though this will involve operations which make the mass matrix
non-diagonal.

We can write any SU(3) rotation as a matrix of the form

U = exp

{

i

8
∑

j=1

αjλj

}

, (105)

where the λj are the 8 Gell-Man matrices (and αj are real parameters). We only
need to consider infinitesimal transformations

M → UMU † = M+ i

8
∑

j=1

αj (λjM−Mλj) = M+ i

8
∑

j=1

αj [λj ,M] . (106)

We write

Ojψ = λjψ

Ojψ = −ψλj
OjM = [λj ,M] , (107)

to represent the action of the eight generators of SU(3) on spinors and on matri-
ces. The eight operators Oj are analogous to the three operators Jj in angular
momentum.

In SU(2) we use the eigenvalues of the operator

J2 =

3
∑

j=1

J2
j , (108)

to identify the irreducible representations of angular momentum. Similarly in
SU(3) we can use the eigenvalues of the quadratic Casimir operator [12, 13]

C =
1

4

8
∑

j=1

O2
j , (109)

to identify irreducible representations of SU(3). (The factor 1
4
is a conventional

normalisation.) Acting on a matrix

CM =
1

4

8
∑

j=1

[λj , [λj,M]] =
1

4

8
∑

j=1

(

λ2jM− 2λjMλj +Mλ2j
)

. (110)
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We can now begin classifying polynomial functions ofM. At first order, linear
functions of mass, it is simple,

Tr[M] = M11 +M22 +M33 , (111)

doesn’t change under SU(3) transformations, so it is singlet.
The other elements of M can be assigned quantum numbers. For example

M21 takes a u quark and changes it to a d, so it has I3 = −1 and hypercharge
0. The 6 off-diagonal elements of M form the outer ring of the octet. The two
central elements of the octet are the combinations

2M33 −M11 −M22 ∝ Tr[λ8M]

M11 −M22 ∝ Tr[λ3M] . (112)

We can check that both are eigenstates of the Casimir operator, with eigenvalue
3, showing that both are pure octet quantities.

If we make the substitutions

M11 → mu , M22 → md , M33 → ms , (113)

we see that the quantities eqs. (111)–(112) are proportional to the three linear
polynomials in Table 3, with the SU(3) assignments given from their behaviour
when operated on by the Casimir operator.

It gets more interesting at second order. (Tr[M])2 and Tr[M2] are both
flavour-singlet functions of the mass matrix. It is more convenient to work with
the linear combinations

(Tr[M])2

3Tr[M2]− (Tr[M])2 , (114)

where we have chosen the coefficients so that the second combination will be zero
at the SU(3) symmetric point. At second order we should be able to construct
functions of the mass matrix that are in the 1, 8 and 27 representations. One way
of constructing a quantity that is purely 27-plet is by using the Casimir operator.
If we take an arbitrary quadratic function of M it will usually be a mixture of
all three representations. If we multiply by

(C − 3)C , (115)

C will cancel the singlet part, (C − 3) will kill the octet part, (see Table 13), so
the operator eq. (115) leaves a pure 27-plet function of M. Using the eigenvalues
in Table 13 we can construct similar operators to project out objects in the other
representations of SU(3). Of course it would be tedious to do this by hand: we
have programmed the group operations in Mathematica so that the group theory
can be done more easily and rapidly.
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Representation 1 8 10 10 27 64
Casimir eigenvalue 0 3 6 6 8 15

Table 13: The eigenvalues of the quadratic Casimir operator, C, eq. (109), for the
SU(3) representations needed in this article.

Another useful technique is to use the raising and lowering operators I±, U±,
V± [14] to move around within a multiplet. Once we have one state in a multi-
plet, these operators allow us to make all the other states. Because infinitesimal
SU(3) operations do not preserve diagonality, a typical eigenstate of the Casimir
operator will involve all nine elements of the quark mass matrix M, not just the
three diagonal elements. For example, if we explicitly write out the SU(3) singlet
quantity eq. (114) it is

P1 = 2M11M11 + 2M22M22 + 2M33M33

+6M12M21 + 6M13M31 + 6M23M32 (116)

−2M11M22 − 2M11M33 − 2M22M33 .

We can use the techniques discussed in this section to write down a pure SU(3)
27-plet quantity, with the same S3 properties as eq. (116); the result is

PA1

27 = M11M11 +M22M22 +M33M33

−M12M21 −M13M31 −M23M32 (117)

−M11M22 −M11M33 −M22M33 .

Expressed this way, the 27-plet and singlet are clearly different functions of the
full 9-element mass matrix. However, if we just consider a diagonal mass matrix,
Mij = 0 if i 6= j, M11 = mu, M22 = md, M33 = ms then the quantities become
indistiguishable:

P1 → 2(m2
u +m2

d +m2
s −mumd −mums −mdms) = 3(δm2

u + δm2
d + δm2

s)

PA1

27 → m2
u +m2

d +m2
s −mumd −mums −mdms =

3

2
(δm2

u + δm2
d + δm2

s) .

(118)

Both collapse to the same quark mass polynomial, δm2
u + δm2

d + δm2
s, so this

polynomial is allowed to appear in equations for singlet and 27-plet physical
quantities, but not in equations for any other SU(3) representation.

We have used the methods of this subsection to classify all polynomials up to
cubic order, the results are recorded in Table 3.

B.3 Group analysis of hadron mass matrices

To construct hadron mass matrices for octet and decuplet hadrons we need to
analyse 8× 8 and 10× 10 matrices by their S3 and SU(3) properties.
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To get started we need to construct 8× 8 and 10× 10 representations of the
SU(3) generators. We can do this by considering the known behaviour of the
hadron multiplets under the SU(2) subgroups, isospin I, U -spin and V -spin, and
the hypercharge, Y , [14]:

λ1 = 2I1 λ2 = 2I2 λ3 = 2I3

λ4 = 2V1 λ5 = 2V2 (119)

λ6 = 2U1 λ7 = 2U2

λ8 =
√
3 Y

These 8 × 8 or 10 × 10 λ matrices have the same commutation relations as the
usual 3× 3 matrices

[λi, λj] = 2ifijkλk . (120)

Once we have the eight λ matrices for our hadron multiplet we can use eq. (110)
to classify any other matrices. For the hadron mass matrices, we need all the
flavour-conserving matrices. For the decuplet mass matrix these are all diago-
nal matrices; but for the octet mass matrix they can include some off-diagonal
elements, because the Σ0 and Λ have the same flavour quantum numbers. Our
results for the decuplet and octet matrices are given in Tables 4 and 5.

C Coordinate choice for partially quenched for-

mulae

.
It is often convenient to plot quantities against the pseudoscalar meson mass

squared, because then we know better the location of the physical point and the
chiral limit. If we do want to use pseudoscalar mesons, the best choice is to
replace the light sea quark by the full (non partially quenched) pion, the light
valence quark by the partially quenched pion, and to replace the valence strange
quark mass by the partially quenched svalsval meson (the ‘strange pion’), which
we are calling the ηs. This is a particle that doesn’t exist in the real world,
but which we can measure in the partially quenched channel. Determining the
valence s quark mass from the kaon has disadvantages, as we shall shortly see.

We introduce the mesonic variables

x ≡M2
πfull −M2

π;0 = 2αδml + β0δm
2
l + 2β1δm

2
l

y ≡M2
πPQ −M2

π;0 = 2αδµl + β0δm
2
l + 2β1δµ

2
l

z ≡M2
s −M2

π;0 = 2αδµs + β0δm
2
l + 2β1δµ

2
s , (121)

keeping terms up to second order in quark mass. In terms of these variables the
decuplet mass formulae eq. (48) become

M∆ = M0 + 3Ãy + B̃0x
2 + 3B̃1y

2
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MΣ∗ = M0 + Ã(2y + z) + B̃0x
2 + B̃1(2y

2 + z2) + B̃2(z − y)2

MΞ∗ = M0 + Ã(y + 2z) + B̃0x
2 + B̃1(y

2 + 2z2) + B̃2(z − y)2

MΩ = M0 + 3Ãz + B̃0x
2 + 3B̃1z

2 , (122)

with

Ã ≡ A

2α

B̃0 ≡ (2αB0 − 3Aβ0)

8α3

B̃1 ≡ (αB1 − Aβ1)

4α3

B̃2 ≡ B2

4α2
. (123)

The form of eq. (122) exactly repeats the form of eq. (48), but the new constants
involve a combination of curvature terms from the pion mass equation and from
the baryon mass equation.

Suppose instead we use the PQ kaon mass (instead of the strange pion) to
represent the strange quark mass, i.e. we replace z defined in eq.(121) by

w ≡ 2M2
KPQ −M2

πPQ −M2
πfull

= 2αδµs + β0δm
2
l + 2β1δµ

2
s + 2β2(δµs − δµl)

2 . (124)

At first order, w is just as good as z, but if we are interested in curvature, it is less
suitable, because at second order it involves both the valence s and the valence
l, unlike eq.(121). Using w instead of z, the decuplet mass formulae become

M∆ = M0 + 3Ãy + B̃0x
2 + 3B̃1y

2

MΣ∗ = M0 + Ã(2y + w) + B̃0x
2 + B̃1(2y

2 + w2) + B̃2(w − y)2 + B̃X(w − y)2

MΞ∗ = M0 + Ã(y + 2w) + B̃0x
2 + B̃1(y

2 + 2w2) + B̃2(w − y)2 + 2B̃X(w − y)2

MΩ = M0 + 3Ãw + B̃0x
2 + 3B̃1w

2 + 3B̃X(w − y)2 , (125)

with Ã, B̃0, B̃1, B̃2 defined as in eq. (123), but with an extra curvature coefficient

B̃X = −Aβ2
4α3

, (126)

so one fit constraint is lost (or deeply hidden) if we use the kaon mass to represent
the strange mass.

Finally, we want to relate the partially quenched fit to the unitary results, on
our trajectory 1

3(2ml +ms) = m0. If we use bare masses as our coordinates, we
do this by using the substitutions

δµl → δml , δµs → −2δml , (127)
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giving

M∆ = M0 + 3Aδml + [B0 + 3B1]δm
2
l

MΣ∗ = M0 + [B0 + 6B1 + 9B2]δm
2
l

MΞ∗ = M0 − 3Aδml + [B0 + 9B1 + 9B2]δm
2
l

MΩ = M0 − 6Aδml + [B0 + 12B1]δm
2
l . (128)

However, if we use meson-based coordinates, such as eq. (121), the mapping back
to the unitary result is more complicated,

y → x

z → −2x+
3(β0 + 4β1)

4α2
x2 . (129)

The mapping from z, our measure of the strange quark mass, back to x is com-
plicated by a second order term. The reason is clear. On our trajectory, the
relation 2δml+ δms = 0 is made exactly true for bare lattice quark masses, while
the meson mass relations 2M2

π+M
2
S ≈ const. or 2M2

K+M2
π ≈ const. are only true

to leading order. Thus in conclusion if we are considering the curvature terms it
is definitely better to use (bare) lattice quark masses as the coordinates.

D The action

The particular clover action used here has a single iterated mild stout smearing,
[30] for the hopping terms together with thin links for the clover term (this is
an attempt to ensure that the fermion matrix does not become too extended).
Together with the (tree level) Symanzik improved gluon action this gives

S = SG + SFu + SFd + SFs , (130)

with the gluon action

SG =
6

g20

{

c0
∑

Plaquette

1

3
ReTr(1− UPlaquette) + c1

∑

Rectangle

1

3
ReTr(1− URectangle)

}

,

(131)
and

β =
6c0
g20

=
10

g20
and c0 =

20

12
, c1 = − 1

12
. (132)

For each flavour the Wilson–Dirac fermion action is

SFq =

∑

x

{

1

2

∑

µ

[q(x)(γµ − 1)Ũµ(x)q(x+ aµ̂)− q(x)(γµ + 1)Ũ †
µ(x− aµ̂)q(x− aµ̂)]

+
1

2κq
q(x)q(x)− 1

4
acsw

∑

µν

q(x)σµνFµν(x)q(x)

}

, (133)
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where F is the ‘clover’ field strength, necessary for O(a)-improvement. As the up
and down quarks are always taken here as mass degenerate we have κu = κd ≡ κl.

To to keep the action highly local, the hopping terms use a stout smeared link
(‘fat link’) with α = 0.1 ‘mild smearing’ for the Dirac kinetic term and Wilson
mass term,

Ũµ(x) = exp{iQµ(x)}Uµ(x)

Qµ =
α

2i

[

VµU
†
µ − UµV

†
µ − 1

3Tr(VµU
†
µ − UµV

†
µ )
]

, (134)

where Vµ(x) is the sum of all staples around Uµ(x). The clover term is built from
thin links as it is already of length 4a and, as previously mentioned, we do not
want the fermion matrix to become too extended. Stout smearing is analytic and
so a derivative can be taken (so the HMC force is well defined) and also allows
for perturbative expansions [31].

The clover coefficient, csw, has recently been non-perturbatively (NP) found,
[19], by requiring that the axial Ward identity (WI) quark mass determined
in several different ways is the same. A sensitive way of achieving this is the
Schrödinger functional, or SF, formalism. Further details of our results may be
found in [19]. csw is determined for 3 mass degenerate or SU(3) flavour symmetric
quarks (where κl = κs ≡ κ0) in the chiral limit. A 5th order polynomial in g20
interpolating between the numerically determined csw(g0) points was found to be,
[19]

c∗sw(g0) = 1 + 0.269041 g20 + 0.29910 g40 − 0.11491 g60 − 0.20003 g80 + 0.15359 g100 .
(135)

(This interpolation function is constrained to reproduce the O(g20) perturbative
results, [31], in the β → ∞ limit and therefore has four free fit parameters.) We
take this result to define csw for a given β.

Improving one on-shell quantity to O(a2) (here the axial WI quark mass) fixes
csw(g

2
0) and then all masses are automatically improved to O(a2),

mH

mH′

= #+O(a2) , (136)

rather than just to O(a). Operators in general require further O(a) operators
together with associated improvement coefficients to ensure O(a)–improvement
for physical on-shell quantities.

This determination of csw via the Schrödinger Functional formalism also pro-
vides an estimate for the critical κ0, [19], of

κ0;c(g0) =
1

8

[

1 + 0.002391 g20 + 0.0122470 g40 − 0.0525676 g60

+0.0668197 g80 − 0.0242800 g100
]

. (137)
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(Again this interpolation function is constrained to reproduce the O(g20) pertur-
bative results, [31], in the β → ∞ limit.) The errors are estimated to be about
0.4% at β = 14.0 rising to 0.15% at β = 5.10.

The simulations only need knowledge of csw to proceed; however it is useful to
check consistency between different determinations of κ0;c (via the Schrödinger
functional or the pseudoscalar mass). For β = 5.50 then using eq. (137) we find
κ0;c = 0.120996 (the direct simulation result is κ0;c = 0.121125(330), [19]). This
is to be compared with the estimation in section 8.2 of κ0;c = 0.121069(25), which
is quite close. (It should also be noted that different determinations should only
agree up to O(a) effects.)

E Hadron masses

We collect here in Tables 14 – 18 and 19 – 22 values of the pseudoscalar octet,
vector octet, baryon octet and baryon decuplet masses for κ0 = 0.12090 and
κ0 = 0.12092 respectively. In Tables 23 – 25 we give the ratios (i.e. hadron
octet or decuplet masses normalised with their centre of mass). The data sets are
roughly∼ O(2000) trajectories for the 243×48 lattices and∼ O(1500) trajectories
for the 323 × 64 lattices for the results based on κ0 = 0.12090 and lower for the
comparison results. The errors are all taken from a bootstrap analysis of the
ratio (which often enables a smaller error to be given for the ratios than simply
using error propagation).

κ0 N3
S ×NT aMπ aMρ aMN aM∆

0.12000 163 × 32 0.4908(17) 0.6427(23) 0.9612(42) 1.048(6)
0.12030 163 × 32 0.4026(19) 0.5635(38) 0.8374(74) 0.9414(107)
0.12050 243 × 48 0.3375(24) 0.4953(47) 0.7201(83) 0.8216(89)
0.12080 243 × 48 0.2260(10) 0.3903(55) 0.5417(68) 0.6415(99)
0.12090 243 × 48 see Tables 15 – 18
0.12090 323 × 64 see Tables 15 – 18
0.12092 243 × 48 see Tables 19 – 22
0.12095 323 × 64 0.1506(9) 0.3095(54) 0.4321(75) 0.5539(110)

Table 14: The results for the hadrons on the symmetric line, aMπ, aMρ, aMN and
aM∆ for (β, csw, α) = (5.50, 2.65, 0.1).
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(κl, κs) aMπ aMK aMηs

243 × 48
(0.120830, 0.121040) 0.1933(6) 0.1688(7) 0.1391(11)
(0.120900, 0.120900) 0.1779(6) 0.1779(6) 0.1779(6)
(0.120950, 0.120800) 0.1661(8) 0.1845(7) 0.2011(7)
(0.121000, 0.120700) 0.1515(10) 0.1898(8) 0.2209(6)
(0.121040, 0.120620) 0.1406(8) 0.1949(6) 0.2361(5)

323 × 64
(0.120900, 0.120900) 0.1768(7) 0.1768(7) 0.1768(7)
(0.121040, 0.120620) 0.1349(5) 0.1896(4) 0.2320(4)
(0.121095, 0.120512) 0.1165(7) 0.1962(4) 0.2518(3)
(0.121145, 0.120413) 0.09698(93) 0.2017(5) 0.2684(3)

Table 15: The results for the pseudoscalar octet mesons: aMπ, aMK and aMηs for
(β, csw, α) = (5.50, 2.65, 0.1) where κ0 = 0.12090.

(κl, κs) aMρ aMK∗ aMφs

243 × 48
(0.120830, 0.121040) 0.3460(22) 0.3335(30) 0.3198(48)
(0.120900, 0.120900) 0.3494(25) 0.3494(25) 0.3494(25)
(0.120950, 0.120800) 0.3400(40) 0.3473(32) 0.3546(27)
(0.121000, 0.120700) 0.3364(43) 0.3517(30) 0.3663(20)
(0.121040, 0.120620) 0.3270(50) 0.3484(28) 0.3701(18)

323 × 64
(0.120900, 0.120900) 0.3401(58) 0.3401(58) 0.3401(58)
(0.121040, 0.120620) 0.3125(41) 0.3379(23) 0.3632(16)
(0.121095, 0.120512) 0.3130(50) 0.3433(22) 0.3749(13)
(0.121145, 0.120413) 0.3152(63) 0.3487(22) 0.3880(12)

Table 16: The results for the vector octet mesons: aMρ, aMK∗ and aMφs
for

(β, csw, α) = (5.50, 2.65, 0.1) where κ0 = 0.12090.
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(κl, κs) aMN aMΛ aMΣ aMΞ

243 × 48
(0.120830, 0.121040) 0.4976(25) 0.4859(43) 0.4791(31) 0.4679(39)
(0.120900, 0.120900) 0.4811(33) 0.4811(33) 0.4811(33) 0.4811(33)
(0.120950, 0.120800) 0.4737(68) 0.4794(58) 0.4871(55) 0.4938(48)
(0.121000, 0.120700) 0.4648(46) 0.4815(49) 0.4910(36) 0.5055(28)
(0.121040, 0.120620) 0.4466(66) 0.4810(57) 0.4843(42) 0.5068(32)

323 × 64
(0.120900, 0.120900) 0.4746(66) 0.4746(66) 0.4746(66) 0.4746(66)
(0.121040, 0.120620) 0.4271(52) 0.4524(44) 0.4710(35) 0.4910(24)
(0.121095, 0.120512) 0.4062(61) 0.4498(62) 0.4667(37) 0.4971(22)
(0.121145, 0.120413) 0.4022(115) 0.4582(77) 0.4755(45) 0.5105(22)

Table 17: The results for the octet baryons: aMN , aMΛ, aMΣ and aMΞ for
(β, csw, α) = (5.50, 2.65, 0.1) where κ0 = 0.12090.

(κl, κs) aM∆ aMΣ∗ aMΞ∗ aMΩ

243 × 48
(0.120830, 0.121040) 0.5906(73) 0.5801(89) 0.5685(114) 0.5548(151)
(0.120900, 0.120900) 0.5933(88) 0.5933(88) 0.5933(88) 0.5933(88)
(0.120950, 0.120800) 0.5817(55) 0.5895(48) 0.5973(43) 0.6050(38)
(0.121000, 0.120700) 0.5883(101) 0.6006(77) 0.6133(61) 0.6262(51)
(0.121040, 0.120620) 0.5483(137) 0.5679(90) 0.5902(64) 0.6108(48)

323 × 64
(0.120900, 0.120900) 0.5895(169) 0.5895(169) 0.5895(169) 0.5895(169)
(0.121040, 0.120620) 0.5552(85) 0.5775(57) 0.5991(42) 0.6210(34)
(0.121095, 0.120512) 0.5288(193) 0.5610(105) 0.5838(63) 0.6115(40)
(0.121145, 0.120413) 0.5047(219) 0.5551(98) 0.6019(50) 0.6421(29)

Table 18: The results for the decuplet baryons: aM∆, aMΣ∗ , aMΞ∗ and aMΩ for
(β, csw, α) = (5.50, 2.65, 0.1) where κ0 = 0.12090.

62



(κl, κs) aMπ aMK aMηs

243 × 48
(0.120920, 0.120920) 0.1694(9) 0.1694(9) 0.1694(9)

323 × 64
(0.120500, 0.120661) 0.1280(6) 0.1813(5) 0.2221(4)

Table 19: The results for the pseudoscalar octet mesons: aMπ, aMK and aMηs for
(β, csw, α) = (5.50, 2.65, 0.1) where κ0 = 0.12092.

(κl, κs) aMρ aMK∗ aMφs

243 × 48
(0.120920, 0.120920) 0.3404(44) 0.3404(44) 0.3404(44)

323 × 64
(0.120900, 0.120661) 0.3161(38) 0.3354(22) 0.3564(16)

Table 20: The results for the vector octet mesons: aMρ, aMK∗ and aMφs
for

(β, csw, α) = (5.50, 2.65, 0.1) where κ0 = 0.12092.

(κl, κs) aMN aMΛ aMΣ aMΞ

243 × 48
(0.120920, 0.120920) 0.4725(39) 0.4725(39) 0.4725(39) 0.4725(39)

323 × 64
(0.120500, 0.120661) 0.4127(42) 0.4444(35) 0.4580(31) 0.4798(22)

Table 21: The results for the octet baryons: aMN , aMΛ, aMΣ and aMΞ for
(β, csw, α) = (5.50, 2.65, 0.1) where κ0 = 0.12092.

(κl, κs) aM∆ aMΣ∗ aMΞ∗ aMΩ

243 × 48
(0.120920, 0.120920) 0.5790(97) 0.5790(97) 0.5790(97) 0.5790(97)

323 × 64
(0.120500, 0.120661) 0.5457(108) 0.5607(72) 0.5800(51) 0.6005(40)

Table 22: The results for the decuplet baryons: aM∆, aMΣ∗ , aMΞ∗ and aMΩ for
(β, csw, α) = (5.50, 2.65, 0.1) where κ0 = 0.12092.
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(κl, κs) Mρ/Xρ MK∗/Xρ Mφs
/Xρ

243 × 48
(0.120830, 0.121040) 1.025(2) 0.9877(12) 0.9470(155)
(0.120900, 0.120900) 1.0 1.0 1.0
(0.120950, 0.120800) 0.9859(22) 1.007(1) 1.028(6)
(0.121000, 0.120700) 0.9706(34) 1.015(2) 1.057(12)
(0.121040, 0.120620) 0.9488(50) 1.026(3) 1.102(6)

323 × 64
(0.120900, 0.120900) 1.0 1.0 1.0
(0.121040, 0.120620) 0.9485(54) 1.026(3) 1.102(7)
(0.121095, 0.120512) 0.9394(79) 1.030(4) 1.125(8)
(0.121145, 0.120413) 0.9338(111) 1.033(6) 1.149(9)

Table 23: Ratio results for the vector octet mesons: Mρ/Xρ, MK∗/Xρ and Mφs
/Xρ

for (β, csw, α) = (5.50, 2.65, 0.1) where κ0 = 0.12090.

(κl, κs) MN/XN MΛ/XN MΣ/XN MΞ/XN

243 × 48
(0.120830, 0.121040) 1.033(2) 1.009(6) 0.9949(13) 0.9717(26)
(0.120900, 0.120900) 1.0 1.0 1.0 1.0
(0.120950, 0.120800) 0.9769(33) 0.9887(84) 1.005(1) 1.018(3)
(0.121000, 0.120700) 0.9543(32) 0.9885(77) 1.008(2) 1.038(3)
(0.121040, 0.120620) 0.9319(56) 1.004(7) 1.011(2) 1.058(4)

323 × 64
(0.120900, 0.120900) 1.0 1.0 1.0 1.0
(0.121040, 0.120620) 0.9224(48) 0.9770(73) 1.017(3) 1.060(4)
(0.121095, 0.120512) 0.8949(92) 0.9863(113) 1.020(4) 1.085(9)
(0.121145, 0.120413) 0.8691(154) 0.9902(154) 1.028(7) 1.103(10)

Table 24: Ratio results for the octet baryons: MN/XN , MΛ/XN , MΣ/XN and
MΞ/XN for (β, csw, α) = (5.50, 2.65, 0.1) where κ0 = 0.12090.
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(κl, κs) M∆/X∆ MΣ∗/X∆ MΞ∗/X∆ MΩ/X∆

243 × 48
(0.120830, 0.121040) 1.021(6) 1.003(2) 0.9824(44) 0.9588(121)
(0.120900, 0.120900) 1.0 1.0 1.0 1.0
(0.120950, 0.120800) 0.9868(14) 1.000(0) 1.013(2) 1.026(3)
(0.121000, 0.120700) 0.9790(42) 0.9993(24) 1.020(6) 1.042(8)
(0.121040, 0.120620) 0.9634(72) 0.9978(53) 1.037(11) 1.073(14)

323 × 64
(0.120900, 0.120900) 1.0 1.0 1.0 1.0
(0.121040, 0.120620) 0.9620(43) 1.001(3) 1.038(6) 1.076(9)
(0.121095, 0.120512) 0.9538(130) 1.008(11) 1.045(21) 1.092(26)
(0.121145, 0.120413) 0.9168(153) 1.008(16) 1.093(26) 1.166(31)

Table 25: Ratio results for the decuplet baryons: M∆/X∆, MΣ∗/X∆, MΞ∗/X∆ and
MΩ/X∆ for (β, csw, α) = (5.50, 2.65, 0.1) where κ0 = 0.12090.
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