
 

Flavor symmetry breaking in the Δ sea
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The discovery of a sizeable asymmetry in the ū and d̄ distributions in the proton was one of the more
consequential experimental findings in hadron physics last century. Although widely believed to be related
to the fundamental role of chiral symmetry in QCD, a definitive verification of this hypothesis has remained
elusive. We propose a novel test of the role of chiral symmetry in generating the sea flavor asymmetry by
comparing the d̄ − ū content in the proton with that in the Δþ baryon, where a significant enhancement is
expected around the opening of the Nπ decay channel. Recent developments in lattice QCD suggest a
promising way to test this prediction in the near future.
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As a result of considerable theoretical and experimental
effort, we now know that the sea of quark-antiquark pairs in
the nucleon is far more complex than originally envisaged
on the basis of simple quark models or perturbative QCD.
The first major surprise was the confirmation in the early
1990s of an integrated excess of d̄ over ū antiquarks in the
proton [1], leading to a violation of the Gottfried sum rule
[2]. Almost a decade earlier, as a by-product of a study of
the excess of nonstrange over strange sea quarks predicted
within the cloudy bag model [3,4], it had been shown that
the application of chiral symmetry to the structure of the
nucleon naturally led to a surplus of d̄ over ū [5].
Once the experimental result was announced, a number

of calculations confirmed that the pion cloud picture could
indeed explain it quantitatively [6–9]. Furthermore, a
careful study of the nonanalytic behavior of the sea quarks
as a function of quark mass established that the pion cloud
contribution was an essential feature of spontaneous
symmetry breaking in QCD [10–14]. Studies of the sea
using Drell-Yan lepton-pair production [15] in pp̄ colli-
sions at Fermilab suggested an unexpected change of sign
in d̄ − ū at parton momentum fractions x around 0.3 [16],
which is difficult to accommodate naturally within a meson
cloud framework [17]. While we await the results of the

follow-up SeaQuest experiment [18], designed to explore
the asymmetry to larger x, it is imperative to obtain
independent confirmation of the physical mechanism.
Here we suggest that a comparison of the d̄ − ū asym-

metry in the Δþ baryon with that in the proton provides an
outstanding opportunity for such a confirmation. To under-
stand why, we recall that the dominant meson-baryon
component of the proton wave function arises from
quantum fluctuation p → nπþ. As the πþ contains only
a valence d̄ antiquark, one naturally expects d̄ > ū in the
proton. The process p → pπ0, which is suppressed by a
factor of 2 by isospin couplings, produces equal numbers of
d̄ and ū and therefore does not affect the asymmetry. While
the process N → Δπ acts to reduce the asymmetry, it is
suppressed relative to the dominant process N → Nπ.
For the Δþ baryon, the processes Δ → Δπ and Δ → Nπ

both favor πþ production, and hence also produce an excess
of d̄ over ū. The key difference, however, is that because the
Δ decay to Nπ is favored energetically, it experiences a
significant kinematical enhancement as a function of the
pion mass, mπ , as it approaches the Δ–N mass difference
and the decay channel opens up.
In parallel developments, recent progress in the calcu-

lation of parton distribution functions (PDFs) in lattice
QCD suggests a realistic means to check the prediction. In
particular, lattice QCD measurement of the spatial corre-
lation function of quarks within a fast moving hadron could
be used [19], after Fourier transformation and renormali-
zation, to obtain a quasi-PDF [20–22]. Through a further
matching procedure [23–25], one can then directly obtain
the desired light-cone PDF over the range x ∈ ð−1;þ1Þ.
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Previous attempts to extract antiquark distributions from
lattice QCD were impaired by the difficulty of disentangling
the q and q̄ content using only the first two or three moments
from calculations of matrix elements of local twist-two
operators [26]. In contrast, in the quasi-PDF approach, one
can use the crossing symmetry relation, q̄ðxÞ ¼ −qð−xÞ, to
extract directly the x dependence of the q̄ PDFs. Exploratory
studies of quasi-PDFs [24,27–29] did indeed suggest an
asymmetric sea, even though renormalization was not yet
available, and the computations were performed at large
pion masses.
Recently, however, simulations at the physical pion mass,

including a sophisticated treatment of renormalization, have
shown a promising degree of agreement with empirical
distributions [30,31]. Nonetheless, a number of systematics,
such as discretization and finite volume effects, as well as
difficulties in dealing with high momentum hadrons on the
lattice, have to be addressed before quantitative comparisons
with phenomenology are possible. In this spirit, a measure-
ment of the distribution u − d in the Δþ would be of
enormous interest, especially if the difference between the
u − d shapes in the Δþ and proton were to be sufficiently
large compared to the computational uncertainties.
Within a chiral effective theory framework, the asym-

metry between the d̄ and ū PDFs in a baryon B (B ¼ N
or Δ) arises through a convolution of the valence antiquark
distribution in the pion, q̄πv, and the corresponding light-
cone momentum distribution, fB→B0π , of pions in B with a
spectator baryon B0 [14,32–35]. The coupling of the
external probe to the pion field in the effective theory
arises through the rainbow diagrams illustrated in Fig. 1, as
well as via bubble diagrams in which the pion loop couples
to the baryon B via a Weinberg-Tomazawa four-point
interaction [13,14,32–35]. The latter involves pions with
zero momentum fractions y and are localized to x ¼ 0.
Since lattice QCD simulations cannot access PDFs at
x ¼ 0, the bubble diagrams will not be relevant here.
Moreover, the rainbow diagrams themselves receive

zero mode contributions [14,34], in addition to the usual
on-shell terms at x > 0. Off-shell and Kroll-Ruderman

terms contribute to the quark distributions through coupling
to the intermediate state baryon B0 [32,35]. The dominant
contributions to the antiquark asymmetry in the proton and
Δþ at x > 0 are then given by

ðd̄ − ūÞpðxÞ ¼ 2½ðfN→Nπ − fN→ΔπÞ ⊗ q̄πv�ðxÞ; ð1Þ

and

ðd̄ − ūÞΔþðxÞ ¼ ½ðfΔ→Nπ þ 2fΔ→ΔπÞ ⊗ q̄πv�ðxÞ; ð2Þ

where the symbol “⊗” denotes the convolution operator

½f ⊗ g�ðxÞ≡
Z

1

x

dy
y
fðyÞg

�
x
y

�
: ð3Þ

The expressions for the splitting functions appearing
in Eqs. (1) and (2) are ultraviolet divergent and must
be regularized. In the literature, various regularization
schemes have been advocated, including transverse
momentum cutoff, Pauli-Villars, and dimensional regulari-
zation (DR), as well as form factors or finite-range
regulators [9,32,33,35–38]. Within DR, specific power
counting schemes can be preserved in the formal chiral
perturbation theory expansions. On the other hand, finite-
range regulators account for the finite size of hadrons,
effectively resumming terms in the chiral series [36]. In
practice, this allows for better convergence in mπ in
regions where the usual power counting schemes would
not otherwise be applicable [39,40]. Following Ref. [41],
we use a dipole form factor with cutoff parameter Λ to
regulate the UV divergences,

FðkÞ ¼
�

Λ̄2

Λ2 − k2

�
2

; ð4Þ

where Λ̄2 ≡ Λ2 −m2
π , so that the form factor is normalized

to unity at the pion pole.
For a proton target, the N → Nπ splitting function for

Fig. 1(a) at y > 0 is then given by the familiar on-shell

contribution [5,34,41,42], fN→Nπðy > 0Þ ¼ fðonÞN→NπðyÞ,
where

fðonÞN→NπðyÞ ¼
g2AM

2Λ̄8

ð4πfπÞ2
Z

dk2⊥
yðk2⊥ þ y2M2Þ
ȳ2D2

NND̃
2
NN

; ð5Þ

with gA the nucleon axial charge, fπ the pion decay
constant, M the nucleon mass, k⊥ the transverse momen-
tum of the pion, and we define ȳ≡ 1 − y. The function
DNN is the pion virtuality k2 −m2

π, which in general
depends on the initial and final state baryon masses, MB
and MB0 , respectively,

DBB0 ¼ −
1

ȳ
½k2⊥ − yȳM2

B þ yM2
B0 þ ȳm2

π�; ð6Þ

(a) (b)

(c) (d)

FIG. 1. Pion loop diagrams contributing to the d̄ − ū PDFs in
the nucleon (solid lines) and Δ (double solid lines) from the
processes (a) N → Nπ, (b) N → Δπ, (c) Δ → Nπ, and
(d) Δ → Δπ, with the ⊗ representing the insertion of a nonlocal
current operator.
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and the cutoff dependent factor D̃NN corresponds to Eq. (6) but with m2
π replaced by the cutoff parameter Λ2,

D̃BB0 ¼ −
1

ȳ
½k2⊥ − yȳM2

B þ yM2
B0 þ ȳΛ2�: ð7Þ

For the corresponding process N → Δπ in Fig. 1(b), the splitting function at y > 0 is given by a sum of on-shell and

end-point contributions [33,41], fN→Δπðy > 0Þ ¼ fðonÞN→ΔπðyÞ þ fðendÞN→ΔπðyÞ,

fðonÞN→ΔπðyÞ ¼
g2AΛ̄8

25M2
Δð4πfπÞ2

Z
dk2⊥

yðM2 −m2
πÞ

ȳ

�ðM2 −m2
πÞðΔ2 −m2

πÞ
D2

NΔD̃
4
NΔ

−
M2 − 3m2

π þ 2Δ2

DNΔD̃4
NΔ

�
; ð8aÞ

fðendÞN→ΔπðyÞ ¼
g2AΛ̄8

25M2
Δð4πfπÞ2

Z
dk2⊥

y
ȳ2

�
k2⊥ þ y2M2 − 2yðM2 −MΔÞ − 2ȳm2

π þ 3M2 − 4MMΔ

D̃4
NΔ

�
; ð8bÞ

where MΔ is the Δ mass, and we have defined M ≡M þMΔ and Δ≡MΔ −M. In the Λ → ∞ limit, the end-point term
becomes a δ-function at the kinematical end point, y ¼ 1, but for finite Λ, it remains finite at y < 1. In this case, the sum of
the on-shell and end-point contributions reduces to the simple result for y > 0 [17],

fN→ΔπðyÞ ¼
g2AΛ̄8

25M2
Δð4πfπÞ2

Z
dk2⊥

y½k2⊥ þ ðMΔ − ȳMÞ2�½k2⊥ þ ðMΔ þ ȳMÞ2�2
ȳ2D2

NΔD̃
4
NΔ

: ð9Þ

In the chiral limit, moments of the splitting functions can be expanded in power series inmπ, with the leading nonanalytic
terms in the expansion, which depend only on the long-distance properties of pion loops, being model independent [43]. For
the N → Nπ distribution, one finds the characteristic leading order (LO) ∼m2

π logm2
π nonanalytic behavior [10–14].

Moments of the N → Δπ splitting function, in contrast, display the next-to-leading order (NLO) behavior ∼m4
π logm2

π for
mπ → 0 [10,13,32,33].
In the case of a Δ baryon initial state, the on-shell and end-point contributions to the LO diagonal Δ → Δπ splitting

function in Fig. 1(d) are given by

fðonÞΔ→ΔπðyÞ ¼
g2AΛ̄8

50M2
Δð4πfπÞ2

Z
dk2⊥

y
ȳ2

�
m2

π½m2
πð2M2

Δ −m2
πÞ − 10M4

Δ�
D2

ΔΔD̃
4
ΔΔ

þm2
πð4M2

Δ − 3m2
πÞ − 10M4

Δ

DΔΔD̃4
ΔΔ

�
; ð10aÞ

fðendÞΔ→ΔπðyÞ ¼
g2AΛ̄8

50M2
Δð4πfπÞ2

Z
dk2⊥

y
ȳ2

�
k2⊥ þ y2M2

Δ þ 2ȳ2ðM2
Δ −m2

πÞ
D̃4

ΔΔ

�
; ð10bÞ

respectively. The sum of the two terms then gives the total splitting function at y > 0 as

fΔ→ΔπðyÞ ¼
g2AΛ̄8

50M2
Δð4πfπÞ2

Z
dk2⊥

y½k2⊥ þ y2M2
Δ�

ȳ2
½k4⊥ þ 2k2⊥M2

Δðȳþ y2Þ þM4
Δð10ȳ2 þ 2y2ȳ2 þ y4Þ�

D2
ΔΔD̃

4
ΔΔ

: ð11Þ

Finally, for the NLO distribution corresponding to Fig. 1(c), the on-shell and end-point contributions to the Δ → Nπ
splitting function are given by

fðonÞΔ→NπðyÞ ¼
g2AΛ̄8

50M2
Δð4πfπÞ2

Z
dk2⊥

yðM2 −m2
πÞ

ȳ2

�ðM2 −m2
πÞðΔ2 −m2

πÞ
D2

ΔND̃
4
ΔN

−
M2 − 3m2

π þ 2Δ2

DΔND̃4
ΔN

�
; ð12aÞ

fðendÞΔ→NπðyÞ ¼
g2AΛ̄8

50M2
Δð4πfπÞ2

Z
dk2⊥

y
ȳ2

�
k2⊥ þ y2M2

Δ − 2yðM2 þMΔΔÞ − 2ȳ2m2
π − 3M2 þ 4MMΔ

D̃4
ΔN

�
; ð12bÞ

respectively. The sum of these then gives a total Δ → Nπ splitting function, similar to that in Eq. (9),

fΔ→NπðyÞ ¼
g2AΛ̄8

50M2
Δð4πfπÞ2

Z
dk2⊥

y½k2⊥ þ ðM − ȳMΔÞ2�½k2⊥ þ ðM þ ȳMΔÞ2�2
ȳ2D2

ΔND̃
4
ΔN

: ð13Þ
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In Eqs. (5)–(13), SU(6) symmetry and the Goldberger-
Treiman relation have been used to write the πNN, πNΔ,
and πΔΔ couplings in terms of the common ratio gA=fπ .
In Fig. 2, we illustrate the four total splitting functions in

Eqs. (5), (9), (11), and (13) for a number of values of mπ

relevant for future lattice QCD simulations. The value of the
dipole cutoff mass Λ was chosen to give an integrated d̄ − ū
asymmetry in the proton of 0.1, which fixes Λ ¼ 0.97 GeV.
The same cutoff value is taken for the NΔπ and ΔΔπ
vertices as for NNπ, and we assume that the cutoff is
independent of mπ (an assumption which is expected to
break down at large mπ). The nucleon and Δ masses also
depend on mπ , and for these we take the approximate

relations M ≈Mð0Þ þmπ and MΔ ≈Mð0Þ
Δ þmπ , with the

chiral limit values Mð0Þ ¼ 0.8 GeV and Mð0Þ
Δ ¼ 1.1 GeV,

which have been shown to provide a simple but effective
representation of the results of lattice QCD simulations [44].
For the case of the nucleon initial state, the dominance

of the LO over the NLO contribution is obvious from
Figs. 2(a) and 2(b). The reason is not only the smaller
coupling but also the cost in energy to convert the nucleon
into a Δ. On the other hand, for a Δ initial state, the
enhancement associated with the exothermic nature of
the NLO Δ → Nπ process means that it is larger than
the LO N → Nπ contribution at all pion masses and is also
larger than the N → Δπ function.
At mπ ¼ 0.3 GeV, the most prominent feature in the

Δ → Nπ splitting function in Fig. 2(b) is the large cusp at
y ≈ 0.2, which indicates the opening of the octet decay
channel atmπ ¼ Δ (in the present analysis we take the mass
difference Δ ≈ 0.3 GeV, independent of mπ). Below this
threshold the Δ → Nπ function is complex and is not
shown in Fig. 2(c) at the physical pion mass. Compared to
excited baryon masses, which are found to be relatively

smooth functions of mπ across the pion decay threshold
[36,45], the additional pion propagator in the splitting
function enhances the singularity at mπ ≈ Δ to produce the
observed spike. A similar behavior would also be expected
for electroweak form factors and indeed was observed in
the calculation of pion loop corrections to the Δ magnetic
moments [46].
To make a more direct comparison of the four processes,

in Fig. 3 we compare the splitting functions at a fixed value
of mπ ¼ 0.3 GeV, at which the differences between the
nucleon and Δ splitting functions are most dramatic. To
illustrate the potential dependence on the dipole cutoff
mass parameter, Λ, we indicate the effect of varying Λ by
�5% by the shaded bands. As already indicated in Fig. 2, at
this value of mπ the Δ → Nπ channel dominates, and the
presence of the prominent cusp at y ≈ 0.2 is independent of
the choice of regulator. The contributions to the N and Δ
splitting functions from the processes with Δπ intermediate
states are significantly smaller than those for the Nπ
channels, regardless of the regulator form.
To obtain the x dependence of the d̄ − ū distributions, the

splitting functions in Figs. 2 and 3 need to be convoluted
with the pion PDF. While the pion valence PDF is relatively
well determined from global next-to-leading-order analyses
of Drell-Yan and other high energy scattering data [47–49],
its dependence on mπ is less well understood. In the
absence of direct lattice calculations of q̄πv, Detmold et al.
[50] used the several low PDF moments from lattice QCD
simulations of pion twist-two matrix elements to recon-
struct the x dependence over a range of pion masses, from
the chiral limit tomπ ¼ 1 GeV, at a scaleQ2 ∼ 5 GeV2, set
by the lattice spacing [51].
Using these inputs, in Fig. 4, we show the resulting d̄ − ū

asymmetry in the proton and Δþ for several mπ values

FIG. 3. Chiral splitting functions at mπ ¼ 0.3 GeV, with the
shaded bands representing the spread associated with a �5%
variation of the regulator mass. Note that the Δ → Nπ function
has been scaled by a factor of 1=3.

(a) (b)

(c) (d)

FIG. 2. Chiral splitting functions versus y for the (a) N → Nπ,
(b) N → Δπ, (c) Δ → Nπ, and (d) Δ → Δπ transitions at the
physical pion mass (red solid curves), mπ ¼ 0.3 GeV (blue
dashed curves), and mπ ¼ 0.5 GeV (green dot-dashed curves).
Note that the Δ → Nπ function for mπ ¼ 0.3 GeV has been
scaled by a factor 1=10.
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ranging from the physical value (for the proton only) to
mπ ¼ 0.5 GeV. The bands in Fig. 4 represent uncertainties
from the choice of ultraviolet regulator, corresponding to
the spread in the splitting functions shown in Fig. 3. While
the magnitude of the asymmetry in the proton and Δþ are
similar for large values of mπ ≳ 0.4 GeV2, the enhance-
ment due to the opening of the decay channel at mπ ¼ Δ
renders the asymmetry in the Δþ twice as large near the
peak in xðd̄ − ūÞ at x ≈ 0.1.
The model dependence is expected to cancel to some

extent in the ratio of the d̄ − ū asymmetries in the Δþ and
p, as illustrated in Fig. 5, where the lighter bands show the
effect of the 5% uncertainty in the regulator mass. To
highlight the strong enhancement of the Δþ asymmetry as
one approaches the Nπ threshold, we compute the ratio at
mπ ¼ 0.3 and 0.33 GeV [at which ðmπ − ΔÞ=mπ ≈ 10%],
in addition to the 0.4 and 0.5 GeV values.

The variation with mπ is dramatic at x ≈ 0.1, where the
ratio goes from being ≈125% at mπ ¼ 0.5 GeV to ≈300%
just above the threshold at mπ ¼ 0.3 GeV. At larger x
values, x≳ 0.25, the variation is significantly smaller,
resulting in an ≈120% − 140% enhancement of the d̄ − ū
asymmetry across the mπ values being considered. In this
region, the asymmetries are very small, however, and will
in practice be difficult to extract from lattice or experiment.
The dependence of the asymmetry ratio on the input pion

valence PDF is also relatively weak, as the darker bands in
Fig. 5 illustrate. The bands represent the difference between
the results using themπ dependent pion PDF from Ref. [50]
with those using a fixed q̄πv PDF at the physical pion
mass [52]. Since the same pion PDF enters both the Δþ
and proton convolutions in the numerator and denominator
for any mπ, the dependence on q̄πv largely cancels, as
expected.
The predicted large enhancement of the d̄ − ū asymme-

try in the Δþ can be tested in lattice QCD simulations at
pion masses just above the Nπ threshold where the Δ is
stable. In particular, the ETM Collaboration plans [53] to
calculate the u − d quasi-PDF in the Δ using the Iwasaki
improved gluon action and the twisted mass fermion action
with clover improvement [30]. The ensembles to be used in
these simulations should allow access tomπ values at which
ðmπ − ΔÞ=mπ ≈ 3% [24], which could provide a striking
confirmation of the role of chiral symmetry and the pion
cloud in the generation of a nonperturbative sea in baryons.
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(a) (b)

FIG. 4. Predicted x dependence of the xðd̄ − ūÞ asymmetry in (a) the proton and (b) Δþ baryon, for various pion masses: physical mπ

(gray band), mπ ¼ 0.3 GeV (red), 0.4 GeV (green), and 0.5 GeV (blue). The shaded bands represent the effect of varying the regulator
mass parameter Λ by �5%.

FIG. 5. Ratio of the d̄ − ū asymmetry in the Δþ to that in the
proton, for mπ ¼ 0.3 (red bands), 0.33 (orange), 0.4 (green), and
0.5 GeV (blue). The darker bands represent the uncertainty on the
pion PDF q̄πv, while the lighter bands represent the dependence on
the choice of regulator mass.
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